101
|
miRNAs in platelet-poor blood plasma and purified RNA are highly stable: a confirmatory study. BMC Res Notes 2018; 11:273. [PMID: 29728133 PMCID: PMC5936026 DOI: 10.1186/s13104-018-3378-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 04/30/2018] [Indexed: 11/18/2022] Open
Abstract
Objective We wished to re-assess the relative stability of microRNAs (miRNAs) as compared with other RNA molecules, which has been confirmed in many contexts. When bound to Argonaute proteins, miRNAs are protected from degradation, even when released into the extracellular space in ribonucleoprotein complexes, and with or without the protection of membranes in extracellular vesicles. Purified miRNAs also appear to present less of a target for degradation than other RNAs. Although miRNAs are by no means immune to degradation, biological samples subjected to prolonged incubation at room temperature, multiple freeze/thaws, or collection in the presence of inhibitors like heparin, can typically be remediated or used directly for miRNA measurements. Results Here, we provide additional confirmation of early, well validated findings on miRNA stability and detectability. Our data also suggest that inadequate depletion of platelets from plasma may explain the occasional report that freeze–thaw cycles can adversely affect plasma miRNA levels. Overall, the repeated observation of miRNA stability is again confirmed.
Collapse
|
102
|
Herbert C, Dzowo YK, Urban A, Kiggins CN, Resendiz MJE. Reactivity and Specificity of RNase T 1, RNase A, and RNase H toward Oligonucleotides of RNA Containing 8-Oxo-7,8-dihydroguanosine. Biochemistry 2018; 57:2971-2983. [PMID: 29683663 DOI: 10.1021/acs.biochem.8b00277] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Understanding how oxidatively damaged RNA interacts with ribonucleases is important because of its proposed role in the development and progression of disease. Thus, understanding structural aspects of RNA containing lesions generated under oxidative stress, as well as its interactions with other biopolymers, is fundamental. We explored the reactivity of RNase A, RNase T1, and RNase H toward oligonucleotides of RNA containing 8-oxo-7,8-dihydroguanosine (8oxoG). This is the first example that addresses this relationship and will be useful for understanding (1) how these RNases can be used to characterize the structural impact that this lesion has on RNA and (2) how oxidatively modified RNA may be handled intracellularly. 8-OxoG was incorporated into 10-16-mers of RNA, and its reactivity with each ribonuclease was assessed via electrophoretic analyses, circular dichroism, and the use of other C8-purine-modified analogues (8-bromoguanosine, 8-methoxyguanosine, and 8-oxoadenosine). RNase T1 does not recognize sites containing 8-oxoG, while RNase A recognizes and cleaves RNA at positions containing this lesion while differentiating if it is involved in H-bonding. The selectivity of RNase A followed the order C > 8-oxoG ≈ U. In addition, isothermal titration calorimetry showed that an 8-oxoG-C3'-methylphosphate derivative can inhibit RNase A activity. Cleavage patterns obtained from RNase H displayed changes in reactivity in a sequence- and concentration-dependent manner and displayed recognition at sites containing the modification in some cases. These data will aid in understanding how this modification affects reactivity with ribonucleases and will enable the characterization of global and local structural changes in oxidatively damaged RNA.
Collapse
Affiliation(s)
- Cassandra Herbert
- Department of Chemistry , University of Colorado Denver , Science Building, 1151 Arapahoe Street , Denver , Colorado 80204 , United States
| | - Yannick Kokouvi Dzowo
- Department of Chemistry , University of Colorado Denver , Science Building, 1151 Arapahoe Street , Denver , Colorado 80204 , United States
| | - Anthony Urban
- Department of Chemistry , University of Colorado Denver , Science Building, 1151 Arapahoe Street , Denver , Colorado 80204 , United States
| | - Courtney N Kiggins
- Department of Chemistry , University of Colorado Denver , Science Building, 1151 Arapahoe Street , Denver , Colorado 80204 , United States
| | - Marino J E Resendiz
- Department of Chemistry , University of Colorado Denver , Science Building, 1151 Arapahoe Street , Denver , Colorado 80204 , United States
| |
Collapse
|
103
|
Labatut AE, Mattheolabakis G. Non-viral based miR delivery and recent developments. Eur J Pharm Biopharm 2018; 128:82-90. [PMID: 29679644 DOI: 10.1016/j.ejpb.2018.04.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 02/28/2018] [Accepted: 04/18/2018] [Indexed: 12/18/2022]
Abstract
miRNAs are promising therapeutic targets or tools for the treatment of numerous diseases, with most prominently, cancer. The inherent capacity of these short nucleic acids to regulate multiple cancer-related pathways simultaneously has prompted strong research on understanding miR functions and their potential use for therapeutic purposes. A key determinant of miR therapeutics' potential for treatment is their delivery. Viral and non-viral vectors attempt to address the major limitations associated with miR delivery, but several hurdles have been identified. Here, we present an overview on the general limitations of miR delivery, and the delivery strategies exploited to overcome them. We provide an introduction on the advantages and disadvantages of viral and non-viral vectors, and we go into detail to analyze the most prominently used non-viral systems. We provide with an update on the most recent research on this topic and we describe the mechanism and limitations of the lipid-, polymer- and inorganic material- based miR delivery systems.
Collapse
Affiliation(s)
- Annalise Elizabeth Labatut
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, United States
| | - George Mattheolabakis
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, United States.
| |
Collapse
|
104
|
Suitability of biomarkers of biological effects (BOBEs) for assessing the likelihood of reducing the tobacco related disease risk by new and innovative tobacco products: A literature review. Regul Toxicol Pharmacol 2018; 94:203-233. [DOI: 10.1016/j.yrtph.2018.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 02/04/2018] [Accepted: 02/05/2018] [Indexed: 02/07/2023]
|
105
|
Miao X, Rahman MFU, Jiang L, Min Y, Tan S, Xie H, Lee L, Wang M, Malmström RE, Lui WO, Li N. Thrombin-reduced miR-27b attenuates platelet angiogenic activities in vitro via enhancing platelet synthesis of anti-angiogenic thrombospondin-1. J Thromb Haemost 2018; 16:791-801. [PMID: 29442415 DOI: 10.1111/jth.13978] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Indexed: 12/29/2022]
Abstract
Essentials It is unclear if platelet micro-RNAs can regulate de novo protein synthesis of platelets. Platelet de novo protein synthesis of thrombospondin-1 (TSP-1) was induced by thrombin. Thrombin stimulation in vitro altered platelet microRNA profiles, including decreased miR-27b. Decreased miR-27b hampers platelet angiogenic activities via enhancing de novo TSP-1 synthesis. SUMMARY Background Platelets can synthesize proteins upon activation. Platelets contain a number of microRNAs (miRNA) and a fully functional miRNA effector machinery. It is, however, unclear if platelet miRNAs can regulate protein synthesis of platelets, and whether the regulation may produce a physiological impact. Objectives To investigate if and how platelet miRNAs regulate de novo syntheses of angiogenic regulators and subsequently modulate platelet angiogenic activities. Methods and Results Microarray-based miRNA profiling showed that thrombin stimulation in vitro down- or up-regulated a number of platelet miRNAs, both in the total platelet miRNAs and in Ago2-associated miRNAs. Among those altered miRNAs, miR-27b was down-regulated in both the total and Ago2-immunoprecipitated miRNA profiles of platelets, which was confirmed by reverse transcription-quantitative PCR (RT-qPCR). Using western blotting assays, we showed that thrombin induced platelet de novo synthesis of thrombospondin-1, and that the level of thrombospondin-1 synthesis could reach a level of 3-5-fold higher than that before thrombin stimulation. With either the platelet precursor megakaryocyte cell line MEG-01 cells or mature platelets, we demonstrated that transfection of miR-27b mimic, but not the negative control of miRNA mimic, markedly reduced thrombospondin-1 protein levels. The latter subsequently enhanced platelet-dependent endothelial tube formation on matrigel. Conclusions Thrombin stimulation in vitro reduces platelet miR-27b levels that may markedly enhance thrombin-evoked platelet de novo synthesis of thrombospondin-1. Elevation of platelet miR-27b by transfection inhibits thrombospondin-1 synthesis, and subsequently enhances platelet pro-angiogenic activities. Hence, platelet activation-dependent reduction of miR-27b levels may represent a novel negative regulatory mechanism of platelet angiogenic activities.
Collapse
Affiliation(s)
- X Miao
- Department of Medicine-Solna, Clinical Pharmacology Group, Karolinska Institutet, Stockholm, Sweden
| | - M F-U Rahman
- Department of Medicine-Solna, Clinical Pharmacology Group, Karolinska Institutet, Stockholm, Sweden
| | - L Jiang
- Department of Medicine-Solna, Clinical Pharmacology Group, Karolinska Institutet, Stockholm, Sweden
- Department of Pathology, Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, China
| | - Y Min
- Department of Medicine-Solna, Clinical Pharmacology Group, Karolinska Institutet, Stockholm, Sweden
| | - S Tan
- Department of Medicine-Solna, Clinical Pharmacology Group, Karolinska Institutet, Stockholm, Sweden
| | - H Xie
- Department of Oncology-Pathology and Cancer Center Karolinska, Karolinska University Hospital-Solna, Stockholm, Sweden
- School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - L Lee
- Department of Oncology-Pathology and Cancer Center Karolinska, Karolinska University Hospital-Solna, Stockholm, Sweden
| | - M Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - R E Malmström
- Department of Medicine-Solna, Clinical Pharmacology Group, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Pharmacology, Karolinska University Hospital-Solna, Stockholm, Sweden
| | - W-O Lui
- Department of Oncology-Pathology and Cancer Center Karolinska, Karolinska University Hospital-Solna, Stockholm, Sweden
| | - N Li
- Department of Medicine-Solna, Clinical Pharmacology Group, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Pharmacology, Karolinska University Hospital-Solna, Stockholm, Sweden
| |
Collapse
|
106
|
King VM, Borchert GM. MicroRNA Expression: Protein Participants in MicroRNA Regulation. Methods Mol Biol 2018; 1617:27-37. [PMID: 28540674 DOI: 10.1007/978-1-4939-7046-9_2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
MiRNAs are ~20 nt small RNAs that regulate networks of proteins using a seed region of nucleotides 2-8 to complement the 3' UTR of target mRNAs. The biogenesis and function of miRNAs as translational repressors is facilitated by protein counterparts that process primary and precursor miRNAs to maturity (Drosha/DCGR8 and Dicer/TRBP respectively) and incorporate miRNAs into the protein complex RISC to recognize and repress target mRNAs (RISC proteins: Ago/TRBP1/TRBP2/DICER). Similarly, siRNAs through comparable mechanisms are loaded into the protein complex RITS to heterochromatin formation of DNA and suppress transcription of particular genes. MiRNAs are also regulated themselves through many different pathways including transcriptional regulation, post-transcriptional RNA editing, and RNA tailing. Dysregulation of miRNAs and the protein participants that mature them are implicated in the development of a number of diseases, tumorigenesis, and arrested development of embryonic cells. In this chapter, we will explore the biosynthesis, function, and regulation of miRNAs.
Collapse
Affiliation(s)
- Valeria M King
- Department of Biology, University of South Alabama, Mobile, AL, 36688, USA
| | - Glen M Borchert
- Department of Biology, University of South Alabama, Mobile, AL, 36688, USA. .,Department of Pharmacology, University of South Alabama, Mobile, AL, 36688, USA.
| |
Collapse
|
107
|
|
108
|
Are microRNAs Important Players in HIV-1 Infection? An Update. Viruses 2018; 10:v10030110. [PMID: 29510515 PMCID: PMC5869503 DOI: 10.3390/v10030110] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 02/21/2018] [Accepted: 02/25/2018] [Indexed: 12/15/2022] Open
Abstract
HIV-1 has already claimed over 35 million human lives globally. No curative treatments are currently available, and the only treatment option for over 36 million people currently living with HIV/AIDS are antiretroviral drugs that disrupt the function of virus-encoded proteins. However, such virus-targeted therapeutic strategies are constrained by the ability of the virus to develop drug-resistance. Despite major advances in HIV/AIDS research over the years, substantial knowledge gaps exist in many aspects of HIV-1 replication, especially its interaction with the host. Hence, understanding the mechanistic details of virus–host interactions may lead to novel therapeutic strategies for the prevention and/or management of HIV/AIDS. Notably, unprecedented progress in deciphering host gene silencing processes mediated by several classes of cellular small non-coding RNAs (sncRNA) presents a promising and timely opportunity for developing non-traditional antiviral therapeutic strategies. Cellular microRNAs (miRNA) belong to one such important class of sncRNAs that regulate protein synthesis. Evidence is mounting that cellular miRNAs play important roles in viral replication, either usurped by the virus to promote its replication or employed by the host to control viral infection by directly targeting the viral genome or by targeting cellular proteins required for productive virus replication. In this review, we summarize the findings to date on the role of miRNAs in HIV-1 biology.
Collapse
|
109
|
Sengupta D, Govindaraj V, Kar S. Alteration in microRNA-17-92 dynamics accounts for differential nature of cellular proliferation. FEBS Lett 2018; 592:446-458. [PMID: 29331028 DOI: 10.1002/1873-3468.12974] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 12/21/2017] [Accepted: 01/05/2018] [Indexed: 12/19/2022]
Abstract
MicroRNAs associated with the mir-17-92 cluster are crucial regulators of the mammalian cell cycle, as they inhibit transcription factors related to the E2F family that tightly control decision-making events for a cell to commit for active cellular proliferation. Intriguingly, in many solid cancers, these mir-17-92 cluster members are overexpressed, whereas in some hematopoietic cancers they are down-regulated. Our proposed model of the Myc/E2F/mir-17-92 network demonstrates that the differential expression pattern of mir-17-92 in different cell types can be conceived due to having a contrasting E2F dynamics induced by mir-17-92. The model predicts that by explicitly altering the mir-17-92-related part of the network, experimentally it is possible to control cellular proliferation in a cell type-dependent manner for therapeutic intervention.
Collapse
Affiliation(s)
| | | | - Sandip Kar
- Department of Chemistry, IIT Bombay, Mumbai, India
| |
Collapse
|
110
|
Bem J, Grabowska I, Daniszewski M, Zawada D, Czerwinska AM, Bugajski L, Piwocka K, Fogtman A, Ciemerych MA. Transient MicroRNA Expression Enhances Myogenic Potential of Mouse Embryonic Stem Cells. Stem Cells 2018; 36:655-670. [PMID: 29314416 DOI: 10.1002/stem.2772] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/07/2017] [Accepted: 12/27/2017] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are known regulators of various cellular processes, including pluripotency and differentiation of embryonic stem cells (ESCs). We analyzed differentiation of two ESC lines-D3 and B8, and observed significant differences in the expression of miRNAs and genes involved in pluripotency and differentiation. We also examined if transient miRNA overexpression could serve as a sufficient impulse modulating differentiation of mouse ESCs. ESCs were transfected with miRNA Mimics and differentiated in embryoid bodies and embryoid body outgrowths. miRNAs involved in differentiation of mesodermal lineages, such as miR145 and miR181, as well as miRNAs regulating myogenesis (MyomiRs)-miR1, miR133a, miR133b, and miR206 were tested. Using such approach, we proved that transient overexpression of molecules selected by us modulated differentiation of mouse ESCs. Increase in miR145 levels upregulated Pax3, Pax7, Myod1, Myog, and MyHC2, while miR181 triggered the expression of such crucial myogenic factors as Myf5 and MyHC2. As a result, the ability of ESCs to initiate myogenic differentiation and form myotubes was enhanced. Premature expression of MyomiRs had, however, an adverse effect on myogenic differentiation of ESCs. Stem Cells 2018;36:655-670.
Collapse
Affiliation(s)
- Joanna Bem
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, Poland
| | - Iwona Grabowska
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, Poland
| | - Maciej Daniszewski
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, Poland
| | - Dorota Zawada
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, Poland
| | - Areta M Czerwinska
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, Poland
| | - Lukasz Bugajski
- Laboratory of Cytometry, Nencki Institute of Experimental Biology
| | | | - Anna Fogtman
- Laboratory of Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Maria A Ciemerych
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, Poland
| |
Collapse
|
111
|
Pacholewska A, Kraft MF, Gerber V, Jagannathan V. Differential Expression of Serum MicroRNAs Supports CD4⁺ T Cell Differentiation into Th2/Th17 Cells in Severe Equine Asthma. Genes (Basel) 2017; 8:E383. [PMID: 29231896 PMCID: PMC5748701 DOI: 10.3390/genes8120383] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/21/2017] [Accepted: 12/01/2017] [Indexed: 01/06/2023] Open
Abstract
MicroRNAs (miRNAs) regulate post-transcriptional gene expression and may be exported from cells via exosomes or in partnership with RNA-binding proteins. MiRNAs in body fluids can act in a hormone-like manner and play important roles in disease initiation and progression. Hence, miRNAs are promising candidates as biomarkers. To identify serum miRNA biomarkers in the equine model of asthma we investigated small RNA derived from the serum of 34 control and 37 asthmatic horses. These samples were used for next generation sequencing, novel miRNA identification and differential miRNA expression analysis. We identified 11 significantly differentially expressed miRNAs between case and control horses: eca-miR-128, eca-miR-744, eca-miR-197, eca-miR-103, eca-miR-107a, eca-miR-30d, eca-miR-140-3p, eca-miR-7, eca-miR-361-3p, eca-miR-148b-3p and eca-miR-215. Pathway enrichment using experimentally validated target genes of the human homologous miRNAs showed a significant enrichment in the regulation of epithelial-to-mesenchymal transition (key player in airway remodeling in asthma) and the phosphatidylinositol (3,4,5)-triphosphate (PIP3) signaling pathway (modulator of CD4⁺ T cell maturation and function). Downregulated miR-128 and miR-744 supports a Th2/Th17 type immune response in severe equine asthma.
Collapse
Affiliation(s)
- Alicja Pacholewska
- Department of Clinical Veterinary Medicine, Swiss Institute of Equine Medicine, Vetsuisse Faculty, University of Bern and Agroscope, Länggassstrasse 124, 3012 Bern, Switzerland.
- Department of Clinical Research and Veterinary Public Health, Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109A, 3012 Bern, Switzerland.
| | - Matthias F Kraft
- Department of Clinical Veterinary Medicine, Swiss Institute of Equine Medicine, Vetsuisse Faculty, University of Bern and Agroscope, Länggassstrasse 124, 3012 Bern, Switzerland.
- Department of Clinical Research and Veterinary Public Health, Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109A, 3012 Bern, Switzerland.
| | - Vincent Gerber
- Department of Clinical Veterinary Medicine, Swiss Institute of Equine Medicine, Vetsuisse Faculty, University of Bern and Agroscope, Länggassstrasse 124, 3012 Bern, Switzerland.
| | - Vidhya Jagannathan
- Department of Clinical Research and Veterinary Public Health, Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109A, 3012 Bern, Switzerland.
| |
Collapse
|
112
|
Bellon A, Iyer A, Bridi S, Lee FCY, Ovando-Vázquez C, Corradi E, Longhi S, Roccuzzo M, Strohbuecker S, Naik S, Sarkies P, Miska E, Abreu-Goodger C, Holt CE, Baudet ML. miR-182 Regulates Slit2-Mediated Axon Guidance by Modulating the Local Translation of a Specific mRNA. Cell Rep 2017; 18:1171-1186. [PMID: 28147273 PMCID: PMC5300892 DOI: 10.1016/j.celrep.2016.12.093] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 12/07/2016] [Accepted: 12/27/2016] [Indexed: 11/15/2022] Open
Abstract
During brain wiring, cue-induced axon behaviors such as directional steering and branching are aided by localized mRNA translation. Different guidance cues elicit translation of subsets of mRNAs that differentially regulate the cytoskeleton, yet little is understood about how specific mRNAs are selected for translation. MicroRNAs (miRNAs) are critical translational regulators that act through a sequence-specific mechanism. Here, we investigate the local role of miRNAs in mRNA-specific translation during pathfinding of Xenopus laevis retinal ganglion cell (RGC) axons. Among a rich repertoire of axonal miRNAs, miR-182 is identified as the most abundant. Loss of miR-182 causes RGC axon targeting defects in vivo and impairs Slit2-induced growth cone (GC) repulsion. We find that miR-182 targets cofilin-1 mRNA, silencing its translation, and Slit2 rapidly relieves the repression without causing miR-182 degradation. Our data support a model whereby miR-182 reversibly gates the selection of transcripts for fast translation depending on the extrinsic cue. Small RNA-seq analysis reveals that miR-182 is the most abundant miRNA in RGC axons miR-182 regulates Slit2-mediated axon guidance of RGCs in vitro and in vivo miR-182 silences cofilin-1 local protein synthesis in growth cones Slit2 rapidly lifts miR-182-mediated repression of cofilin-1 without degrading it
Collapse
Affiliation(s)
- Anaïs Bellon
- PDN Department, University of Cambridge, Cambridge CB23DY, UK
| | - Archana Iyer
- CIBIO, University of Trento, Trento 38123, Italy
| | - Simone Bridi
- CIBIO, University of Trento, Trento 38123, Italy
| | - Flora C Y Lee
- PDN Department, University of Cambridge, Cambridge CB23DY, UK
| | | | | | - Sara Longhi
- CIBIO, University of Trento, Trento 38123, Italy
| | | | | | - Sindhu Naik
- CIBIO, University of Trento, Trento 38123, Italy
| | - Peter Sarkies
- Gurdon Institute, University of Cambridge, Cambridge CB21QN, UK
| | - Eric Miska
- Gurdon Institute, University of Cambridge, Cambridge CB21QN, UK
| | - Cei Abreu-Goodger
- Unidad de Genómica Avanzada (Langebio), Cinvestav, Irapuato 36821, Mexico
| | | | | |
Collapse
|
113
|
Murphy CP, Singewald N. Potential of microRNAs as novel targets in the alleviation of pathological fear. GENES BRAIN AND BEHAVIOR 2017; 17:e12427. [DOI: 10.1111/gbb.12427] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/20/2017] [Accepted: 10/05/2017] [Indexed: 12/16/2022]
Affiliation(s)
- C. P. Murphy
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck; University of Innsbruck; Innsbruck Austria
| | - N. Singewald
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck; University of Innsbruck; Innsbruck Austria
| |
Collapse
|
114
|
Choi YS, Edwards LO, DiBello A, Jose AM. Removing bias against short sequences enables northern blotting to better complement RNA-seq for the study of small RNAs. Nucleic Acids Res 2017; 45:e87. [PMID: 28180294 PMCID: PMC5449620 DOI: 10.1093/nar/gkx091] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 02/02/2017] [Indexed: 12/21/2022] Open
Abstract
Changes in small non-coding RNAs such as micro RNAs (miRNAs) can serve as indicators of disease and can be measured using next-generation sequencing of RNA (RNA-seq). Here, we highlight the need for approaches that complement RNA-seq, discover that northern blotting of small RNAs is biased against short sequences and develop a protocol that removes this bias. We found that multiple small RNA-seq datasets from the worm Caenorhabditis elegans had shorter forms of miRNAs that appear to be degradation products that arose during the preparatory steps required for RNA-seq. When using northern blotting during these studies, we discovered that miRNA-length probes can have ∼1000-fold bias against detecting even synthetic sequences that are 8 nt shorter. By using shorter probes and by performing hybridization and washes at low temperatures, we greatly reduced this bias to enable nearly equivalent detection of 24 to 14 nt RNAs. Our protocol can discriminate RNAs that differ by a single nucleotide and can detect specific miRNAs present in total RNA from C. elegans and pRNAs in total RNA from bacteria. This improved northern blotting is particularly useful to analyze products of RNA processing or turnover, and functional RNAs that are shorter than typical miRNAs.
Collapse
Affiliation(s)
- Yun S Choi
- Department of Cell Biology and Molecular Genetics, University of Maryland, College, Park, MD 20742, USA
| | - Lanelle O Edwards
- Department of Cell Biology and Molecular Genetics, University of Maryland, College, Park, MD 20742, USA
| | - Aubrey DiBello
- Department of Cell Biology and Molecular Genetics, University of Maryland, College, Park, MD 20742, USA
| | - Antony M Jose
- Department of Cell Biology and Molecular Genetics, University of Maryland, College, Park, MD 20742, USA
| |
Collapse
|
115
|
Riggs CL, Podrabsky JE. Small noncoding RNA expression during extreme anoxia tolerance of annual killifish (Austrofundulus limnaeus) embryos. Physiol Genomics 2017; 49:505-518. [DOI: 10.1152/physiolgenomics.00016.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 07/10/2017] [Accepted: 08/09/2017] [Indexed: 12/11/2022] Open
Abstract
Small noncoding RNAs (sncRNA) have recently emerged as specific and rapid regulators of gene expression, involved in a myriad of cellular and organismal processes. MicroRNAs, a class of sncRNAs, are differentially expressed in diverse taxa in response to environmental stress, including anoxia. In most vertebrates, a brief period of oxygen deprivation results in severe tissue damage or death. Studies on sncRNA and anoxia have focused on these anoxia-sensitive species. Studying sncRNAs in anoxia-tolerant organisms may provide insight into adaptive mechanisms supporting anoxia tolerance. Embryos of the annual killifish Austrofundulus limnaeus are the most anoxia-tolerant vertebrates known, surviving over 100 days at their peak tolerance at 25°C. Their anoxia tolerance and physiology vary over development, such that both anoxia-tolerant and anoxia-sensitive phenotypes comprise the species. This allows for a robust comparison to identify sncRNAs essential to anoxia-tolerance. For this study, RNA sequencing was used to identify and quantify expression of sncRNAs in four embryonic stages of A. limnaeus in response to an exposure to anoxia and subsequent aerobic recovery. Unique stage-specific patterns of expression were identified that correlate with anoxia tolerance. In addition, embryos of A. limnaeus appear to constitutively express stress-responsive miRNAs. Most differentially expressed sncRNAs were expressed at higher levels during recovery. Many novel groups of sncRNAs with expression profiles suggesting a key role in anoxia tolerance were identified, including sncRNAs derived from mitochondrial tRNAs. This global analysis has revealed groups of candidate sncRNAs that we hypothesize support anoxia tolerance.
Collapse
Affiliation(s)
- Claire L. Riggs
- Department of Biology, Portland State University, Portland, Oregon
| | | |
Collapse
|
116
|
Zhang SF, Chen JC, Zhang J, Xu JG. miR-181a involves in the hippocampus-dependent memory formation via targeting PRKAA1. Sci Rep 2017; 7:8480. [PMID: 28814760 PMCID: PMC5559581 DOI: 10.1038/s41598-017-09095-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/20/2017] [Indexed: 02/05/2023] Open
Abstract
Post-transcriptional gene regulation by microRNAs (miRNAs) is involved in memory formation. However, the roles of individual miRNAs in these processes remain largely unknown. In this study, we want to clarify the role of miR-181a in hippocampus-dependent memory formation. A transient increase in miR-181a expression was observed after conditioned fear conditioning (CFC) and object location task (OLT) training. Selective overexpression or inhibition of miR-181a in the dorsal hippocampus (DH) via the injection of a miR-181a agomir or antagomir enhanced or impaired the CFC- and OLT-dependent memory formation, respectively. Using bioinformatics and luciferase assays, we identified PRKAA1 as a potential target gene of miR-181a. After CFC or OLT training, the expression and activity of PRKAA1 decreased as miR-181a expression increased and was effectively blocked by the miR-181a antagomir. Moreover, microinjection of the PRKAA1 agonist AICAR or inhibitor compound C in the DH reversed the roles of the miR-181a agomir or antagomir in CFC- and OLT-dependent memory formation. In conclusion, this work provides novel evidence describing the role and mechanism of miR-181a in hippocampus-dependent memory formation, which sheds light on the potential regulation of cognition and future treatments for cognitive disorders.
Collapse
Affiliation(s)
- Sun-Fu Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, P. R. China.,Department of Neurosurgery, The First People's Hospital of Yibin, Yibin, Sichuan, P. R. China
| | - Jun-Chen Chen
- Department of Neurosurgery, Sichuan 81 Rehabilitation Center, Chengdu, Sichuan, P. R. China
| | - Jing Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Jian-Guo Xu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, P. R. China.
| |
Collapse
|
117
|
Slattery ML, Herrick JS, Mullany LE, Samowitz WS, Sevens JR, Sakoda L, Wolff RK. The co-regulatory networks of tumor suppressor genes, oncogenes, and miRNAs in colorectal cancer. Genes Chromosomes Cancer 2017; 56:769-787. [PMID: 28675510 PMCID: PMC5597468 DOI: 10.1002/gcc.22481] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 06/30/2017] [Accepted: 07/01/2017] [Indexed: 12/14/2022] Open
Abstract
Tumor suppressor genes (TSGs) and oncogenes (OG) are involved in carcinogenesis. MiRNAs also contribute to cellular pathways leading to cancer. We use data from 217 colorectal cancer (CRC) cases to evaluate differences in TSGs and OGs expression between paired CRC and normal mucosa and evaluate how TSGs and OGs are associated with miRNAs. Gene expression data from RNA-Seq and miRNA expression data from Agilent Human miRNA Microarray V19.0 were used. We focus on genes most strongly associated with CRC (fold change (FC) of ≥1.5 or ≤0.67) that were statistically significant after adjustment for multiple comparisons. Of the 74 TSGs evaluated, 22 were associated with carcinoma/normal mucosa differential expression. Ten TSGs were up-regulated (FAM123B, RB1, TP53, RUNX1, MSH2, BRCA1, BRCA2, SOX9, NPM1, and RNF43); six TSGs were down-regulated (PAX5, IZKF1, GATA3, PRDM1, TET2, and CYLD); four were associated with MSI tumors (MLH1, PTCH1, and CEBPA down-regulated and MSH6 up-regulated); and two were associated with MSS tumors (PHF6 and ASXL1 up-regulated). Thirteen of these TSGs were associated with 44 miRNAs. Twenty-seven of the 59 OGs evaluated were dysregulated: 14 down-regulated (KLF4, BCL2, SSETBP1, FGFR2, TSHR, MPL, KIT, PDGFRA, GNA11, GATA2, FGFR3, AR, CSF1R, and JAK3), seven up-regulated (DNMT1, EZH2, PTPN11, SKP2, CCND1, MET, and MYC); three down-regulated for MSI (FLT3, CARD11, and ALK); two up-regulated for MSI (IDH2 and HRAS); and one up-regulated with MSS tumors (CTNNB1). These findings suggest possible co-regulatory function between TSGs, OGs, and miRNAs, involving both direct and indirect associations that operate through feedback and feedforward loops.
Collapse
Affiliation(s)
| | | | - Lila E Mullany
- Department of Medicine, University of Utah, Salt Lake City, Utah
| | - Wade S Samowitz
- Department of Pathology, University of Utah, Salt Lake City, Utah
| | - John R Sevens
- Department of Mathematics and Statistics, Utah State University, Logan, Utah
| | - Lori Sakoda
- Kaiser Permanente Medical Research Program, Oakland, California
| | - Roger K Wolff
- Department of Medicine, University of Utah, Salt Lake City, Utah
| |
Collapse
|
118
|
Haraszti RA, Roux L, Coles AH, Turanov AA, Alterman JF, Echeverria D, Godinho BM, Aronin N, Khvorova A. 5΄-Vinylphosphonate improves tissue accumulation and efficacy of conjugated siRNAs in vivo. Nucleic Acids Res 2017; 45:7581-7592. [PMID: 28591791 PMCID: PMC5570069 DOI: 10.1093/nar/gkx507] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/23/2017] [Accepted: 05/31/2017] [Indexed: 12/20/2022] Open
Abstract
5΄-Vinylphosphonate modification of siRNAs protects them from phosphatases, and improves silencing activity. Here, we show that 5΄-vinylphosphonate confers novel properties to siRNAs. Specifically, 5΄-vinylphosphonate (i) increases siRNA accumulation in tissues, (ii) extends duration of silencing in multiple organs and (iii) protects siRNAs from 5΄-to-3΄ exonucleases. Delivery of conjugated siRNAs requires extensive chemical modifications to achieve stability in vivo. Because chemically modified siRNAs are poor substrates for phosphorylation by kinases, and 5΄-phosphate is required for loading into RNA-induced silencing complex, the synthetic addition of a 5΄-phosphate on a fully modified siRNA guide strand is expected to be beneficial. Here, we show that synthetic phosphorylation of fully modified cholesterol-conjugated siRNAs increases their potency and efficacy in vitro, but when delivered systemically to mice, the 5΄-phosphate is removed within 2 hours. The 5΄-phosphate mimic 5΄-(E)-vinylphosphonate stabilizes the 5΄ end of the guide strand by protecting it from phosphatases and 5΄-to-3΄ exonucleases. The improved stability increases guide strand accumulation and retention in tissues, which significantly enhances the efficacy of cholesterol-conjugated siRNAs and the duration of silencing in vivo. Moreover, we show that 5΄-(E)-vinylphosphonate stabilizes 5΄ phosphate, thereby enabling systemic delivery to and silencing in kidney and heart.
Collapse
Affiliation(s)
- Reka A. Haraszti
- RNA Therapeutics Institute, University of Massachusetts Medical School, 01605 Worcester, MA, USA
- Program in Molecular Medicine, University of Massachusetts Medical School, 01605 Worcester, MA, USA
| | - Loic Roux
- RNA Therapeutics Institute, University of Massachusetts Medical School, 01605 Worcester, MA, USA
- Program in Molecular Medicine, University of Massachusetts Medical School, 01605 Worcester, MA, USA
| | - Andrew H. Coles
- RNA Therapeutics Institute, University of Massachusetts Medical School, 01605 Worcester, MA, USA
- Program in Molecular Medicine, University of Massachusetts Medical School, 01605 Worcester, MA, USA
| | - Anton A. Turanov
- RNA Therapeutics Institute, University of Massachusetts Medical School, 01605 Worcester, MA, USA
- Program in Molecular Medicine, University of Massachusetts Medical School, 01605 Worcester, MA, USA
| | - Julia F. Alterman
- RNA Therapeutics Institute, University of Massachusetts Medical School, 01605 Worcester, MA, USA
- Program in Molecular Medicine, University of Massachusetts Medical School, 01605 Worcester, MA, USA
| | - Dimas Echeverria
- RNA Therapeutics Institute, University of Massachusetts Medical School, 01605 Worcester, MA, USA
- Program in Molecular Medicine, University of Massachusetts Medical School, 01605 Worcester, MA, USA
| | - Bruno M.D.C. Godinho
- RNA Therapeutics Institute, University of Massachusetts Medical School, 01605 Worcester, MA, USA
- Program in Molecular Medicine, University of Massachusetts Medical School, 01605 Worcester, MA, USA
| | - Neil Aronin
- RNA Therapeutics Institute, University of Massachusetts Medical School, 01605 Worcester, MA, USA
- Department of Medicine, University of Massachusetts Medical School, 01605 Worcester, MA, USA
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Medical School, 01605 Worcester, MA, USA
- Program in Molecular Medicine, University of Massachusetts Medical School, 01605 Worcester, MA, USA
| |
Collapse
|
119
|
Buran İ, Etem EÖ, Tektemur A, Elyas H. Treatment with TREK1 and TRPC3/6 ion channel inhibitors upregulates microRNA expression in a mouse model of chronic mild stress. Neurosci Lett 2017; 656:51-57. [PMID: 28716528 DOI: 10.1016/j.neulet.2017.07.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/04/2017] [Accepted: 07/12/2017] [Indexed: 12/21/2022]
Abstract
Depression is a common mental disorder characterized by the mood of deep sadness. Recent studies have demonstrated that microRNAs and ion channels have significant roles in the etiopathogenesis of depression. Therefore, we investigated the effects of the TREK1 ion channel inhibitor anandamide and the TRPC3/6 inhibitor norgestimate on microRNA expression and antidepressant effect in the mouse chronic mild stress (CMS) model of depression. Male BALB/c mice were divided into groups as control, CMS, CMS+sertraline, CMS+anandamide, CMS+sertraline+anandamide, CMS+norgestimate and CMS+sertraline+norgestimate. Forced swim test (FST) and Sucrose Preference Test (SPT) were utilized to assess depression levels. Anandamide and norgestimate were administered subcutaneously (5mg/kg/day), and sertraline was applied intraperitoneally (10mg/kg/day) for two days during FST. miRNA and ion channel gene expression levels in the prefrontal cortex were assessed with qRT-PCR. qRT-PCR results demonstrated that there was a significant increase in miR-9-5p, miR-128-1-5p, and miR-382-5p, and a significant decrease in miR-16-5p, miR-129-5p, and miR-219a-5p in the CMS group compared with the control group. Generally, anandamide and norgestimate significantly increased all miRNA expression. It was also determined that anandamide and norgestimate had an antidepressant action in FST when used alone and especially when used in conjunction with sertraline. Based on the study results, it could be argued that an increase in miR-9-5p and miR-128-1-5p, consistent with the literature, could play significant roles in the etiopathogenesis of depression. The antidepressant action of anandamide and norgesimate in FST showed for the first time that these inhibitors could be used as in conjuction with sertraline in depression treatment.
Collapse
Affiliation(s)
- İlay Buran
- Fırat University, Faculty of Medicine, Departmant of Medical Biology, 23000, Elazığ, Turkey.
| | - Ebru Önalan Etem
- Fırat University, Faculty of Medicine, Departmant of Medical Biology, 23000, Elazığ, Turkey.
| | - Ahmet Tektemur
- Fırat University, Faculty of Medicine, Departmant of Medical Biology, 23000, Elazığ, Turkey.
| | - Halit Elyas
- Fırat University, Faculty of Medicine, Departmant of Medical Biology, 23000, Elazığ, Turkey.
| |
Collapse
|
120
|
Gutiérrez-Vázquez C, Enright AJ, Rodríguez-Galán A, Pérez-García A, Collier P, Jones MR, Benes V, Mizgerd JP, Mittelbrunn M, Ramiro AR, Sánchez-Madrid F. 3' Uridylation controls mature microRNA turnover during CD4 T-cell activation. RNA (NEW YORK, N.Y.) 2017; 23:882-891. [PMID: 28351886 PMCID: PMC5435861 DOI: 10.1261/rna.060095.116] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 03/23/2017] [Indexed: 05/23/2023]
Abstract
Activation of T lymphocytes requires a tight regulation of microRNA (miRNA) expression. Terminal uridyltransferases (TUTases) catalyze 3' nontemplated nucleotide addition (3'NTA) to miRNAs, which may influence miRNA stability and function. Here, we investigated 3'NTA to mature miRNA in CD4 T lymphocytes by deep sequencing. Upon T-cell activation, miRNA sequences bearing terminal uridines are specifically decreased, concomitantly with down-regulation of TUT4 and TUT7 enzymes. Analyzing TUT4-deficient T lymphocytes, we proved that this terminal uridyltransferase is essential for the maintenance of miRNA uridylation in the steady state of T lymphocytes. Analysis of synthetic uridylated miRNAs shows that 3' addition of uridine promotes degradation of these uridylated miRNAs after T-cell activation. Our data underline post-transcriptional uridylation as a mechanism to fine-tune miRNA levels during T-cell activation.
Collapse
Affiliation(s)
- Cristina Gutiérrez-Vázquez
- Instituto de Investigación Sanitaria Princesa, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid 28006, Spain
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain
| | - Anton J Enright
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Ana Rodríguez-Galán
- Instituto de Investigación Sanitaria Princesa, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid 28006, Spain
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain
| | - Arantxa Pérez-García
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain
| | - Paul Collier
- European Molecular Biology Laboratory (EMBL), Core Facilities and Services, Heidelberg 69117, Germany
| | - Matthew R Jones
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Vladimir Benes
- European Molecular Biology Laboratory (EMBL), Core Facilities and Services, Heidelberg 69117, Germany
| | - Joseph P Mizgerd
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - María Mittelbrunn
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain
| | - Almudena R Ramiro
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain
| | - Francisco Sánchez-Madrid
- Instituto de Investigación Sanitaria Princesa, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid 28006, Spain
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain
- CIBER: Centro Investigación en Red Cardiovascular, Madrid 28029, Spain
| |
Collapse
|
121
|
Paul P, Chakraborty A, Sarkar D, Langthasa M, Rahman M, Bari M, Singha RS, Malakar AK, Chakraborty S. Interplay between miRNAs and human diseases. J Cell Physiol 2017; 233:2007-2018. [PMID: 28181241 DOI: 10.1002/jcp.25854] [Citation(s) in RCA: 280] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 02/07/2017] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) are endogenous, non-coding RNAs, which have evoked a great deal of interest due to their importance in many aspects of homeostasis and diseases. MicroRNAs are stable and are essential components of gene regulatory networks. They play a crucial role in healthy individuals and their dysregulations have also been implicated in a wide range of diseases, including diabetes, cardiovascular disease, kidney disease, and cancer. This review summarized the current understanding of interactions between miRNAs and different diseases and their role in disease diagnosis and therapy.
Collapse
Affiliation(s)
- Prosenjit Paul
- Department of Biotechnology, Assam University, Silchar, Assam, India
| | | | - Debasree Sarkar
- Department of Biotechnology, Assam University, Silchar, Assam, India
| | | | - Musfhia Rahman
- Department of Biotechnology, Assam University, Silchar, Assam, India
| | - Minakshi Bari
- Department of Biotechnology, Assam University, Silchar, Assam, India
| | | | | | | |
Collapse
|
122
|
Li LJ, Zhao W, Tao SS, Leng RX, Fan YG, Pan HF, Ye DQ. Competitive endogenous RNA network: potential implication for systemic lupus erythematosus. Expert Opin Ther Targets 2017; 21:639-648. [DOI: 10.1080/14728222.2017.1319938] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
123
|
Pitchiaya S, Heinicke LA, Park JI, Cameron EL, Walter NG. Resolving Subcellular miRNA Trafficking and Turnover at Single-Molecule Resolution. Cell Rep 2017; 19:630-642. [PMID: 28423324 PMCID: PMC5482240 DOI: 10.1016/j.celrep.2017.03.075] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 01/17/2017] [Accepted: 03/28/2017] [Indexed: 11/20/2022] Open
Abstract
Regulation of microRNA (miRNA) localization and stability is critical for their extensive cytoplasmic RNA silencing activity and emerging nuclear functions. Here, we have developed single-molecule fluorescence-based tools to assess the subcellular trafficking, integrity, and activity of miRNAs. We find that seed-matched RNA targets protect miRNAs against degradation and enhance their nuclear retention. While target-stabilized, functional, cytoplasmic miRNAs reside in high-molecular-weight complexes, nuclear miRNAs, as well as cytoplasmic miRNAs targeted by complementary anti-miRNAs, are sequestered stably within significantly lower-molecular-weight complexes and rendered repression incompetent. miRNA stability and activity depend on Argonaute protein abundance, whereas miRNA strand selection, unwinding, and nuclear retention depend on Argonaute identity. Taken together, our results show that miRNA degradation competes with Argonaute loading and target binding to control subcellular miRNA abundance for gene silencing surveillance. Probing single cells for miRNA activity, trafficking, and metabolism promises to facilitate screening for effective miRNA mimics and anti-miRNA drugs.
Collapse
Affiliation(s)
- Sethuramasundaram Pitchiaya
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Laurie A Heinicke
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Jun I Park
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Elizabeth L Cameron
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Nils G Walter
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA.
| |
Collapse
|
124
|
Sunkavalli U, Aguilar C, Silva RJ, Sharan M, Cruz AR, Tawk C, Maudet C, Mano M, Eulalio A. Analysis of host microRNA function uncovers a role for miR-29b-2-5p in Shigella capture by filopodia. PLoS Pathog 2017; 13:e1006327. [PMID: 28394930 PMCID: PMC5398735 DOI: 10.1371/journal.ppat.1006327] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 04/20/2017] [Accepted: 03/31/2017] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs play an important role in the interplay between bacterial pathogens and host cells, participating as host defense mechanisms, as well as exploited by bacteria to subvert host cellular functions. Here, we show that microRNAs modulate infection by Shigella flexneri, a major causative agent of bacillary dysentery in humans. Specifically, we characterize the dual regulatory role of miR-29b-2-5p during infection, showing that this microRNA strongly favors Shigella infection by promoting both bacterial binding to host cells and intracellular replication. Using a combination of transcriptome analysis and targeted high-content RNAi screening, we identify UNC5C as a direct target of miR-29b-2-5p and show its pivotal role in the modulation of Shigella binding to host cells. MiR-29b-2-5p, through repression of UNC5C, strongly enhances filopodia formation thus increasing Shigella capture and promoting bacterial invasion. The increase of filopodia formation mediated by miR-29b-2-5p is dependent on RhoF and Cdc42 Rho-GTPases. Interestingly, the levels of miR-29b-2-5p, but not of other mature microRNAs from the same precursor, are decreased upon Shigella replication at late times post-infection, through degradation of the mature microRNA by the exonuclease PNPT1. While the relatively high basal levels of miR-29b-2-5p at the start of infection ensure efficient Shigella capture by host cell filopodia, dampening of miR-29b-2-5p levels later during infection may constitute a bacterial strategy to favor a balanced intracellular replication to avoid premature cell death and favor dissemination to neighboring cells, or alternatively, part of the host response to counteract Shigella infection. Overall, these findings reveal a previously unappreciated role of microRNAs, and in particular miR-29b-2-5p, in the interaction of Shigella with host cells.
Collapse
Affiliation(s)
- Ushasree Sunkavalli
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Carmen Aguilar
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Ricardo Jorge Silva
- UC-BIOTECH, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Malvika Sharan
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Ana Rita Cruz
- UC-BIOTECH, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Caroline Tawk
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Claire Maudet
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Miguel Mano
- UC-BIOTECH, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Ana Eulalio
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
- UC-BIOTECH, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- * E-mail:
| |
Collapse
|
125
|
Kollinerová S, Dostál Z, Modrianský M. MicroRNA hsa-miR-29b potentiates etoposide toxicity in HeLa cells via down-regulation of Mcl-1. Toxicol In Vitro 2017; 40:289-296. [DOI: 10.1016/j.tiv.2017.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 02/03/2017] [Accepted: 02/04/2017] [Indexed: 12/13/2022]
|
126
|
Millan MJ. Linking deregulation of non-coding RNA to the core pathophysiology of Alzheimer's disease: An integrative review. Prog Neurobiol 2017; 156:1-68. [PMID: 28322921 DOI: 10.1016/j.pneurobio.2017.03.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 03/09/2017] [Accepted: 03/09/2017] [Indexed: 02/06/2023]
Abstract
The human genome encodes a vast repertoire of protein non-coding RNAs (ncRNA), some specific to the brain. MicroRNAs, which interfere with the translation of target mRNAs, are of particular interest since their deregulation has been implicated in neurodegenerative disorders like Alzheimer's disease (AD). However, it remains challenging to link the complex body of observations on miRNAs and AD into a coherent framework. Using extensive graphical support, this article discusses how a diverse panoply of miRNAs convergently and divergently impact (and are impacted by) core pathophysiological processes underlying AD: neuroinflammation and oxidative stress; aberrant generation of β-amyloid-42 (Aβ42); anomalies in the production, cleavage and post-translational marking of Tau; impaired clearance of Aβ42 and Tau; perturbation of axonal organisation; disruption of synaptic plasticity; endoplasmic reticulum stress and the unfolded protein response; mitochondrial dysfunction; aberrant induction of cell cycle re-entry; and apoptotic loss of neurons. Intriguingly, some classes of miRNA provoke these cellular anomalies, whereas others act in a counter-regulatory, protective mode. Moreover, changes in levels of certain species of miRNA are a consequence of the above-mentioned anomalies. In addition to miRNAs, circular RNAs, piRNAs, long non-coding RNAs and other types of ncRNA are being increasingly implicated in AD. Overall, a complex mesh of deregulated and multi-tasking ncRNAs reciprocally interacts with core pathophysiological mechanisms underlying AD. Alterations in ncRNAs can be detected in CSF and the circulation as well as the brain and are showing promise as biomarkers, with the ultimate goal clinical exploitation as targets for novel modes of symptomatic and course-altering therapy.
Collapse
Affiliation(s)
- Mark J Millan
- Centre for Therapeutic Innovation in Neuropsychiatry, institut de recherche Servier, 125 chemin de ronde, 78290 Croissy sur Seine, France.
| |
Collapse
|
127
|
RNAs competing for microRNAs mutually influence their fluctuations in a highly non-linear microRNA-dependent manner in single cells. Genome Biol 2017; 18:37. [PMID: 28219439 PMCID: PMC5319025 DOI: 10.1186/s13059-017-1162-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 01/27/2017] [Indexed: 12/14/2022] Open
Abstract
Background Distinct RNA species may compete for binding to microRNAs (miRNAs). This competition creates an indirect interaction between miRNA targets, which behave as miRNA sponges and eventually influence each other’s expression levels. Theoretical predictions suggest that not only the mean expression levels of targets but also the fluctuations around the means are coupled through miRNAs. This may result in striking effects on a broad range of cellular processes, such as cell differentiation and proliferation. Although several studies have reported the functional relevance of this mechanism of interaction, detailed experiments are lacking that study this phenomenon in controlled conditions by mimicking a physiological range. Results We used an experimental design based on two bidirectional plasmids and flow cytometry measurements of cotransfected mammalian cells. We validated a stochastic gene interaction model that describes how mRNAs can influence each other’s fluctuations in a miRNA-dependent manner in single cells. We show that miRNA–target correlations eventually lead to either bimodal cell population distributions with high and low target expression states, or correlated fluctuations across targets when the pool of unbound targets and miRNAs are in near-equimolar concentration. We found that there is an optimal range of conditions for the onset of cross-regulation, which is compatible with 10–1000 copies of targets per cell. Conclusions Our results are summarized in a phase diagram for miRNA-mediated cross-regulation that links experimentally measured quantities and effective model parameters. This phase diagram can be applied to in vivo studies of RNAs that are in competition for miRNA binding. Electronic supplementary material The online version of this article (doi:10.1186/s13059-017-1162-x) contains supplementary material, which is available to authorized users.
Collapse
|
128
|
Szyrajew K, Bielewicz D, Dolata J, Wójcik AM, Nowak K, Szczygieł-Sommer A, Szweykowska-Kulinska Z, Jarmolowski A, Gaj MD. MicroRNAs Are Intensively Regulated during Induction of Somatic Embryogenesis in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2017; 8:18. [PMID: 28167951 PMCID: PMC5253390 DOI: 10.3389/fpls.2017.00018] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 01/04/2017] [Indexed: 05/06/2023]
Abstract
Several genes encoding transcription factors (TFs) were indicated to have a key role in the induction of somatic embryogenesis (SE), which is triggered in the somatic cells of plants. In order to further explore the genetic regulatory network that is involved in the embryogenic transition induced in plant somatic cells, micro-RNA (miRNAs) molecules, the products of MIRNA (MIR) genes and the common regulators of TF transcripts, were analyzed in an embryogenic culture of Arabidopsis thaliana. In total, the expression of 190 genes of the 114 MIRNA families was monitored during SE induction and the levels of the primary (pri-miRNAs) transcripts vs. the mature miRNAs were investigated. The results revealed that the majority (98%) of the MIR genes were active and that most of them (64%) were differentially expressed during SE. A distinct attribute of the MIR expression in SE was the strong repression of MIR transcripts at the early stage of SE followed by their significant up-regulation in the advanced stage of SE. Comparison of the mature miRNAs vs. pri-miRNAs suggested that the extensive post-transcriptional regulation of miRNA is associated with SE induction. Candidate miRNA molecules of the assumed function in the embryogenic response were identified among the mature miRNAs that had a differential expression in SE, including miR156, miR157, miR159, miR160, miR164, miR166, miR169, miR319, miR390, miR393, miR396, and miR398. Consistent with the central role of phytohormones and stress factors in SE induction, the functions of the candidate miRNAs were annotated to phytohormone and stress responses. To confirm the functions of the candidate miRNAs in SE, the expression patterns of the mature miRNAs and their presumed targets were compared and regulatory relation during SE was indicated for most of the analyzed miRNA-target pairs. The results of the study contribute to the refinement of the miRNA-controlled regulatory pathways that operate during embryogenic induction in plants and provide a valuable platform for the identification of the genes that are targeted by the candidate miRNAs in SE induction.
Collapse
Affiliation(s)
- Katarzyna Szyrajew
- Department of Genetics, Faculty of Biology and Environmental Protection, University of SilesiaKatowice, Poland
| | - Dawid Bielewicz
- Department of Gene Expression, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz UniversityPoznan, Poland
| | - Jakub Dolata
- Department of Gene Expression, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz UniversityPoznan, Poland
| | - Anna M. Wójcik
- Department of Genetics, Faculty of Biology and Environmental Protection, University of SilesiaKatowice, Poland
| | - Katarzyna Nowak
- Department of Genetics, Faculty of Biology and Environmental Protection, University of SilesiaKatowice, Poland
| | - Aleksandra Szczygieł-Sommer
- Department of Genetics, Faculty of Biology and Environmental Protection, University of SilesiaKatowice, Poland
| | - Zofia Szweykowska-Kulinska
- Department of Gene Expression, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz UniversityPoznan, Poland
| | - Artur Jarmolowski
- Department of Gene Expression, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz UniversityPoznan, Poland
| | - Małgorzata D. Gaj
- Department of Genetics, Faculty of Biology and Environmental Protection, University of SilesiaKatowice, Poland
- *Correspondence: Małgorzata D. Gaj
| |
Collapse
|
129
|
Garberg HT, Huun MU, Baumbusch LO, Åsegg-Atneosen M, Solberg R, Saugstad OD. Temporal Profile of Circulating microRNAs after Global Hypoxia-Ischemia in Newborn Piglets. Neonatology 2017; 111:133-139. [PMID: 27750254 DOI: 10.1159/000449032] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 08/10/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND There is a lack of reliable biomarkers that can identify and grade acute hypoxic-ischemic encephalopathy in newborns. MicroRNAs (miRNA) are short, non-coding strands of RNA that are released into the circulation in response to tissue stress and injury. Some miRNAs are highly tissue specific and thus may potentially be non-invasive biomarkers of neonatal hypoxic-ischemic brain injury. OBJECTIVE The aim of this study was to characterize the temporal expression of selected circulating miRNAs in a clinically relevant piglet model of neonatal hypoxia-ischemia (HI). METHODS A total of 13 anesthetized newborn piglets were randomized to either a control group (n = 5) or transient global HI group (n = 8). HI was achieved by ventilation with 8% oxygen until the point of severe acidosis (arterial base excess ≤-20 mmol/l) and/or hypotension (mean arterial blood pressure ≤20 mm Hg) was reached. Plasma was sampled at baseline, at the end of HI and 0.5, 3.5 and 9.5 h after HI. MiRNA expression was measured by qRT-PCR. RESULTS Compared to baseline, miR-374a increased during HI (p = 0.01), remained elevated at 0.5 h after HI (p = 0.02) and was downregulated at 9.5 h after HI (p = 0.02). MiR-210 increased during HI (p = 0.02) and rapidly normalized by 0.5 h after HI. MiR-124 and miR-125b did not exhibit significant alterations. Correlations were observed between miR-374a, arterial pH, base excess and lactate levels, and between miR-210 and pO2 (p < 0.05). CONCLUSIONS Our data suggest that miR-374a and miR-210 are important regulators in neonatal HI and might have a place as biomarkers in this setting.
Collapse
Affiliation(s)
- Håvard Tetlie Garberg
- Division of Pediatric and Adolescent Medicine, Department of Pediatric Research, Oslo University Hospital, Rikshospitalet, Norway
| | | | | | | | | | | |
Collapse
|
130
|
Ragupathy R, Ravichandran S, Mahdi MSR, Huang D, Reimer E, Domaratzki M, Cloutier S. Deep sequencing of wheat sRNA transcriptome reveals distinct temporal expression pattern of miRNAs in response to heat, light and UV. Sci Rep 2016; 6:39373. [PMID: 28004741 PMCID: PMC5177929 DOI: 10.1038/srep39373] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 11/15/2016] [Indexed: 01/30/2023] Open
Abstract
Understanding of plant adaptation to abiotic stresses has implications in plant breeding, especially in the context of climate change. MicroRNAs (miRNAs) and short interfering RNAs play a crucial role in gene regulation. Here, wheat plants were exposed to one of the following stresses: continuous light, heat or ultraviolet radiations over five consecutive days and leaf tissues from three biological replicates were harvested at 0, 1, 2, 3, 7 and 10 days after treatment (DAT). A total of 72 small RNA libraries were sequenced on the Illumina platform generating ~524 million reads corresponding to ~129 million distinct tags from which 232 conserved miRNAs were identified. The expression levels of 1, 2 and 79 miRNAs were affected by ultraviolet radiation, continuous light and heat, respectively. Approximately 55% of the differentially expressed miRNAs were downregulated at 0 and 1 DAT including miR398, miR528 and miR156 that control mRNAs involved in activation of signal transduction pathways and flowering. Other putative targets included histone variants and methyltransferases. These results suggest a temporal miRNA-guided post-transcriptional regulation that enables wheat to respond to abiotic stresses, particularly heat. Designing novel wheat breeding strategies such as regulatory gene-based marker assisted selection depends on accurate identification of stress induced miRNAs.
Collapse
Affiliation(s)
- Raja Ragupathy
- Plant Science Department, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sridhar Ravichandran
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, Ontario, Canada
| | | | - Douglas Huang
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, Ontario, Canada
| | - Elsa Reimer
- Agriculture and Agri-Food Canada, Morden Research and Development Centre, Morden, Manitoba, Canada
| | - Michael Domaratzki
- Department of Computer Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sylvie Cloutier
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, Ontario, Canada
| |
Collapse
|
131
|
Khalifa O, Pers YM, Ferreira R, Sénéchal A, Jorgensen C, Apparailly F, Duroux-Richard I. X-Linked miRNAs Associated with Gender Differences in Rheumatoid Arthritis. Int J Mol Sci 2016; 17:E1852. [PMID: 27834806 PMCID: PMC5133852 DOI: 10.3390/ijms17111852] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/17/2016] [Accepted: 10/31/2016] [Indexed: 12/11/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that predominantly affects women. MicroRNAs have emerged as crucial regulators of the immune system, whose expression is deregulated in RA. We aimed at quantifying the expression level of 14 miRNAs located on the X chromosome and at identifying whether differences are associated with disease and/or sex. A case-control study of 21 RA patients and 22 age- and sex-matched healthy controls was performed on peripheral blood mononuclear cells. The expression level of five miRNAs (miR-221, miR-222, miR-532, miR-106a, and miR-98) was significantly different between RA and controls when stratifying by sex, and the expression level of four miRNAs (miR-222, miR-532, miR-98, and miR-92a) was significantly different between RA females and males. The expression quantitative trait loci (eQTL) analysis revealed a significant gender effect of the FoxP3 promoter polymorphism rs3761548A/C on miR-221, miR-222 and miR-532 expression levels, and of the FoxP3 polymorphism rs2232365A/G on miR-221 expression levels in PBMC of RA patients. These data further support the involvement of the X chromosome in RA susceptibility. X-linked miRNAs, in the context of sex differences, might provide novel insight into new molecular mechanisms and potential therapeutic targets in RA for disease treatment and prevention.
Collapse
Affiliation(s)
- Olfa Khalifa
- Inserm, U1183, Institute for Regenerative Medicine and Biotherapies, CHU Saint Eloi, 80 Avenue Augustin Fliche, 34295 Montpellier, France.
- University of Montpellier, Boulevard Henri IV, 34090 Montpellier, France.
| | - Yves-Marie Pers
- Inserm, U1183, Institute for Regenerative Medicine and Biotherapies, CHU Saint Eloi, 80 Avenue Augustin Fliche, 34295 Montpellier, France.
- University of Montpellier, Boulevard Henri IV, 34090 Montpellier, France.
- Clinical Department for Osteoarticular Diseases and Biotherapy, University Hospital Lapeyronie, 34295 Montpellier, France.
| | - Rosanna Ferreira
- Clinical Department for Osteoarticular Diseases and Biotherapy, University Hospital Lapeyronie, 34295 Montpellier, France.
| | - Audrey Sénéchal
- Inserm, U1051, Institute for Neurosciences Montpellier, CHU Saint Eloi, 80 Avenue Augustin Fliche, 34295 Montpellier, France.
| | - Christian Jorgensen
- Inserm, U1183, Institute for Regenerative Medicine and Biotherapies, CHU Saint Eloi, 80 Avenue Augustin Fliche, 34295 Montpellier, France.
- University of Montpellier, Boulevard Henri IV, 34090 Montpellier, France.
- Clinical Department for Osteoarticular Diseases and Biotherapy, University Hospital Lapeyronie, 34295 Montpellier, France.
| | - Florence Apparailly
- Inserm, U1183, Institute for Regenerative Medicine and Biotherapies, CHU Saint Eloi, 80 Avenue Augustin Fliche, 34295 Montpellier, France.
- University of Montpellier, Boulevard Henri IV, 34090 Montpellier, France.
- Clinical Department for Osteoarticular Diseases and Biotherapy, University Hospital Lapeyronie, 34295 Montpellier, France.
| | - Isabelle Duroux-Richard
- Inserm, U1183, Institute for Regenerative Medicine and Biotherapies, CHU Saint Eloi, 80 Avenue Augustin Fliche, 34295 Montpellier, France.
- University of Montpellier, Boulevard Henri IV, 34090 Montpellier, France.
| |
Collapse
|
132
|
Barraza A, Contreras-Cubas C, Estrada-Navarrete G, Reyes JL, Juárez-Verdayes MA, Avonce N, Quinto C, Díaz-Camino C, Sanchez F. The Class II Trehalose 6-phosphate Synthase Gene PvTPS9 Modulates Trehalose Metabolism in Phaseolus vulgaris Nodules. FRONTIERS IN PLANT SCIENCE 2016; 7:1589. [PMID: 27847509 PMCID: PMC5088437 DOI: 10.3389/fpls.2016.01589] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 10/07/2016] [Indexed: 05/21/2023]
Abstract
Legumes form symbioses with rhizobia, producing nitrogen-fixing nodules on the roots of the plant host. The network of plant signaling pathways affecting carbon metabolism may determine the final number of nodules. The trehalose biosynthetic pathway regulates carbon metabolism and plays a fundamental role in plant growth and development, as well as in plant-microbe interactions. The expression of genes for trehalose synthesis during nodule development suggests that this metabolite may play a role in legume-rhizobia symbiosis. In this work, PvTPS9, which encodes a Class II trehalose-6-phosphate synthase (TPS) of common bean (Phaseolus vulgaris), was silenced by RNA interference in transgenic nodules. The silencing of PvTPS9 in root nodules resulted in a reduction of 85% (± 1%) of its transcript, which correlated with a 30% decrease in trehalose contents of transgenic nodules and in untransformed leaves. Composite transgenic plants with PvTPS9 silenced in the roots showed no changes in nodule number and nitrogen fixation, but a severe reduction in plant biomass and altered transcript profiles of all Class II TPS genes. Our data suggest that PvTPS9 plays a key role in modulating trehalose metabolism in the symbiotic nodule and, therefore, in the whole plant.
Collapse
Affiliation(s)
- Aarón Barraza
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología/Universidad Nacional Autónoma de MéxicoCuernavaca, Mexico
| | - Cecilia Contreras-Cubas
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología/Universidad Nacional Autónoma de MéxicoCuernavaca, Mexico
| | - Georgina Estrada-Navarrete
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología/Universidad Nacional Autónoma de MéxicoCuernavaca, Mexico
| | - José L. Reyes
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología/Universidad Nacional Autónoma de MéxicoCuernavaca, Mexico
| | - Marco A. Juárez-Verdayes
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología/Universidad Nacional Autónoma de MéxicoCuernavaca, Mexico
| | - Nelson Avonce
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de MorelosCuernavaca, Mexico
| | - Carmen Quinto
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología/Universidad Nacional Autónoma de MéxicoCuernavaca, Mexico
| | - Claudia Díaz-Camino
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología/Universidad Nacional Autónoma de MéxicoCuernavaca, Mexico
| | - Federico Sanchez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología/Universidad Nacional Autónoma de MéxicoCuernavaca, Mexico
| |
Collapse
|
133
|
Majidinia M, Yousefi B. DNA damage response regulation by microRNAs as a therapeutic target in cancer. DNA Repair (Amst) 2016; 47:1-11. [DOI: 10.1016/j.dnarep.2016.09.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 09/23/2016] [Indexed: 12/12/2022]
|
134
|
Tian XJ, Zhang H, Zhang J, Xing J. Reciprocal regulation between mRNA and microRNA enables a bistable switch that directs cell fate decisions. FEBS Lett 2016; 590:3443-3455. [PMID: 27578189 DOI: 10.1002/1873-3468.12379] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 08/21/2016] [Accepted: 08/22/2016] [Indexed: 12/14/2022]
Abstract
Micro RNAs (miRNAs) serve as crucial post-transcriptional regulators in a variety of essential cell fate decisions. However, the contribution of mRNA-miRNA mutual regulation to bistability is not fully understood. In the present study, we built a set of mathematical models of mRNA-miRNA interactions and systematically analyzed the sensitivity of the response curves under various conditions. Our findings indicate that mRNA-miRNA reciprocal regulation could manifest ultrasensitivity to subserve the generation of bistability when equipped with a positive feedback loop. We also find that the region of bistability is expanded by a stronger competing endogenous mRNA. Interestingly, bistability can be generated without a feedback loop if multiple miRNA binding sites exist on a target mRNA. Thus, we demonstrate the importance of simple mRNA-miRNA reciprocal regulation in cell fate decisions.
Collapse
Affiliation(s)
- Xiao-Jun Tian
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, PA, USA.
| | - Hang Zhang
- Genetics, Bioinformatics and Computational Biology Program, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Jingyu Zhang
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, PA, USA
| | - Jianhua Xing
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, PA, USA. .,Computational Science Research Center, Beijing, China.
| |
Collapse
|
135
|
McSweeney KM, Gussow AB, Bradrick SS, Dugger SA, Gelfman S, Wang Q, Petrovski S, Frankel WN, Boland MJ, Goldstein DB. Inhibition of microRNA 128 promotes excitability of cultured cortical neuronal networks. Genome Res 2016; 26:1411-1416. [PMID: 27516621 PMCID: PMC5052052 DOI: 10.1101/gr.199828.115] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 08/08/2016] [Indexed: 11/25/2022]
Abstract
Cultured neuronal networks monitored with microelectrode arrays (MEAs) have been used widely to evaluate pharmaceutical compounds for potential neurotoxic effects. A newer application of MEAs has been in the development of in vitro models of neurological disease. Here, we directly evaluated the utility of MEAs to recapitulate in vivo phenotypes of mature microRNA-128 (miR-128) deficiency, which causes fatal seizures in mice. We show that inhibition of miR-128 results in significantly increased neuronal activity in cultured neuronal networks derived from primary mouse cortical neurons. These results support the utility of MEAs in developing in vitro models of neuroexcitability disorders, such as epilepsy, and further suggest that MEAs provide an effective tool for the rapid identification of microRNAs that promote seizures when dysregulated.
Collapse
Affiliation(s)
- K Melodi McSweeney
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York 10032, USA; University Program in Genetics and Genomics, Duke University, Durham, North Carolina 27708, USA
| | - Ayal B Gussow
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York 10032, USA; Computational Biology and Bioinformatics, Duke University, Durham, North Carolina 27708, USA
| | - Shelton S Bradrick
- Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Sarah A Dugger
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York 10032, USA; Department of Genetics and Development, Columbia University Medical Center, New York, New York 10032, USA
| | - Sahar Gelfman
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York 10032, USA
| | - Quanli Wang
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York 10032, USA
| | - Slavé Petrovski
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York 10032, USA; Department of Medicine, The University of Melbourne, Austin Health and Royal Melbourne Hospital, Melbourne, Victoria 3052, Australia
| | - Wayne N Frankel
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York 10032, USA; Department of Genetics and Development, Columbia University Medical Center, New York, New York 10032, USA
| | - Michael J Boland
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York 10032, USA; Department of Neurology, Columbia University Medical Center, New York, New York 10032, USA
| | - David B Goldstein
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York 10032, USA; Department of Genetics and Development, Columbia University Medical Center, New York, New York 10032, USA
| |
Collapse
|
136
|
The roles of non-coding RNAs in Parkinson's disease. Mol Biol Rep 2016; 43:1193-1204. [PMID: 27492082 DOI: 10.1007/s11033-016-4054-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/01/2016] [Indexed: 12/19/2022]
Abstract
Parkinson's disease (PD) is considered as a high prevalence neurodegenerative disorders worldwide. Pathologically, the demise of dopamine-producing cells, in large part due to an abnormal accumulation of the α-synuclein in the substantia nigra, is one of the main causes of the disease. Up until now, many de novo investigations have been conducted to disclose the mechanisms underlying in PD. Among them, impacts of non-coding RNAs (ncRNAs) on the pathogenesis and/or progression of PD need to be highlighted. microRNAs (miRNAs) and long ncRNAs (lncRNAs) are more noteworthy in this context. miRNAs are small ncRNAs (with 18-25 nucleotide in length) that control the expression of multiple genes at post-transcriptional level, while lncRNAs have longer size (over 200 nucleotides) and are involved in some key biological processes through various mechanisms. Involvement of miRNAs has been well documented in the development of PD, particularly gene expression. Hence, in this current review, we will discuss the impacts of miRNAs in regulation of the expression of PD-related genes and the role of lncRNAs in the pathogenesis of PD.
Collapse
|
137
|
Åsman AKM, Fogelqvist J, Vetukuri RR, Dixelius C. Phytophthora infestans Argonaute 1 binds microRNA and small RNAs from effector genes and transposable elements. THE NEW PHYTOLOGIST 2016; 211:993-1007. [PMID: 27010746 DOI: 10.1111/nph.13946] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 02/26/2016] [Indexed: 06/05/2023]
Abstract
Phytophthora spp. encode large sets of effector proteins and distinct populations of small RNAs (sRNAs). Recent evidence has suggested that pathogen-derived sRNAs can modulate the expression of plant defense genes. Here, we studied the sRNA classes and functions associated with Phytophthora infestans Argonaute (Ago) proteins. sRNAs were co-immunoprecipitated with three PiAgo proteins and deep sequenced. Twenty- to twenty-two-nucleotide (nt) sRNAs were identified as the main interaction partners of PiAgo1 and high enrichment of 24-26-nt sRNAs was seen in the PiAgo4-bound sample. The frequencies and sizes of transposable element (TE)-derived sRNAs in the different PiAgo libraries suggested diversified roles of the PiAgo proteins in the control of different TE classes. We further provide evidence for the involvement of PiAgo1 in the P. infestans microRNA (miRNA) pathway. Protein-coding genes are probably regulated by the shared action of PiAgo1 and PiAgo5, as demonstrated by analysis of differential expression. An abundance of sRNAs from genes encoding host cell death-inducing Crinkler (CRN) effectors was bound to PiAgo1, implicating this protein in the regulation of the expanded CRN gene family. The data suggest that PiAgo1 plays an essential role in gene regulation and that at least two RNA silencing pathways regulate TEs in the plant-pathogenic oomycete P. infestans.
Collapse
Affiliation(s)
- Anna K M Åsman
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala BioCenter, Linnéan Center for Plant Biology, PO Box 7080, SE-75007, Uppsala, Sweden
| | - Johan Fogelqvist
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala BioCenter, Linnéan Center for Plant Biology, PO Box 7080, SE-75007, Uppsala, Sweden
| | - Ramesh R Vetukuri
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Resistance Biology Unit, PO Box 102, SE-23053, Alnarp, Sweden
| | - Christina Dixelius
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala BioCenter, Linnéan Center for Plant Biology, PO Box 7080, SE-75007, Uppsala, Sweden
| |
Collapse
|
138
|
Deregulation of miRNA-181c potentially contributes to the pathogenesis of AD by targeting collapsin response mediator protein 2 in mice. J Neurol Sci 2016; 367:3-10. [DOI: 10.1016/j.jns.2016.05.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 05/05/2016] [Accepted: 05/18/2016] [Indexed: 12/26/2022]
|
139
|
Wójcik AM, Gaj MD. miR393 contributes to the embryogenic transition induced in vitro in Arabidopsis via the modification of the tissue sensitivity to auxin treatment. PLANTA 2016; 244:231-43. [PMID: 27040841 PMCID: PMC4903112 DOI: 10.1007/s00425-016-2505-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 03/18/2016] [Indexed: 05/06/2023]
Abstract
miR393 was found to control embryogenic transition in somatic cells in Arabidopsis via control of the TIR1 and AFB2 auxin receptors genes of the F-box family. miR393 molecules are believed to regulate the expression of the auxin receptors of the TAAR clade. Considering the central role of auxin in the induction of somatic embryogenesis (SE) in plant explants cultured in vitro, the involvement of miR393 in the embryogenic transition of somatic cells has been hypothesised. To verify this assumption, the reporter, overexpressor and mutant lines in genes encoded MIR393 and TIR1/AFB proteins of the F-box family were analysed during SE in Arabidopsis. Expression profiling of MIR393a and MIR393b, mature miR393 and the target genes (TIR1, AFB1, AFB2, AFB3) were investigated in explants undergoing SE. In addition, the embryogenic potential of various genotypes with a modified activity of the MIR393 and TIR1/AFB targets was evaluated. The distinct increase in the accumulation of miR393 that was coupled with a notable down-regulation of TIR1 and AFB2 targets was observed at the early phase of SE induction. Relevant to this observation, the GUS/GFP monitored expression of MIR393, TIR1 and AFB2 transcripts was localised in explant tissue undergoing SE induction. The results suggest the miR393-mediated regulation of TIR1 and AFB2 during embryogenic transition induced in Arabidopsis and a modification of the explant sensitivity to auxin treatment is proposed as underlying this regulatory pathway.
Collapse
Affiliation(s)
- Anna M Wójcik
- Department of Genetics, University of Silesia, Jagiellońska 28, 40-032, Katowice, Poland
| | - Małgorzata D Gaj
- Department of Genetics, University of Silesia, Jagiellońska 28, 40-032, Katowice, Poland.
| |
Collapse
|
140
|
Lai X, Wolkenhauer O, Vera J. Understanding microRNA-mediated gene regulatory networks through mathematical modelling. Nucleic Acids Res 2016; 44:6019-35. [PMID: 27317695 PMCID: PMC5291278 DOI: 10.1093/nar/gkw550] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 06/06/2016] [Indexed: 12/19/2022] Open
Abstract
The discovery of microRNAs (miRNAs) has added a new player to the regulation of gene expression. With the increasing number of molecular species involved in gene regulatory networks, it is hard to obtain an intuitive understanding of network dynamics. Mathematical modelling can help dissecting the role of miRNAs in gene regulatory networks, and we shall here review the most recent developments that utilise different mathematical modelling approaches to provide quantitative insights into the function of miRNAs in the regulation of gene expression. Key miRNA regulation features that have been elucidated via modelling include: (i) the role of miRNA-mediated feedback and feedforward loops in fine-tuning of gene expression; (ii) the miRNA–target interaction properties determining the effectiveness of miRNA-mediated gene repression; and (iii) the competition for shared miRNAs leading to the cross-regulation of genes. However, there is still lack of mechanistic understanding of many other properties of miRNA regulation like unconventional miRNA–target interactions, miRNA regulation at different sub-cellular locations and functional miRNA variant, which will need future modelling efforts to deal with. This review provides an overview of recent developments and challenges in this field.
Collapse
Affiliation(s)
- Xin Lai
- Laboratory of Systems Tumour Immunology, Department of Dermatology, Erlangen University Hospital and Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, 91054, Germany
| | - Olaf Wolkenhauer
- Department of Systems Biology & Bioinformatics, University of Rostock, Rostock, 18051, Germany Stellenbosch Institute for Advanced Study, Wallenberg Research Centre at Stellenbosch University, 7600, South Africa
| | - Julio Vera
- Laboratory of Systems Tumour Immunology, Department of Dermatology, Erlangen University Hospital and Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, 91054, Germany
| |
Collapse
|
141
|
Gu SQ, Gallego-Perez D, McClory SP, Shi J, Han J, Lee LJ, Schoenberg DR. The human PMR1 endonuclease stimulates cell motility by down regulating miR-200 family microRNAs. Nucleic Acids Res 2016; 44:5811-9. [PMID: 27257068 PMCID: PMC4937341 DOI: 10.1093/nar/gkw497] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/23/2016] [Indexed: 12/13/2022] Open
Abstract
The motility of MCF-7 cells increases following expression of a human PMR1 transgene and the current study sought to identify the molecular basis for this phenotypic change. Ensemble and single cell analyses show increased motility is dependent on the endonuclease activity of hPMR1, and cells expressing active but not inactive hPMR1 invade extracellular matrix. Nanostring profiling identified 14 microRNAs that are downregulated by hPMR1, including all five members of the miR-200 family and others that also regulate invasive growth. miR-200 levels increase following hPMR1 knockdown, and changes in miR-200 family microRNAs were matched by corresponding changes in miR-200 targets and reporter expression. PMR1 preferentially cleaves between UG dinucleotides within a consensus YUGR element when present in the unpaired loop of a stem–loop structure. This motif is present in the apical loop of precursors to most of the downregulated microRNAs, and hPMR1 targeting of pre-miRs was confirmed by their loss following induced expression and increase following hPMR1 knockdown. Introduction of miR-200c into hPMR1-expressing cells reduced motility and miR-200 target gene expression, confirming hPMR1 acts upstream of Dicer processing. These findings identify a new role for hPMR1 in the post-transcriptional regulation of microRNAs in breast cancer cells.
Collapse
Affiliation(s)
- Shan-Qing Gu
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Daniel Gallego-Perez
- Department of Surgery, The Ohio State University, Columbus, OH 43210, USA Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA Center for Affordable Nanoengineering of Polymeric Biomedical Devices, The Ohio State University, Columbus, OH 43210, USA Center for Regenerative Medicine and Cell-Based Therapies, The Ohio State University, Columbus, OH 43210, USA
| | - Sean P McClory
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Junfeng Shi
- Center for Affordable Nanoengineering of Polymeric Biomedical Devices, The Ohio State University, Columbus, OH 43210, USA
| | - Joonhee Han
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - L James Lee
- Center for Affordable Nanoengineering of Polymeric Biomedical Devices, The Ohio State University, Columbus, OH 43210, USA Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Daniel R Schoenberg
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
142
|
Cao DD, Li L, Chan WY. MicroRNAs: Key Regulators in the Central Nervous System and Their Implication in Neurological Diseases. Int J Mol Sci 2016; 17:E842. [PMID: 27240359 PMCID: PMC4926376 DOI: 10.3390/ijms17060842] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 05/20/2016] [Accepted: 05/23/2016] [Indexed: 01/03/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of small, well-conserved noncoding RNAs that regulate gene expression post-transcriptionally. They have been demonstrated to regulate a lot of biological pathways and cellular functions. Many miRNAs are dynamically regulated during central nervous system (CNS) development and are spatially expressed in adult brain indicating their essential roles in neural development and function. In addition, accumulating evidence strongly suggests that dysfunction of miRNAs contributes to neurological diseases. These observations, together with their gene regulation property, implicated miRNAs to be the key regulators in the complex genetic network of the CNS. In this review, we first focus on the ways through which miRNAs exert the regulatory function and how miRNAs are regulated in the CNS. We then summarize recent findings that highlight the versatile roles of miRNAs in normal CNS physiology and their association with several types of neurological diseases. Subsequently we discuss the limitations of miRNAs research based on current studies as well as the potential therapeutic applications and challenges of miRNAs in neurological disorders. We endeavor to provide an updated description of the regulatory roles of miRNAs in normal CNS functions and pathogenesis of neurological diseases.
Collapse
Affiliation(s)
- Dan-Dan Cao
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong-Chinese Academy of Sciences Guangzhou Institute of Biomedicine and Health Joint Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 999077, SAR, China.
| | - Lu Li
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong-Chinese Academy of Sciences Guangzhou Institute of Biomedicine and Health Joint Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 999077, SAR, China.
| | - Wai-Yee Chan
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong-Chinese Academy of Sciences Guangzhou Institute of Biomedicine and Health Joint Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 999077, SAR, China.
| |
Collapse
|
143
|
Motta V, Favero C, Dioni L, Iodice S, Battaglia C, Angelici L, Vigna L, Pesatori AC, Bollati V. MicroRNAs are associated with blood-pressure effects of exposure to particulate matter: Results from a mediated moderation analysis. ENVIRONMENTAL RESEARCH 2016; 146:274-81. [PMID: 26775008 PMCID: PMC5250797 DOI: 10.1016/j.envres.2016.01.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/22/2015] [Accepted: 01/08/2016] [Indexed: 05/19/2023]
Abstract
AIMS Exposure to particulate air pollution is associated with increased blood pressure (BP), a well-established risk factor for cardiovascular disease. To elucidate the mechanisms underlying this relationship, we investigated whether the effects of particulate matter of less than 10μm in aerodynamic diameter (PM10) on BP are mediated by microRNAs. METHODS AND RESULTS We recruited 90 obese individuals and we assessed their PM10 exposure 24 and 48h before the recruitment day. We performed multivariate linear regression models to investigate the effects of PM10 on BP. Using the TaqMan® Low-Density Array, we experimentally evaluated and technically validated the expression levels of 377 human miRNAs in peripheral blood. We developed a mediated moderation analysis to estimate the proportion of PM10 effects on BP that was mediated by miRNA expression. PM10 exposure 24 and 48h before the recruitment day was associated with increased systolic BP (β=1.22mmHg, P=0.019; β=1.24mmHg, P=0.019, respectively) and diastolic BP (β=0.67mmHg, P=0.044; β=0.91mmHg, P=0.007, respectively). We identified nine miRNAs associated with PM10 levels 48h after exposure. A conditional indirect effect (CIE=-0.1431) of PM10 on diastolic BP, which was mediated by microRNA-101, was found in individuals with lower values of mean body mass index. CONCLUSIONS Our data provide evidence that miRNAs are a molecular mechanism underlying the BP-related effects of air pollution exposure, and indicate miR-101 as epigenetic mechanism to be further investigated.
Collapse
Affiliation(s)
- Valeria Motta
- EPIGET-Epidemiology, Epigenetics and Toxicology Lab-Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy.
| | - Chiara Favero
- EPIGET-Epidemiology, Epigenetics and Toxicology Lab-Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy.
| | - Laura Dioni
- EPIGET-Epidemiology, Epigenetics and Toxicology Lab-Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy.
| | - Simona Iodice
- EPIGET-Epidemiology, Epigenetics and Toxicology Lab-Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy.
| | - Cristina Battaglia
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20129 Milan, Italy.
| | - Laura Angelici
- EPIGET-Epidemiology, Epigenetics and Toxicology Lab-Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy.
| | - Luisella Vigna
- Worker's Health Protection and Promotion Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy.
| | - Angela Cecilia Pesatori
- EPIGET-Epidemiology, Epigenetics and Toxicology Lab-Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; Epidemiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy.
| | - Valentina Bollati
- EPIGET-Epidemiology, Epigenetics and Toxicology Lab-Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy.
| |
Collapse
|
144
|
Hamzei Taj S, Kho W, Riou A, Wiedermann D, Hoehn M. MiRNA-124 induces neuroprotection and functional improvement after focal cerebral ischemia. Biomaterials 2016; 91:151-165. [PMID: 27031810 DOI: 10.1016/j.biomaterials.2016.03.025] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/12/2016] [Accepted: 03/16/2016] [Indexed: 11/28/2022]
Abstract
microRNA-124 (miR-124), the most abundant miRNA of the CNS, was recently shown to modulate the polarization of activated microglia and infiltrating macrophages towards the anti-inflammatory M2 phenotype and protect neurons in various ways after brain disease. In ischemic stroke, microglia and macrophages of a detrimental and persistent pro-inflammatory M1 phenotype have been shown to aggravate the secondary injury. Thus, shifting the polarization of microglia/macrophages into the beneficial, anti-inflammatory M2-like phenotype is considered neuroprotective after stroke onset. Here, we have induced 30 min transient occlusion of the right middle cerebral artery (MCAO) in 34 male, C57BL/6 mice. Lesion development was monitored with T2-weighted MRI. Liposomated miR-124 was injected in 11 animals at 48 h and in 5 animals at 10 days after MCAO. Arg-1, a marker for M2 phenotype, was co-stained with Iba-1, NeuN or GFAP. The distribution of astrocytes, neurons and microglia/macrophages and their expression of Arg-1 were quantified. Early miR-124 injection resulted in a significantly increased neuronal survival and a significantly increased number of M2-like polarized microglia/macrophages. Moreover, the lesion core, delineated by reactive astrocytes, was significantly reduced over time upon early miR-124 injection. These neuroprotective and anti-inflammatory effects of the early miR-124 treatment were pronounced during the first week with Arg-1. Number of Arg-1+ microglia/macrophages correlated with neuronal protection and with functional improvement during the first week. Thus, our present results demonstrate that miR-124 may serve as a novel therapeutic strategy for neuroprotection and functional recovery upon stroke onset.
Collapse
Affiliation(s)
- Somayyeh Hamzei Taj
- In-vivo-NMR Laboratory, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Widuri Kho
- In-vivo-NMR Laboratory, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Adrien Riou
- In-vivo-NMR Laboratory, Max Planck Institute for Metabolism Research, Cologne, Germany; Percuros B.V., Enschede, The Netherlands
| | - Dirk Wiedermann
- In-vivo-NMR Laboratory, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Mathias Hoehn
- In-vivo-NMR Laboratory, Max Planck Institute for Metabolism Research, Cologne, Germany; Dept. of Radiology, Leiden University Medical Center, Leiden, The Netherlands; Percuros B.V., Enschede, The Netherlands.
| |
Collapse
|
145
|
Abstract
Recently, transcriptome-wide sequencing data have revealed the pervasiveness of intergenic long noncoding RNA (lncRNA) transcription. Subsets of lncRNAs have been demonstrated to crosstalk with and post-transcriptionally regulate mRNAs in a microRNA (miRNA)-dependent manner. Referred to as long noncoding competitive endogenous RNAs (lnceRNAs), these transcripts can contribute to diverse aspects of organismal and cellular biology, likely by providing a hitherto unrecognized layer of gene expression regulation. Here, we discuss the biological relevance of post-transcriptional regulation by lnceRNAs, provide insights on recent advances in the understanding of lnceRNA regulatory networks, and speculate on molecular factors that facilitate miRNA-dependent crosstalk between lnceRNAs and other transcripts.
Collapse
Affiliation(s)
- Jennifer Y Tan
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - Ana C Marques
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
146
|
Marzi MJ, Ghini F, Cerruti B, de Pretis S, Bonetti P, Giacomelli C, Gorski MM, Kress T, Pelizzola M, Muller H, Amati B, Nicassio F. Degradation dynamics of microRNAs revealed by a novel pulse-chase approach. Genome Res 2016; 26:554-65. [PMID: 26821571 PMCID: PMC4817778 DOI: 10.1101/gr.198788.115] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 01/19/2016] [Indexed: 12/22/2022]
Abstract
The regulation of miRNAs is critical to the definition of cell identity and behavior in normal physiology and disease. To date, the dynamics of miRNA degradation and the mechanisms involved in remain largely obscure, in particular, in higher organisms. Here, we developed a pulse-chase approach based on metabolic RNA labeling to calculate miRNA decay rates at genome-wide scale in mammalian cells. Our analysis revealed heterogeneous miRNA half-lives, with many species behaving as stable molecules (T1/2 > 24 h), while others, including passenger miRNAs and a number (25/129) of guide miRNAs, are quickly turned over (T1/2 = 4–14 h). Decay rates were coupled with other features, including genomic organization, transcription rates, structural heterogeneity (isomiRs), and target abundance, measured through quantitative experimental approaches. This comprehensive analysis highlighted functional mechanisms that mediate miRNA degradation, as well as the importance of decay dynamics in the regulation of the miRNA pool under both steady-state conditions and during cell transitions.
Collapse
Affiliation(s)
- Matteo J Marzi
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), 20139 Milan, Italy
| | - Francesco Ghini
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), 20139 Milan, Italy
| | - Benedetta Cerruti
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), 20139 Milan, Italy
| | - Stefano de Pretis
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), 20139 Milan, Italy
| | - Paola Bonetti
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), 20139 Milan, Italy
| | - Chiara Giacomelli
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), 20139 Milan, Italy
| | - Marcin M Gorski
- Department of Experimental Oncology, European Institute of Oncology (IEO), 20139 Milan, Italy
| | - Theresia Kress
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), 20139 Milan, Italy; Department of Experimental Oncology, European Institute of Oncology (IEO), 20139 Milan, Italy
| | - Mattia Pelizzola
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), 20139 Milan, Italy
| | - Heiko Muller
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), 20139 Milan, Italy
| | - Bruno Amati
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), 20139 Milan, Italy; Department of Experimental Oncology, European Institute of Oncology (IEO), 20139 Milan, Italy
| | - Francesco Nicassio
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), 20139 Milan, Italy
| |
Collapse
|
147
|
Haas G, Cetin S, Messmer M, Chane-Woon-Ming B, Terenzi O, Chicher J, Kuhn L, Hammann P, Pfeffer S. Identification of factors involved in target RNA-directed microRNA degradation. Nucleic Acids Res 2016; 44:2873-87. [PMID: 26809675 PMCID: PMC4824107 DOI: 10.1093/nar/gkw040] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 01/13/2016] [Indexed: 12/18/2022] Open
Abstract
The mechanism by which micro (mi)RNAs control their target gene expression is now well understood. It is however less clear how the level of miRNAs themselves is regulated. Under specific conditions, abundant and highly complementary target RNA can trigger miRNA degradation by a mechanism involving nucleotide addition and exonucleolytic degradation. One such mechanism has been previously observed to occur naturally during viral infection. To date, the molecular details of this phenomenon are not known. We report here that both the degree of complementarity and the ratio of miRNA/target abundance are crucial for the efficient decay of the small RNA. Using a proteomic approach based on the transfection of biotinylated antimiRNA oligonucleotides, we set to identify the factors involved in target-mediated miRNA degradation. Among the retrieved proteins, we identified members of the RNA-induced silencing complex, but also RNA modifying and degradation enzymes. We further validate and characterize the importance of one of these, the Perlman Syndrome 3′-5′ exonuclease DIS3L2. We show that this protein interacts with Argonaute 2 and functionally validate its role in target-directed miRNA degradation both by artificial targets and in the context of mouse cytomegalovirus infection.
Collapse
Affiliation(s)
- Gabrielle Haas
- Architecture and Reactivity of RNA, Institut de biologie moléculaire et cellulaire du CNRS, Université de Strasbourg, 15 rue René Descartes, 67084 Strasbourg, France
| | - Semih Cetin
- Architecture and Reactivity of RNA, Institut de biologie moléculaire et cellulaire du CNRS, Université de Strasbourg, 15 rue René Descartes, 67084 Strasbourg, France
| | - Mélanie Messmer
- Architecture and Reactivity of RNA, Institut de biologie moléculaire et cellulaire du CNRS, Université de Strasbourg, 15 rue René Descartes, 67084 Strasbourg, France
| | - Béatrice Chane-Woon-Ming
- Architecture and Reactivity of RNA, Institut de biologie moléculaire et cellulaire du CNRS, Université de Strasbourg, 15 rue René Descartes, 67084 Strasbourg, France
| | - Olivier Terenzi
- Architecture and Reactivity of RNA, Institut de biologie moléculaire et cellulaire du CNRS, Université de Strasbourg, 15 rue René Descartes, 67084 Strasbourg, France
| | - Johana Chicher
- Architecture and Reactivity of RNA, Institut de biologie moléculaire et cellulaire du CNRS, Université de Strasbourg, 15 rue René Descartes, 67084 Strasbourg, France
| | - Lauriane Kuhn
- Architecture and Reactivity of RNA, Institut de biologie moléculaire et cellulaire du CNRS, Université de Strasbourg, 15 rue René Descartes, 67084 Strasbourg, France
| | - Philippe Hammann
- Architecture and Reactivity of RNA, Institut de biologie moléculaire et cellulaire du CNRS, Université de Strasbourg, 15 rue René Descartes, 67084 Strasbourg, France
| | - Sébastien Pfeffer
- Architecture and Reactivity of RNA, Institut de biologie moléculaire et cellulaire du CNRS, Université de Strasbourg, 15 rue René Descartes, 67084 Strasbourg, France
| |
Collapse
|
148
|
RNA Binding Proteins in the miRNA Pathway. Int J Mol Sci 2015; 17:ijms17010031. [PMID: 26712751 PMCID: PMC4730277 DOI: 10.3390/ijms17010031] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/13/2015] [Accepted: 12/23/2015] [Indexed: 12/21/2022] Open
Abstract
microRNAs (miRNAs) are short ~22 nucleotides (nt) ribonucleic acids which post-transcriptionally regulate gene expression. miRNAs are key regulators of all cellular processes, and the correct expression of miRNAs in an organism is crucial for proper development and cellular function. As a result, the miRNA biogenesis pathway is highly regulated. In this review, we outline the basic steps of miRNA biogenesis and miRNA mediated gene regulation focusing on the role of RNA binding proteins (RBPs). We also describe multiple mechanisms that regulate the canonical miRNA pathway, which depends on a wide range of RBPs. Moreover, we hypothesise that the interaction between miRNA regulation and RBPs is potentially more widespread based on the analysis of available high-throughput datasets.
Collapse
|
149
|
Chen K, Zeng J, Tang K, Xiao H, Hu J, Huang C, Yao W, Yu G, Xiao W, Guan W, Guo X, Xu H, Ye Z. miR-490-5p suppresses tumour growth in renal cell carcinoma through targeting PIK3CA. Biol Cell 2015; 108:41-50. [PMID: 26559013 PMCID: PMC4744944 DOI: 10.1111/boc.201500033] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 11/05/2015] [Indexed: 02/06/2023]
Abstract
Background Information Dysregulated micro‐RNAs have been reported in many human cancers, including renal cell carcinoma. Recent studies indicated that miR‐490 is involved in tumour development and progression. However, the expression profile and function in renal cell carcinoma remains unknown. Results Herein, we showed that miR‐490‐5p was down‐regulated in renal cell carcinoma tissues and cells compared with the adjacent normal tissues and normal cells. We also provided evidence that miR‐490‐5p acts as a tumour suppressor in renal carcinoma in a variety of in vitro and in vivo assays. Mechanistically, miR‐490‐5p was verified to directly bind to 3′ UTR of the PIK3CA mRNA and reduce the expression of PIK3CA at both mRNA and protein levels, which further inhibits phosphatidylinositol 3‐kinase/Akt signalling pathway. We further showed that knockdown of PIK3CA can block the growth inhibitory effect of miR‐490‐5p, and over‐expression of PIK3CA can reverse the inhibitory effect of miR‐490‐5p on renal cancer cell tumourigenicity. Conclusions Taken together, our results indicated for the first time that miR‐490‐5p functions as a tumour suppressor in renal carcinoma by targeting PIK3CA. Significance Our findings suggest that miR‐490‐5p may be a potential gene therapy target for the treatment of renal cell carcinoma.
Collapse
Affiliation(s)
- Ke Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.,Hubei Institute of Urology, Wuhan, 430030, PR China
| | - Jin Zeng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.,Hubei Institute of Urology, Wuhan, 430030, PR China
| | - Kun Tang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.,Hubei Institute of Urology, Wuhan, 430030, PR China
| | - Haibing Xiao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.,Hubei Institute of Urology, Wuhan, 430030, PR China
| | - Junhui Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.,Hubei Institute of Urology, Wuhan, 430030, PR China
| | - Chunhua Huang
- College of Basic Medicine Science, Hubei University of Chinese Medicine, 430065, PR China
| | - Weimin Yao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.,Hubei Institute of Urology, Wuhan, 430030, PR China
| | - Gan Yu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.,Hubei Institute of Urology, Wuhan, 430030, PR China
| | - Wei Xiao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.,Hubei Institute of Urology, Wuhan, 430030, PR China
| | - Wei Guan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.,Hubei Institute of Urology, Wuhan, 430030, PR China
| | - Xiaolin Guo
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.,Hubei Institute of Urology, Wuhan, 430030, PR China
| | - Hua Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.,Hubei Institute of Urology, Wuhan, 430030, PR China
| | - Zhangqun Ye
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.,Hubei Institute of Urology, Wuhan, 430030, PR China
| |
Collapse
|
150
|
MicroRNA (miRNA) Signaling in the Human CNS in Sporadic Alzheimer's Disease (AD)-Novel and Unique Pathological Features. Int J Mol Sci 2015; 16:30105-16. [PMID: 26694372 PMCID: PMC4691165 DOI: 10.3390/ijms161226223] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 12/12/2015] [Accepted: 12/15/2015] [Indexed: 02/07/2023] Open
Abstract
Of the approximately ~2.65 × 103 mature microRNAs (miRNAs) so far identified in Homo sapiens, only a surprisingly small but select subset—about 35–40—are highly abundant in the human central nervous system (CNS). This fact alone underscores the extremely high selection pressure for the human CNS to utilize only specific ribonucleotide sequences contained within these single-stranded non-coding RNAs (ncRNAs) for productive miRNA–mRNA interactions and the down-regulation of gene expression. In this article we will: (i) consolidate some of our still evolving ideas concerning the role of miRNAs in the CNS in normal aging and in health, and in sporadic Alzheimer’s disease (AD) and related forms of chronic neurodegeneration; and (ii) highlight certain aspects of the most current work in this research field, with particular emphasis on the findings from our lab of a small pathogenic family of six inducible, pro-inflammatory, NF-κB-regulated miRNAs including miRNA-7, miRNA-9, miRNA-34a, miRNA-125b, miRNA-146a and miRNA-155. This group of six CNS-abundant miRNAs significantly up-regulated in sporadic AD are emerging as what appear to be key mechanistic contributors to the sporadic AD process and can explain much of the neuropathology of this common, age-related inflammatory neurodegeneration of the human CNS.
Collapse
|