101
|
Nombela-Cabrera R, Pérez-Nombela S, Avendaño-Coy J, Comino-Suárez N, Arroyo-Fernández R, Gómez-Soriano J, Serrano-Muñoz D. Effectiveness of transcranial direct current stimulation on balance and gait in patients with multiple sclerosis: systematic review and meta-analysis of randomized clinical trials. J Neuroeng Rehabil 2023; 20:142. [PMID: 37875941 PMCID: PMC10594930 DOI: 10.1186/s12984-023-01266-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/11/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND Motor impairments are very common in neurological diseases such as multiple sclerosis. Noninvasive brain stimulation could influence the motor function of patients. OBJECTIVE The aim of this meta-analysis was to evaluate the effectiveness of transcranial direct current stimulation (tDCS) on balance and gait ability in patients with multiple sclerosis. Additionally, a secondary aim was to compare the influence of the stimulation location of tDCS on current effectiveness. METHODS A search was conducted for randomized controlled trials published up to May 2023 comparing the application of tDCS versus a sham or control group. The primary outcome variables were balance and gait ability. RESULTS Eleven studies were included in the qualitative analysis, and ten were included in the quantitative analysis, which included 230 patients with multiple sclerosis. The average effect of tDCS on gait functionality was superior to that of the control group (SMD = -0.71; 95% CI, -1.05 to -0.37). However, the overall results of the tDCS vs. sham effect on static balance did not show significant differences between groups (MD = 1.26, 95% CI, -1.31 to 3.82). No significant differences were found when different locations of tDCS were compared. CONCLUSIONS These results reveal that tDCS is an effective treatment for improving gait ability with a low quality of evidence. However, the application of tDCS has no effect on static balance in patients with multiple sclerosis with very low quality of evidence. Similarly, there seems to be no difference regarding the stimulation area with tDCS.
Collapse
Affiliation(s)
| | - Soraya Pérez-Nombela
- Toledo Physiotherapy Research Group (GIFTO), Faculty of Physiotherapy and Nursing of Toledo, Universidad de Castilla-La Mancha, Toledo, Spain.
| | - Juan Avendaño-Coy
- Toledo Physiotherapy Research Group (GIFTO), Faculty of Physiotherapy and Nursing of Toledo, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Natalia Comino-Suárez
- Toledo Physiotherapy Research Group (GIFTO), Faculty of Physiotherapy and Nursing of Toledo, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Rubén Arroyo-Fernández
- Physiotherapy Unit, Hospital Nuestra Señora del Prado, Talavera de la Reina, Spain
- Research Group on Water and Health (GIAS), Faculty of Physiotherapy and Nursing of Toledo, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Julio Gómez-Soriano
- Toledo Physiotherapy Research Group (GIFTO), Faculty of Physiotherapy and Nursing of Toledo, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Diego Serrano-Muñoz
- Toledo Physiotherapy Research Group (GIFTO), Faculty of Physiotherapy and Nursing of Toledo, Universidad de Castilla-La Mancha, Toledo, Spain
| |
Collapse
|
102
|
Hur SW, Safaryan K, Yang L, Blair HT, Masmanidis SC, Mathews PJ, Aharoni D, Golshani P. Correlated signatures of social behavior in cerebellum and anterior cingulate cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.05.535750. [PMID: 37066345 PMCID: PMC10104017 DOI: 10.1101/2023.04.05.535750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
The cerebellum has been implicated in the regulation of social behavior. Its influence is thought to arise from communication, via the thalamus, to forebrain regions integral in the expression of social interactions, including the anterior cingulate cortex (ACC). However, the signals encoded or the nature of the communication between the cerebellum and these brain regions is poorly understood. Here, we describe an approach that overcomes technical challenges in exploring the coordination of distant brain regions at high temporal and spatial resolution during social behavior. We developed the E-Scope, an electrophysiology-integrated miniature microscope, to synchronously measure extracellular electrical activity in the cerebellum along with calcium imaging of the ACC. This single coaxial cable device combined these data streams to provide a powerful tool to monitor the activity of distant brain regions in freely behaving animals. During social behavior, we recorded the spike timing of multiple single units in cerebellar right Crus I (RCrus I) Purkinje cells (PCs) or dentate nucleus (DN) neurons while synchronously imaging calcium transients in contralateral ACC neurons. We found that during social interactions a significant subpopulation of cerebellar PCs were robustly inhibited, while most modulated neurons in the DN were activated, and their activity was correlated with positively modulated ACC neurons. These distinctions largely disappeared when only non-social epochs were analyzed suggesting that cerebellar-cortical interactions were behaviorally specific. Our work provides new insights into the complexity of cerebellar activation and co-modulation of the ACC during social behavior and a valuable open-source tool for simultaneous, multimodal recordings in freely behaving mice.
Collapse
Affiliation(s)
- Sung Won Hur
- Department of Neurology, DGSOM, University of California Los Angeles, Los Angeles, California, USA
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, California, USA
| | - Karen Safaryan
- Department of Neurology, DGSOM, University of California Los Angeles, Los Angeles, California, USA
| | - Long Yang
- Department of Neurobiology, University of California Los Angeles, Los Angeles, California, USA
| | - Hugh T Blair
- Department of Psychology, University of California Los Angeles, Los Angeles, California, USA
| | - Sotiris C Masmanidis
- Department of Neurobiology, University of California Los Angeles, Los Angeles, California, USA
| | - Paul J Mathews
- The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, California, USA
- Department of Neurology, Harbor-UCLA Medical Center, Torrance, California, USA
| | - Daniel Aharoni
- Department of Neurology, DGSOM, University of California Los Angeles, Los Angeles, California, USA
| | - Peyman Golshani
- Department of Neurology, DGSOM, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
103
|
Qu L, Liu C, Cao Y, Shi J, Yin K, Liu W. Differences and Changes in Cerebellar Functional Connectivity of Parkinson's Patients with Visual Hallucinations. Brain Sci 2023; 13:1458. [PMID: 37891826 PMCID: PMC10605214 DOI: 10.3390/brainsci13101458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/03/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Recent studies have discovered that functional connections are impaired in patients with Parkinson's disease (PD) accompanied by hallucinations (PD-H), even at the preclinical stage. The cerebellum has been implicated in playing a role in cognitive processes. However, the functional connectivity (FC) between the cognitive sub-regions of the cerebellum in PD patients with hallucinations needs further clarification. Resting-state functional magnetic resonance imaging (rs-fMRI) data were collected from three groups (17 PD-H patients, 13 patients with Parkinson's disease not accompanied by hallucinations (PD-NH), and 26 healthy controls (HC)). The data were collected in this study to investigate the impact of cerebellar FC changes on cognitive performance. Additionally, we define cerebellar FC as a training feature for classifying all subjects using Support Vector Machines (SVMs). We found that in the PD-H patients, there was an increase in FC within the left side of the precuneus (PCUN) compared to the HC. Additionally, there was an increase in FC within the bilateral opercular part of the inferior frontal gyrus (IFGoprec) and triangular part of the inferior frontal gyrus (IFCtriang), as well as the left side of the postcentral gyrus (PoCG), inferior parietal lobe (IPL), and PCUN compared to the PD-NH patients. In the machine learning training results, cerebellar FC has also been proven to be an effective biomarker feature, achieving a recognition rate of over 90% for PD-H. These findings indicate that the cortico-cerebellar FC in PD-H and PD-NH patients was significantly disrupted, with different patterns of distribution. The proposed pipeline offers a promising, low-cost alternative for diagnosing preclinical PD-H and may also be beneficial for other degenerative brain disorders.
Collapse
Affiliation(s)
- Liangcheng Qu
- Link Sense Laboratory, Nanjing Research Institute of Electronic Technology, Nanjing 210019, China; (L.Q.); (C.L.)
| | - Chuan Liu
- Link Sense Laboratory, Nanjing Research Institute of Electronic Technology, Nanjing 210019, China; (L.Q.); (C.L.)
| | - Yiting Cao
- Department of Geriatrics, Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China; (Y.C.); (J.S.)
| | - Jingping Shi
- Department of Geriatrics, Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China; (Y.C.); (J.S.)
| | - Kuiying Yin
- Link Sense Laboratory, Nanjing Research Institute of Electronic Technology, Nanjing 210019, China; (L.Q.); (C.L.)
| | - Weiguo Liu
- Department of Geriatrics, Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China; (Y.C.); (J.S.)
| |
Collapse
|
104
|
Cakar ME, Cummings KK, Bookheimer SY, Dapretto M, Green SA. Age-related changes in neural responses to sensory stimulation in autism: a cross-sectional study. Mol Autism 2023; 14:38. [PMID: 37817282 PMCID: PMC10566124 DOI: 10.1186/s13229-023-00571-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/03/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Sensory over-responsivity (SOR) is an impairing sensory processing challenge in autism spectrum disorder (ASD) which shows heterogenous developmental trajectories and appears to improve into adulthood in some but not all autistic individuals. However, the neural mechanisms underlying interindividual differences in these trajectories are currently unknown. METHODS Here, we used functional magnetic resonance imaging (fMRI) to investigate the association between age and neural activity linearly and nonlinearly in response to mildly aversive sensory stimulation as well as how SOR severity moderates this association. Participants included 52 ASD (14F) and 41 (13F) typically developing (TD) youth, aged 8.6-18.0 years. RESULTS We found that in pre-teens, ASD children showed widespread activation differences in sensorimotor, frontal and cerebellar regions compared to TD children, while there were fewer differences between ASD and TD teens. In TD youth, older age was associated with less activation in the prefrontal cortex. In contrast, in ASD youth, older age was associated with more engagement of sensory integration and emotion regulation regions. In particular, orbitofrontal and medial prefrontal cortices showed a nonlinear relationship with age in ASD, with an especially steep increase in sensory-evoked neural activity during the mid-to-late teen years. There was also an interaction between age and SOR severity in ASD youth such that these age-related trends were more apparent in youth with higher SOR. LIMITATIONS The cross-sectional design limits causal interpretations of the data. Future longitudinal studies will be instrumental in determining how prefrontal engagement and SOR co-develop across adolescence. CONCLUSIONS Our results suggest that enhanced recruitment of prefrontal regions may underlie age-related decreases in SOR for a subgroup of ASD youth.
Collapse
Affiliation(s)
- Melis E Cakar
- Neuroscience Interdepartmental Program, Ahmanson Lovelace Brain Mapping Center, University of California Los Angeles, 660 Charles E. Young Drive South, Los Angeles, CA, 90095, USA.
| | - Kaitlin K Cummings
- Department of Psychology and Neuroscience, The University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Susan Y Bookheimer
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, USA
- Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, USA
| | - Mirella Dapretto
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, USA
- Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, USA
| | - Shulamite A Green
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, USA
- Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, USA
| |
Collapse
|
105
|
Siciliano L, Olivito G, Urbini N, Silveri MC, Leggio M. The rising role of cognitive reserve and associated compensatory brain networks in spinocerebellar ataxia type 2. J Neurol 2023; 270:5071-5084. [PMID: 37421466 PMCID: PMC10511586 DOI: 10.1007/s00415-023-11855-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/10/2023]
Abstract
Pre-existing or enhanced cognitive abilities influence symptom onset and severity in neurodegenerative diseases, which improve an individual's ability to deal with neurodegeneration. This process is named cognitive reserve (CR), and it has acquired high visibility in the field of neurodegeneration. However, the investigation of CR has been neglected in the context of cerebellar neurodegenerative disorders. The present study assessed CR and its impact on cognitive abilities in spinocerebellar ataxia type 2 (SCA2), which is a rare cerebellar neurodegenerative disease. We investigated the existence of CR networks in terms of compensatory mechanisms and neural reserve driven by increased cerebello-cerebral functional connectivity. The CR of 12 SCA2 patients was assessed using the Cognitive Reserve Index Questionnaire (CRIq), which was developed for appraising life-span CR. Patients underwent several neuropsychological tests to evaluate cognitive functioning and a functional MRI examination. Network based statistics analysis was used to assess functional brain networks. The results revealed significant correlations of CRIq measures with cognitive domains and patterns of increased connectivity in specific cerebellar and cerebral regions, which likely indicated CR networks. This study showed that CR may influence disease-related cognitive deficits, and it was related to the effective use of specific cerebello-cerebral networks that reflect a CR biomarker.
Collapse
Affiliation(s)
- Libera Siciliano
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy
- Ataxia Laboratory, Fondazione Santa Lucia IRCCS, 00179 Rome, Italy
| | - Giusy Olivito
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy
- Ataxia Laboratory, Fondazione Santa Lucia IRCCS, 00179 Rome, Italy
| | - Nicole Urbini
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy
- Ataxia Laboratory, Fondazione Santa Lucia IRCCS, 00179 Rome, Italy
| | | | - Maria Leggio
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy
- Ataxia Laboratory, Fondazione Santa Lucia IRCCS, 00179 Rome, Italy
| |
Collapse
|
106
|
Hu X, Luo Y, Qi R, Ge J, Wu L, Dai H, Lan Q, Liu B, Zhang L, Xu Q, Cao Z, Lu G. Altered brain degree centrality and functional connectivity in adults with executive dysfunction after trauma exposure. Psychiatry Res Neuroimaging 2023; 335:111713. [PMID: 37690162 DOI: 10.1016/j.pscychresns.2023.111713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 09/01/2023] [Accepted: 09/02/2023] [Indexed: 09/12/2023]
Abstract
Losing an only child is undoubtedly a huge blow that can adversely affect the prefrontal lobe, a highly sensitive brain region. Neuropsychological evidence emphasizes that executive function (EF) is closely related to the optimal functioning of the frontal cortex. However, the characteristics and potential mechanisms underlying changes in executive function following the huge shock of losing an only child remain insufficiently studied and understood. In this study, we performed degree centrality (DC) and functional connectivity (FC) analyses to explore the organization of the executive function deficits (EFD) network among adults who have lost their only child. In addition, we performed correlation analyses to establish an association between abnormal DC and FC values and post-traumatic stress symptoms. Finally, we used support vector machine analyses to assess the accuracy of abnormal DC and FC values in distinguishing adults with EFD who have lost their only child from those without EFD. Our findings revealed increased DC in the left superior frontal gyrus and right angular gyrus (ANG), whereas decreased DC in the left superior occipital gyrus among adults with EFD. Further FC analysis revealed that the altered FC primarily involved the prefrontal and temporal lobes and cerebellum. Notably, the altered FC between the right ANG and left inferior temporal gyrus exhibited a negative correlation with irritability symptoms (R = -0.047, p = 0.003) in the EFD group. A combined model incorporating altered DC and FC values enabled the classification of 96.69% of adults with EFD, with a sensitivity of 0.8837 and specificity of 0.9558. These findings provide valuable insights into the neural mechanisms underlying distinct EF statuses following trauma exposure, distinguishing adults with and without EFD.
Collapse
Affiliation(s)
- Xiao Hu
- Department of Medical Imaging, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu 210002, China
| | - Yifeng Luo
- Department of Radiology, the Affiliated Yixing Hospital of Jiangsu University, Wuxi, China
| | - Rongfeng Qi
- Department of Medical Imaging, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu 210002, China
| | - Jiyuan Ge
- Department of Radiology, the Affiliated Yixing Hospital of Jiangsu University, Wuxi, China
| | - Luoan Wu
- Department of Psychiatry, Yixing Mental Health Center, Wuxi, China
| | - Huanhuan Dai
- Department of Radiology, the Affiliated Yixing Hospital of Jiangsu University, Wuxi, China
| | - Qingyue Lan
- Department of Radiology, the Affiliated Yixing Hospital of Jiangsu University, Wuxi, China
| | - Bo Liu
- Department of Radiology, the Affiliated Yixing Hospital of Jiangsu University, Wuxi, China
| | - Li Zhang
- Mental Health Institute, the Second Xiangya Hospital, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, China
| | - Qiang Xu
- Department of Medical Imaging, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu 210002, China
| | - Zhihong Cao
- Department of Radiology, the Affiliated Yixing Hospital of Jiangsu University, Wuxi, China.
| | - Guangming Lu
- Department of Medical Imaging, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu 210002, China.
| |
Collapse
|
107
|
Ruan Z, Gao L, Li S, Yu M, Rao B, Sun W, Zhou X, Li Y, Song X, Xu H. Functional abnormalities of the cerebellum in vascular mild cognitive impairment. Brain Imaging Behav 2023; 17:530-540. [PMID: 37433970 DOI: 10.1007/s11682-023-00783-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2023] [Indexed: 07/13/2023]
Abstract
OBJECTIVES The alterations in cerebellar activity that occur in vascular mild cognitive impairment remain largely unexplored. This study aimed to investigate potential associations between abnormal cerebellar functional connectivity (FC) and changes in cognitive function by examining intracerebellar and cerebellar-cerebral FC. METHODS MRI data were collected from seventy-two patients with vascular mild cognitive impairment (VMCI), comprising 38 patients with small vessel mild cognitive impairment (SVMCI) and 34 with poststroke mild cognitive impairment (PSMCI), and from 43 demographically matched healthy controls (HCs). Changes in FC between subregions within the cerebellum and from each cerebellar subregion to the selected cerebral seed points in VMCI patients were calculated, and the association of these changes with cognitive function was examined. RESULTS Compared with HCs, we found that VMCI patients had 11 cerebellar subregions showing significant differences (mainly decreases) in FC with brain regions in the default-mode network (DMN), sensory-motor network (SMN), and frontoparietal network (FPN). In the intracerebellar FC analysis, 47 (8%) cerebellar connections had significant intergroup differences, mainly a reduced magnitude of FC in VMCI patients. In the correlation analysis, higher Montreal Cognitive Assessment (MoCA) scores were correlated with stronger intracerebellar FC (left crus II-right lobule VI, left crus II-right lobule VIIb) and cerebellar-cerebral FC (right lobule X-left precuneus, vermal lobule IX-right inferior parietal lobule) in both the SVMCI and PSMCI groups. CONCLUSION These findings suggest prominent intracerebellar and cerebellar-cerebral FC abnormalities in VMCI patients, contributing evidence for a possible role of the cerebellum in cognitive processes.
Collapse
Affiliation(s)
- Zhao Ruan
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuchang District, Wuhan City, Hubei Province, 430071, China
| | - Lei Gao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuchang District, Wuhan City, Hubei Province, 430071, China
| | - Sirui Li
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuchang District, Wuhan City, Hubei Province, 430071, China
| | - Minhua Yu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuchang District, Wuhan City, Hubei Province, 430071, China
| | - Bo Rao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuchang District, Wuhan City, Hubei Province, 430071, China
| | - Wenbo Sun
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuchang District, Wuhan City, Hubei Province, 430071, China
| | - Xiaoli Zhou
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuchang District, Wuhan City, Hubei Province, 430071, China
| | - Yidan Li
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuchang District, Wuhan City, Hubei Province, 430071, China
| | - Xiaopeng Song
- Department of Biomedical Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing, 100871, China.
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuchang District, Wuhan City, Hubei Province, 430071, China.
| |
Collapse
|
108
|
Striemer CL, Morrill A. Direction of visual shift and hand congruency enhance spatial realignment during visuomotor adaptation. Exp Brain Res 2023; 241:2475-2486. [PMID: 37658176 DOI: 10.1007/s00221-023-06697-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/24/2023] [Indexed: 09/03/2023]
Abstract
Although prism adaptation has been studied extensively for over 100 years to better understand how the motor system adapts to sensory perturbations, very few studies have systematically studied how the combination of the hand used to adapt, and the direction of visual shift, might influence adaptation. Given that sensory inputs and motor outputs from the same side are processed (at least initially) in the same hemisphere, we wondered whether there might be differences in how people adapt when the hand used and the direction of visual shift were congruent (e.g., adapting to rightward shifting prisms with the right hand), compared to incongruent (e.g., adapting to rightward shifting prisms with the left hand). In Experiment 1 we re-analyzed a previously published dataset (Striemer, Enns, and Whitwell Striemer et al., Cortex 115:201-215, 2019a) in which healthy adults (n = 17) adapted to 17° leftward or rightward optically displacing prisms using their left or right hand (tested in separate sessions, counterbalanced). Our results revealed a "congruency effect" such that adaptation aftereffects were significantly larger for reaches performed without visual feedback (i.e., straight-ahead pointing) when the direction of prism shift and the hand used were congruent, compared to incongruent. We replicated this same congruency effect in Experiment 2 in a new group of participants (n = 25). We suggest that a better understanding of the cognitive and neural mechanisms underlying the congruency effect will allow researchers to build more precise models of visuomotor learning, and may lead to the development of more effective applications of prism adaptation for the treatment of attentional disorders following brain damage.
Collapse
Affiliation(s)
- Christopher L Striemer
- Department of Psychology, MacEwan University, 10700 - 104 Avenue, Edmonton, AB, T5J 4S2, Canada.
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.
| | - Adam Morrill
- Department of Psychology, MacEwan University, 10700 - 104 Avenue, Edmonton, AB, T5J 4S2, Canada
| |
Collapse
|
109
|
Gatti D, Rinaldi L, Vecchi T, Ferrari C. Understanding cerebellar cognitive and social functions: methodological challenges and new directions for future transcranial magnetic stimulation studies. Curr Opin Behav Sci 2023; 53:101300. [DOI: 10.1016/j.cobeha.2023.101300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
110
|
Chao OY, Pathak SS, Zhang H, Augustine GJ, Christie JM, Kikuchi C, Taniguchi H, Yang YM. Social memory deficit caused by dysregulation of the cerebellar vermis. Nat Commun 2023; 14:6007. [PMID: 37752149 PMCID: PMC10522595 DOI: 10.1038/s41467-023-41744-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
Social recognition memory (SRM) is a key determinant of social interactions. While the cerebellum emerges as an important region for social behavior, how cerebellar activity affects social functions remains unclear. We selectively increased the excitability of molecular layer interneurons (MLIs) to suppress Purkinje cell firing in the mouse cerebellar vermis. Chemogenetic perturbation of MLIs impaired SRM without affecting sociability, anxiety levels, motor coordination or object recognition. Optogenetic interference of MLIs during distinct phases of a social recognition test revealed the cerebellar engagement in the retrieval, but not encoding, of social information. c-Fos mapping after the social recognition test showed that cerebellar manipulation decreased brain-wide interregional correlations and altered network structure from medial prefrontal cortex and hippocampus-centered to amygdala-centered modules. Anatomical tracing demonstrated hierarchical projections from the central cerebellum to the social brain network integrating amygdalar connections. Our findings suggest that the cerebellum organizes the neural matrix necessary for SRM.
Collapse
Affiliation(s)
- Owen Y Chao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812, USA
| | - Salil Saurav Pathak
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812, USA
| | - Hao Zhang
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812, USA
| | - George J Augustine
- Lee Kong Chian School of Medicine, Nanyang Technological University, 308232, Singapore, Singapore
| | - Jason M Christie
- University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Chikako Kikuchi
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, 33458, USA
| | - Hiroki Taniguchi
- Department of Pathology, Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Chronic Brain Injury, Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Yi-Mei Yang
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812, USA.
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
111
|
Pennartz CMA, Oude Lohuis MN, Olcese U. How 'visual' is the visual cortex? The interactions between the visual cortex and other sensory, motivational and motor systems as enabling factors for visual perception. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220336. [PMID: 37545313 PMCID: PMC10404929 DOI: 10.1098/rstb.2022.0336] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/13/2023] [Indexed: 08/08/2023] Open
Abstract
The definition of the visual cortex is primarily based on the evidence that lesions of this area impair visual perception. However, this does not exclude that the visual cortex may process more information than of retinal origin alone, or that other brain structures contribute to vision. Indeed, research across the past decades has shown that non-visual information, such as neural activity related to reward expectation and value, locomotion, working memory and other sensory modalities, can modulate primary visual cortical responses to retinal inputs. Nevertheless, the function of this non-visual information is poorly understood. Here we review recent evidence, coming primarily from studies in rodents, arguing that non-visual and motor effects in visual cortex play a role in visual processing itself, for instance disentangling direct auditory effects on visual cortex from effects of sound-evoked orofacial movement. These findings are placed in a broader framework casting vision in terms of predictive processing under control of frontal, reward- and motor-related systems. In contrast to the prevalent notion that vision is exclusively constructed by the visual cortical system, we propose that visual percepts are generated by a larger network-the extended visual system-spanning other sensory cortices, supramodal areas and frontal systems. This article is part of the theme issue 'Decision and control processes in multisensory perception'.
Collapse
Affiliation(s)
- Cyriel M. A. Pennartz
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
- Amsterdam Brain and Cognition, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Matthijs N. Oude Lohuis
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
- Champalimaud Research, Champalimaud Foundation, 1400-038 Lisbon, Portugal
| | - Umberto Olcese
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
- Amsterdam Brain and Cognition, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| |
Collapse
|
112
|
Hoang H, Tsutsumi S, Matsuzaki M, Kano M, Kawato M, Kitamura K, Toyama K. Dynamic organization of cerebellar climbing fiber response and synchrony in multiple functional components reduces dimensions for reinforcement learning. eLife 2023; 12:e86340. [PMID: 37712651 PMCID: PMC10531405 DOI: 10.7554/elife.86340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 09/13/2023] [Indexed: 09/16/2023] Open
Abstract
Cerebellar climbing fibers convey diverse signals, but how they are organized in the compartmental structure of the cerebellar cortex during learning remains largely unclear. We analyzed a large amount of coordinate-localized two-photon imaging data from cerebellar Crus II in mice undergoing 'Go/No-go' reinforcement learning. Tensor component analysis revealed that a majority of climbing fiber inputs to Purkinje cells were reduced to only four functional components, corresponding to accurate timing control of motor initiation related to a Go cue, cognitive error-based learning, reward processing, and inhibition of erroneous behaviors after a No-go cue. Changes in neural activities during learning of the first two components were correlated with corresponding changes in timing control and error learning across animals, indirectly suggesting causal relationships. Spatial distribution of these components coincided well with boundaries of Aldolase-C/zebrin II expression in Purkinje cells, whereas several components are mixed in single neurons. Synchronization within individual components was bidirectionally regulated according to specific task contexts and learning stages. These findings suggest that, in close collaborations with other brain regions including the inferior olive nucleus, the cerebellum, based on anatomical compartments, reduces dimensions of the learning space by dynamically organizing multiple functional components, a feature that may inspire new-generation AI designs.
Collapse
Affiliation(s)
- Huu Hoang
- ATR Neural Information Analysis LaboratoriesKyotoJapan
| | | | | | - Masanobu Kano
- Department of Neurophysiology, The University of TokyoTokyoJapan
- International Research Center for Neurointelligence (WPI-IRCN), The University of TokyoTokyoJapan
| | - Mitsuo Kawato
- ATR Brain Information Communication Research Laboratory GroupKyotoJapan
| | - Kazuo Kitamura
- Department of Neurophysiology, University of YamanashiKofuJapan
| | | |
Collapse
|
113
|
Borges MS, Hoffmann MS, Simioni A, Axelrud LK, Teixeira DS, Zugman A, Jackowski A, Pan PM, Bressan RA, Parker N, Germann J, Bado PP, Satterthwaite TD, Milham MP, Chakravarty MM, Paim Rohde LA, Constantino Miguel E, Paus T, Salum GA. Deviations from a typical development of the cerebellum in youth are associated with psychopathology, executive functions and educational outcomes. Psychol Med 2023; 53:5698-5708. [PMID: 36226568 DOI: 10.1017/s0033291722002926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Understanding deviations from typical brain development is a promising approach to comprehend pathophysiology in childhood and adolescence. We investigated if cerebellar volumes different than expected for age and sex could predict psychopathology, executive functions and academic achievement. METHODS Children and adolescents aged 6-17 years from the Brazilian High-Risk Cohort Study for Mental Conditions had their cerebellar volume estimated using Multiple Automatically Generated Templates from T1-weighted images at baseline (n = 677) and at 3-year follow-up (n = 447). Outcomes were assessed using the Child Behavior Checklist and standardized measures of executive functions and school achievement. Models of typically developing cerebellum were based on a subsample not exposed to risk factors and without mental-health conditions (n = 216). Deviations from this model were constructed for the remaining individuals (n = 461) and standardized variation from age and sex trajectory model was used to predict outcomes in cross-sectional, longitudinal and mediation analyses. RESULTS Cerebellar volumes higher than expected for age and sex were associated with lower externalizing specific factor and higher executive functions. In a longitudinal analysis, deviations from typical development at baseline predicted inhibitory control at follow-up, and cerebellar deviation changes from baseline to follow-up predicted changes in reading and writing abilities. The association between deviations in cerebellar volume and academic achievement was mediated by inhibitory control. CONCLUSIONS Deviations in the cerebellar typical development are associated with outcomes in youth that have long-lasting consequences. This study highlights both the potential of typical developing models and the important role of the cerebellum in mental health, cognition and education.
Collapse
Affiliation(s)
- Marina S Borges
- Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, rua Ramiro Barcelos 2350, Porto Alegre, 90035-003, Brazil
| | - Maurício S Hoffmann
- Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, rua Ramiro Barcelos 2350, Porto Alegre, 90035-003, Brazil
- Section on Negative Affect and Social Processes, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Department of Neuropsychiatry, Universidade Federal de Santa Maria, Avenida Roraima 1000, Santa Maria, 97105-900, Brazil
| | - André Simioni
- Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, rua Ramiro Barcelos 2350, Porto Alegre, 90035-003, Brazil
- Section on Negative Affect and Social Processes, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Luiza K Axelrud
- Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, rua Ramiro Barcelos 2350, Porto Alegre, 90035-003, Brazil
- Section on Negative Affect and Social Processes, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Danielle S Teixeira
- Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, rua Ramiro Barcelos 2350, Porto Alegre, 90035-003, Brazil
- Section on Negative Affect and Social Processes, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - André Zugman
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
- Laboratório Interdisciplinar de Neurociências Integrativas (LiNC), Departamento de Psiquiatria, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Andrea Jackowski
- Laboratório Interdisciplinar de Neurociências Integrativas (LiNC), Departamento de Psiquiatria, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Pedro M Pan
- Laboratório Interdisciplinar de Neurociências Integrativas (LiNC), Departamento de Psiquiatria, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Rodrigo A Bressan
- Laboratório Interdisciplinar de Neurociências Integrativas (LiNC), Departamento de Psiquiatria, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Nadine Parker
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Jurgen Germann
- University Health Network, Toronto, ON, Canada
- Cerebral Imaging Centre, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Patrícia P Bado
- Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, rua Ramiro Barcelos 2350, Porto Alegre, 90035-003, Brazil
- Section on Negative Affect and Social Processes, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Michael P Milham
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
- Center for the Developing Brain, Child Mind Institute, New York, NY 10022, USA
| | - M Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
- Department of Biological and Biomedical Engineering, McGill University, Montreal, Quebec, Canada
| | - Luis Augusto Paim Rohde
- Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, rua Ramiro Barcelos 2350, Porto Alegre, 90035-003, Brazil
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, SP, Brazil
| | - Eurípedes Constantino Miguel
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, SP, Brazil
- Universidade de São Paulo (USP), São Paulo, Brazil
| | - Tomas Paus
- Departments of Psychology and Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
- Centre hospitalier universitaire Sainte-Justine, University of Montreal, Montreal, Quebec, Canada
| | - Giovanni A Salum
- Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, rua Ramiro Barcelos 2350, Porto Alegre, 90035-003, Brazil
- Section on Negative Affect and Social Processes, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), São Paulo, SP, Brazil
- Department of Psychiatry and Legal Medicine, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2350, Porto Alegre, 90035-003, Brazil
| |
Collapse
|
114
|
Wijekoon N, Gonawala L, Ratnayake P, Amaratunga D, Hathout Y, Mohan C, Steinbusch HWM, Dalal A, Hoffman EP, de Silva KRD. Duchenne Muscular Dystrophy from Brain to Muscle: The Role of Brain Dystrophin Isoforms in Motor Functions. J Clin Med 2023; 12:5637. [PMID: 37685704 PMCID: PMC10488491 DOI: 10.3390/jcm12175637] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/26/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
Brain function and its effect on motor performance in Duchenne muscular dystrophy (DMD) is an emerging concept. The present study explored how cumulative dystrophin isoform loss, age, and a corticosteroid treatment affect DMD motor outcomes. A total of 133 genetically confirmed DMD patients from Sri Lanka were divided into two groups based on whether their shorter dystrophin isoforms (Dp140, Dp116, and Dp71) were affected: Group 1, containing patients with Dp140, Dp116, and Dp71 affected (n = 98), and Group 2, containing unaffected patients (n = 35). A subset of 52 patients (Group 1, n = 38; Group 2, n = 14) was followed for up to three follow-ups performed in an average of 28-month intervals. The effect of the cumulative loss of shorter dystrophin isoforms on the natural history of DMD was analyzed. A total of 74/133 (56%) patients encountered developmental delays, with 66/74 (89%) being in Group 1 and 8/74 (11%) being in Group 2 (p < 0.001). Motor developmental delays were predominant. The hip and knee muscular strength, according to the Medical Research Council (MRC) scale and the North Star Ambulatory Assessment (NSAA) activities, "standing on one leg R", "standing on one leg L", and "walk", declined rapidly in Group 1 (p < 0.001 In the follow-up analysis, Group 1 patients became wheelchair-bound at a younger age than those of Group 2 (p = 0.004). DMD motor dysfunction is linked to DMD mutations that affect shorter dystrophin isoforms. When stratifying individuals for clinical trials, considering the DMD mutation site and its impact on a shorter dystrophin isoform is crucial.
Collapse
Affiliation(s)
- Nalaka Wijekoon
- Interdisciplinary Center for Innovation in Biotechnology and Neuroscience, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka; (N.W.); (L.G.)
- Department of Cellular and Translational Neuroscience, School for Mental Health and Neuroscience, Faculty of Health, Medicine & Life Sciences, Maastricht University, 6200 Maastricht, The Netherlands;
| | - Lakmal Gonawala
- Interdisciplinary Center for Innovation in Biotechnology and Neuroscience, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka; (N.W.); (L.G.)
- Department of Cellular and Translational Neuroscience, School for Mental Health and Neuroscience, Faculty of Health, Medicine & Life Sciences, Maastricht University, 6200 Maastricht, The Netherlands;
| | | | | | - Yetrib Hathout
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Binghamton, NY 13902, USA; (Y.H.); (E.P.H.)
| | - Chandra Mohan
- Department of Bioengineering, University of Houston, Houston, TX 77204, USA;
| | - Harry W. M. Steinbusch
- Department of Cellular and Translational Neuroscience, School for Mental Health and Neuroscience, Faculty of Health, Medicine & Life Sciences, Maastricht University, 6200 Maastricht, The Netherlands;
| | - Ashwin Dalal
- Diagnostics Division, Center for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India;
| | - Eric P. Hoffman
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Binghamton, NY 13902, USA; (Y.H.); (E.P.H.)
| | - K. Ranil D. de Silva
- Interdisciplinary Center for Innovation in Biotechnology and Neuroscience, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka; (N.W.); (L.G.)
- Department of Cellular and Translational Neuroscience, School for Mental Health and Neuroscience, Faculty of Health, Medicine & Life Sciences, Maastricht University, 6200 Maastricht, The Netherlands;
- Institute for Combinatorial Advanced Research and Education (KDU-CARE), General Sir John Kotelawala Defence University, Ratmalana 10390, Sri Lanka
| |
Collapse
|
115
|
Gil-Paterna P, Furmark T. Imaging the cerebellum in post-traumatic stress and anxiety disorders: a mini-review. Front Syst Neurosci 2023; 17:1197350. [PMID: 37645454 PMCID: PMC10460913 DOI: 10.3389/fnsys.2023.1197350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/24/2023] [Indexed: 08/31/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) and anxiety disorders are among the most prevalent psychiatric conditions worldwide sharing many clinical manifestations and, most likely, neural mechanisms as suggested by neuroimaging research. While the so-called fear circuitry and traditional limbic structures of the brain, particularly the amygdala, have been extensively studied in sufferers of these disorders, the cerebellum has been relatively underexplored. The aim of this paper was to present a mini-review of functional (task-activity or resting-state connectivity) and structural (gray matter volume) results on the cerebellum as reported in magnetic resonance imaging studies of patients with PTSD or anxiety disorders (49 selected studies in 1,494 patients). While mixed results were noted overall, e.g., regarding the direction of effects and anatomical localization, cerebellar structures like the vermis seem to be highly involved. Still, the neurofunctional and structural alterations reported for the cerebellum in excessive anxiety and trauma are complex, and in need of further evaluation.
Collapse
|
116
|
Lavallé L, Brunelin J, Jardri R, Haesebaert F, Mondino M. The neural signature of reality-monitoring: A meta-analysis of functional neuroimaging studies. Hum Brain Mapp 2023; 44:4372-4389. [PMID: 37246722 PMCID: PMC10318245 DOI: 10.1002/hbm.26387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/21/2023] [Accepted: 05/11/2023] [Indexed: 05/30/2023] Open
Abstract
Distinguishing imagination and thoughts from information we perceived from the environment, a process called reality-monitoring, is important in everyday situations. Although reality monitoring seems to overlap with the concept of self-monitoring, which allows one to distinguish self-generated actions or thoughts from those generated by others, the two concepts remain largely separate cognitive domains and their common brain substrates have received little attention. We investigated the brain regions involved in these two cognitive processes and explored the common brain regions they share. To do this, we conducted two separate coordinate-based meta-analyses of functional magnetic resonance imaging studies assessing the brain regions involved in reality- and self-monitoring. Few brain regions survived threshold-free cluster enhancement family-wise multiple comparison correction (p < .05), likely owing to the small number of studies identified. Using uncorrected statistical thresholds recommended by Signed Differential Mapping with Permutation of Subject Images, the meta-analysis of reality-monitoring studies (k = 9 studies including 172 healthy subjects) revealed clusters in the lobule VI of the cerebellum, the right anterior medial prefrontal cortex and anterior thalamic projections. The meta-analysis of self-monitoring studies (k = 12 studies including 192 healthy subjects) highlighted the involvement of a set of brain regions including the lobule VI of the left cerebellum and fronto-temporo-parietal regions. We showed with a conjunction analysis that the lobule VI of the cerebellum was consistently engaged in both reality- and self-monitoring. The current findings offer new insights into the common brain regions underlying reality-monitoring and self-monitoring, and suggest that the neural signature of the self that may occur during self-production should persist in memories.
Collapse
Affiliation(s)
- Layla Lavallé
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, PSYR2BronFrance
- CH le VinatierBronFrance
| | - Jérôme Brunelin
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, PSYR2BronFrance
- CH le VinatierBronFrance
| | - Renaud Jardri
- Université de Lille, INSERM U‐1172, Lille Neurosciences & Cognition, Plasticity & Subjectivity TeamLilleFrance
| | - Frédéric Haesebaert
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, PSYR2BronFrance
- CH le VinatierBronFrance
| | - Marine Mondino
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, PSYR2BronFrance
- CH le VinatierBronFrance
| |
Collapse
|
117
|
Malerba G, Bellazzecca S, Urgesi C, Butti N, D'Angelo MG, Diella E, Biffi E. Is Social Training Delivered with a Head-Mounted Display Suitable for Patients with Hereditary Ataxia? Brain Sci 2023; 13:1017. [PMID: 37508949 PMCID: PMC10376992 DOI: 10.3390/brainsci13071017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Social cognition is fundamental in everyday life to understand "others' behavior", which is a key feature of social abilities. Previous studies demonstrated the efficacy of a rehabilitative intervention in semi-immersive virtual reality (VR) controlled by whole-body motion to improve the ability of patients with cerebellar disorders to predict others' intentions (VR-SPIRIT). Patients with severe ataxia that have difficulties at multiple levels of social processing could benefit from this intervention in terms of improving their social prediction skills, but they may have difficulties in controlling VR with whole-body movements. Therefore, we implemented VR-SPIRIT on a wearable, affordable, and easy-to-use technology, such as the Oculus Quest, a head-mounted display. The aim of this work was to evaluate the usability and tolerability of this VR application. We recruited 10 patients (37.7 ± 14.8 years old, seven males) with different types of hereditary ataxia who performed a single VR-SPIRIT session using the Oculus Quest viewer. After the session, patients answered a series of questionnaires to investigate the overall usability of the system and its potential effects in terms of cyber sickness. The preliminary results demonstrated system usability and tolerability. Indeed, only three patients did not complete the session due to different problems (dizziness, nausea, and boredom). In future studies, more patients will be enrolled to assess the effectiveness of the application, paving the way for the implementation of social training that can also be delivered at home.
Collapse
Affiliation(s)
- Giorgia Malerba
- Scientific Institute, IRCCS E. Medea, 23842 Bosisio Parini, Italy
| | | | - Cosimo Urgesi
- Scientific Institute, IRCCS E. Medea, 23842 Bosisio Parini, Italy
- Laboratory of Cognitive Neuroscience, Department of Languages and Literatures, Communication, Education and Society, University of Udine, 33100 Udine, Italy
| | - Niccolò Butti
- Scientific Institute, IRCCS E. Medea, 23842 Bosisio Parini, Italy
- PhD Program in Neural and Cognitive Sciences, Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | | | - Eleonora Diella
- Scientific Institute, IRCCS E. Medea, 23842 Bosisio Parini, Italy
| | - Emilia Biffi
- Scientific Institute, IRCCS E. Medea, 23842 Bosisio Parini, Italy
| |
Collapse
|
118
|
Wang K, Hu Y, Yan C, Li M, Wu Y, Qiu J, Zhu X. Brain structural abnormalities in adult major depressive disorder revealed by voxel- and source-based morphometry: evidence from the REST-meta-MDD Consortium. Psychol Med 2023; 53:3672-3682. [PMID: 35166200 DOI: 10.1017/s0033291722000320] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Neuroimaging studies on major depressive disorder (MDD) have identified an extensive range of brain structural abnormalities, but the exact neural mechanisms associated with MDD remain elusive. Most previous studies were performed with voxel- or surface-based morphometry which were univariate methods without considering spatial information across voxels/vertices. METHODS Brain morphology was investigated using voxel-based morphometry (VBM) and source-based morphometry (SBM) in 1082 MDD patients and 990 healthy controls (HCs) from the REST-meta-MDD Consortium. We first examined group differences in regional grey matter (GM) volumes and structural covariance networks between patients and HCs. We then compared first-episode, drug-naïve (FEDN) patients, and recurrent patients. Additionally, we assessed the effects of symptom severity and illness duration on brain alterations. RESULTS VBM showed decreased GM volume in various regions in MDD patients including the superior temporal cortex, anterior and middle cingulate cortex, inferior frontal cortex, and precuneus. SBM returned differences only in the prefrontal network. Comparisons between FEDN and recurrent MDD patients showed no significant differences by VBM, but SBM showed greater decreases in prefrontal, basal ganglia, visual, and cerebellar networks in the recurrent group. Moreover, depression severity was associated with volumes in the inferior frontal gyrus and precuneus, as well as the prefrontal network. CONCLUSIONS Simultaneous application of VBM and SBM methods revealed brain alterations in MDD patients and specified differences between recurrent and FEDN patients, which tentatively provide an effective multivariate method to identify potential neurobiological markers for depression.
Collapse
Affiliation(s)
- KangCheng Wang
- School of Psychology, Shandong Normal University, Jinan, Shandong, China
| | - YuFei Hu
- School of Psychology, Shandong Normal University, Jinan, Shandong, China
| | - ChaoGan Yan
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
- Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- International Big-Data Center for Depression Research, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - MeiLing Li
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - YanJing Wu
- Faculty of Foreign Languages, Ningbo University, Ningbo, Zhejiang, China
| | - Jiang Qiu
- Faculty of Psychology, Southwest University, Chongqing 400716, China
| | - XingXing Zhu
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| |
Collapse
|
119
|
Rosenblau G, Frolichs K, Korn CW. A neuro-computational social learning framework to facilitate transdiagnostic classification and treatment across psychiatric disorders. Neurosci Biobehav Rev 2023; 149:105181. [PMID: 37062494 PMCID: PMC10236440 DOI: 10.1016/j.neubiorev.2023.105181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 03/14/2023] [Accepted: 04/13/2023] [Indexed: 04/18/2023]
Abstract
Social deficits are among the core and most striking psychiatric symptoms, present in most psychiatric disorders. Here, we introduce a novel social learning framework, which consists of neuro-computational models that combine reinforcement learning with various types of social knowledge structures. We outline how this social learning framework can help specify and quantify social psychopathology across disorders and provide an overview of the brain regions that may be involved in this type of social learning. We highlight how this framework can specify commonalities and differences in the social psychopathology of individuals with autism spectrum disorder (ASD), personality disorders (PD), and major depressive disorder (MDD) and improve treatments on an individual basis. We conjecture that individuals with psychiatric disorders rely on rigid social knowledge representations when learning about others, albeit the nature of their rigidity and the behavioral consequences can greatly differ. While non-clinical cohorts tend to efficiently adapt social knowledge representations to relevant environmental constraints, psychiatric cohorts may rigidly stick to their preconceived notions or overly coarse knowledge representations during learning.
Collapse
Affiliation(s)
- Gabriela Rosenblau
- Department of Psychological and Brain Sciences, George Washington University, Washington DC, USA; Autism and Neurodevelopmental Disorders Institute, George Washington University, Washington DC, USA.
| | - Koen Frolichs
- Section Social Neuroscience, Department of General Psychiatry, University of Heidelberg, Heidelberg, Germany; Institute for Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph W Korn
- Section Social Neuroscience, Department of General Psychiatry, University of Heidelberg, Heidelberg, Germany; Institute for Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
120
|
Streng ML, Froula JM, Krook-Magnuson E. The cerebellum's understated role and influences in the epilepsies. Neurobiol Dis 2023; 183:106160. [PMID: 37209926 DOI: 10.1016/j.nbd.2023.106160] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/03/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023] Open
Abstract
Approximately 1 in 26 people will develop epilepsy in their lifetime, but current treatment options leave as many as half of all epilepsy patients with uncontrolled seizures. In addition to the burden of the seizures themselves, chronic epilepsy can be associated with cognitive deficits, structural changes, and devastating negative outcomes such as sudden unexpected death in epilepsy (SUDEP). Thus, major challenges in epilepsy research surround the need to both develop new therapeutic targets for intervention as well as shed light on the mechanisms by which chronic epilepsy can lead to comorbidities and negative outcomes. Despite not being traditionally associated with epilepsy or seizures, the cerebellum has emerged as not only a brain region that can serve as an important target for seizure control, but one that may also be profoundly impacted by chronic epilepsy. Here, we discuss targeting the cerebellum for potential therapeutic intervention and discuss pathway insights gained from recent optogenetic studies. We then review observations of cerebellar alterations during seizures and in chronic epilepsy, as well as the potential for the cerebellum to be a seizure focus. Cerebellar alterations in epilepsy may be critical to patient outcomes, highlighting the need for a more comprehensive understanding and appreciation of the cerebellum in the epilepsies.
Collapse
Affiliation(s)
- Martha L Streng
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA.
| | - Jessica M Froula
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | | |
Collapse
|
121
|
Markanday A, Hong S, Inoue J, De Schutter E, Thier P. Multidimensional cerebellar computations for flexible kinematic control of movements. Nat Commun 2023; 14:2548. [PMID: 37137897 PMCID: PMC10156706 DOI: 10.1038/s41467-023-37981-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/07/2023] [Indexed: 05/05/2023] Open
Abstract
Both the environment and our body keep changing dynamically. Hence, ensuring movement precision requires adaptation to multiple demands occurring simultaneously. Here we show that the cerebellum performs the necessary multi-dimensional computations for the flexible control of different movement parameters depending on the prevailing context. This conclusion is based on the identification of a manifold-like activity in both mossy fibers (MFs, network input) and Purkinje cells (PCs, output), recorded from monkeys performing a saccade task. Unlike MFs, the PC manifolds developed selective representations of individual movement parameters. Error feedback-driven climbing fiber input modulated the PC manifolds to predict specific, error type-dependent changes in subsequent actions. Furthermore, a feed-forward network model that simulated MF-to-PC transformations revealed that amplification and restructuring of the lesser variability in the MF activity is a pivotal circuit mechanism. Therefore, the flexible control of movements by the cerebellum crucially depends on its capacity for multi-dimensional computations.
Collapse
Affiliation(s)
- Akshay Markanday
- Hertie Institute for Clinical Brain Research, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Sungho Hong
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Junya Inoue
- Hertie Institute for Clinical Brain Research, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Erik De Schutter
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Peter Thier
- Hertie Institute for Clinical Brain Research, Eberhard Karls University Tübingen, Tübingen, Germany.
| |
Collapse
|
122
|
Loeffler A, Diaz-Alvarez A, Zhu R, Ganesh N, Shine JM, Nakayama T, Kuncic Z. Neuromorphic learning, working memory, and metaplasticity in nanowire networks. SCIENCE ADVANCES 2023; 9:eadg3289. [PMID: 37083527 PMCID: PMC10121165 DOI: 10.1126/sciadv.adg3289] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Nanowire networks (NWNs) mimic the brain's neurosynaptic connectivity and emergent dynamics. Consequently, NWNs may also emulate the synaptic processes that enable higher-order cognitive functions such as learning and memory. A quintessential cognitive task used to measure human working memory is the n-back task. In this study, task variations inspired by the n-back task are implemented in a NWN device, and external feedback is applied to emulate brain-like supervised and reinforcement learning. NWNs are found to retain information in working memory to at least n = 7 steps back, remarkably similar to the originally proposed "seven plus or minus two" rule for human subjects. Simulations elucidate how synapse-like NWN junction plasticity depends on previous synaptic modifications, analogous to "synaptic metaplasticity" in the brain, and how memory is consolidated via strengthening and pruning of synaptic conductance pathways.
Collapse
Affiliation(s)
- Alon Loeffler
- The University of Sydney, School of Physics, Sydney, Australia
- Corresponding author. (A.L.); (A.D.-A.); (Z.K.)
| | - Adrian Diaz-Alvarez
- International Center for Young Scientist (ICYS), National Institute for Materials Science (NIMS), Tsukuba, Japan
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, Japan
- Corresponding author. (A.L.); (A.D.-A.); (Z.K.)
| | - Ruomin Zhu
- The University of Sydney, School of Physics, Sydney, Australia
| | - Natesh Ganesh
- National Institute of Standards and Technology (NIST), Boulder, CO, USA
- University of Colorado, Boulder, CO, USA
| | - James M. Shine
- The University of Sydney, School of Physics, Sydney, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, Australia
- The University of Sydney, School of Medical Sciences, Sydney, Australia
| | - Tomonobu Nakayama
- The University of Sydney, School of Physics, Sydney, Australia
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
| | - Zdenka Kuncic
- The University of Sydney, School of Physics, Sydney, Australia
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, Japan
- The University of Sydney Nano Institute, Sydney, Australia
- Corresponding author. (A.L.); (A.D.-A.); (Z.K.)
| |
Collapse
|
123
|
Katsumi Y, Zhang J, Chen D, Kamona N, Bunce JG, Hutchinson JB, Yarossi M, Tunik E, Dickerson BC, Quigley KS, Barrett LF. Correspondence of functional connectivity gradients across human isocortex, cerebellum, and hippocampus. Commun Biol 2023; 6:401. [PMID: 37046050 PMCID: PMC10097701 DOI: 10.1038/s42003-023-04796-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/03/2023] [Indexed: 04/14/2023] Open
Abstract
Gradient mapping is an important technique to summarize high dimensional biological features as low dimensional manifold representations in exploring brain structure-function relationships at various levels of the cerebral cortex. While recent studies have characterized the major gradients of functional connectivity in several brain structures using this technique, very few have systematically examined the correspondence of such gradients across structures under a common systems-level framework. Using resting-state functional magnetic resonance imaging, here we show that the organizing principles of the isocortex, and those of the cerebellum and hippocampus in relation to the isocortex, can be described using two common functional gradients. We suggest that the similarity in functional connectivity gradients across these structures can be meaningfully interpreted within a common computational framework based on the principles of predictive processing. The present results, and the specific hypotheses that they suggest, represent an important step toward an integrative account of brain function.
Collapse
Affiliation(s)
- Yuta Katsumi
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.
| | - Jiahe Zhang
- Department of Psychology, Northeastern University, Boston, MA, 02115, USA
| | - Danlei Chen
- Department of Psychology, Northeastern University, Boston, MA, 02115, USA
| | - Nada Kamona
- Department of Psychology, Northeastern University, Boston, MA, 02115, USA
| | - Jamie G Bunce
- Department of Biology, Northeastern University, Boston, MA, 02115, USA
| | | | - Mathew Yarossi
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, 02115, USA
- Department of Physical Therapy, Movement, and Rehabilitation Science, Northeastern University, Boston, MA, 02115, USA
| | - Eugene Tunik
- Department of Physical Therapy, Movement, and Rehabilitation Science, Northeastern University, Boston, MA, 02115, USA
| | - Bradford C Dickerson
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Karen S Quigley
- Department of Psychology, Northeastern University, Boston, MA, 02115, USA
| | - Lisa Feldman Barrett
- Department of Psychology, Northeastern University, Boston, MA, 02115, USA
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
124
|
Standage DI, Areshenkoff CN, Gale DJ, Nashed JY, Flanagan JR, Gallivan JP. Whole-brain dynamics of human sensorimotor adaptation. Cereb Cortex 2023; 33:4761-4778. [PMID: 36245212 PMCID: PMC10110437 DOI: 10.1093/cercor/bhac378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 11/13/2022] Open
Abstract
Humans vary greatly in their motor learning abilities, yet little is known about the neural processes that underlie this variability. We identified distinct profiles of human sensorimotor adaptation that emerged across 2 days of learning, linking these profiles to the dynamics of whole-brain functional networks early on the first day when cognitive strategies toward sensorimotor adaptation are believed to be most prominent. During early learning, greater recruitment of a network of higher-order brain regions, involving prefrontal and anterior temporal cortex, was associated with faster learning. At the same time, greater integration of this "cognitive network" with a sensorimotor network was associated with slower learning, consistent with the notion that cognitive strategies toward adaptation operate in parallel with implicit learning processes of the sensorimotor system. On the second day, greater recruitment of a network that included the hippocampus was associated with faster learning, consistent with the notion that declarative memory systems are involved with fast relearning of sensorimotor mappings. Together, these findings provide novel evidence for the role of higher-order brain systems in driving variability in adaptation.
Collapse
Affiliation(s)
- Dominic I Standage
- Centre for Neuroscience Studies, Queen’s University, Botterell Hall, 18 Stuart Street, Kingston, Ontario K7L 3N6, Canada
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Corson N Areshenkoff
- Centre for Neuroscience Studies, Queen’s University, Botterell Hall, 18 Stuart Street, Kingston, Ontario K7L 3N6, Canada
| | - Daniel J Gale
- Centre for Neuroscience Studies, Queen’s University, Botterell Hall, 18 Stuart Street, Kingston, Ontario K7L 3N6, Canada
| | - Joseph Y Nashed
- Centre for Neuroscience Studies, Queen’s University, Botterell Hall, 18 Stuart Street, Kingston, Ontario K7L 3N6, Canada
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - J Randall Flanagan
- Centre for Neuroscience Studies, Queen’s University, Botterell Hall, 18 Stuart Street, Kingston, Ontario K7L 3N6, Canada
- Department of Psychology, Queen’s University, Humphrey Hall, 62 Arch Street, Kingston, Ontario K7L 3N6, Canada
| | - Jason P Gallivan
- Centre for Neuroscience Studies, Queen’s University, Botterell Hall, 18 Stuart Street, Kingston, Ontario K7L 3N6, Canada
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
- Department of Psychology, Queen’s University, Humphrey Hall, 62 Arch Street, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
125
|
Lu J, Zhou C, Pu J, Tian J, Yin X, Lv D, Guan X, Guo T, Zhang M, Zhang B, Yan Y, Zhao G. Brain microstructural changes in essential tremor patients and correlations with clinical characteristics: a diffusion kurtosis imaging study. J Neurol 2023; 270:2106-2116. [PMID: 36609498 DOI: 10.1007/s00415-023-11557-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Essential tremor (ET) is the second most common movement disorder; however, the pathophysiological mechanism of ET is unclear. We aimed to investigate the microstructural degeneration of gray matter (GM) and white matter (WM) and their correlations with cognition and tremor in patients with ET. METHODS The participants were 63 patients with ET and 63 matched healthy controls (HCs) who underwent 3D-T1 weighted and diffusion kurtosis images (DKI). Microstructural degeneration was measured using high-level diffusion parameters derived from DKI. A voxel-wise analysis of the means of the GM-based spatial statistics and tract-based spatial statistics were conducted to assess differences in diffusion parameters between the ET and HC groups. The volume differences between the two groups were also assessed, and tremor severity and multi-domain cognitive performance were evaluated. Finally, the relationship between microstructural degeneration and clinical characteristics were assessed. RESULTS The ET group had significantly lower mean kurtosis of the temporal, parietal, and occipital lobes and the cerebellum and lower radial kurtosis in several tracts. These microstructural changes in GM and WM were correlated with tremor and cognitive scores. However, no significant difference in volume was found between the groups. CONCLUSION Our findings suggest that ET entails extensive GM and WM microstructural alterations, which support the neurodegenerative hypothesis of ET. Our study contributes to a better understanding of the mechanisms underlying tremor and cognitive impairment in ET.
Collapse
Affiliation(s)
- Jinyu Lu
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, China
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Cheng Zhou
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Jiali Pu
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Jun Tian
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Xinzhen Yin
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Dayao Lv
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, China
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Xiaojun Guan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Tao Guo
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Baorong Zhang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
| | - Yaping Yan
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
| | - Guohua Zhao
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, China.
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
| |
Collapse
|
126
|
Olson IR, Hoffman LJ, Jobson KR, Popal HS, Wang Y. Little brain, little minds: The big role of the cerebellum in social development. Dev Cogn Neurosci 2023; 60:101238. [PMID: 37004475 PMCID: PMC10067769 DOI: 10.1016/j.dcn.2023.101238] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/08/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Seminal work in the 1990's found alterations in the cerebellum of individuals with social disorders including autism spectrum disorder and schizophrenia. In neurotypical populations, distinct portions of the posterior cerebellum are consistently activated in fMRI studies of social cognition and it has been hypothesized that the cerebellum plays an essential role in social cognition, particularly in theory of mind. Here we review the lesion literature and find that the effect of cerebellar damage on social cognition is strongly linked to the age of insult, with dramatic impairments observed after prenatal insult, strong deficits observed after childhood damage, and mild and inconsistent deficits observed following damage to the adult cerebellum. To explain the developmental gradient, we propose that early in life, the forward model dominates cerebellar computations. The forward model learns and uses errors to help build schemas of our interpersonal worlds. Subsequently, we argue that once these schemas have been built up, the inverse model, which is the foundation of automatic processing, becomes dominant. We provide suggestions for how to test this, and also outline directions for future research.
Collapse
Affiliation(s)
- Ingrid R Olson
- Department of Psychology and Neuroscience, Temple University, Philadephia PA, USA.
| | - Linda J Hoffman
- Department of Psychology and Neuroscience, Temple University, Philadephia PA, USA
| | - Katie R Jobson
- Department of Psychology and Neuroscience, Temple University, Philadephia PA, USA
| | - Haroon S Popal
- Department of Psychology and Neuroscience, Temple University, Philadephia PA, USA
| | - Yin Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| |
Collapse
|
127
|
Raoul L, Grosbras MH. Relating different Dimensions of Bodily Experiences: Review and proposition of an integrative model relying on phenomenology, predictive brain and neuroscience of the self. Neurosci Biobehav Rev 2023; 148:105141. [PMID: 36965863 DOI: 10.1016/j.neubiorev.2023.105141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 03/27/2023]
Abstract
How we mentally experience our body has been studied in a variety research domains. Each of these domains focuses in its own ways on different aspects of the body, namely the neurophysiological, perceptual, affective or social components, and proposes different conceptual taxonomies. It is therefore difficult to find one's way through this vast literature and to grasp the relationships between the different dimensions of bodily experiences. In this narrative review, we summarize the existing research directions and present their limits. We propose an integrative framework, grounded in studies on phenomenal consciousness, self-consciousness and bodily self-consciousness, that can provide a common basis for evaluating findings on different dimensions of bodily experiences. We review the putative mechanisms, relying on predictive processes, and neural substrates that support this model. We discuss how this model enables a conceptual assessment of the interrelationships between multiple dimensions of bodily experiences and potentiate interdisciplinary approaches.
Collapse
Affiliation(s)
- Lisa Raoul
- Aix Marseille Univ, CNRS, LNC, Laboratoire de Neurosciences Cognitives, Marseille, France.
| | - Marie-Hélène Grosbras
- Aix Marseille Univ, CNRS, LNC, Laboratoire de Neurosciences Cognitives, Marseille, France.
| |
Collapse
|
128
|
Sefik E, Boamah M, Addington J, Bearden CE, Cadenhead KS, Cornblatt BA, Keshavan MS, Mathalon DH, Perkins DO, Stone WS, Tsuang MT, Woods SW, Cannon TD, Walker EF. Sex- and Age-Specific Deviations in Cerebellar Structure and Their Link With Symptom Dimensions and Clinical Outcome in Individuals at Clinical High Risk for Psychosis. Schizophr Bull 2023; 49:350-363. [PMID: 36394426 PMCID: PMC10016422 DOI: 10.1093/schbul/sbac169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND The clinical high-risk (CHR) period offers a temporal window into neurobiological deviations preceding psychosis onset, but little attention has been given to regions outside the cerebrum in large-scale studies of CHR. Recently, the North American Prodrome Longitudinal Study (NAPLS)-2 revealed altered functional connectivity of the cerebello-thalamo-cortical circuitry among individuals at CHR; however, cerebellar morphology remains underinvestigated in this at-risk population, despite growing evidence of its involvement in psychosis. STUDY DESIGN In this multisite study, we analyzed T1-weighted magnetic resonance imaging scans obtained from N = 469 CHR individuals (61% male, ages = 12-36 years) and N = 212 healthy controls (52% male, ages = 12-34 years) from NAPLS-2, with a focus on cerebellar cortex and white matter volumes separately. Symptoms were rated by the Structured Interview for Psychosis-Risk Syndromes (SIPS). The outcome by two-year follow-up was categorized as in-remission, symptomatic, prodromal-progression, or psychotic. General linear models were used for case-control comparisons and tests for volumetric associations with baseline SIPS ratings and clinical outcomes. STUDY RESULTS Cerebellar cortex and white matter volumes differed between the CHR and healthy control groups at baseline, with sex moderating the difference in cortical volumes, and both sex and age moderating the difference in white matter volumes. Baseline ratings for major psychosis-risk dimensions as well as a clinical outcome at follow-up had tissue-specific associations with cerebellar volumes. CONCLUSIONS These findings point to clinically relevant deviations in cerebellar cortex and white matter structures among CHR individuals and highlight the importance of considering the complex interplay between sex and age when studying the neuromaturational substrates of psychosis risk.
Collapse
Affiliation(s)
- Esra Sefik
- Department of Psychology, Emory University, Atlanta, GA, USA
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | - Michelle Boamah
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Jean Addington
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada
| | - Carrie E Bearden
- Department of Psychology, University of California Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Kristin S Cadenhead
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | | | - Matcheri S Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Daniel H Mathalon
- Department of Psychiatry, University of California San Francisco, San Francisco, CA, USA
- Mental Health Service, San Francisco VA Medical Center, San Francisco, CA, USA
| | - Diana O Perkins
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - William S Stone
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Ming T Tsuang
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Scott W Woods
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Tyrone D Cannon
- Department of Psychiatry, Yale University, New Haven, CT, USA
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Elaine F Walker
- Department of Psychology, Emory University, Atlanta, GA, USA
| |
Collapse
|
129
|
Kohler N, Novembre G, Gugnowska K, Keller PE, Villringer A, Sammler D. Cortico-cerebellar audio-motor regions coordinate self and other in musical joint action. Cereb Cortex 2023; 33:2804-2822. [PMID: 35771593 PMCID: PMC10016054 DOI: 10.1093/cercor/bhac243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/14/2022] Open
Abstract
Joint music performance requires flexible sensorimotor coordination between self and other. Cognitive and sensory parameters of joint action-such as shared knowledge or temporal (a)synchrony-influence this coordination by shifting the balance between self-other segregation and integration. To investigate the neural bases of these parameters and their interaction during joint action, we asked pianists to play on an MR-compatible piano, in duet with a partner outside of the scanner room. Motor knowledge of the partner's musical part and the temporal compatibility of the partner's action feedback were manipulated. First, we found stronger activity and functional connectivity within cortico-cerebellar audio-motor networks when pianists had practiced their partner's part before. This indicates that they simulated and anticipated the auditory feedback of the partner by virtue of an internal model. Second, we observed stronger cerebellar activity and reduced behavioral adaptation when pianists encountered subtle asynchronies between these model-based anticipations and the perceived sensory outcome of (familiar) partner actions, indicating a shift towards self-other segregation. These combined findings demonstrate that cortico-cerebellar audio-motor networks link motor knowledge and other-produced sounds depending on cognitive and sensory factors of the joint performance, and play a crucial role in balancing self-other integration and segregation.
Collapse
Affiliation(s)
- Natalie Kohler
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103, Leipzig, Germany
- Research Group Neurocognition of Music and Language, Max Planck Institute for Empirical Aesthetics, Grüneburgweg 14, 60322 Frankfurt am Main, Germany
| | - Giacomo Novembre
- Neuroscience of Perception and Action Laboratory, Italian Institute of Technology, Viale Regina Elena 291, 00161 Rome, Italy
| | - Katarzyna Gugnowska
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103, Leipzig, Germany
- Research Group Neurocognition of Music and Language, Max Planck Institute for Empirical Aesthetics, Grüneburgweg 14, 60322 Frankfurt am Main, Germany
| | - Peter E Keller
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Universitetsbyen 3, 8000 Aarhus C, Denmark
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103, Leipzig, Germany
| | - Daniela Sammler
- Corresponding author: Daniela Sammler, MPI for Empirical Aesthetics, Grüneburgweg 14, 60322 Frankfurt/M., Germany.
| |
Collapse
|
130
|
Li H, Guan Q, Huang R, Lei M, Luo YJ, Zhang Z, Tao W. Altered functional coupling between the cerebellum and cerebrum in patients with amnestic mild cognitive impairment. Cereb Cortex 2023; 33:2061-2074. [PMID: 36857720 DOI: 10.1093/cercor/bhac193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 11/14/2022] Open
Abstract
Cognitive processing relies on the functional coupling between the cerebrum and cerebellum. However, it remains unclear how the 2 collaborate in amnestic mild cognitive impairment (aMCI) patients. With functional magnetic resonance imaging techniques, we compared cerebrocerebellar functional connectivity during the resting state (rsFC) between the aMCI and healthy control (HC) groups. Additionally, we distinguished coupling between functionally corresponding and noncorresponding areas across the cerebrum and cerebellum. The results demonstrated decreased rsFC between both functionally corresponding and noncorresponding areas, suggesting distributed deficits of cerebrocerebellar connections in aMCI patients. Increased rsFC was also observed, which were between functionally noncorresponding areas. Moreover, the increased rsFC was positively correlated with attentional scores in the aMCI group, and this effect was absent in the HC group, supporting that there exists a compensatory mechanism in patients. The current study contributes to illustrating how the cerebellum adjusts its coupling with the cerebrum in individuals with cognitive impairment.
Collapse
Affiliation(s)
- Hehui Li
- Center for Brain Disorders and Cognitive Sciences, Shenzhen University, 3688 Nanhai Avenue, Nanshan District, Shenzhen 518060, P.R. China
| | - Qing Guan
- Center for Brain Disorders and Cognitive Sciences, Shenzhen University, 3688 Nanhai Avenue, Nanshan District, Shenzhen 518060, P.R. China
| | - Rong Huang
- Center for Brain Disorders and Cognitive Sciences, Shenzhen University, 3688 Nanhai Avenue, Nanshan District, Shenzhen 518060, P.R. China
| | - Mengmeng Lei
- Center for Brain Disorders and Cognitive Sciences, Shenzhen University, 3688 Nanhai Avenue, Nanshan District, Shenzhen 518060, P.R. China
| | - Yue-Jia Luo
- Center for Brain Disorders and Cognitive Sciences, Shenzhen University, 3688 Nanhai Avenue, Nanshan District, Shenzhen 518060, P.R. China.,State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, No. 19, Xinjiekouwai St, Haidian District, Beijing 100875, P.R. China
| | - Zhanjun Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, No. 19, Xinjiekouwai St, Haidian District, Beijing 100875, P.R. China
| | - Wuhai Tao
- Center for Brain Disorders and Cognitive Sciences, Shenzhen University, 3688 Nanhai Avenue, Nanshan District, Shenzhen 518060, P.R. China
| |
Collapse
|
131
|
Sejnowski TJ. Large Language Models and the Reverse Turing Test. Neural Comput 2023; 35:309-342. [PMID: 36746144 PMCID: PMC10177005 DOI: 10.1162/neco_a_01563] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/21/2022] [Indexed: 02/08/2023]
Abstract
Large language models (LLMs) have been transformative. They are pretrained foundational models that are self-supervised and can be adapted with fine-tuning to a wide range of natural language tasks, each of which previously would have required a separate network model. This is one step closer to the extraordinary versatility of human language. GPT-3 and, more recently, LaMDA, both of them LLMs, can carry on dialogs with humans on many topics after minimal priming with a few examples. However, there has been a wide range of reactions and debate on whether these LLMs understand what they are saying or exhibit signs of intelligence. This high variance is exhibited in three interviews with LLMs reaching wildly different conclusions. A new possibility was uncovered that could explain this divergence. What appears to be intelligence in LLMs may in fact be a mirror that reflects the intelligence of the interviewer, a remarkable twist that could be considered a reverse Turing test. If so, then by studying interviews, we may be learning more about the intelligence and beliefs of the interviewer than the intelligence of the LLMs. As LLMs become more capable, they may transform the way we interact with machines and how they interact with each other. Increasingly, LLMs are being coupled with sensorimotor devices. LLMs can talk the talk, but can they walk the walk? A road map for achieving artificial general autonomy is outlined with seven major improvements inspired by brain systems and how LLMs could in turn be used to uncover new insights into brain function.
Collapse
Affiliation(s)
- Terrence J Sejnowski
- Salk Institute for Biological Studies, La Jolla, CA 92093, U.S.A
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92037, U.S.A.
| |
Collapse
|
132
|
Liu N, Li Y, Hong Y, Huo J, Chang T, Wang H, Huang Y, Li W, Zhang Y. Altered brain activities in mesocorticolimbic pathway in primary dysmenorrhea patients of long-term menstrual pain. Front Neurosci 2023; 17:1098573. [PMID: 36793538 PMCID: PMC9922713 DOI: 10.3389/fnins.2023.1098573] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/09/2023] [Indexed: 02/01/2023] Open
Abstract
Background Patients with primary dysmenorrhea (PDM) often present with abnormalities other than dysmenorrhea including co-occurrence with other chronic pain conditions and central sensitization. Changes in brain activity in PDM have been demonstrated; however, the results are not consistent. Herein, this study probed into altered intraregional and interregional brain activity in patients with PDM and expounded more findings. Methods A total of 33 patients with PDM and 36 healthy controls (HCs) were recruited and underwent a resting-state functional magnetic resonance imaging scan. Regional homogeneity (ReHo) and mean amplitude of low-frequency fluctuation (mALFF) analysis were applied to compare the difference in intraregional brain activity between the two groups, and the regions with ReHo and mALFF group differences were used as seeds for functional connectivity (FC) analysis to explore the difference of interregional activity. Pearson's correlation analysis was conducted between rs-fMRI data and clinical symptoms in patients with PDM. Results Compared with HCs, patients with PDM showed altered intraregional activity in a series of brain regions, including the hippocampus, the temporal pole superior temporal gyrus, the nucleus accumbens, the pregenual anterior cingulate cortex, the cerebellum_8, the middle temporal gyrus, the inferior temporal gyrus, the rolandic operculum, the postcentral gyrus and the middle frontal gyrus (MFG), and altered interregional FC mainly between regions of the mesocorticolimbic pathway and regions associated with sensation and movement. The anxiety symptoms are correlated with the intraregional activity of the right temporal pole superior temporal gyrus and FC between MFG and superior frontal gyrus. Conclusion Our study showed a more comprehensive method to explore changes in brain activity in PDM. We found that the mesocorticolimbic pathway might play a key role in the chronic transformation of pain in PDM. We, therefore, speculate that the modulation of the mesocorticolimbic pathway may be a potential novel therapeutic mechanism for PDM.
Collapse
Affiliation(s)
- Ni Liu
- Department of Radiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yingqiu Li
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Yueying Hong
- Department of Radiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Jianwei Huo
- Department of Radiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Tai Chang
- Department of Radiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Haoyuan Wang
- Department of Radiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yiran Huang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Wenxun Li
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China,Wenxun Li ✉
| | - Yanan Zhang
- Department of Radiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China,*Correspondence: Yanan Zhang ✉
| |
Collapse
|
133
|
Weightman M, Lalji N, Lin CHS, Galea JM, Jenkinson N, Miall RC. Short duration event related cerebellar TDCS enhances visuomotor adaptation. Brain Stimul 2023; 16:431-441. [PMID: 36720304 DOI: 10.1016/j.brs.2023.01.1673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Transcranial direct current stimulation (TDCS) is typically applied before or during a task, for periods ranging from 5 to 30 min. HYPOTHESIS We hypothesise that briefer stimulation epochs synchronous with individual task actions may be more effective. METHODS In two separate experiments, we applied brief bursts of event-related anodal stimulation (erTDCS) to the cerebellum during a visuomotor adaptation task. RESULTS The first study demonstrated that 1 s duration erTDCS time-locked to the participants' reaching actions enhanced adaptation significantly better than sham. A close replication in the second study demonstrated 0.5 s erTDCS synchronous with the reaching actions again resulted in better adaptation than standard TDCS, significantly better than sham. Stimulation either during the inter-trial intervals between movements or after movement, during assessment of visual feedback, had no significant effect. Because short duration stimulation with rapid onset and offset is more readily perceived by the participants, we additionally show that a non-electrical vibrotactile stimulation of the scalp, presented with the same timing as the erTDCS, had no significant effect. CONCLUSIONS We conclude that short duration, event related, anodal TDCS targeting the cerebellum enhances motor adaptation compared to the standard model. We discuss possible mechanisms of action and speculate on neural learning processes that may be involved.
Collapse
Affiliation(s)
- Matthew Weightman
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, UK; School of Psychology, University of Birmingham, UK
| | - Neeraj Lalji
- School of Psychology, University of Birmingham, UK
| | - Chin-Hsuan Sophie Lin
- Cognitive Neuroscience and Computational Psychiatry Lab, University of Melbourne, Australia
| | | | - Ned Jenkinson
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, UK
| | | |
Collapse
|
134
|
Olivito G, Siciliano L, Clausi S, Lupo M, Baiocco R, Gragnani A, Saettoni M, Delle Chiaie R, Laghi F, Leggio M. The Cerebellum Gets Social: Evidence from an Exploratory Study of Cerebellar, Neurodevelopmental, and Psychiatric Disorders. Biomedicines 2023; 11:309. [PMID: 36830846 PMCID: PMC9953169 DOI: 10.3390/biomedicines11020309] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
Social prediction is a key feature of social cognition (SC), a function in which the modulating role of the cerebellum is recognized. Accordingly, cerebellar alterations are reported in cerebellar pathologies, neurodevelopmental disorders, and psychiatric conditions that show SC deficits. Nevertheless, to date, no study has directly compared populations representative of these three conditions with respect to SC and cerebellar alterations. Therefore, the present exploratory study aimed to compare the SC profiles of individuals with cerebellar neurodegenerative disorders (CB), autism (ASD), bipolar disorder type 2 (BD2), or healthy subjects (HS) using a battery of social tests requiring different degrees of prediction processing. The patterns of cerebellar gray matter (GM) alterations were compared among the groups using voxel-based morphometry. Compared to HS, the clinical groups showed common SC deficits in tasks involving a moderate to high level of prediction. The behavioral results of the clinical groups are consistent with the presence of overlapping GM reduction in cerebellar right Crus II, an area notably involved in complex social processing and prediction. Although exploratory and preliminary, these results deepen the cerebellar role in social prediction and highlight the transdiagnostic value of the cerebellum in social functioning and prediction in pathologies of different aetiologies, forecasting novel possibilities for shared interventions.
Collapse
Affiliation(s)
- Giusy Olivito
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy
- Ataxia Laboratory, Fondazione Santa Lucia IRCCS, 00179 Rome, Italy
| | - Libera Siciliano
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy
- Ataxia Laboratory, Fondazione Santa Lucia IRCCS, 00179 Rome, Italy
| | - Silvia Clausi
- Ataxia Laboratory, Fondazione Santa Lucia IRCCS, 00179 Rome, Italy
- Klinikos Center for Psychodiagnostics and Psychotherapy, Viale delle Milizie 38, 00192 Roma, Italy
| | - Michela Lupo
- Servizio di Tutela della Salute Mentale e Riabilitazione dell’Età Evolutiva ASL, Roma 2, 00145 Rome, Italy
| | - Roberto Baiocco
- Department of Developmental and Social Psychology, Sapienza University of Rome, 00185 Roma, Italy
| | - Andrea Gragnani
- Scuola di Psicoterapia Cognitiva SPC, 58100 Grosseto, Italy
- Associazione Psicologia Cognitiva (APC)/Scuola di Psicoterapia Cognitiva (SPC), 00185 Rome, Italy
| | - Marco Saettoni
- Scuola di Psicoterapia Cognitiva SPC, 58100 Grosseto, Italy
- Unità Funzionale Salute Mentale Adulti ASL Toscana Nord-Ovest Valle del Serchio, 56121 Pisa, Italy
| | - Roberto Delle Chiaie
- Department of Neuroscience and Mental Health–Policlinico Umberto I Hospital, Sapienza University of Rome, 00161 Rome, Italy
| | - Fiorenzo Laghi
- Department of Developmental and Social Psychology, Sapienza University of Rome, 00185 Roma, Italy
| | - Maria Leggio
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy
- Ataxia Laboratory, Fondazione Santa Lucia IRCCS, 00179 Rome, Italy
| |
Collapse
|
135
|
Siciliano L, Olivito G, Lupo M, Urbini N, Gragnani A, Saettoni M, Delle Chiaie R, Leggio M. The role of the cerebellum in sequencing and predicting social and non-social events in patients with bipolar disorder. Front Cell Neurosci 2023; 17:1095157. [PMID: 36874211 PMCID: PMC9974833 DOI: 10.3389/fncel.2023.1095157] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
Introduction Advances in the operational mode of the cerebellum indicate a role in sequencing and predicting non-social and social events, crucial for individuals to optimize high-order functions, such as Theory of Mind (ToM). ToM deficits have been described in patients with remitted bipolar disorders (BD). The literature on BD patients' pathophysiology reports cerebellar alterations; however, sequential abilities have never been investigated and no study has previously focused on prediction abilities, which are needed to properly interpret events and to adapt to changes. Methods To address this gap, we compared the performance of BD patients in the euthymic phase with healthy controls using two tests that require predictive processing: a ToM test that require implicit sequential processing and a test that explicitly assesses sequential abilities in non-ToM functions. Additionally, patterns of cerebellar gray matter (GM) alterations were compared between BD patients and controls using voxel-based morphometry. Results Impaired ToM and sequential skills were detected in BD patients, specifically when tasks required a greater predictive load. Behavioral performances might be consistent with patterns of GM reduction in cerebellar lobules Crus I-II, which are involved in advanced human functions. Discussion These results highlight the importance of deepening the cerebellar role in sequential and prediction abilities in patients with BD.
Collapse
Affiliation(s)
- Libera Siciliano
- Department of Psychology, Sapienza University of Rome, Rome, Italy.,Ataxia Laboratory, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Giusy Olivito
- Department of Psychology, Sapienza University of Rome, Rome, Italy.,Ataxia Laboratory, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Michela Lupo
- Servizio di Tutela della Salute Mentale e Riabilitazione dell'Età Evolutiva ASL, Rome, Italy
| | - Nicole Urbini
- Department of Psychology, Sapienza University of Rome, Rome, Italy.,Ataxia Laboratory, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Andrea Gragnani
- Scuola di Psicoterapia Cognitiva SPC, Grosseto, Italy.,Associazione Psicologia Cognitiva (APC)/Scuola di Psicoterapia Cognitiva (SPC), Rome, Italy
| | - Marco Saettoni
- Scuola di Psicoterapia Cognitiva SPC, Grosseto, Italy.,Unità Funzionale Salute Mentale Adulti ASL Toscana Nord-Ovest Valle del Serchio, Pisa, Italy
| | - Roberto Delle Chiaie
- Department of Neuroscience and Mental Health-Policlinico Umberto I Hospital, Sapienza University of Rome, Rome, Italy
| | - Maria Leggio
- Department of Psychology, Sapienza University of Rome, Rome, Italy.,Ataxia Laboratory, Fondazione Santa Lucia IRCCS, Rome, Italy
| |
Collapse
|
136
|
Healy SD. Adding the neuro to cognition: from food storing to nest building. Anim Cogn 2023; 26:249-260. [PMID: 36482117 PMCID: PMC9876861 DOI: 10.1007/s10071-022-01725-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022]
Abstract
Typically, investigations of animal cognition couple careful experimental manipulations with examination of the animal's behavioural responses. Sometimes those questions have included attempts to describe the neural underpinnings of the behavioural outputs. Over the past 25 years, behaviours that involve spatial learning and memory (such as navigation and food storing) has been one context in which such dual or correlated investigations have been both accessible and productive. Here I review some of that work and where it has led. Because of the wealth of data and insights gained from that work and song learning before it, it seems that it might also be useful to try to add some neurobiology to other systems in animal cognition. I finish then, with a description of recent work on the cognition and neurobiology of avian nest building. It is still relatively early days but asking questions about the cognition of nest building has already shown both neural correlates of nest building and that learning and memory play a much greater role in this behaviour than previously considered. While it is not yet clear how putting these components together will be synergistic, the examples of song learning and food storing provide encouragement. Perhaps this might be true for other behaviours too?
Collapse
Affiliation(s)
- Susan D Healy
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, KY16 9TH, UK.
| |
Collapse
|
137
|
Zhang Y, Huang CC, Zhao J, Liu Y, Xia M, Wang X, Wei D, Chen Y, Liu B, Zheng Y, Wu Y, Chen T, Cheng Y, Xu X, Gong Q, Si T, Qiu S, Cheng J, Tang Y, Wang F, Qiu J, Xie P, Li L, He Y, Lin CP, Zac Lo CY. Resting-state functional connectivity of the raphe nuclei in major depressive Disorder: A Multi-site study. Neuroimage Clin 2023; 37:103359. [PMID: 36878150 PMCID: PMC9999207 DOI: 10.1016/j.nicl.2023.103359] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/06/2022] [Accepted: 02/20/2023] [Indexed: 03/06/2023]
Abstract
Accumulating evidence showed that major depressive disorder (MDD) is characterized by a dysfunction of serotonin neurotransmission. Raphe nuclei are the sources of most serotonergic neurons that project throughout the brain. Incorporating measurements of activity within the raphe nuclei into the analysis of connectivity characteristics may contribute to understanding how neurotransmitter synthesized centers are involved in thepathogenesisof MDD. Here, we analyzed the resting-state functional magnetic resonance imaging (RS-fMRI) dataset from 1,148 MDD patients and 1,079 healthy individuals recruited across nine centers. A seed-based analysis with the dorsal raphe and median raphe nuclei was performed to explore the functional connectivity (FC) alterations. Compared to controls, for dorsal raphe, the significantly decreased FC linking with the right precuneus and median cingulate cortex were found; for median raphe, the increased FC linking with right superior cerebellum (lobules V/VI) was found in MDD patients. In further exploratory analyzes, MDD-related connectivity alterations in dorsal and median raphe nuclei in different clinical factors remained highly similar to the main findings, indicating these abnormal connectivities are a disease-related alteration. Our study highlights a functional dysconnection pattern of raphe nuclei in MDD with multi-site big data. These findings help improve our understanding of the pathophysiology of depression and provide evidence of the theoretical foundation for the development of novel pharmacotherapies.
Collapse
Affiliation(s)
- Yajuan Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China; School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
| | - Chu-Chung Huang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China; Shanghai Changning Mental Health Center, Shanghai, China.
| | - Jiajia Zhao
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Yuchen Liu
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Mingrui Xia
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Xiaoqin Wang
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China; Department of Psychology, Southwest University, Chongqing, China
| | - Dongtao Wei
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China; Department of Psychology, Southwest University, Chongqing, China
| | - Yuan Chen
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bangshan Liu
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Hunan Medical Center for Mental Health, Changsha, Hunan, China
| | - Yanting Zheng
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yankun Wu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
| | - Taolin Chen
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Yuqi Cheng
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiufeng Xu
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Tianmei Si
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, Beijing, China
| | - Shijun Qiu
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanqing Tang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Fei Wang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jiang Qiu
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China; Department of Psychology, Southwest University, Chongqing, China
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Lingjiang Li
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Hunan Medical Center for Mental Health, Changsha, Hunan, China
| | - Yong He
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Institute for Brain Research, Beijing, China
| | - Ching-Po Lin
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | | | - Chun-Yi Zac Lo
- Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan, 32023, Taiwan.
| |
Collapse
|
138
|
Hawks ZW, Todorov A, Marrus N, Nishino T, Talovic M, Nebel MB, Girault JB, Davis S, Marek S, Seitzman BA, Eggebrecht AT, Elison J, Dager S, Mosconi MW, Tychsen L, Snyder AZ, Botteron K, Estes A, Evans A, Gerig G, Hazlett HC, McKinstry RC, Pandey J, Schultz RT, Styner M, Wolff JJ, Zwaigenbaum L, Markson L, Petersen SE, Constantino JN, White DA, Piven J, Pruett JR. A Prospective Evaluation of Infant Cerebellar-Cerebral Functional Connectivity in Relation to Behavioral Development in Autism Spectrum Disorder. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:149-161. [PMID: 36712571 PMCID: PMC9874081 DOI: 10.1016/j.bpsgos.2021.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 02/01/2023] Open
Abstract
Background Autism spectrum disorder (ASD) is a neurodevelopmental disorder diagnosed based on social impairment, restricted interests, and repetitive behaviors. Contemporary theories posit that cerebellar pathology contributes causally to ASD by disrupting error-based learning (EBL) during infancy. The present study represents the first test of this theory in a prospective infant sample, with potential implications for ASD detection. Methods Data from the Infant Brain Imaging Study (n = 94, 68 male) were used to examine 6-month cerebellar functional connectivity magnetic resonance imaging in relation to later (12/24-month) ASD-associated behaviors and outcomes. Hypothesis-driven univariate analyses and machine learning-based predictive tests examined cerebellar-frontoparietal network (FPN; subserves error signaling in support of EBL) and cerebellar-default mode network (DMN; broadly implicated in ASD) connections. Cerebellar-FPN functional connectivity was used as a proxy for EBL, and cerebellar-DMN functional connectivity provided a comparative foil. Data-driven functional connectivity magnetic resonance imaging enrichment examined brain-wide behavioral associations, with post hoc tests of cerebellar connections. Results Cerebellar-FPN and cerebellar-DMN connections did not demonstrate associations with ASD. Functional connectivity magnetic resonance imaging enrichment identified 6-month correlates of later ASD-associated behaviors in networks of a priori interest (FPN, DMN), as well as in cingulo-opercular (also implicated in error signaling) and medial visual networks. Post hoc tests did not suggest a role for cerebellar connections. Conclusions We failed to identify cerebellar functional connectivity-based contributions to ASD. However, we observed prospective correlates of ASD-associated behaviors in networks that support EBL. Future studies may replicate and extend network-level positive results, and tests of the cerebellum may investigate brain-behavior associations at different developmental stages and/or using different neuroimaging modalities.
Collapse
Affiliation(s)
- Zoë W. Hawks
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, Missouri
| | - Alexandre Todorov
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Natasha Marrus
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Tomoyuki Nishino
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Muhamed Talovic
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Mary Beth Nebel
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jessica B. Girault
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Savannah Davis
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Scott Marek
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Benjamin A. Seitzman
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Adam T. Eggebrecht
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Jed Elison
- Institute of Child Development, University of Minnesota, Minneapolis, Minnesota
| | - Stephen Dager
- Departments of Radiology, University of Washington, Seattle, Washington
| | - Matthew W. Mosconi
- Life Span Institute and Clinical Child Psychology Program, University of Kansas, Lawrence, Kansas
| | - Lawrence Tychsen
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Abraham Z. Snyder
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, Missouri
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Kelly Botteron
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Annette Estes
- Speech and Hearing Sciences, University of Washington, Seattle, Washington
| | - Alan Evans
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, Quebec, Canada
| | - Guido Gerig
- Department of Computer Science and Engineering, Tandon School of Engineering, New York University, New York, New York
| | - Heather C. Hazlett
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Robert C. McKinstry
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Juhi Pandey
- Center for Autism Research, Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert T. Schultz
- Center for Autism Research, Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Martin Styner
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jason J. Wolff
- Department of Educational Psychology, University of Minnesota, Minneapolis, Minnesota
| | - Lonnie Zwaigenbaum
- Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| | - Lori Markson
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, Missouri
| | - Steven E. Petersen
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - John N. Constantino
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Desirée A. White
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, Missouri
| | - Joseph Piven
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - John R. Pruett
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| |
Collapse
|
139
|
Modulating mental state recognition by anodal tDCS over the cerebellum. Sci Rep 2022; 12:22616. [PMID: 36585436 PMCID: PMC9803656 DOI: 10.1038/s41598-022-26914-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
Increasing evidence from neuroimaging and clinical studies has demonstrated cerebellar involvement in social cognition components, including the mentalizing process. The aim of this study was to apply transcranial direct current stimulation (tDCS) to modulate cerebellar excitability to investigate the role the cerebellum plays in mental state recognition. Forty-eight healthy subjects were randomly assigned to different groups in which anodal, cathodal, or sham tDCS (2 mA for 20 min) was delivered centering the electrode on the vermis to stimulate the posterior portion of the cerebellum. The ability to attribute mental states to others was tested before and after tDCS using a digital version of the 'Reading the Mind in the Eyes test', which includes visual perceptive and motor stimuli as control conditions. Correct response and reaction times (RTs) were recorded. The results revealed a significant reduction in RTs between the baseline and post-stimulation sessions after cerebellar anodal tDCS only for mental state stimuli (Wilcoxon test p = 0.00055), whereas no significant effect was found in the cathodal or sham conditions or for visual perceptive and motor stimuli. Overall, our study suggests that cerebellar anodal tDCS might selectively improve mental state recognition and constitute an effective strategy to positively modulate the mentalizing process.
Collapse
|
140
|
Caria A, Grecucci A. Neuroanatomical predictors of real‐time
fMRI
‐based anterior insula regulation. A supervised machine learning study. Psychophysiology 2022; 60:e14237. [PMID: 36523140 DOI: 10.1111/psyp.14237] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/18/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022]
Abstract
Increasing evidence showed that learned control of metabolic activity in selected brain regions can support emotion regulation. Notably, a number of studies demonstrated that neurofeedback-based regulation of fMRI activity in several emotion-related areas leads to modifications of emotional behavior along with changes of neural activity in local and distributed networks, in both healthy individuals and individuals with emotional disorders. However, the current understanding of the neural mechanisms underlying self-regulation of the emotional brain, as well as their relationship with other emotion regulation strategies, is still limited. In this study, we attempted to delineate neuroanatomical regions mediating real-time fMRI-based emotion regulation by exploring whole brain GM and WM features predictive of self-regulation of anterior insula (AI) activity, a neuromodulation procedure that can successfully support emotional brain regulation in healthy individuals and patients. To this aim, we employed a multivariate kernel ridge regression model to assess brain volumetric features, at regional and network level, predictive of real-time fMRI-based AI regulation. Our results showed that several GM regions including fronto-occipital and medial temporal areas and the basal ganglia as well as WM regions including the fronto-occipital fasciculus, tapetum and fornix significantly predicted learned AI regulation. Remarkably, we observed a substantial contribution of the cerebellum in relation to both the most effective regulation run and average neurofeedback performance. Overall, our findings highlighted specific neurostructural features contributing to individual differences of AI-guided emotion regulation. Notably, such neuroanatomical topography partially overlaps with the neurofunctional network associated with cognitive emotion regulation strategies, suggesting common neural mechanisms.
Collapse
Affiliation(s)
- Andrea Caria
- Department of Psychology and Cognitive Science University of Trento Rovereto Italy
| | - Alessandro Grecucci
- Department of Psychology and Cognitive Science University of Trento Rovereto Italy
| |
Collapse
|
141
|
Blithikioti C, Miquel L, Paniello B, Nuño L, Gual A, Ballester BR, Fernandez A, Herreros I, Verschure P, Balcells-Olivero M. Chronic cannabis use affects cerebellum dependent visuomotor adaptation. J Psychiatr Res 2022; 156:8-15. [PMID: 36219905 DOI: 10.1016/j.jpsychires.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND Cannabis is one of the most commonly used substances in the world. However, its effects on human cognition are not yet fully understood. Although the cerebellum has the highest density of cannabinoid receptor type 1 (CB1R) in the human brain, literature on how cannabis use affects cerebellar-dependent learning is sparse. This study examined the effect of chronic cannabis use on sensorimotor adaptation, a cerebellar-mediated task, which has been suggested to depend on endocannabinoid signaling. METHODS Chronic cannabis users (n = 27) with no psychiatric comorbidities and healthy, cannabis-naïve controls (n = 25) were evaluated using a visuomotor rotation task. Cannabis users were re-tested after 1 month of abstinence (n = 13) to assess whether initial differences in performance would persist after cessation of use. RESULTS Cannabis users showed lower adaptation rates compared to controls at the first time point. However, this difference in performance did not persist when participants were retested after one month of abstinence (n = 13). Healthy controls showed attenuated implicit learning in the late phase of the adaptation during re-exposure, which was not present in cannabis users. This explains the lack of between group differences in the second time point and suggests a potential alteration of synaptic plasticity required for cerebellar learning in cannabis users. CONCLUSIONS Overall, our results suggest that chronic cannabis users show alterations in sensorimotor adaptation, likely due to a saturation of the endocannabinoid system after chronic cannabis use.
Collapse
Affiliation(s)
- Chrysanthi Blithikioti
- Psychiatry Department, Faculty of Medicine, University of Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Laia Miquel
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Grup de Recerca en addiccions clinic. GRAC, Institut clinic de Neurosciències, Barcelona, Spain
| | - Blanca Paniello
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Grup de Recerca en addiccions clinic. GRAC, Institut clinic de Neurosciències, Barcelona, Spain
| | - Laura Nuño
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Grup de Recerca en addiccions clinic. GRAC, Institut clinic de Neurosciències, Barcelona, Spain
| | - Antoni Gual
- Psychiatry Department, Faculty of Medicine, University of Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Grup de Recerca en addiccions clinic. GRAC, Institut clinic de Neurosciències, Barcelona, Spain
| | - Belen Rubio Ballester
- IBEC, Institute for Biomedical Engineering of Catalonia, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Adrian Fernandez
- IBEC, Institute for Biomedical Engineering of Catalonia, Universitat Politècnica de Catalunya, Barcelona, Spain
| | | | - Paul Verschure
- IBEC, Institute for Biomedical Engineering of Catalonia, Universitat Politècnica de Catalunya, Barcelona, Spain.
| | - Mercedes Balcells-Olivero
- Psychiatry Department, Faculty of Medicine, University of Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Grup de Recerca en addiccions clinic. GRAC, Institut clinic de Neurosciències, Barcelona, Spain.
| |
Collapse
|
142
|
Rodríguez-Nieto G, Seer C, Sidlauskaite J, Vleugels L, Van Roy A, Hardwick R, Swinnen S. Inhibition, Shifting and Updating: Inter and intra-domain commonalities and differences from an executive functions activation likelihood estimation meta-analysis. Neuroimage 2022; 264:119665. [PMID: 36202157 DOI: 10.1016/j.neuroimage.2022.119665] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/12/2022] [Accepted: 10/02/2022] [Indexed: 11/09/2022] Open
Abstract
Executive functions are higher-order mental processes that support goal-directed behavior. Among these processes, Inhibition, Updating, and Shifting have been considered core executive domains. In this meta-analysis, we comprehensively investigate the neural networks of these executive domains and we synthesize for the first time the neural convergences and divergences among the most frequently used executive paradigms within those domains. A systematic search yielded 1055 published neuroimaging studies (including 26,191 participants in total). Our study revealed that a fronto-parietal network was shared by the three main domains. Furthermore, we executed conjunction analyses among the paradigms of the same domain to extract the core distinctive components of the main executive domains. This approach showed that Inhibition and Shifting are characterized by a strongly lateralized neural activation in the right and left hemisphere, respectively. In addition, both networks overlapped with the Updating network but not with each other. Remarkably, our study detected heterogeneity among the paradigms from the same domain. More specifically, analysis of Inhibition tasks revealed differing activations for Response Inhibition compared to Interference Control paradigms, suggesting that Inhibition encompasses relatively heterogeneous sub-functions. Shifting analyses revealed a bilateral overlap of the Wisconsin Card Sorting Task with the Updating network, but this pattern was absent for Rule Switching and Dual Task paradigms. Moreover, our Updating meta-analyses revealed the neural signatures associated with the specific modules of the Working Memory model from Baddeley and Hitch. To our knowledge, this is the most comprehensive meta-analysis of executive functions to date. Its paradigm-driven analyses provide a unique contribution to a better understanding of the neural convergences and divergences among executive processes that are relevant for clinical applications, such as cognitive enhancement and neurorehabilitation interventions.
Collapse
Affiliation(s)
- Geraldine Rodríguez-Nieto
- Movement Control and Neuroplasticity Research Group, Biomedical Sciences, KU Leuven, Tervuursevest 101 box 1501, Leuven 3001, Belgium; Leuven Brain Institute (LBI), KU Leuven, Oude Markt 13, Leuven 5005, Belgium
| | - Caroline Seer
- Movement Control and Neuroplasticity Research Group, Biomedical Sciences, KU Leuven, Tervuursevest 101 box 1501, Leuven 3001, Belgium; Leuven Brain Institute (LBI), KU Leuven, Oude Markt 13, Leuven 5005, Belgium
| | - Justina Sidlauskaite
- Movement Control and Neuroplasticity Research Group, Biomedical Sciences, KU Leuven, Tervuursevest 101 box 1501, Leuven 3001, Belgium; Leuven Brain Institute (LBI), KU Leuven, Oude Markt 13, Leuven 5005, Belgium
| | - Lore Vleugels
- Movement Control and Neuroplasticity Research Group, Biomedical Sciences, KU Leuven, Tervuursevest 101 box 1501, Leuven 3001, Belgium; Leuven Brain Institute (LBI), KU Leuven, Oude Markt 13, Leuven 5005, Belgium; Institute of Neuroscience, UC Louvain, Av. Mounier 54, Bruxelles 1200, Belgium
| | - Anke Van Roy
- Movement Control and Neuroplasticity Research Group, Biomedical Sciences, KU Leuven, Tervuursevest 101 box 1501, Leuven 3001, Belgium; Leuven Brain Institute (LBI), KU Leuven, Oude Markt 13, Leuven 5005, Belgium
| | - Robert Hardwick
- Movement Control and Neuroplasticity Research Group, Biomedical Sciences, KU Leuven, Tervuursevest 101 box 1501, Leuven 3001, Belgium; Leuven Brain Institute (LBI), KU Leuven, Oude Markt 13, Leuven 5005, Belgium; Institute of Neuroscience, UC Louvain, Av. Mounier 54, Bruxelles 1200, Belgium
| | - Stephan Swinnen
- Movement Control and Neuroplasticity Research Group, Biomedical Sciences, KU Leuven, Tervuursevest 101 box 1501, Leuven 3001, Belgium; Leuven Brain Institute (LBI), KU Leuven, Oude Markt 13, Leuven 5005, Belgium.
| |
Collapse
|
143
|
The role of the basal ganglia and cerebellum in adaptation to others' speech rate and rhythm: A study of patients with Parkinson's disease and cerebellar degeneration. Cortex 2022; 157:81-98. [PMID: 36274444 DOI: 10.1016/j.cortex.2022.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/11/2022] [Accepted: 08/23/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Spoken language is constantly undergoing change: Speakers within and across social and regional groups influence each other's speech, leading to the emergence and drifts of accents in a language. These processes are driven by mutual unintentional imitation of the phonetic details of others' speech in conversational interactions, suggesting that continuous auditory-motor adaptation takes place in interactive language use and plasticity of auditory-motor representations of speech persists across the lifespan. The brain mechanisms underlying this large-scale social-linguistic behavior are still poorly understood. RESEARCH AIM To investigate the role of cerebellar and basal ganglia dysfunctions in unintended adaptation to the speech rhythm and articulation rate of a second speaker. METHODS Twelve patients with spinocerebellar ataxia type 6 (SCA6), 15 patients with Parkinson's disease (PD), and 27 neurologically healthy controls (CTRL) participated in two interactive speech tasks, i.e., sentence repetition and "turn-taking" (i.e., dyadic interaction with sentences produced by a model speaker). Production of scripted sentences was used as a control task. Two types of sentence rhythm were distinguished, i.e., regular and irregular, and model speech rate was manipulated in 12 steps between 2.9 and 4.0 syllables per second. Acoustic analyses of the participants' utterances were performed to determine the extent to which participants adapted their speech rate and rhythm to the model. RESULTS Neurologically healthy speakers showed significant adaptation of rate in all conditions, and of rhythm in the repetition task and partly also the turn-taking task. Patients with PD showed a stronger propensity to adapt than the controls. In contrast, the patients with cerebellar degeneration were largely insensitive to the model speaker's rate and rhythm. Contrary to expectations, sentences with an irregular speech rhythm exerted a stronger adaptive attraction than regular sentences in the two patient groups. CONCLUSIONS Cerebellar degeneration inhibits the propensity to covertly adapt to others' speech. Striatal dysfunction in Parkinson's disease spares or even promotes the tendency to accommodate to other speakers' speech rate and rhythm.
Collapse
|
144
|
Wong CHY, Liu J, Tao J, Chen LD, Yuan HL, Wong MNK, Xu YW, Lee TMC, Chan CCH. Causal influences of salience/cerebellar networks on dorsal attention network subserved age-related cognitive slowing. GeroScience 2022; 45:889-899. [PMID: 36401740 PMCID: PMC9886783 DOI: 10.1007/s11357-022-00686-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/31/2022] [Indexed: 11/21/2022] Open
Abstract
Age-related cognitive slowing is a prominent precursor of cognitive decline. Functional neuroimaging studies found that cognitive processing speed is associated with activation and coupling among frontal, parietal and cerebellar brain networks. However, how the reciprocal influences of inter- and intra-network coupling mediate age-related decline in processing speed remains insufficiently studied. This study examined how inter- and intra-brain network influences mediate age-related slowing. We were interested in the fronto-insular salience network (SN), frontoparietal dorsal attention network (DAN), cerebellar network (CN) and default mode network (DMN). Reaction time (RT) and functional MRI data from 84 participants (aged 18-75) were collected while they were performing the Arrow Task in visual or audial forms. At the subject level, effective connectivities (ECs) were estimated with regression dynamic causal modelling. At the group level, structural equation models (SEMs) were used to model latent speed based on age and the EC mediators. Age was associated with decreased speed and increased inter-network effective connectivity. The CN exerting influence on the DAN (CN → DAN EC) mediated, while the SN → DAN EC suppressed age-related slowing. The DMN and intra-network ECs did not seem to play significant roles in slowing due to ageing. Inter-network connectivity from the CN and SN to the DAN contributes to age-related slowing. The seemingly antagonizing influences of the CN and SN indicate that increased task-related automaticity and decreased effortful control on top-down attention would promote greater speed in older individuals.
Collapse
Affiliation(s)
- Clive H. Y. Wong
- grid.419993.f0000 0004 1799 6254Department of Psychology, The Education University of Hong Kong, New Territories, Tai Po, Hong Kong China ,grid.194645.b0000000121742757State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam Hong Kong, China ,grid.194645.b0000000121742757Laboratory of Neuropsychology and Human Neuroscience, Department of Psychology, The University of Hong Kong, Pokfulam Hong Kong, China
| | - Jiao Liu
- grid.411504.50000 0004 1790 1622National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian China ,Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, Fujian China ,grid.411504.50000 0004 1790 1622Traditional Chinese Medicine Rehabilitation Research Center of State Administration of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian China
| | - Jing Tao
- grid.411504.50000 0004 1790 1622National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian China ,grid.411504.50000 0004 1790 1622College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian China ,Fujian Collaborative Innovation Center for Rehabilitation Technology, Fuzhou, Fujian China
| | - Li-dian Chen
- grid.411504.50000 0004 1790 1622National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian China ,grid.411504.50000 0004 1790 1622College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian China ,Fujian Collaborative Innovation Center for Rehabilitation Technology, Fuzhou, Fujian China
| | - Huan-ling Yuan
- grid.16890.360000 0004 1764 6123Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom Hong Kong, China
| | - Mabel N. K. Wong
- grid.419993.f0000 0004 1799 6254Department of Psychology, The Education University of Hong Kong, New Territories, Tai Po, Hong Kong China ,grid.16890.360000 0004 1764 6123Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom Hong Kong, China
| | - Yan-wen Xu
- grid.263761.70000 0001 0198 0694Department of Rehabilitation Medicine, Affiliated Hospital of Soochow University, Wuxi, Jiangsu, China
| | - Tatia M. C. Lee
- grid.194645.b0000000121742757State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam Hong Kong, China ,grid.194645.b0000000121742757Laboratory of Neuropsychology and Human Neuroscience, Department of Psychology, The University of Hong Kong, Pokfulam Hong Kong, China
| | - Chetwyn C. H. Chan
- grid.419993.f0000 0004 1799 6254Department of Psychology, The Education University of Hong Kong, New Territories, Tai Po, Hong Kong China
| |
Collapse
|
145
|
Ismail OI, Rashed NA. Riboflavin attenuates tartrazine toxicity in the cerebellar cortex of adult albino rat. Sci Rep 2022; 12:19346. [PMID: 36369258 PMCID: PMC9652251 DOI: 10.1038/s41598-022-23894-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022] Open
Abstract
Tartrazine is a synthetic yellowish dye considered one of the most common food colorants. Extensive usage of tartrazine in humans led to harmful health impacts. To investigate the impact of tartrazine administration on the cerebellum and to assess the potential role of riboflavin co-administration in the adult male albino rat. Four groups of adult albino rats were included in this study. Group I was supplied with distilled water. Group II was supplied tartrazine orally at a dose of 7.5 mg/kg BW dissolved in distilled water. Group III was supplied with tartrazine at the same previously mentioned dose and riboflavin orally at a dose of 25 mg/kg BW dissolved in distilled water. Group IV was supplied with riboflavin at the same previously mentioned dose. The study was conducted for 30 days then rats were sacrificed, weighted and the cerebella extracted and handled for light, ultrastructural and immunohistochemical evaluation. It was found with tartrazine treatment focal areas of Purkinje cell loss leaving empty spaces, a broad spread of neuronal affection to the degree of the disappearance of some of the granular cells, reduced the thickness of the molecular and granular layers, and strong positive GFAP immunoreactions. With riboflavin coadministration restored continuous Purkinje layer with normal appeared Purkinje cells, but some cells were still shrunken and vacuolated as well as the molecular and granular cell layers appeared normal. Tartrazine had deleterious effects on the cerebellar cytoarchitecture, and riboflavin co-administration alleviated these neurotoxic effects.
Collapse
Affiliation(s)
- Omnia I Ismail
- Lecturer of Human Anatomy and Embryology, Human Anatomy and Embryology Department, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt.
| | - Noha A Rashed
- Lecturer of Human Anatomy and Embryology, Human Anatomy and Embryology Department, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| |
Collapse
|
146
|
Hong W, Du Y, Xu R, Zhang X, Liu Z, Li M, Yu Z, Wang Y, Wang M, Yang B, Sun F, Xu G. Altered cerebellar functional connectivity in chronic subcortical stroke patients. Front Hum Neurosci 2022; 16:1046378. [DOI: 10.3389/fnhum.2022.1046378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/28/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundPrevious studies demonstrated that cerebellar subregions are involved in different functions. Especially the cerebellar anterior lobe (CAL) and cerebellar posterior lobe (CPL) have been postulated to primarily account for sensorimotor and cognitive function, respectively. However, the functional connectivity (FC) alterations of CAL and CPL, and their relationships with behavior performance in chronic stroke participants are unclear so far.Materials and methodsThe present study collected resting-state fMRI data from thirty-six subcortical chronic stroke participants and thirty-eight well-matched healthy controls (HCs). We performed the FC analysis with bilateral CAL and CPL as seeds for each participant. Then, we detected the FC difference between the two groups by using a two-sample t-test and evaluated the relationship between the FC and scores of motor and cognitive assessments across all post-stroke participants by using partial correlation analysis.ResultsThe CAL showed increased FCs in the prefrontal cortex, superior/inferior temporal gyrus, and lingual gyrus, while the CPL showed increased FCs in the inferior parietal lobule, precuneus, and cingulum gyrus in the stroke participants compared with HCs. Moreover, the FC alteration in the right CAL and the right CPL were negatively correlated with executive and memory functions across stroke participants, respectively.ConclusionThese findings shed light on the different increased FC alteration patterns of CAL and CPL that help understand the neuro-mechanisms underlying behavior performance in chronic stroke survivors.
Collapse
|
147
|
Abram SV, Hua JPY, Ford JM. Consider the pons: bridging the gap on sensory prediction abnormalities in schizophrenia. Trends Neurosci 2022; 45:798-808. [PMID: 36123224 PMCID: PMC9588719 DOI: 10.1016/j.tins.2022.08.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/04/2022] [Accepted: 08/23/2022] [Indexed: 01/18/2023]
Abstract
A shared mechanism across species heralds the arrival of self-generated sensations, helping the brain to anticipate, and therefore distinguish, self-generated from externally generated sensations. In mammals, this sensory prediction mechanism is supported by communication within a cortico-ponto-cerebellar-thalamo-cortical loop. Schizophrenia is associated with impaired sensory prediction as well as abnormal structural and functional connections between nodes in this circuit. Despite the pons' principal role in relaying and processing sensory information passed from the cortex to cerebellum, few studies have examined pons connectivity in schizophrenia. Here, we first briefly describe how the pons contributes to sensory prediction. We then summarize schizophrenia-related abnormalities in the cortico-ponto-cerebellar-thalamo-cortical loop, emphasizing the dearth of research on the pons relative to thalamic and cerebellar connections. We conclude with recommendations for advancing our understanding of how the pons relates to sensory prediction failures in schizophrenia.
Collapse
Affiliation(s)
- Samantha V Abram
- San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA; University of California, San Francisco, CA, USA
| | - Jessica P Y Hua
- San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA; University of California, San Francisco, CA, USA; Sierra Pacific Mental Illness Research Education and Clinical Centers, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA; Department of Psychiatry and Behavioral Sciences, The University of California, San Francisco, CA, USA
| | - Judith M Ford
- San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA; University of California, San Francisco, CA, USA.
| |
Collapse
|
148
|
Maudrich T, Ragert P, Perrey S, Kenville R. Single-session anodal transcranial direct current stimulation to enhance sport-specific performance in athletes: A systematic review and meta-analysis. Brain Stimul 2022; 15:1517-1529. [PMID: 36442774 DOI: 10.1016/j.brs.2022.11.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/13/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) has emerged as a promising and feasible method to improve motor performance in healthy and clinical populations. However, the potential of tDCS to enhance sport-specific motor performance in athletes remains elusive. OBJECTIVE We aimed at analyzing the acute effects of a single anodal tDCS session on sport-specific motor performance changes in athletes compared to sham. METHODS A systematic review and meta-analysis was conducted in the electronic databases PubMed, Web of Science, and SPORTDiscus. The meta-analysis was performed using an inverse variance method and a random-effects model. Additionally, two subgroup analyses were conducted (1) depending on the stimulated brain areas (primary motor cortex (M1), temporal cortex (TC), prefrontal cortex (PFC), cerebellum (CB)), and (2) studies clustered in subgroups according to different sports performance domains (endurance, strength, visuomotor skill). RESULTS A total number of 19 studies enrolling a sample size of 258 athletes were deemed eligible for inclusion. Across all included studies, a significant moderate standardized mean difference (SMD) favoring anodal tDCS to enhance sport-specific motor performance could be observed. Subgroup analysis depending on cortical target areas of tDCS indicated a significant moderate SMD in favor of anodal tDCS compared to sham for M1 stimulation. CONCLUSION A single anodal tDCS session can lead to performance enhancement in athletes in sport-specific motor tasks. Although no definitive conclusions can be drawn regarding the modes of action as a function of performance domain or stimulation site, these results imply intriguing possibilities concerning sports performance enhancement through anodal M1 stimulation.
Collapse
Affiliation(s)
- Tom Maudrich
- Department of Movement Neuroscience, Faculty of Sport Science, Leipzig University, Leipzig, Germany; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Patrick Ragert
- Department of Movement Neuroscience, Faculty of Sport Science, Leipzig University, Leipzig, Germany; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Stéphane Perrey
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Montpellier, France
| | - Rouven Kenville
- Department of Movement Neuroscience, Faculty of Sport Science, Leipzig University, Leipzig, Germany; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
149
|
Sipes BS, Jakary A, Li Y, Max JE, Yang TT, Tymofiyeva O. Resting state brain subnetwork relates to prosociality and compassion in adolescents. Front Psychol 2022; 13:1012745. [PMID: 36337478 PMCID: PMC9632179 DOI: 10.3389/fpsyg.2022.1012745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/04/2022] [Indexed: 11/30/2022] Open
Abstract
Adolescence is a crucial time for social development, especially for helping (prosocial) and compassionate behaviors; yet brain networks involved in adolescent prosociality and compassion currently remain underexplored. Here, we sought to evaluate a recently proposed domain-general developmental (Do-GooD) network model of prosocial cognition by relating adolescent functional and structural brain networks with prosocial and compassionate disposition. We acquired resting state fMRI and diffusion MRI from 95 adolescents (ages 14–19 years; 46 males; 49 females) along with self-report questionnaires assessing prosociality and compassion. We then applied the Network-Based Statistic (NBS) to inductively investigate whether there is a significant subnetwork related to prosociality and compassion while controlling for age and sex. Based on the Do-GooD model, we expected that this subnetwork would involve connectivity to the ventromedial prefrontal cortex (VMPFC) from three domain-general networks, the default mode network (DMN), the salience network, and the control network, as well as from the DMN to the mirror neuron systems. NBS revealed a significant functional (but not structural) subnetwork related to prosociality and compassion connecting 31 regions (p = 0.02), showing DMN and DLPFC connectivity to the VMPFC; DMN connectivity to mirror neuron systems; and connectivity between the DMN and cerebellum. These findings largely support and extend the Do-GooD model of prosocial cognition in adolescents by further illuminating network-based relationships that have the potential to advance our understanding of brain mechanisms of prosociality.
Collapse
Affiliation(s)
- Benjamin S. Sipes
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Angela Jakary
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Yi Li
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Jeffrey E. Max
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
- Rady Children’s Hospital San Diego, San Diego, CA, United States
| | - Tony T. Yang
- Department of Psychiatry and Behavioral Sciences, The Langley Porter Psychiatric Institute, Division of Child and Adolescent Psychiatry, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Olga Tymofiyeva
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
- *Correspondence: Olga Tymofiyeva,
| |
Collapse
|
150
|
Zhang Y, Ryali S, Cai W, Supekar K, Pasumarthy R, Padmanabhan A, Luna B, Menon V. Developmental maturation of causal signaling hubs in voluntary control of saccades and their functional controllability. Cereb Cortex 2022; 32:4746-4762. [PMID: 35094063 PMCID: PMC9627122 DOI: 10.1093/cercor/bhab514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 02/01/2023] Open
Abstract
The ability to adaptively respond to behaviorally relevant cues in the environment, including voluntary control of automatic but inappropriate responses and deployment of a goal-relevant alternative response, undergoes significant maturation from childhood to adulthood. Importantly, the maturation of voluntary control processes influences the developmental trajectories of several key cognitive domains, including executive function and emotion regulation. Understanding the maturation of voluntary control is therefore of fundamental importance, but little is known about the underlying causal functional circuit mechanisms. Here, we use state-space and control-theoretic modeling to investigate the maturation of causal signaling mechanisms underlying voluntary control over saccades. We demonstrate that directed causal interactions in a canonical saccade network undergo significant maturation between childhood and adulthood. Crucially, we show that the frontal eye field (FEF) is an immature causal signaling hub in children during control over saccades. Using control-theoretic analysis, we then demonstrate that the saccade network is less controllable in children and that greater energy is required to drive FEF dynamics in children compared to adults. Our findings provide novel evidence that strengthening of causal signaling hubs and controllability of FEF are key mechanisms underlying age-related improvements in the ability to plan and execute voluntary control over saccades.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Srikanth Ryali
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Weidong Cai
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kaustubh Supekar
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ramkrishna Pasumarthy
- Department of Electrical Engineering, Robert Bosch Center of Data Sciences and Artificial Intelligence, Network Systems Learning, Control and Evolution Group, Indian Institute of Technology Madras, Chennai 600036, India
| | - Aarthi Padmanabhan
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Bea Luna
- Department of Psychiatry and Behavioral Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Vinod Menon
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
- Wu Tsai Neuroscience Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|