101
|
Gsponer J, Babu MM. The rules of disorder or why disorder rules. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2009; 99:94-103. [PMID: 19344736 DOI: 10.1016/j.pbiomolbio.2009.03.001] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The finding that a large fraction of proteins (over 30%) in eukaryotic cells lack a unique three-dimensional structure but are functional has forced the scientific community to review its understanding of the structure-function paradigm. The involvement of many of these intrinsically unstructured proteins (IUPs) in intracellular signalling and regulatory processes as well as their central positioning (as interaction hubs) in recently mapped protein interaction networks is particularly intriguing. Here, we review the functional and structural properties of IUPs such as (i) their facilitated regulation via diverse post-translational modifications of specific amino acids (ii) scaffolding and recruitment of different binding partners in space and time via the "fly-casting" mechanism, through peptide motifs and by coupling folding with binding and (iii) conformational variability and adaptability. All of these properties allow these proteins to hold key positions in cellular organisation and regulation which in turn make them tractable as drug targets. In addition, we discuss how such properties, individually and in combination, facilitate combinatorial regulation and re-use of the same component in multiple biological processes.
Collapse
Affiliation(s)
- Jörg Gsponer
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, United Kingdom.
| | | |
Collapse
|
102
|
Preparation and Characterization of Bacterial Protein Complexes for Structural Analysis. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2009. [DOI: 10.1016/s1876-1623(08)76001-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
103
|
NMR structural characterization of the penta-peptide calpain inhibitor. FEBS Lett 2008; 583:135-40. [DOI: 10.1016/j.febslet.2008.11.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 11/24/2008] [Accepted: 11/25/2008] [Indexed: 12/11/2022]
|
104
|
Santiveri CM, Lechtenberg BC, Allen MD, Sathyamurthy A, Jaulent AM, Freund SMV, Bycroft M. The malignant brain tumor repeats of human SCML2 bind to peptides containing monomethylated lysine. J Mol Biol 2008; 382:1107-12. [PMID: 18706910 DOI: 10.1016/j.jmb.2008.07.081] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Accepted: 07/21/2008] [Indexed: 10/21/2022]
Abstract
SCML2 (sex comb on midleg-like 2) is a constituent of the Polycomb repressive complex 1, a large multiprotein assembly required for the repression of developmental control genes. It contains two MBT (malignant brain tumor) repeats; the MBT is a protein module structurally similar to domains that bind to methylated histones. We have used NMR spectroscopy to examine the binding specificity of these repeats. Our data show that they preferentially bind histone peptides monomethylated at lysine residues with no apparent sequence specificity. The crystal structure of the complex between the protein and monomethyllysine reveals that the modified amino acid binds to an aromatic rich pocket at one end of the beta-barrel of the second repeat.
Collapse
Affiliation(s)
- Clara M Santiveri
- MRC Centre for Protein Engineering, Hills Road, Cambridge CB2 2QH, UK
| | | | | | | | | | | | | |
Collapse
|
105
|
Sharma AK, Zhou GP, Kupferman J, Surks HK, Christensen EN, Chou JJ, Mendelsohn ME, Rigby AC. Probing the interaction between the coiled coil leucine zipper of cGMP-dependent protein kinase Ialpha and the C terminus of the myosin binding subunit of the myosin light chain phosphatase. J Biol Chem 2008; 283:32860-9. [PMID: 18782776 DOI: 10.1074/jbc.m804916200] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nitric oxide and nitrovasodilators induce vascular smooth muscle cell relaxation in part by cGMP-dependent protein kinase I (PKG-Ialpha)-mediated activation of myosin phosphatase (MLCP). Mechanistically it has been proposed that protein-protein interactions between the N-terminal leucine zipper (LZ) domain of PKG-Ialpha ((PKG-Ialpha(1-59)) and the LZ and/or coiled coil (CC) domain of the myosin binding subunit (MBS) of MLCP are localized in the C terminus of MBS. Although recent studies have supported these interactions, the critical amino acids responsible for these interactions have not been identified. Here we present structural and biophysical data identifying that the LZ domain of PKG-Ialpha(1-59) interacts with a well defined 42-residue CC motif (MBS(CT42)) within the C terminus of MBS. Using glutathione S-transferase pulldown experiments, chemical cross-linking, size exclusion chromatography, circular dichroism, and isothermal titration calorimetry we identified a weak dimer-dimer interaction between PKG-Ialpha(1-59) and this C-terminal CC domain of MBS. The K(d) of this non-covalent complex is 178.0+/-1.5 microm. Furthermore our (1)H-(15)N heteronuclear single quantum correlation NMR data illustrate that this interaction is mediated by several PKG-Ialpha residues that are on the a, d, e, and g hydrophobic and electrostatic interface of the C-terminal heptad layers 2, 4, and 5 of PKG-Ialpha. Taken together these data support a role for the LZ domain of PKG-Ialpha and the CC domain of MBS in this requisite contractile complex.
Collapse
Affiliation(s)
- Alok K Sharma
- Divison of Molecular and Vascular Medicine, Center for Vascular Biology Research, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|
106
|
Flores CE, Li X, Bennett MVL, Nagy JI, Pereda AE. Interaction between connexin35 and zonula occludens-1 and its potential role in the regulation of electrical synapses. Proc Natl Acad Sci U S A 2008; 105:12545-50. [PMID: 18719117 PMCID: PMC2527948 DOI: 10.1073/pnas.0804793105] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Indexed: 11/18/2022] Open
Abstract
Although regulation of chemical transmission is known to involve the interaction of receptors with scaffold proteins, little is known about the existence of protein-protein interactions in regulating gap junction-mediated electrical synapses. The scaffold protein zonula-occludens-1 (ZO-1), a member of the MAGUK family of proteins, was reported to interact with several connexins (Cxs). We show here that ZO-1 extensively colocalizes with Cx35 at identifiable "mixed" (electrical and chemical) contacts on goldfish Mauthner cells, a model synapse for the study of vertebrate electrical transmission where it is possible to correlate physiological properties with molecular composition. Further, our analysis indicates that these proteins directly interact at goldfish electrical synapses. In contrast to Cx43, which interacts with ZO-1 via the PDZ2 domain, Cx35 interacts with ZO-1 via the PDZ1 domain, and this association is of lower affinity. The properties of the ZO-1/Cx35 association suggest the existence of a more dynamic relation between these two proteins, possibly including a role of ZO-1 in regulating gap junctional conductance at these highly modifiable electrical synapses. The interaction of ZO-1 with conserved regions of the C termini of Cx35/Cx36 orthologs may have a common function at electrical synapses of mammals and other vertebrates.
Collapse
Affiliation(s)
- Carmen E. Flores
- *Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461; and
| | - Xinbo Li
- Department of Physiology, University of Manitoba, Winnipeg, MB, Canada R3E 3JT
| | - Michael V. L. Bennett
- *Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461; and
| | - James I. Nagy
- Department of Physiology, University of Manitoba, Winnipeg, MB, Canada R3E 3JT
| | - Alberto E. Pereda
- *Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461; and
| |
Collapse
|
107
|
A dihydropyridine receptor alpha1s loop region critical for skeletal muscle contraction is intrinsically unstructured and binds to a SPRY domain of the type 1 ryanodine receptor. Int J Biochem Cell Biol 2008; 41:677-86. [PMID: 18761102 DOI: 10.1016/j.biocel.2008.08.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 07/21/2008] [Accepted: 08/04/2008] [Indexed: 12/15/2022]
Abstract
The II-III loop of the dihydropyridine receptor (DHPR) alpha(1s) subunit is a modulator of the ryanodine receptor (RyR1) Ca(2+) release channel in vitro and is essential for skeletal muscle contraction in vivo. Despite its importance, the structure of this loop has not been reported. We have investigated its structure using a suite of NMR techniques which revealed that the DHPR II-III loop is an intrinsically unstructured protein (IUP) and as such belongs to a burgeoning structural class of functionally important proteins. The loop does not possess a stable tertiary fold: it is highly flexible, with a strong N-terminal helix followed by nascent helical/turn elements and unstructured segments. Its residual structure is loosely globular with the N and C termini in close proximity. The unstructured nature of the II-III loop may allow it to easily modify its interaction with RyR1 following a surface action potential and thus initiate rapid Ca(2+) release and contraction. The in vitro binding partner for the II-III was investigated. The II-III loop interacts with the second of three structurally distinct SPRY domains in RyR1, whose function is unknown. This interaction occurs through two preformed N-terminal alpha-helical regions and a C-terminal hydrophobic element. The A peptide corresponding to the helical N-terminal region is a common probe of RyR function and binds to the same SPRY domain as the full II-III loop. Thus the second SPRY domain is an in vitro binding site for the II-III loop. The possible in vivo role of this region is discussed.
Collapse
|
108
|
Goksoy E, Ma YQ, Wang X, Kong X, Perera D, Plow EF, Qin J. Structural basis for the autoinhibition of talin in regulating integrin activation. Mol Cell 2008; 31:124-33. [PMID: 18614051 PMCID: PMC2522368 DOI: 10.1016/j.molcel.2008.06.011] [Citation(s) in RCA: 201] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 05/15/2008] [Accepted: 06/24/2008] [Indexed: 10/25/2022]
Abstract
Activation of heterodimeric (alpha/beta) integrin transmembrane receptors by the 270 kDa cytoskeletal protein talin is essential for many important cell adhesive and physiological responses. A key step in this process involves interaction of phosphotyrosine-binding (PTB) domain in the N-terminal head of talin (talin-H) with integrin beta membrane-proximal cytoplasmic tails (beta-MP-CTs). Compared to talin-H, intact talin exhibits low potency in inducing integrin activation. Using NMR spectroscopy, we show that the large C-terminal rod domain of talin (talin-R) interacts with talin-H and allosterically restrains talin in a closed conformation. We further demonstrate that talin-R specifically masks a region in talin-PTB where integrin beta-MP-CT binds and competes with it for binding to talin-PTB. The inhibitory interaction is disrupted by a constitutively activating mutation (M319A) or by phosphatidylinositol 4,5-bisphosphate, a known talin activator. These data define a distinct autoinhibition mechanism for talin and suggest how it controls integrin activation and cell adhesion.
Collapse
Affiliation(s)
- Esen Goksoy
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | | | | | | | | | | | |
Collapse
|
109
|
Ohlson S. Designing transient binding drugs: a new concept for drug discovery. Drug Discov Today 2008; 13:433-9. [PMID: 18468561 DOI: 10.1016/j.drudis.2008.02.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2007] [Revised: 01/27/2008] [Accepted: 02/01/2008] [Indexed: 10/22/2022]
Abstract
A multitude of weak, or transient, biological interactions (dissociation constant: K(d)>microM), either working alone or in concert, occur frequently throughout biological systems. We are starting to appreciate their importance in complex biological networks. This realization has important implications to drug discovery as we can question the current paradigm of drug design to find the highest possible binders (drugs) to a given target (receptor). Development of transient drugs, defined by their binding to target, can be based on high-off-rates, multivalent approaches or multiple targets. Now, techniques are available to discover such drug candidates. The greatest problem yet to overcome is probably the mind-set of the individual researcher that weak binders are undesired and therefore of no benefit.
Collapse
Affiliation(s)
- Sten Ohlson
- School of Pure and Applied Natural Sciences, University of Kalmar, Kalmar, Sweden.
| |
Collapse
|
110
|
Rumpel S, Becker S, Zweckstetter M. High-resolution structure determination of the CylR2 homodimer using paramagnetic relaxation enhancement and structure-based prediction of molecular alignment. JOURNAL OF BIOMOLECULAR NMR 2008; 40:1-13. [PMID: 18026911 PMCID: PMC2758389 DOI: 10.1007/s10858-007-9204-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Accepted: 09/14/2007] [Indexed: 05/25/2023]
Abstract
Structure determination of homooligomeric proteins by NMR spectroscopy is difficult due to the lack of chemical shift perturbation data, which is very effective in restricting the binding interface in heterooligomeric systems, and the difficulty of obtaining a sufficient number of intermonomer distance restraints. Here we solved the high-resolution solution structure of the 15.4 kDa homodimer CylR2, the regulator of cytolysin production from Enterococcus faecalis, which deviates by 1.1 angstroms from the previously determined X-ray structure. We studied the influence of different experimental information such as long-range distances derived from paramagnetic relaxation enhancement, residual dipolar couplings, symmetry restraints and intermonomer Nuclear Overhauser Effect restraints on the accuracy of the derived structure. In addition, we show that it is useful to combine experimental information with methods of ab initio docking when the available experimental data are not sufficient to obtain convergence to the correct homodimeric structure. In particular, intermonomer distances may not be required when residual dipolar couplings are compared to values predicted on the basis of the charge distribution and the shape of ab initio docking solutions.
Collapse
Affiliation(s)
- Sigrun Rumpel
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Gottingen, Germany
| | - Stefan Becker
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Gottingen, Germany
| | - Markus Zweckstetter
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Gottingen, Germany
| |
Collapse
|
111
|
Alber F, Förster F, Korkin D, Topf M, Sali A. Integrating diverse data for structure determination of macromolecular assemblies. Annu Rev Biochem 2008; 77:443-77. [PMID: 18318657 DOI: 10.1146/annurev.biochem.77.060407.135530] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To understand the cell, we need to determine the macromolecular assembly structures, which may consist of tens to hundreds of components. First, we review the varied experimental data that characterize the assemblies at several levels of resolution. We then describe computational methods for generating the structures using these data. To maximize completeness, resolution, accuracy, precision, and efficiency of the structure determination, a computational approach is required that uses spatial information from a variety of experimental methods. We propose such an approach, defined by its three main components: a hierarchical representation of the assembly, a scoring function consisting of spatial restraints derived from experimental data, and an optimization method that generates structures consistent with the data. This approach is illustrated by determining the configuration of the 456 proteins in the nuclear pore complex (NPC) from baker's yeast. With these tools, we are poised to integrate structural information gathered at multiple levels of the biological hierarchy--from atoms to cells--into a common framework.
Collapse
Affiliation(s)
- Frank Alber
- Department of Biopharmaceutical Sciences, and California Institute for Quantitative Biosciences, University of California at San Francisco, CA 94158-2330, USA.
| | | | | | | | | |
Collapse
|
112
|
Long J, Gallagher TRA, Cavey JR, Sheppard PW, Ralston SH, Layfield R, Searle MS. Ubiquitin recognition by the ubiquitin-associated domain of p62 involves a novel conformational switch. J Biol Chem 2007; 283:5427-40. [PMID: 18083707 DOI: 10.1074/jbc.m704973200] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The p62 protein functions as a scaffold in signaling pathways that lead to activation of NF-kappaB and is an important regulator of osteoclastogenesis. Mutations affecting the receptor activator of NF-kappaB signaling axis can result in human skeletal disorders, including those identified in the C-terminal ubiquitin-associated (UBA) domain of p62 in patients with Paget disease of bone. These observations suggest that the disease may involve a common mechanism related to alterations in the ubiquitin-binding properties of p62. The structural basis for ubiquitin recognition by the UBA domain of p62 has been investigated using NMR and reveals a novel binding mechanism involving a slow exchange structural reorganization of the UBA domain to a "bound" non-canonical UBA conformation that is not significantly populated in the absence of ubiquitin. The repacking of the three-helix bundle generates a binding surface localized around the conserved Xaa-Gly-Phe-Xaa loop that appears to optimize both hydrophobic and electrostatic surface complementarity with ubiquitin. NMR titration analysis shows that the p62-UBA binds to Lys 48-linked di-ubiquitin with approximately 4-fold lower affinity than to mono-ubiquitin, suggesting preferential binding of the p62-UBA to single ubiquitin units, consistent with the apparent in vivo preference of the p62 protein for Lys 63-linked polyubiquitin chains (which adopt a more open and extended structure). The conformational switch observed on binding may represent a novel mechanism that underlies specificity in regulating signalinduced protein recognition events.
Collapse
Affiliation(s)
- Jed Long
- School of Chemistry, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
113
|
Deshmukh L, Tyukhtenko S, Liu J, Fox JEB, Qin J, Vinogradova O. Structural Insight into the Interaction between Platelet Integrin αIIbβ3 and Cytoskeletal Protein Skelemin. J Biol Chem 2007; 282:32349-56. [PMID: 17804417 DOI: 10.1074/jbc.m704666200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Skelemin is a large cytoskeletal protein critical for cell morphology. Previous studies have suggested that its two-tandem immunoglobulin C2-like repeats (SkIgC4 and SkIgC5) are involved in binding to integrin beta3 cytoplasmic tail (CT), providing a mechanism for skelemin to regulate integrin-mediated signaling and cell spreading. Using NMR spectroscopy, we have studied the molecular details of the skelemin IgC45 interaction with the cytoplasmic face of integrin alphaIIbbeta3. Here, we show that skelemin IgC45 domains form a complex not only with integrin beta3 CT but also, surprisingly, with the integrin alphaIIb CT. Chemical shift mapping experiments demonstrate that both membrane-proximal regions of alphaIIb and beta3 CTs are involved in binding to skelemin. NMR structural determinations, combined with homology modeling, revealed that SkIgC4 and SkIgC5 both exhibited a conserved Ig-fold and both repeats were required for effective binding to and attenuation of alphaIIbbeta3 cytoplasmic complex. These data provide the first molecular insight into how skelemin may interact with integrins and regulate integrin-mediated signaling and cell spreading.
Collapse
Affiliation(s)
- Lalit Deshmukh
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut at Storrs, Storrs, Connecticut 06269, USA
| | | | | | | | | | | |
Collapse
|
114
|
Shi Y, Wu J. Structural basis of protein–protein interaction studied by NMR. ACTA ACUST UNITED AC 2007; 8:67-72. [PMID: 17763922 DOI: 10.1007/s10969-007-9021-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Accepted: 07/17/2007] [Indexed: 01/02/2023]
Abstract
This paper describes efforts of the structural genomics project in the nuclear magnetic resonance (NMR) laboratory at the University of Science and Technology of China. This structural genomics project is biological-functional driven. Targets are mainly selected from two systems: proteins related with regulation of gene expression in humans and other eukaryotes, and proteins existing in the cell junction in humans. The majority of proteins selected from these two systems are related with human health and diseases, and some are potential drug targets. Twenty-five protein structures from Homo sapiens and other eukaryotes have been determined during last 5 years in this laboratory. Nuclear magnetic resonance (NMR) spectroscopy is highly suited to investigate molecular interactions at a close physiological condition and is particularly suited for the study of low-affinity, transient complexes. It can provide information on protein surface interaction, their complex structure, and their dynamic properties during protein recognition. Several examples are given in this paper.
Collapse
Affiliation(s)
- Yunyu Shi
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, People's Republic of China.
| | | |
Collapse
|
115
|
Patel TR, Harding SE, Ebringerova A, Deszczynski M, Hromadkova Z, Togola A, Paulsen BS, Morris GA, Rowe AJ. Weak self-association in a carbohydrate system. Biophys J 2007; 93:741-9. [PMID: 17483161 PMCID: PMC1913144 DOI: 10.1529/biophysj.106.100891] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2006] [Accepted: 03/14/2007] [Indexed: 11/18/2022] Open
Abstract
The physiological importance of weak interactions between biological macromolecules (molar dissociation constants >10 microM) is now well recognized, particularly with regard to cell adhesion and immunological phenomena, and many weak interactions have been measured for proteins. The concomitant importance of carbohydrate-carbohydrate interactions has also been identified, although no weak interaction between pure carbohydrate systems has ever been measured. We now demonstrate for the first time to our knowledge using a powerful probe for weak interactions--sedimentation velocity in the analytical ultracentrifuge--that at least some carbohydrates (from the class of polysaccharides known as heteroxylans and demonstrated here to be biologically active) can show well-defined weak self-interactions of the "monomer-dimer" type frequently found in protein systems. The weak interaction between the heteroxylans is shown from a temperature dependence study to be likely to be hydrophobic in nature.
Collapse
Affiliation(s)
- Trushar R Patel
- National Centre for Macromolecular Hydrodynamics, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, LE12 5RD, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Ahrman E, Lambert W, Aquilina JA, Robinson CV, Emanuelsson CS. Chemical cross-linking of the chloroplast localized small heat-shock protein, Hsp21, and the model substrate citrate synthase. Protein Sci 2007; 16:1464-78. [PMID: 17567739 PMCID: PMC2206695 DOI: 10.1110/ps.072831607] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The molecular mechanism whereby the small heat-shock protein (sHsp) chaperones interact with and prevent aggregation of other proteins is not fully understood. We have characterized the sHsp-substrate protein interaction at normal and increased temperatures utilizing a model substrate protein, citrate synthase (CS), widely used in chaperone assays, and a dodecameric plant sHsp, Hsp21, by chemical cross-linking with 3,3'-Dithiobis[sulfosuccinimidylpropionate] (DTSSP) and mass spectrometric peptide mapping. In the absence of CS, the cross-linker captured Hsp21 in dodecameric form, even at increased temperature (47 degrees C). In the presence of equimolar amounts of CS, no Hsp21 dodecamer was captured, indicating a substrate-induced Hsp21 dodecamer dissociation by equimolar amounts of CS. Cross-linked Hsp21-Hsp21 dipeptides indicated an exposure of the Hsp21 C-terminal tails and substrate-binding sites normally covered by the C terminus. Cross-linked Hsp21-CS dipeptides mapped to several sites on the surface of the CS dimer, indicating that there are numerous weak and short-lived interactions between Hsp21 and CS, even at normal temperatures. The N-terminal arms especially interacted with a motif in the CS dimer, which is absent in thermostable forms of CS. The cross-linking data suggest that the presence of substrate rather than temperature influences the conformation of Hsp21.
Collapse
Affiliation(s)
- Emma Ahrman
- Department of Biochemistry, Lund University, Sweden.
| | | | | | | | | |
Collapse
|
117
|
Su XC, Jergic S, Ozawa K, Burns ND, Dixon NE, Otting G. Measurement of dissociation constants of high-molecular weight protein-protein complexes by transferred 15N-relaxation. JOURNAL OF BIOMOLECULAR NMR 2007; 38:65-72. [PMID: 17390106 DOI: 10.1007/s10858-007-9147-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2006] [Accepted: 01/16/2007] [Indexed: 05/14/2023]
Abstract
The use of (15)N-relaxation data for determination of the dissociation constant of a protein-protein complex is proposed for the situation where a (15)N-labeled protein is bound to an unlabeled protein of high molecular weight, and the chemical exchange between bound and free protein is fast on the NMR time scale. The approach is shown to be suitable for estimating dissociation constants in the micromolar to millimolar range, using protein solutions at relatively low concentration. An example is shown for the interaction between two subunits from the Escherichia coli DNA polymerase III complex, involving a (15)N-labeled fragment of the C-terminal domain of the tau subunit (15 kDa) and the unlabeled alpha subunit (130 kDa).
Collapse
Affiliation(s)
- Xun-Cheng Su
- Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| | | | | | | | | | | |
Collapse
|
118
|
Golovanov AP, Blankley RT, Avis JM, Bermel W. Isotopically discriminated NMR spectroscopy: a tool for investigating complex protein interactions in vitro. J Am Chem Soc 2007; 129:6528-35. [PMID: 17458964 DOI: 10.1021/ja070505q] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new NMR approach is presented for observing in vitro multicomponent protein-protein-ligand(s) interactions, which should help to understand how cellular networks of protein interactions operate on a molecular level and how they can be controlled with drugs. The method uniquely allows at least two polypeptide components of the mixture to be simultaneously closely monitored in a single sample, without increased signal overlap, and can be used to study complex (e.g., sequential, competitive, cooperative, allosteric, induced, etc.) binding events, witnessed by two polypeptides independently. One polypeptide is uniformly labeled with 15N and another with 15N and 13C. The 1H-15N correlation spectra are recorded for each of these molecules separately, discriminated on the basis of the type of 13C'/12C' atom attached to the amide group nitrogen. Any changes to the state of the two differently isotopically labeled molecules will be reported individually by fingerprint signals from amide groups, e.g., as unlabeled ligands are added. To our knowledge, no other technique currently exists which can monitor complex binding events in similar detail. The proposed method can be combined easily with traditional protein NMR techniques and incorporated in a variety of applications.
Collapse
Affiliation(s)
- Alexander P Golovanov
- Faculty of Life Sciences and Manchester Interdisciplinary Biocentre, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | | | | | | |
Collapse
|
119
|
Marintchev A, Frueh D, Wagner G. NMR methods for studying protein-protein interactions involved in translation initiation. Methods Enzymol 2007; 430:283-331. [PMID: 17913643 DOI: 10.1016/s0076-6879(07)30012-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Translation in the cell is carried out by complex molecular machinery involving a dynamic network of protein-protein and protein-RNA interactions. Along the multiple steps of the translation pathway, individual interactions are constantly formed, remodeled, and broken, which presents special challenges when studying this sophisticated system. NMR is a still actively developing technology that has recently been used to solve the structures of several translation factors. However, NMR also has a number of other unique capabilities, of which the broader scientific community may not always be aware. In particular, when studying macromolecular interactions, NMR can be used for a wide range of tasks from testing unambiguously whether two molecules interact to solving the structure of the complex. NMR can also provide insights into the dynamics of the molecules, their folding/unfolding, as well as the effects of interactions with binding partners on these processes. In this chapter, we have tried to summarize, in a popular format, the various types of information about macromolecular interactions that can be obtained with NMR. Special attention is given to areas where the use of NMR provides unique information that is difficult to obtain with other approaches. Our intent was to help the general scientific audience become more familiar with the power of NMR, the current status of the technological limitations of individual NMR methods, as well as the numerous applications, in particular for studying protein-protein interactions in translation.
Collapse
Affiliation(s)
- Assen Marintchev
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
120
|
Bhattacharjya S, Gingras R, Xu P. An NMR-based identification of a peptide fragment from the beta-subunit of a G-protein showing specific interactions with the GBB domain of the Ste20 kinase in budding yeast. Biochem Biophys Res Commun 2006; 347:1145-50. [PMID: 16870141 DOI: 10.1016/j.bbrc.2006.07.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Accepted: 07/09/2006] [Indexed: 11/28/2022]
Abstract
In mitogen-activated protein kinase (MAPK) cascades of budding yeast, pheromone-induced mating signal is transmitted by interactions between the beta-subunit of a G-protein (G-beta) and the G-beta binding (GBB) domain of Ste20 kinase. Previously, mutational analyses of the beta-subunit of G-protein had identified two critical mutations which abrogate binding of the GBB domain of Ste20. In this work, we have identified, by use of NMR spectroscopy, a peptide fragment from the G-beta that shows specific interactions with the isolated GBB domain of Ste20. A model structure of the Ste20/G-beta complex reveals that the interface of the hetero-complex may be sustained by parallel orientation of two potentially interacting helical segments that are further stabilized by ionic, hydrogen bond, and helix macro-dipole interactions.
Collapse
Affiliation(s)
- Surajit Bhattacharjya
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| | | | | |
Collapse
|
121
|
Zhang X, Azhar G, Zhong Y, Wei JY. Zipzap/p200 is a novel zinc finger protein contributing to cardiac gene regulation. Biochem Biophys Res Commun 2006; 346:794-801. [PMID: 16782067 DOI: 10.1016/j.bbrc.2006.05.211] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Accepted: 05/29/2006] [Indexed: 10/24/2022]
Abstract
Serum response factor (SRF) plays an important role in the regulation of immediate-early genes and muscle-specific genes, while SRF cofactors may contribute significantly to assist in tissue-specific, development-stage related regulation of SRF-target genes. We recently cloned a novel SRF cofactor, termed zipzap/p200, which is a zinc finger protein yet to be characterized. We determined that zipzap/p200 is a 200-kDa protein with two classic C2H2 zinc fingers at the carboxyl terminus where the nucleotide sequence was highly conserved among human, mouse, and rat. The zipzap gene was expressed in multiple tissues and at multiple ages, including the fetal and adult heart. The zipzap protein interacted with SRF in vivo and was found in protein complexes containing SRF and other SRF cofactors, including p49/strap and Nkx2.5. Zipzap/p200 activated the promoter of cardiac genes and potentiated the effect of myocardin on ANF promoter activity. Therefore, zipzap may serve as a transcription co-activator for the regulation of cardiac gene expression. Our data support the notion that a number of SRF cofactors may participate in gene regulation and thereby contribute to the delicate control of gene expression in complex biological processes.
Collapse
Affiliation(s)
- Xiaomin Zhang
- Donald W. Reynolds Department of Geriatrics, The University of Arkansas for Medical Sciences and Geriatric Research, Education, and Clinical Center, Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA.
| | | | | | | |
Collapse
|
122
|
Modern High Resolution NMR for the Study of Structure, Dynamics and Interactions of Biological Macromolecules. Z PHYS CHEM 2006. [DOI: 10.1524/zpch.2006.220.5.567] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|