101
|
Nelson NA, Wang X, Cook D, Carey EM, Nimmerjahn A. Imaging spinal cord activity in behaving animals. Exp Neurol 2019; 320:112974. [PMID: 31175843 DOI: 10.1016/j.expneurol.2019.112974] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 06/02/2019] [Accepted: 06/04/2019] [Indexed: 01/06/2023]
Abstract
The spinal cord is the primary neurological link between the brain and peripheral organs. How important it is in everyday life is apparent in patients with spinal cord injury or motoneuron disease, who have dramatically reduced musculoskeletal control or capacity to sense their environment. Despite its crucial role in sensory and motor processing little is known about the cellular and molecular signaling events that underlie spinal cord function under naturalistic conditions. While genetic, electrophysiological, pharmacological, and circuit tracing studies have revealed important roles for different molecularly defined neurons, these approaches insufficiently describe the moment-to-moment neuronal and non-neuronal activity patterns that underlie sensory-guided motor behaviors in health and disease. The recent development of imaging methods for real-time interrogation of cellular activity in the spinal cord of behaving mice has removed longstanding technical obstacles to spinal cord research and allowed new insight into how different cell types encode sensory information from mechanoreceptors and nociceptors in the skin. Here, we review the current state-of-the-art in interrogating cellular and microcircuit function in the spinal cord of behaving mammals and discuss current opportunities and technological challenges.
Collapse
Affiliation(s)
- Nicholas A Nelson
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Biologial Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92037, USA
| | - Xiang Wang
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Daniela Cook
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Erin M Carey
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Axel Nimmerjahn
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
102
|
Muñoz-Ballester C, Santana N, Perez-Jimenez E, Viana R, Artigas F, Sanz P. In vivo glutamate clearance defects in a mouse model of Lafora disease. Exp Neurol 2019; 320:112959. [PMID: 31108086 DOI: 10.1016/j.expneurol.2019.112959] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/13/2019] [Accepted: 05/16/2019] [Indexed: 12/29/2022]
Abstract
Lafora disease (LD) is a fatal rare neurodegenerative disorder characterized by epilepsy, neurodegeneration and insoluble polyglucosan accumulation in brain and other peripheral tissues. Although in the last two decades we have increased our knowledge on the molecular basis underlying the pathophysiology of LD, only a small part of the research in LD has paid attention to the mechanisms triggering one of the most lethal features of the disease: epilepsy. Recent studies in our laboratory suggested that a dysfunction in the activity of the mouse astrocytic glutamate transporter 1 (GLT-1) could contribute to epilepsy in LD. In this work, we present new in vivo evidence of a GLT-1 dysfunction, contributing to increased levels of extracellular glutamate in the hippocampus of a mouse model of Lafora disease (Epm2b-/-, lacking the E3-ubiquitin ligase malin). According to our results, Epm2b-/- mice showed an increased neuronal activity, as assessed by c-fos expression, in the hippocampus, an area directly correlated to epileptogenesis. This brain area presented lesser ability to remove synaptic glutamate after local GLT-1 blockade with dihydrokainate (DHK), in comparison to Epm2b+/+ animals, suggesting that these animals have a compromised glutamate clearance when a challenging condition was presented. These results correlate with a hippocampal upregulation of the minor isoform of the Glt-1 gene, named Glt-1b, which has been associated with compensatory mechanisms activated in response to neuronal stress. In conclusion, the hippocampus of Epm2b-/- mice presents an in vivo impairment in glutamate uptake which could contribute to epileptogenesis.
Collapse
Affiliation(s)
- C Muñoz-Ballester
- IBV-CSIC. Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - N Santana
- Department of Neurochemistry and Neuropharmacology, Institut d'Investigacions Biomédiques de Barcelona, CSIC, Barcelona, Spain
| | - E Perez-Jimenez
- IBV-CSIC. Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - R Viana
- IBV-CSIC. Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - F Artigas
- Department of Neurochemistry and Neuropharmacology, Institut d'Investigacions Biomédiques de Barcelona, CSIC, Barcelona, Spain; Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain; CIBERSAM, Centro Investigación Biomédica en Red de Salud Mental, Barcelona, Spain
| | - P Sanz
- IBV-CSIC. Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, Valencia, Spain; CIBERER. Centro de Investigación Biomédica en Red de Enfermedades Raras, group U742, Valencia, Spain.
| |
Collapse
|
103
|
Fouyssac M, Belin D. Beyond drug-induced alteration of glutamate homeostasis, astrocytes may contribute to dopamine-dependent intrastriatal functional shifts that underlie the development of drug addiction: A working hypothesis. Eur J Neurosci 2019; 50:3014-3027. [PMID: 30968489 PMCID: PMC6852203 DOI: 10.1111/ejn.14416] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/18/2019] [Accepted: 03/26/2019] [Indexed: 12/30/2022]
Abstract
The transition from recreational drug use to compulsive drug‐seeking habits, the hallmark of addiction, has been shown to depend on a shift in the locus of control over behaviour from the ventral to the dorsolateral striatum. This process has hitherto been considered to depend on the aberrant engagement of dopamine‐dependent plasticity processes within neuronal networks. However, exposure to drugs of abuse also triggers cellular and molecular adaptations in astrocytes within the striatum which could potentially contribute to the intrastriatal transitions observed during the development of drug addiction. Pharmacological interventions aiming to restore the astrocytic mechanisms responsible for maintaining homeostatic glutamate concentrations in the nucleus accumbens, that are altered by chronic exposure to addictive drugs, abolish the propensity to relapse in both preclinical and, to a lesser extent, clinical studies. Exposure to drugs of abuse also alters the function of astrocytes in the dorsolateral striatum, wherein dopaminergic mechanisms control drug‐seeking habits, associated compulsivity and relapse. This suggests that drug‐induced alterations in the glutamatergic homeostasis maintained by astrocytes throughout the entire striatum may interact with dopaminergic mechanisms to promote aberrant plasticity processes that contribute to the maintenance of maladaptive drug‐seeking habits. Capitalising on growing evidence that astrocytes play a fundamental regulatory role in glutamate and dopamine transmission in the striatum, we present an innovative model of a quadripartite synaptic microenvironment within which astrocytes channel functional interactions between the dopaminergic and glutamatergic systems that may represent the primary striatal functional unit that undergoes drug‐induced adaptations eventually leading to addiction.
Collapse
Affiliation(s)
- Maxime Fouyssac
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - David Belin
- Department of Psychology, University of Cambridge, Cambridge, UK
| |
Collapse
|
104
|
Souza DG, Almeida RF, Souza DO, Zimmer ER. The astrocyte biochemistry. Semin Cell Dev Biol 2019; 95:142-150. [PMID: 30951895 DOI: 10.1016/j.semcdb.2019.04.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 03/19/2019] [Accepted: 04/01/2019] [Indexed: 02/06/2023]
Abstract
Astrocytes are a unique and dynamic subtype of glial cells in the central nervous system (CNS). Understanding their biochemical reactions and their influence in the surrounding cells is extremely important in the neuroscience field. They exert important influence in the neurotransmission, ionic homeostasis and also release neuroactive molecules termed gliotransmitters. Additionally, they metabolize, store and release metabolic substrates to meet high brain energy requirements. In this review, we highlight the main biochemical reactions regarding energy metabolism that take place in astrocytes. Special attention is given to synthesis, storage and catabolism of glucose, release of lactate, oxidation of fatty acids, production of ketone bodies, and metabolism of the main neurotransmitters, glutamate and GABA. The recent findings allow proposing these cells as key players controlling the energetic homeostasis in the CNS.
Collapse
Affiliation(s)
- Débora G Souza
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Roberto F Almeida
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Exact and Biological Sciences Institute, Biological Sciences Department, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Diogo O Souza
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Biochemistry, UFRGS, Porto Alegre, Brazil
| | - Eduardo R Zimmer
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Pharmacology, UFRGS, Porto Alegre, Brazil; Graduate Program in Biological Sciences: Pharmacology and Therapeutics, UFRGS, Porto Alegre, Brazil; Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
105
|
Gliotransmission: Beyond Black-and-White. J Neurosci 2019; 38:14-25. [PMID: 29298905 DOI: 10.1523/jneurosci.0017-17.2017] [Citation(s) in RCA: 215] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/01/2017] [Accepted: 08/29/2017] [Indexed: 01/09/2023] Open
Abstract
Astrocytes are highly complex cells with many emerging putative roles in brain function. Of these, gliotransmission (active information transfer from glia to neurons) has probably the widest implications on our understanding of how the brain works: do astrocytes really contribute to information processing within the neural circuitry? "Positive evidence" for this stems from work of multiple laboratories reporting many examples of modulatory chemical signaling from astrocytes to neurons in the timeframe of hundreds of milliseconds to several minutes. This signaling involves, but is not limited to, Ca2+-dependent vesicular transmitter release, and results in a variety of regulatory effects at synapses in many circuits that are abolished by preventing Ca2+ elevations or blocking exocytosis selectively in astrocytes. In striking contradiction, methodologically advanced studies by a few laboratories produced "negative evidence," triggering a heated debate on the actual existence and properties of gliotransmission. In this context, a skeptics' camp arose, eager to dismiss the whole positive evidence based on a number of assumptions behind the negative data, such as the following: (1) deleting a single Ca2+ release pathway (IP3R2) removes all the sources for Ca2+-dependent gliotransmission; (2) stimulating a transgenically expressed Gq-GPCR (MrgA1) mimics the physiological Ca2+ signaling underlying gliotransmitter release; (3) age-dependent downregulation of an endogenous GPCR (mGluR5) questions gliotransmitter release in adulthood; and (4) failure by transcriptome analysis to detect vGluts or canonical synaptic SNAREs in astrocytes proves inexistence/functional irrelevance of vesicular gliotransmitter release. We here discuss how the above assumptions are likely wrong and oversimplistic. In light of the most recent literature, we argue that gliotransmission is a more complex phenomenon than originally thought, possibly consisting of multiple forms and signaling processes, whose correct study and understanding require more sophisticated tools and finer scientific experiments than done until today. Under this perspective, the opposing camps can be reconciled and the field moved forward. Along the path, a more cautious mindset and an attitude to open discussion and mutual respect between opponent laboratories will be good companions.Dual Perspectives Companion Paper: Multiple Lines of Evidence Indicate That Gliotransmission Does Not Occur under Physiological Conditions, by Todd A. Fiacco and Ken D. McCarthy.
Collapse
|
106
|
Porter-Stransky KA, Centanni SW, Karne SL, Odil LM, Fekir S, Wong JC, Jerome C, Mitchell HA, Escayg A, Pedersen NP, Winder DG, Mitrano DA, Weinshenker D. Noradrenergic Transmission at Alpha1-Adrenergic Receptors in the Ventral Periaqueductal Gray Modulates Arousal. Biol Psychiatry 2019; 85:237-247. [PMID: 30269865 PMCID: PMC6326840 DOI: 10.1016/j.biopsych.2018.07.027] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/13/2018] [Accepted: 07/31/2018] [Indexed: 01/28/2023]
Abstract
BACKGROUND Dysregulation of arousal is symptomatic of numerous psychiatric disorders. Previous research has shown that the activity of dopamine (DA) neurons in the ventral periaqueductal gray (vPAG) tracks with arousal state, and lesions of vPAGDA cells increase sleep. However, the circuitry controlling these wake-promoting DA neurons is unknown. METHODS This study combined designer receptors exclusively activated by designer drugs (DREADDs), behavioral pharmacology, electrophysiology, and immunoelectron microscopy in male and female mice to elucidate mechanisms in the vPAG that promote arousal. RESULTS Activation of locus coeruleus projections to the vPAG or vPAGDA neurons induced by DREADDs promoted arousal. Similarly, agonist stimulation of vPAG alpha1-adrenergic receptors (α1ARs) increased latency to fall asleep, whereas α1AR blockade had the opposite effect. α1AR stimulation drove vPAGDA activity in a glutamate-dependent, action potential-independent manner. Compared with other dopaminergic brain regions, α1ARs were enriched on astrocytes in the vPAG, and mimicking α1AR transmission specifically in vPAG astrocytes via Gq-DREADDS was sufficient to increase arousal. In general, the wake-promoting effects observed were not accompanied by hyperactivity. CONCLUSIONS These experiments revealed that vPAG α1ARs increase arousal, promote glutamatergic input onto vPAGDA neurons, and are abundantly expressed on astrocytes. Activation of locus coeruleus inputs, vPAG astrocytes, or vPAGDA neurons increase sleep latency but do not produce hyperactivity. Together, these results support an arousal circuit whereby noradrenergic transmission at astrocytic α1ARs activates wake-promoting vPAGDA neurons via glutamate transmission.
Collapse
Affiliation(s)
| | - Samuel W Centanni
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee; Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Saumya L Karne
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | - Lindsay M Odil
- Program in Neuroscience, Christopher Newport University, Newport News, Virginia
| | - Sinda Fekir
- Program in Neuroscience, Christopher Newport University, Newport News, Virginia
| | - Jennifer C Wong
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | - Canaan Jerome
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | - Heather A Mitchell
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | - Andrew Escayg
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | - Nigel P Pedersen
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia
| | - Danny G Winder
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee; Vanderbilt Center for Addiction Research, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Darlene A Mitrano
- Program in Neuroscience, Christopher Newport University, Newport News, Virginia; Department of Molecular Biology and Chemistry, Christopher Newport University, Newport News, Virginia
| | - David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia.
| |
Collapse
|
107
|
Mederos S, Hernández-Vivanco A, Ramírez-Franco J, Martín-Fernández M, Navarrete M, Yang A, Boyden ES, Perea G. Melanopsin for precise optogenetic activation of astrocyte-neuron networks. Glia 2019; 67:915-934. [PMID: 30632636 DOI: 10.1002/glia.23580] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 12/11/2022]
Abstract
Optogenetics has been widely expanded to enhance or suppress neuronal activity and it has been recently applied to glial cells. Here, we have used a new approach based on selective expression of melanopsin, a G-protein-coupled photopigment, in astrocytes to trigger Ca2+ signaling. Using the genetically encoded Ca2+ indicator GCaMP6f and two-photon imaging, we show that melanopsin is both competent to stimulate robust IP3-dependent Ca2+ signals in astrocyte fine processes, and to evoke an ATP/Adenosine-dependent transient boost of hippocampal excitatory synaptic transmission. Additionally, under low-frequency light stimulation conditions, melanopsin-transfected astrocytes can trigger long-term synaptic changes. In vivo, melanopsin-astrocyte activation enhances episodic-like memory, suggesting melanopsin as an optical tool that could recapitulate the wide range of regulatory actions of astrocytes on neuronal networks in behaving animals. These results describe a novel approach using melanopsin as a precise trigger for astrocytes that mimics their endogenous G-protein signaling pathways, and present melanopsin as a valuable optical tool for neuron-glia studies.
Collapse
Affiliation(s)
- Sara Mederos
- Department of Functional and Systems Neurobiology, Instituto Cajal, CSIC, Madrid, Spain
| | | | - Jorge Ramírez-Franco
- Department of Functional and Systems Neurobiology, Instituto Cajal, CSIC, Madrid, Spain
| | | | - Marta Navarrete
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Aimei Yang
- Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Edward S Boyden
- Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts.,McGovern Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Gertrudis Perea
- Department of Functional and Systems Neurobiology, Instituto Cajal, CSIC, Madrid, Spain
| |
Collapse
|
108
|
Erickson EK, Grantham EK, Warden AS, Harris RA. Neuroimmune signaling in alcohol use disorder. Pharmacol Biochem Behav 2018; 177:34-60. [PMID: 30590091 DOI: 10.1016/j.pbb.2018.12.007] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 10/25/2018] [Accepted: 12/20/2018] [Indexed: 02/07/2023]
Abstract
Alcohol use disorder (AUD) is a widespread disease with limited treatment options. Targeting the neuroimmune system is a new avenue for developing or repurposing effective pharmacotherapies. Alcohol modulates innate immune signaling in different cell types in the brain by altering gene expression and the molecular pathways that regulate neuroinflammation. Chronic alcohol abuse may cause an imbalance in neuroimmune function, resulting in prolonged perturbations in brain function. Likewise, manipulating the neuroimmune system may change alcohol-related behaviors. Psychiatric disorders that are comorbid with AUD, such as post-traumatic stress disorder, major depressive disorder, and other substance use disorders, may also have underlying neuroimmune mechanisms; current evidence suggests that convergent immune pathways may be involved in AUD and in these comorbid disorders. In this review, we provide an overview of major neuroimmune cell-types and pathways involved in mediating alcohol behaviors, discuss potential mechanisms of alcohol-induced neuroimmune activation, and present recent clinical evidence for candidate immune-related drugs to treat AUD.
Collapse
Affiliation(s)
- Emma K Erickson
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712-01095, USA.
| | - Emily K Grantham
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712-01095, USA
| | - Anna S Warden
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712-01095, USA
| | - R A Harris
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712-01095, USA
| |
Collapse
|
109
|
Mederos S, González-Arias C, Perea G. Astrocyte-Neuron Networks: A Multilane Highway of Signaling for Homeostatic Brain Function. Front Synaptic Neurosci 2018; 10:45. [PMID: 30542276 PMCID: PMC6277918 DOI: 10.3389/fnsyn.2018.00045] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 11/12/2018] [Indexed: 12/22/2022] Open
Abstract
Research on glial cells over the past 30 years has confirmed the critical role of astrocytes in pathophysiological brain states. However, most of our knowledge about astrocyte physiology and of the interactions between astrocytes and neurons is based on the premises that astrocytes constitute a homogeneous cell type, without considering the particular properties of the circuits or brain nuclei in which the astrocytes are located. Therefore, we argue that more-sophisticated experiments are required to elucidate the specific features of astrocytes in different brain regions, and even within different layers of a particular circuit. Thus, in addition to considering the diverse mechanisms used by astrocytes to communicate with neurons and synaptic partners, it is necessary to take into account the cellular heterogeneity that likely contributes to the outcomes of astrocyte-neuron signaling. In this review article, we briefly summarize the current data regarding the anatomical, molecular and functional properties of astrocyte-neuron communication, as well as the heterogeneity within this communication.
Collapse
Affiliation(s)
- Sara Mederos
- Department of Functional and Systems Neurobiology, Instituto Cajal (IC), CSIC, Madrid, Spain
| | - Candela González-Arias
- Department of Functional and Systems Neurobiology, Instituto Cajal (IC), CSIC, Madrid, Spain
| | - Gertrudis Perea
- Department of Functional and Systems Neurobiology, Instituto Cajal (IC), CSIC, Madrid, Spain
| |
Collapse
|
110
|
Cunningham C, Dunne A, Lopez-Rodriguez AB. Astrocytes: Heterogeneous and Dynamic Phenotypes in Neurodegeneration and Innate Immunity. Neuroscientist 2018; 25:455-474. [PMID: 30451065 DOI: 10.1177/1073858418809941] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Astrocytes are the most numerous cell type in the brain and perform several essential functions in supporting neuronal metabolism and actively participating in neural circuit and behavioral function. They also have essential roles as innate immune cells in responding to local neuropathology, and the manner in which they respond to brain injury and degeneration is the subject of increasing attention in neuroscience. Although activated astrocytes have long been thought of as a relatively homogenous population, which alter their phenotype in a relatively stereotyped way upon central nervous system injury, the last decade has revealed substantial heterogeneity in the basal state and significant heterogeneity of phenotype during reactive astrocytosis. Thus, phenotypic diversity occurs at two distinct levels: that determined by regionality and development and that determined by temporally dynamic changes to the environment of astrocytes during pathology. These inflammatory and pathological states shape the phenotype of these cells, with different consequences for destruction or recovery of the local tissue, and thus elucidating these phenotypic changes has significant therapeutic implications. In this review, we will focus on the phenotypic heterogeneity of astrocytes in health and disease and their propensity to change that phenotype upon subsequent stimuli.
Collapse
Affiliation(s)
- Colm Cunningham
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute and Trinity College Institute of Neuroscience, Trinity College, Dublin, Republic of Ireland
| | - Aisling Dunne
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute and Trinity College Institute of Neuroscience, Trinity College, Dublin, Republic of Ireland.,School of Medicine, Trinity Biomedical Sciences Institute and Trinity College Institute of Neuroscience, Trinity College, Dublin, Republic of Ireland
| | - Ana Belen Lopez-Rodriguez
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute and Trinity College Institute of Neuroscience, Trinity College, Dublin, Republic of Ireland
| |
Collapse
|
111
|
Guerra-Gomes S, Viana JF, Nascimento DSM, Correia JS, Sardinha VM, Caetano I, Sousa N, Pinto L, Oliveira JF. The Role of Astrocytic Calcium Signaling in the Aged Prefrontal Cortex. Front Cell Neurosci 2018; 12:379. [PMID: 30455631 PMCID: PMC6230990 DOI: 10.3389/fncel.2018.00379] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/04/2018] [Indexed: 11/13/2022] Open
Abstract
Aging is a lifelong process characterized by cognitive decline putatively due to structural and functional changes of neural circuits of the brain. Neuron-glial signaling is a fundamental component of structure and function of circuits of the brain, and yet its possible role in aging remains elusive. Significantly, neuron-glial networks of the prefrontal cortex undergo age-related alterations that can affect cognitive function, and disruption of glial calcium signaling has been linked with cognitive performance. Motivated by these observations, we explored the possible role of glia in cognition during aging, considering a mouse model where astrocytes lacked IP3R2-dependent Ca2+ signaling. Contrarily to aged wild-type animals that showed significant impairment in a two-trial place recognition task, aged IP3R2 KO mice did not. Consideration of neuronal and astrocytic cell densities in the prefrontal cortex, revealed that aged IP3R2 KO mice present decreased densities of NeuN+ neurons and increased densities of S100β+ astrocytes. Moreover, aged IP3R2 KO mice display refined dendritic trees in this region. These findings suggest a novel role for astrocytes in the aged brain. Further evaluation of the neuron-glial interactions in the aged brain will disclose novel strategies to handle healthy cognitive aging in humans.
Collapse
Affiliation(s)
- Sónia Guerra-Gomes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal
| | - João Filipe Viana
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal
| | - Diana Sofia Marques Nascimento
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal
| | - Joana Sofia Correia
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal
| | - Vanessa Morais Sardinha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal
| | - Inês Caetano
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal
| | - João Filipe Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal.,IPCA-EST-2Ai, Applied Artificial Intelligence Laboratory, Polytechnic Institute of Cávado and Ave, Campus of IPCA, Barcelos, Portugal
| |
Collapse
|
112
|
Deemyad T, Lüthi J, Spruston N. Astrocytes integrate and drive action potential firing in inhibitory subnetworks. Nat Commun 2018; 9:4336. [PMID: 30337521 PMCID: PMC6194108 DOI: 10.1038/s41467-018-06338-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/27/2018] [Indexed: 12/29/2022] Open
Abstract
Many brain functions depend on the ability of neural networks to temporally integrate transient inputs to produce sustained discharges. This can occur through cell-autonomous mechanisms in individual neurons and through reverberating activity in recurrently connected neural networks. We report a third mechanism involving temporal integration of neural activity by a network of astrocytes. Previously, we showed that some types of interneurons can generate long-lasting trains of action potentials (barrage firing) following repeated depolarizing stimuli. Here we show that calcium signaling in an astrocytic network correlates with barrage firing; that active depolarization of astrocyte networks by chemical or optogenetic stimulation enhances; and that chelating internal calcium, inhibiting release from internal stores, or inhibiting GABA transporters or metabotropic glutamate receptors inhibits barrage firing. Thus, networks of astrocytes influence the spatiotemporal dynamics of neural networks by directly integrating neural activity and driving barrages of action potentials in some populations of inhibitory interneurons. Specific types of inhibitory neurons exhibit prolonged, high-frequency barrages of action potentials. Here, the authors show that astrocytes might mediate such barrage firing.
Collapse
Affiliation(s)
- Tara Deemyad
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20147, USA.,Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Joel Lüthi
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20147, USA.,Institute of Molecular Life Sciences, University of Zürich, Zürich, 8057, Switzerland
| | - Nelson Spruston
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20147, USA.
| |
Collapse
|
113
|
Gasull-Camós J, Martínez-Torres S, Tarrés-Gatius M, Ozaita A, Artigas F, Castañé A. Serotonergic mechanisms involved in antidepressant-like responses evoked by GLT-1 blockade in rat infralimbic cortex. Neuropharmacology 2018; 139:41-51. [DOI: 10.1016/j.neuropharm.2018.06.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 12/28/2022]
|
114
|
Foncelle A, Mendes A, Jędrzejewska-Szmek J, Valtcheva S, Berry H, Blackwell KT, Venance L. Modulation of Spike-Timing Dependent Plasticity: Towards the Inclusion of a Third Factor in Computational Models. Front Comput Neurosci 2018; 12:49. [PMID: 30018546 PMCID: PMC6037788 DOI: 10.3389/fncom.2018.00049] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/06/2018] [Indexed: 11/13/2022] Open
Abstract
In spike-timing dependent plasticity (STDP) change in synaptic strength depends on the timing of pre- vs. postsynaptic spiking activity. Since STDP is in compliance with Hebb's postulate, it is considered one of the major mechanisms of memory storage and recall. STDP comprises a system of two coincidence detectors with N-methyl-D-aspartate receptor (NMDAR) activation often posited as one of the main components. Numerous studies have unveiled a third component of this coincidence detection system, namely neuromodulation and glia activity shaping STDP. Even though dopaminergic control of STDP has most often been reported, acetylcholine, noradrenaline, nitric oxide (NO), brain-derived neurotrophic factor (BDNF) or gamma-aminobutyric acid (GABA) also has been shown to effectively modulate STDP. Furthermore, it has been demonstrated that astrocytes, via the release or uptake of glutamate, gate STDP expression. At the most fundamental level, the timing properties of STDP are expected to depend on the spatiotemporal dynamics of the underlying signaling pathways. However in most cases, due to technical limitations experiments grant only indirect access to these pathways. Computational models carefully constrained by experiments, allow for a better qualitative understanding of the molecular basis of STDP and its regulation by neuromodulators. Recently, computational models of calcium dynamics and signaling pathway molecules have started to explore STDP emergence in ex and in vivo-like conditions. These models are expected to reproduce better at least part of the complex modulation of STDP as an emergent property of the underlying molecular pathways. Elucidation of the mechanisms underlying STDP modulation and its consequences on network dynamics is of critical importance and will allow better understanding of the major mechanisms of memory storage and recall both in health and disease.
Collapse
Affiliation(s)
- Alexandre Foncelle
- INRIA, Villeurbanne, France
- LIRIS UMR 5205 CNRS-INSA, University of Lyon, Villeurbanne, France
| | - Alexandre Mendes
- Dynamic and Pathophysiology of Neuronal Networks, Center for Interdisciplinary Research in Biology (CIRB), College de France, INSERM U1050, CNRS UMR7241, Labex Memolife, Paris, France
- University Pierre et Marie Curie, ED 158, Paris, France
| | | | - Silvana Valtcheva
- Dynamic and Pathophysiology of Neuronal Networks, Center for Interdisciplinary Research in Biology (CIRB), College de France, INSERM U1050, CNRS UMR7241, Labex Memolife, Paris, France
- University Pierre et Marie Curie, ED 158, Paris, France
| | - Hugues Berry
- INRIA, Villeurbanne, France
- LIRIS UMR 5205 CNRS-INSA, University of Lyon, Villeurbanne, France
| | - Kim T. Blackwell
- The Krasnow Institute for Advanced Studies, George Mason University, Fairfax, VA, United States
| | - Laurent Venance
- Dynamic and Pathophysiology of Neuronal Networks, Center for Interdisciplinary Research in Biology (CIRB), College de France, INSERM U1050, CNRS UMR7241, Labex Memolife, Paris, France
- University Pierre et Marie Curie, ED 158, Paris, France
| |
Collapse
|
115
|
Mussulini BHM, Vizuete AFK, Braga M, Moro L, Baggio S, Santos E, Lazzarotto G, Zenki KC, Pettenuzzo L, Rocha JBTD, de Oliveira DL, Calcagnotto ME, Zuanazzi JAS, Burgos JS, Rico EP. Forebrain glutamate uptake and behavioral parameters are altered in adult zebrafish after the induction of Status Epilepticus by kainic acid. Neurotoxicology 2018; 67:305-312. [DOI: 10.1016/j.neuro.2018.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 04/09/2018] [Accepted: 04/09/2018] [Indexed: 12/18/2022]
|
116
|
Fan X, Agid Y. At the Origin of the History of Glia. Neuroscience 2018; 385:255-271. [PMID: 29890289 DOI: 10.1016/j.neuroscience.2018.05.050] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/31/2018] [Accepted: 05/31/2018] [Indexed: 01/30/2023]
Abstract
The history of brain science is dominated by the study of neurons. However, there are as many glial cells as neurons in the human brain, their complexity increases during evolution, and glial cells play important roles in brain function, behavior, and neurological disorders. Although neurons and glial cells were first described at the same time in the early 19th century, why did the physiological study of glial cells only begin in the 1950s? What are the scientific breakthroughs and conceptual shifts that determined the history of glial cells in relation to that of neurons? What is the impact of the history of glia on the evolution of neuroscience? In order to answer these questions, we reconstructed the history of glial cells, from their first description until the mid-20th century, by examining the relative role of technical developments and scientific interpretations.
Collapse
Affiliation(s)
- Xue Fan
- Institut du Cerveau et de la Moelle épinière, ICM, UPMC Univ Paris 06, AP-HP, Hôpital de la Pitié Salpêtrière, F-75013 Paris, France.
| | - Yves Agid
- Institut du Cerveau et de la Moelle épinière, ICM, UPMC Univ Paris 06, AP-HP, Hôpital de la Pitié Salpêtrière, F-75013 Paris, France.
| |
Collapse
|
117
|
Astrocytic Activation Generates De Novo Neuronal Potentiation and Memory Enhancement. Cell 2018; 174:59-71.e14. [PMID: 29804835 DOI: 10.1016/j.cell.2018.05.002] [Citation(s) in RCA: 388] [Impact Index Per Article: 55.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/31/2018] [Accepted: 04/27/2018] [Indexed: 12/20/2022]
Abstract
Astrocytes respond to neuronal activity and were shown to be necessary for plasticity and memory. To test whether astrocytic activity is also sufficient to generate synaptic potentiation and enhance memory, we expressed the Gq-coupled receptor hM3Dq in CA1 astrocytes, allowing their activation by a designer drug. We discovered that astrocytic activation is not only necessary for synaptic plasticity, but also sufficient to induce NMDA-dependent de novo long-term potentiation in the hippocampus that persisted after astrocytic activation ceased. In vivo, astrocytic activation enhanced memory allocation; i.e., it increased neuronal activity in a task-specific way only when coupled with learning, but not in home-caged mice. Furthermore, astrocytic activation using either a chemogenetic or an optogenetic tool during acquisition resulted in memory recall enhancement on the following day. Conversely, directly increasing neuronal activity resulted in dramatic memory impairment. Our findings that astrocytes induce plasticity and enhance memory may have important clinical implications for cognitive augmentation treatments.
Collapse
|
118
|
Nuriya M, Yasui D, Yamada T, Aoki T, Yasui M. Direct posttranslational modification of astrocytic connexin 43 proteins by the general anesthetic propofol in the cerebral cortex. Biochem Biophys Res Commun 2018; 497:734-741. [DOI: 10.1016/j.bbrc.2018.02.142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 02/16/2018] [Indexed: 10/18/2022]
|
119
|
Guerra-Gomes S, Sousa N, Pinto L, Oliveira JF. Functional Roles of Astrocyte Calcium Elevations: From Synapses to Behavior. Front Cell Neurosci 2018; 11:427. [PMID: 29386997 PMCID: PMC5776095 DOI: 10.3389/fncel.2017.00427] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 12/20/2017] [Indexed: 12/22/2022] Open
Abstract
Astrocytes are fundamental players in the regulation of synaptic transmission and plasticity. They display unique morphological and phenotypical features that allow to monitor and to dynamically respond to changes. One of the hallmarks of the astrocytic response is the generation of calcium elevations, which further affect downstream cellular processes. Technical advances in the field have allowed to spatially and to temporally quantify and qualify these elevations. However, the impact on brain function remains poorly understood. In this review, we discuss evidences of the functional impact of heterogeneous astrocytic calcium events in several brain regions, and their consequences in synapses, circuits, and behavior.
Collapse
Affiliation(s)
- Sónia Guerra-Gomes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga, Portugal
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga, Portugal
| | - João F. Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga, Portugal
- DIGARC, Polytechnic Institute of Cávado and Ave, Barcelos, Portugal
| |
Collapse
|
120
|
Liao Z, Tao Y, Guo X, Cheng D, Wang F, Liu X, Ma L. Fear Conditioning Downregulates Rac1 Activity in the Basolateral Amygdala Astrocytes to Facilitate the Formation of Fear Memory. Front Mol Neurosci 2017; 10:396. [PMID: 29230165 PMCID: PMC5712045 DOI: 10.3389/fnmol.2017.00396] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/13/2017] [Indexed: 12/16/2022] Open
Abstract
Astrocytes are well known to scale synaptic structural and functional plasticity, while the role in learning and memory, such as conditioned fear memory, is poorly elucidated. Here, using pharmacological approach, we find that fluorocitrate (FC) significantly inhibits the acquisition of fear memory, suggesting that astrocyte activity is required for fear memory formation. We further demonstrate that fear conditioning downregulates astrocytic Rac1 activity in basolateral amygdala (BLA) in mice and promotes astrocyte structural plasticity. Ablation of astrocytic Rac1 in BLA promotes fear memory acquisition, while overexpression or constitutive activation of astrocytic Rac1 attenuates fear memory acquisition. Furthermore, temporal activation of Rac1 by photoactivatable Rac1 (Rac1-PA) induces structural alterations in astrocytes and in vivo activation of Rac1 in BLA astrocytes during fear conditioning attenuates the formation of fear memory. Taken together, our study demonstrates that fear conditioning-induced suppression of BLA astrocytic Rac1 activity, associated with astrocyte structural plasticity, is required for the formation of conditioned fear memory.
Collapse
Affiliation(s)
- Zhaohui Liao
- The State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, The Institutes of Brain Science, and The Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Yezheng Tao
- The State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, The Institutes of Brain Science, and The Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Xiaomu Guo
- The State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, The Institutes of Brain Science, and The Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Deqin Cheng
- The State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, The Institutes of Brain Science, and The Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Feifei Wang
- The State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, The Institutes of Brain Science, and The Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Xing Liu
- The State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, The Institutes of Brain Science, and The Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Lan Ma
- The State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, The Institutes of Brain Science, and The Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
121
|
Acton D, Miles GB. Gliotransmission and adenosinergic modulation: insights from mammalian spinal motor networks. J Neurophysiol 2017; 118:3311-3327. [PMID: 28954893 DOI: 10.1152/jn.00230.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Astrocytes are proposed to converse with neurons at tripartite synapses, detecting neurotransmitter release and responding with release of gliotransmitters, which in turn modulate synaptic strength and neuronal excitability. However, a paucity of evidence from behavioral studies calls into question the importance of gliotransmission for the operation of the nervous system in healthy animals. Central pattern generator (CPG) networks in the spinal cord and brain stem coordinate the activation of muscles during stereotyped activities such as locomotion, inspiration, and mastication and may therefore provide tractable models in which to assess the contribution of gliotransmission to behaviorally relevant neural activity. We review evidence for gliotransmission within spinal locomotor networks, including studies indicating that adenosine derived from astrocytes regulates the speed of locomotor activity via metamodulation of dopamine signaling.
Collapse
Affiliation(s)
- David Acton
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, Fife , United Kingdom
| | - Gareth B Miles
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, Fife , United Kingdom
| |
Collapse
|
122
|
Synapse-specific astrocyte gating of amygdala-related behavior. Nat Neurosci 2017; 20:1540-1548. [PMID: 28945222 DOI: 10.1038/nn.4649] [Citation(s) in RCA: 231] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 08/30/2017] [Indexed: 12/12/2022]
Abstract
The amygdala plays key roles in fear and anxiety. Studies of the amygdala have largely focused on neuronal function and connectivity. Astrocytes functionally interact with neurons, but their role in the amygdala remains largely unknown. We show that astrocytes in the medial subdivision of the central amygdala (CeM) determine the synaptic and behavioral outputs of amygdala circuits. To investigate the role of astrocytes in amygdala-related behavior and identify the underlying synaptic mechanisms, we used exogenous or endogenous signaling to selectively activate CeM astrocytes. Astrocytes depressed excitatory synapses from basolateral amygdala via A1 adenosine receptor activation and enhanced inhibitory synapses from the lateral subdivision of the central amygdala via A2A receptor activation. Furthermore, astrocytic activation decreased the firing rate of CeM neurons and reduced fear expression in a fear-conditioning paradigm. Therefore, we conclude that astrocyte activity determines fear responses by selectively regulating specific synapses, which indicates that animal behavior results from the coordinated activity of neurons and astrocytes.
Collapse
|
123
|
Astrocyte-Mediated Neuronal Synchronization Properties Revealed by False Gliotransmitter Release. J Neurosci 2017; 37:9859-9870. [PMID: 28899919 PMCID: PMC5637115 DOI: 10.1523/jneurosci.2761-16.2017] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 06/14/2017] [Accepted: 06/27/2017] [Indexed: 12/21/2022] Open
Abstract
Astrocytes spontaneously release glutamate (Glut) as a gliotransmitter (GT), resulting in the generation of extrasynaptic NMDAR-mediated slow inward currents (SICs) in neighboring neurons, which can increase local neuronal excitability. However, there is a deficit in our knowledge of the factors that control spontaneous astrocyte GT release and the extent of its influence. We found that, in rat brain slices, increasing the supply of the physiological transmitter Glut increased the frequency and signaling charge of SICs over an extended period. This phenomenon was replicated by exogenous preexposure to the amino acid D-aspartate (D-Asp). Using D-Asp as a “false” GT, we determined the extent of local neuron excitation by GT release in ventrobasal thalamus, CA1 hippocampus, and somatosensory cortex. By analyzing synchronized neuronal NMDAR-mediated excitation, we found that the properties of the excitation were conserved in different brain areas. In the three areas, astrocyte-derived GT release synchronized groups of neurons at distances of >;200 μm. Individual neurons participated in more than one synchronized population, indicating that individual neurons can be excited by more than one astrocyte and that individual astrocytes may determine a neuron's synchronized network. The results confirm that astrocytes can act as excitatory nodes that can influence neurons over a significant range in a number of brain regions. Our findings further suggest that chronic elevation of ambient Glut levels can lead to increased GT Glut release, which may be relevant in some pathological states. SIGNIFICANCE STATEMENT Astrocytes spontaneously release glutamate (Glut) and other gliotransmitters (GTs) that can modify neuronal activity. Exposing brain slices to Glut and D-aspartate (D-Asp) before recording resulted in an increase in frequency of GT-mediated astrocyte–neuron signaling. Using D-Asp, it was possible to investigate the effects of specific GT release at neuronal NMDARs. Calcium imaging showed synchronized activity in groups of neurons in cortex, hippocampus, and thalamus. The size of these populations was similar in all areas and some neurons were involved in more than one synchronous group. The findings show that GT release is supply dependent and that the properties of the signaling and activated networks are largely conserved between different brain areas.
Collapse
|
124
|
Sardinha VM, Guerra-Gomes S, Caetano I, Tavares G, Martins M, Reis JS, Correia JS, Teixeira-Castro A, Pinto L, Sousa N, Oliveira JF. Astrocytic signaling supports hippocampal-prefrontal theta synchronization and cognitive function. Glia 2017; 65:1944-1960. [PMID: 28885722 DOI: 10.1002/glia.23205] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 07/14/2017] [Accepted: 07/31/2017] [Indexed: 12/18/2022]
Abstract
Astrocytes interact with neurons at the cellular level through modulation of synaptic formation, maturation, and function, but the impact of such interaction into behavior remains unclear. Here, we studied the dominant negative SNARE (dnSNARE) mouse model to dissect the role of astrocyte-derived signaling in corticolimbic circuits, with implications for cognitive processing. We found that the blockade of gliotransmitter release in astrocytes triggers a critical desynchronization of neural theta oscillations between dorsal hippocampus and prefrontal cortex. Moreover, we found a strong cognitive impairment in tasks depending on this network. Importantly, the supplementation with d-serine completely restores hippocampal-prefrontal theta synchronization and rescues the spatial memory and long-term memory of dnSNARE mice. We provide here novel evidence of long distance network modulation by astrocytes, with direct implications to cognitive function.
Collapse
Affiliation(s)
- Vanessa Morais Sardinha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga 4710-057, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Sónia Guerra-Gomes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga 4710-057, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Inês Caetano
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga 4710-057, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Gabriela Tavares
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga 4710-057, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Manuella Martins
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga 4710-057, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana Santos Reis
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga 4710-057, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana Sofia Correia
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga 4710-057, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Andreia Teixeira-Castro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga 4710-057, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga 4710-057, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga 4710-057, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - João Filipe Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga 4710-057, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.,DIGARC, Polytechnic Institute of Cávado and Ave, Barcelos 4750-810, Portugal
| |
Collapse
|
125
|
Connexin 43-Mediated Astroglial Metabolic Networks Contribute to the Regulation of the Sleep-Wake Cycle. Neuron 2017; 95:1365-1380.e5. [PMID: 28867552 DOI: 10.1016/j.neuron.2017.08.022] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 06/29/2017] [Accepted: 08/14/2017] [Indexed: 01/13/2023]
Abstract
Astrocytes produce and supply metabolic substrates to neurons through gap junction-mediated astroglial networks. However, the role of astroglial metabolic networks in behavior is unclear. Here, we demonstrate that perturbation of astroglial networks impairs the sleep-wake cycle. Using a conditional Cre-Lox system in mice, we show that knockout of the gap junction subunit connexin 43 in astrocytes throughout the brain causes excessive sleepiness and fragmented wakefulness during the nocturnal active phase. This astrocyte-specific genetic manipulation silenced the wake-promoting orexin neurons located in the lateral hypothalamic area (LHA) by impairing glucose and lactate trafficking through astrocytic networks. This global wakefulness instability was mimicked with viral delivery of Cre recombinase to astrocytes in the LHA and rescued by in vivo injections of lactate. Our findings propose a novel regulatory mechanism critical for maintaining normal daily cycle of wakefulness and involving astrocyte-neuron metabolic interactions.
Collapse
|
126
|
Gasull-Camós J, Soto-Montenegro ML, Casquero-Veiga M, Desco M, Artigas F, Castañé A. Differential Patterns of Subcortical Activity Evoked by Glial GLT-1 Blockade in Prelimbic and Infralimbic Cortex: Relationship to Antidepressant-Like Effects in Rats. Int J Neuropsychopharmacol 2017; 20:988-993. [PMID: 29016806 PMCID: PMC5716080 DOI: 10.1093/ijnp/pyx067] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 07/28/2017] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Glutamatergic neurotransmission has emerged as a novel target in antidepressant drug development, with a critical role of the ventral anterior cingulate cortex. We recently reported that blockade of the astrocytic glutamate transporter GLT-1 with dihydrokainic acid in infralimbic cortex (rodent equivalent of ventral anterior cingulate cortex), but not in the adjacent prelimbic cortex, evoked robust antidepressant-like effects through α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor activation and increased serotonin release. METHODS 2-deoxy-2-[18F]-fluoro-D-glucose-positron emission tomography and computed tomography in 36 male Wistar rats microinfused bilaterally in prelimbic cortex or infralimbic cortex with dihydrokainic acid or vehicle. RESULTS Dihydrokainic acid microinfusion in infralimbic cortex and prelimbic cortex evoked dramatically different regional patterns of subcortical activity. In infralimbic cortex, dihydrokainic acid selectively affected midbrain areas, whereas in prelimbic cortex it affected the basal ganglia, the thalamus, and both superior and inferior colliculi. CONCLUSIONS These results highlight the differential connectivity of infralimbic and prelimbic cortex with subcortical brain regions and support the involvement of infralimbic cortex-midbrain pathway in the antidepressant-like effects of dihydrokainic acid.
Collapse
Affiliation(s)
- Júlia Gasull-Camós
- Department of Neurochemistry and Neuropharmacology, CSIC-Institut d’Investigacions Biomèdiques de Barcelona, Barcelona, Spain (Drs Artigas and Castañé and Ms Gasull-Camós); Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain (Drs Artigas and Castañé and Ms Gasull-Camós); Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain (Drs Artigas, Castañé, Desco and Soto-Montenegro, Ms Casquero-Veiga and Ms Gasull-Camós); Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain (Drs Desco and Soto-Montenegro and Ms Casquero-Veiga); Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Spain (Dr Desco); Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (Dr Desco)
| | - Maria Luisa Soto-Montenegro
- Department of Neurochemistry and Neuropharmacology, CSIC-Institut d’Investigacions Biomèdiques de Barcelona, Barcelona, Spain (Drs Artigas and Castañé and Ms Gasull-Camós); Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain (Drs Artigas and Castañé and Ms Gasull-Camós); Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain (Drs Artigas, Castañé, Desco and Soto-Montenegro, Ms Casquero-Veiga and Ms Gasull-Camós); Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain (Drs Desco and Soto-Montenegro and Ms Casquero-Veiga); Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Spain (Dr Desco); Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (Dr Desco)
| | - Marta Casquero-Veiga
- Department of Neurochemistry and Neuropharmacology, CSIC-Institut d’Investigacions Biomèdiques de Barcelona, Barcelona, Spain (Drs Artigas and Castañé and Ms Gasull-Camós); Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain (Drs Artigas and Castañé and Ms Gasull-Camós); Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain (Drs Artigas, Castañé, Desco and Soto-Montenegro, Ms Casquero-Veiga and Ms Gasull-Camós); Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain (Drs Desco and Soto-Montenegro and Ms Casquero-Veiga); Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Spain (Dr Desco); Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (Dr Desco)
| | - Manuel Desco
- Department of Neurochemistry and Neuropharmacology, CSIC-Institut d’Investigacions Biomèdiques de Barcelona, Barcelona, Spain (Drs Artigas and Castañé and Ms Gasull-Camós); Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain (Drs Artigas and Castañé and Ms Gasull-Camós); Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain (Drs Artigas, Castañé, Desco and Soto-Montenegro, Ms Casquero-Veiga and Ms Gasull-Camós); Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain (Drs Desco and Soto-Montenegro and Ms Casquero-Veiga); Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Spain (Dr Desco); Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (Dr Desco)
| | - Francesc Artigas
- Department of Neurochemistry and Neuropharmacology, CSIC-Institut d’Investigacions Biomèdiques de Barcelona, Barcelona, Spain (Drs Artigas and Castañé and Ms Gasull-Camós); Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain (Drs Artigas and Castañé and Ms Gasull-Camós); Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain (Drs Artigas, Castañé, Desco and Soto-Montenegro, Ms Casquero-Veiga and Ms Gasull-Camós); Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain (Drs Desco and Soto-Montenegro and Ms Casquero-Veiga); Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Spain (Dr Desco); Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (Dr Desco)
| | - Anna Castañé
- Department of Neurochemistry and Neuropharmacology, CSIC-Institut d’Investigacions Biomèdiques de Barcelona, Barcelona, Spain (Drs Artigas and Castañé and Ms Gasull-Camós); Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain (Drs Artigas and Castañé and Ms Gasull-Camós); Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain (Drs Artigas, Castañé, Desco and Soto-Montenegro, Ms Casquero-Veiga and Ms Gasull-Camós); Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain (Drs Desco and Soto-Montenegro and Ms Casquero-Veiga); Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Spain (Dr Desco); Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (Dr Desco),Correspondence: Anna Castañé, PhD, Department of Neurochemistry and Neuropharmacology, Rosselló 161 6th Floor, 08036 Barcelona, Spain ()
| |
Collapse
|
127
|
Szabó Z, Héja L, Szalay G, Kékesi O, Füredi A, Szebényi K, Dobolyi Á, Orbán TI, Kolacsek O, Tompa T, Miskolczy Z, Biczók L, Rózsa B, Sarkadi B, Kardos J. Extensive astrocyte synchronization advances neuronal coupling in slow wave activity in vivo. Sci Rep 2017; 7:6018. [PMID: 28729692 PMCID: PMC5519671 DOI: 10.1038/s41598-017-06073-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 05/26/2017] [Indexed: 01/19/2023] Open
Abstract
Slow wave activity (SWA) is a characteristic brain oscillation in sleep and quiet wakefulness. Although the cell types contributing to SWA genesis are not yet identified, the principal role of neurons in the emergence of this essential cognitive mechanism has not been questioned. To address the possibility of astrocytic involvement in SWA, we used a transgenic rat line expressing a calcium sensitive fluorescent protein in both astrocytes and interneurons and simultaneously imaged astrocytic and neuronal activity in vivo. Here we demonstrate, for the first time, that the astrocyte network display synchronized recurrent activity in vivo coupled to UP states measured by field recording and neuronal calcium imaging. Furthermore, we present evidence that extensive synchronization of the astrocytic network precedes the spatial build-up of neuronal synchronization. The earlier extensive recruitment of astrocytes in the synchronized activity is reinforced by the observation that neurons surrounded by active astrocytes are more likely to join SWA, suggesting causality. Further supporting this notion, we demonstrate that blockade of astrocytic gap junctional communication or inhibition of astrocytic Ca2+ transients reduces the ratio of both astrocytes and neurons involved in SWA. These in vivo findings conclusively suggest a causal role of the astrocytic syncytium in SWA generation.
Collapse
Affiliation(s)
- Zsolt Szabó
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary
| | - László Héja
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary.
| | - Gergely Szalay
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony 43, 1083, Budapest, Hungary
| | - Orsolya Kékesi
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary
| | - András Füredi
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary.,Institute of Cancer Research, Medical University Wien, Borschkegasse 8a, 1090, Wien, Austria
| | - Kornélia Szebényi
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary.,Institute of Cancer Research, Medical University Wien, Borschkegasse 8a, 1090, Wien, Austria
| | - Árpád Dobolyi
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University, Pázmány Péter sétány 1C, 1117, Budapest, Hungary
| | - Tamás I Orbán
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary
| | - Orsolya Kolacsek
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary
| | - Tamás Tompa
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony 43, 1083, Budapest, Hungary
| | - Zsombor Miskolczy
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary
| | - László Biczók
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary
| | - Balázs Rózsa
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony 43, 1083, Budapest, Hungary
| | - Balázs Sarkadi
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary
| | - Julianna Kardos
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary
| |
Collapse
|
128
|
Naik AA, Patro N, Seth P, Patro IK. Intra-generational protein malnutrition impairs temporal astrogenesis in rat brain. Biol Open 2017; 6:931-942. [PMID: 28546341 PMCID: PMC5550907 DOI: 10.1242/bio.023432] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The lack of information on astrogenesis following stressor effect, notwithstanding the imperative roles of astroglia in normal physiology and pathophysiology, incited us to assess temporal astrogenesis and astrocyte density in an intra-generational protein malnutrition (PMN) rat model. Standard immunohistochemical procedures for glial lineage markers and their intensity measurements, and qRT-PCR studies, were performed to reveal the spatio-temporal origin and density of astrocytes. Reduced A2B5+ glia restricted precursor population in ventricles and caused poor dissemination to cortex at embryonic days (E)11-14, and low BLBP+ secondary radial glia in the subventricular zone (SVZ) of E16 low protein (LP) brains reflect compromised progenitor pooling. Contrary to large-sized BLBP+ gliospheres in high protein (HP) brains at E16, small gliospheres and discrete BLBP+ cells in LP brains evidence loss of colonization and low proliferative potential. Delayed emergence of GFAP expression, precocious astrocyte maturation and significantly reduced astrocyte number suggest impaired temporal and compromised astrogenesis within LP-F1 brains. Our findings of protein deprivation induced impairments in temporal astrogenesis, compromised density and astrocytic dysfunction, strengthen the hypothesis of astrocytes as possible drivers of neurodevelopmental disorders. This study may increase our understanding of stressor-associated brain development, opening up windows for effective therapeutic interventions against debilitating neurodevelopmental disorders. Summary: Maternal protein deprivation results in low progenitor pooling, and delayed and compromised astrogenesis, suggesting astrocyte impairment as a driver of neurological diseases owing to their imperative roles in normal and pathological situations.
Collapse
Affiliation(s)
- Aijaz Ahmad Naik
- School of Studies in Neuroscience, Jiwaji University, Gwalior 474011, India.,School of Studies in Zoology, Jiwaji University, Gwalior 474011, India
| | - Nisha Patro
- School of Studies in Neuroscience, Jiwaji University, Gwalior 474011, India
| | - Pankaj Seth
- National Brain Research Centre, Manesar, Haryana 122051, India
| | - Ishan K Patro
- School of Studies in Neuroscience, Jiwaji University, Gwalior 474011, India .,School of Studies in Zoology, Jiwaji University, Gwalior 474011, India
| |
Collapse
|
129
|
Abstract
Rapid advances in Ca2+ imaging techniques enable us to simultaneously monitor the activities of hundreds of astrocytes in the intact brain, thus providing a powerful tool for understanding the functions of both host and engrafted astrocytes in sensory processing in vivo. These techniques include both improved Ca2+ indicators and advanced optical recording methods. Astrocytes in multiple cortical and sub-cortical areas are able to respond to the corresponding sensory modalities. These sensory stimuli produce astrocytic Ca2+ responses through different cellular mechanisms. In addition, it has been suggested that astrocytic gene deficiencies in various sensory systems cause impairments in sensory circuits and cognition. Therefore, glial transplantation would be a potentially interesting approach for the cell-based therapy for glia-related disorders. There are multiple cell sources for glial transplantation, including neural stem cells, glial progenitors, and pluripotent stem cells. Both in vitro and in vivo studies have shown that engrafted astrocytes derived from these cell sources are capable of responding to sensory stimulation by elevating the intracellular Ca2+ concentration. These results indicate that engrafted astrocytes not only morphologically but also functionally integrate into the host neural network. Until now, many animal studies have proven that glial transplantation would be a good choice for treating multiple glial disorders. Together, these studies on the sensory responses of host and engrafted astrocytes have provided us a novel perspective in both neuron-glia circuit functions and future treatment strategies for glial disorders.
Collapse
Affiliation(s)
- Kuan Zhang
- Brain Research Center and State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, China
| | - Xiaowei Chen
- Brain Research Center and State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
130
|
Patel S, Hill MN, Cheer JF, Wotjak CT, Holmes A. The endocannabinoid system as a target for novel anxiolytic drugs. Neurosci Biobehav Rev 2017; 76:56-66. [PMID: 28434588 PMCID: PMC5407316 DOI: 10.1016/j.neubiorev.2016.12.033] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/22/2016] [Accepted: 12/16/2016] [Indexed: 12/01/2022]
Abstract
The endocannabinoid (eCB) system has attracted attention for its role in various behavioral and brain functions, and as a therapeutic target in neuropsychiatric disease states, including anxiety disorders and other conditions resulting from dysfunctional responses to stress. In this mini-review, we highlight components of the eCB system that offer potential 'druggable' targets for new anxiolytic medications, emphasizing some of the less well-discussed options. We discuss how selectively amplifying eCBs recruitment by interfering with eCB-degradation, via fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), has been linked to reductions in anxiety-like behaviors in rodents and variation in human anxiety symptoms. We also discuss a non-canonical route to regulate eCB degradation that involves interfering with cyclooxygenase-2 (COX-2). Next, we discuss approaches to targeting eCB receptor-signaling in ways that do not involve the cannabinoid receptor subtype 1 (CB1R); by targeting the CB2R subtype and the transient receptor potential vanilloid type 1 (TRPV1). Finally, we review evidence that cannabidiol (CBD), while representing a less specific pharmacological approach, may be another way to modulate eCBs and interacting neurotransmitter systems to alleviate anxiety. Taken together, these various approaches provide a range of plausible paths to developing novel compounds that could prove useful for treating trauma-related and anxiety disorders.
Collapse
Affiliation(s)
- Sachin Patel
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, USA; Vanderbilt Kennedy Center for Human Development, Vanderbilt University Medical Center, Nashville, USA
| | - Mathew N Hill
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB, Canada; Departments of Cell Biology and Anatomy and Psychiatry, University of Calgary, Calgary, AB, Canada
| | - Joseph F Cheer
- Department of Anatomy and Neurobiology and Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Carsten T Wotjak
- Max Planck Institute of Psychiatry, Department of Stress Neurobiology & Neurogenetics, Munich, Germany
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
131
|
Tso CF, Simon T, Greenlaw AC, Puri T, Mieda M, Herzog ED. Astrocytes Regulate Daily Rhythms in the Suprachiasmatic Nucleus and Behavior. Curr Biol 2017; 27:1055-1061. [PMID: 28343966 DOI: 10.1016/j.cub.2017.02.037] [Citation(s) in RCA: 196] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 02/09/2017] [Accepted: 02/15/2017] [Indexed: 12/30/2022]
Abstract
Astrocytes are active partners in neural information processing [1, 2]. However, the roles of astrocytes in regulating behavior remain unclear [3, 4]. Because astrocytes have persistent circadian clock gene expression and ATP release in vitro [5-8], we hypothesized that they regulate daily rhythms in neurons and behavior. Here, we demonstrated that daily rhythms in astrocytes within the mammalian master circadian pacemaker, the suprachiasmatic nucleus (SCN), determine the period of wheel-running activity. Ablating the essential clock gene Bmal1 specifically in SCN astrocytes lengthened the circadian period of clock gene expression in the SCN and in locomotor behavior. Similarly, excision of the short-period CK1ε tau mutation specifically from SCN astrocytes resulted in lengthened rhythms in the SCN and behavior. These results indicate that astrocytes within the SCN communicate to neurons to determine circadian rhythms in physiology and in rest activity.
Collapse
Affiliation(s)
- Chak Foon Tso
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Tatiana Simon
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Alison C Greenlaw
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Tanvi Puri
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Michihiro Mieda
- Department of Molecular Neuroscience and Integrative Physiology, Kanazawa University, 920-1192 Ishikawa, Japan
| | - Erik D Herzog
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63108, USA.
| |
Collapse
|
132
|
Kardos J, Héja L, Jemnitz K, Kovács R, Palkovits M. The nature of early astroglial protection-Fast activation and signaling. Prog Neurobiol 2017; 153:86-99. [PMID: 28342942 DOI: 10.1016/j.pneurobio.2017.03.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/22/2016] [Accepted: 03/05/2017] [Indexed: 12/14/2022]
Abstract
Our present review is focusing on the uniqueness of balanced astroglial signaling. The balance of excitatory and inhibitory signaling within the CNS is mainly determined by sharp synaptic transients of excitatory glutamate (Glu) and inhibitory γ-aminobutyrate (GABA) acting on the sub-second timescale. Astroglia is involved in excitatory chemical transmission by taking up i) Glu through neurotransmitter-sodium transporters, ii) K+ released due to presynaptic action potential generation, and iii) water keeping osmotic pressure. Glu uptake-coupled Na+ influx may either ignite long-range astroglial Ca2+ transients or locally counteract over-excitation via astroglial GABA release and increased tonic inhibition. Imbalance of excitatory and inhibitory drives is associated with a number of disease conditions, including prevalent traumatic and ischaemic injuries or the emergence of epilepsy. Therefore, when addressing the potential of early therapeutic intervention, astroglial signaling functions combating progress of Glu excitotoxicity is of critical importance. We suggest, that excitotoxicity is linked primarily to over-excitation induced by the impairment of astroglial Glu uptake and/or GABA release. Within this framework, we discuss the acute alterations of Glu-cycling and metabolism and conjecture the therapeutic promise of regulation. We also confer the role played by key carrier proteins and enzymes as well as their interplay at the molecular, cellular, and organ levels. Moreover, based on our former studies, we offer potential prospect on the emerging theme of astroglial succinate sensing in course of Glu excitotoxicity.
Collapse
Affiliation(s)
- Julianna Kardos
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Hungary.
| | - László Héja
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Hungary
| | - Katalin Jemnitz
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Hungary
| | - Richárd Kovács
- Institute of Neurophysiology, Charité - Universitätsmedizin, Berlin, Germany
| | - Miklós Palkovits
- Human Brain Tissue Bank and Laboratory, Semmelweis University, Budapest, Hungary
| |
Collapse
|
133
|
Wang Q, Jie W, Liu JH, Yang JM, Gao TM. An astroglial basis of major depressive disorder? An overview. Glia 2017; 65:1227-1250. [DOI: 10.1002/glia.23143] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 02/26/2017] [Accepted: 02/27/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Qian Wang
- State Key Laboratory of Organ Failure Research, Key Laboratory of Psychiatric Disorders of Guangdong Province, Collaborative Innovation Center for Brain Science, Department of Neurobiology, Southern Medical University; Guangzhou 510515 China
| | - Wei Jie
- State Key Laboratory of Organ Failure Research, Key Laboratory of Psychiatric Disorders of Guangdong Province, Collaborative Innovation Center for Brain Science, Department of Neurobiology, Southern Medical University; Guangzhou 510515 China
| | - Ji-Hong Liu
- State Key Laboratory of Organ Failure Research, Key Laboratory of Psychiatric Disorders of Guangdong Province, Collaborative Innovation Center for Brain Science, Department of Neurobiology, Southern Medical University; Guangzhou 510515 China
| | - Jian-Ming Yang
- State Key Laboratory of Organ Failure Research, Key Laboratory of Psychiatric Disorders of Guangdong Province, Collaborative Innovation Center for Brain Science, Department of Neurobiology, Southern Medical University; Guangzhou 510515 China
| | - Tian-Ming Gao
- State Key Laboratory of Organ Failure Research, Key Laboratory of Psychiatric Disorders of Guangdong Province, Collaborative Innovation Center for Brain Science, Department of Neurobiology, Southern Medical University; Guangzhou 510515 China
| |
Collapse
|
134
|
Zhan JS, Gao K, Chai RC, Jia XH, Luo DP, Ge G, Jiang YW, Fung YWW, Li L, Yu ACH. Astrocytes in Migration. Neurochem Res 2017; 42:272-282. [PMID: 27837318 DOI: 10.1007/s11064-016-2089-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/20/2016] [Accepted: 10/21/2016] [Indexed: 12/30/2022]
Abstract
Cell migration is a fundamental phenomenon that underlies tissue morphogenesis, wound healing, immune response, and cancer metastasis. Great progresses have been made in research methodologies, with cell migration identified as a highly orchestrated process. Brain is considered the most complex organ in the human body, containing many types of neural cells with astrocytes playing crucial roles in monitoring normal functions of the central nervous system. Astrocytes are mostly quiescent under normal physiological conditions in the adult brain but become migratory after injury. Under most known pathological conditions in the brain, spinal cord and retina, astrocytes are activated and become hypertrophic, hyperplastic, and up-regulating GFAP based on the grades of severity. These three observations are the hallmark in glia scar formation-astrogliosis. The reactivation process is initiated with structural changes involving cell process migration and ended with cell migration. Detailed mechanisms in astrocyte migration have not been studied extensively and remain largely unknown. Here, we therefore attempt to review the mechanisms in migration of astrocytes.
Collapse
Affiliation(s)
- Jiang Shan Zhan
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
| | - Kai Gao
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Rui Chao Chai
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
- Hai Kang Life (Beijing) Corporation Ltd., Sino-I Campus No.1, Beijing Economic-Technological Development Area, Beijing, 100176, China
| | - Xi Hua Jia
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
- Hai Kang Life (Beijing) Corporation Ltd., Sino-I Campus No.1, Beijing Economic-Technological Development Area, Beijing, 100176, China
| | - Dao Peng Luo
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
- Department of Human Anatomy, Guizhou Medical University, Guian New Area, Guiyang, 550025, Guizhou, China
| | - Guo Ge
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
- Department of Human Anatomy, Guizhou Medical University, Guian New Area, Guiyang, 550025, Guizhou, China
| | - Yu Wu Jiang
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Yin-Wan Wendy Fung
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
- Hai Kang Life (Beijing) Corporation Ltd., Sino-I Campus No.1, Beijing Economic-Technological Development Area, Beijing, 100176, China
| | - Lina Li
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China.
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
- Key Laboratory for Neuroscience, Ministry of Education, National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China.
- Hai Kang Life (Beijing) Corporation Ltd., Sino-I Campus No.1, Beijing Economic-Technological Development Area, Beijing, 100176, China.
| | - Albert Cheung Hoi Yu
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China.
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
- Key Laboratory for Neuroscience, Ministry of Education, National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China.
- Laboratory of Translational Medicine, Institute of Systems Biomedicine, Peking University, Beijing, 100191, China.
- Hai Kang Life (Beijing) Corporation Ltd., Sino-I Campus No.1, Beijing Economic-Technological Development Area, Beijing, 100176, China.
| |
Collapse
|
135
|
Valtcheva S, Venance L. Astrocytes gate Hebbian synaptic plasticity in the striatum. Nat Commun 2016; 7:13845. [PMID: 27996006 PMCID: PMC5187441 DOI: 10.1038/ncomms13845] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 11/04/2016] [Indexed: 11/18/2022] Open
Abstract
Astrocytes, via excitatory amino-acid transporter type-2 (EAAT2), are the major sink for released glutamate and contribute to set the strength and timing of synaptic inputs. The conditions required for the emergence of Hebbian plasticity from distributed neural activity remain elusive. Here, we investigate the role of EAAT2 in the expression of a major physiologically relevant form of Hebbian learning, spike timing-dependent plasticity (STDP). We find that a transient blockade of EAAT2 disrupts the temporal contingency required for Hebbian synaptic plasticity. Indeed, STDP is replaced by aberrant non-timing-dependent plasticity occurring for uncorrelated events. Conversely, EAAT2 overexpression impairs the detection of correlated activity and precludes STDP expression. Our findings demonstrate that EAAT2 sets the appropriate glutamate dynamics for the optimal temporal contingency between pre- and postsynaptic activity required for STDP emergence, and highlight the role of astrocytes as gatekeepers for Hebbian synaptic plasticity.
Collapse
Affiliation(s)
- Silvana Valtcheva
- Dynamics and Pathophysiology of Neuronal Networks Team, Center for Interdisciplinary Research in Biology, College de France, CNRS UMR7241/INSERM U1050, MemoLife Labex, 75005 Paris, France
- Pierre et Marie Curie University, ED 158, 75005 Paris, France
| | - Laurent Venance
- Dynamics and Pathophysiology of Neuronal Networks Team, Center for Interdisciplinary Research in Biology, College de France, CNRS UMR7241/INSERM U1050, MemoLife Labex, 75005 Paris, France
- Pierre et Marie Curie University, ED 158, 75005 Paris, France
| |
Collapse
|
136
|
Nuriya M, Takeuchi M, Yasui M. Background norepinephrine primes astrocytic calcium responses to subsequent norepinephrine stimuli in the cerebral cortex. Biochem Biophys Res Commun 2016; 483:732-738. [PMID: 27965089 DOI: 10.1016/j.bbrc.2016.12.073] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 12/10/2016] [Indexed: 12/29/2022]
Abstract
Norepinephrine (NE) levels in the cerebral cortex are regulated in two modes; the brain state is correlated with slow changes in background NE concentration, while salient stimuli induce transient NE spikes. Previous studies have revealed their diverse neuromodulatory actions; however, the modulatory role of NE on astrocytic activity has been poorly characterized thus far. In this study, we evaluated the modulatory action of background NE on astrocytic responses to subsequent stimuli, using two-photon calcium imaging of acute murine cortical brain slices. We find that subthreshold background NE significantly augments calcium responses to subsequent pulsed NE stimulation in astrocytes. This priming effect is independent of neuronal activity and is mediated by the activation of β-adrenoceptors and the downstream cAMP pathway. These results indicate that background NE primes astrocytes for subsequent calcium responses to NE stimulation and suggest a novel gliomodulatory role for brain state-dependent background NE in the cerebral cortex.
Collapse
Affiliation(s)
- Mutsuo Nuriya
- Department of Pharmacology, School of Medicine, Keio University, Shinjuku, Tokyo, 160-8582, Japan; Keio Advanced Research Center for Water Biology and Medicine, Keio University, Shinjuku, Tokyo, 160-8582, Japan; Graduate School of Environment and Information Sciences, Yokohama National University, Yokohama, Kanagawa, 240-8501, Japan.
| | - Miyabi Takeuchi
- Department of Pharmacology, School of Medicine, Keio University, Shinjuku, Tokyo, 160-8582, Japan
| | - Masato Yasui
- Department of Pharmacology, School of Medicine, Keio University, Shinjuku, Tokyo, 160-8582, Japan; Keio Advanced Research Center for Water Biology and Medicine, Keio University, Shinjuku, Tokyo, 160-8582, Japan
| |
Collapse
|
137
|
Complex I assembly into supercomplexes determines differential mitochondrial ROS production in neurons and astrocytes. Proc Natl Acad Sci U S A 2016; 113:13063-13068. [PMID: 27799543 DOI: 10.1073/pnas.1613701113] [Citation(s) in RCA: 311] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Neurons depend on oxidative phosphorylation for energy generation, whereas astrocytes do not, a distinctive feature that is essential for neurotransmission and neuronal survival. However, any link between these metabolic differences and the structural organization of the mitochondrial respiratory chain is unknown. Here, we investigated this issue and found that, in neurons, mitochondrial complex I is predominantly assembled into supercomplexes, whereas in astrocytes the abundance of free complex I is higher. The presence of free complex I in astrocytes correlates with the severalfold higher reactive oxygen species (ROS) production by astrocytes compared with neurons. Using a complexomics approach, we found that the complex I subunit NDUFS1 was more abundant in neurons than in astrocytes. Interestingly, NDUFS1 knockdown in neurons decreased the association of complex I into supercomplexes, leading to impaired oxygen consumption and increased mitochondrial ROS. Conversely, overexpression of NDUFS1 in astrocytes promoted complex I incorporation into supercomplexes, decreasing ROS. Thus, complex I assembly into supercomplexes regulates ROS production and may contribute to the bioenergetic differences between neurons and astrocytes.
Collapse
|
138
|
Tavares G, Martins M, Correia JS, Sardinha VM, Guerra-Gomes S, das Neves SP, Marques F, Sousa N, Oliveira JF. Employing an open-source tool to assess astrocyte tridimensional structure. Brain Struct Funct 2016; 222:1989-1999. [PMID: 27696155 PMCID: PMC5406431 DOI: 10.1007/s00429-016-1316-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 09/17/2016] [Indexed: 11/28/2022]
Abstract
Astrocytes display important features that allow them to maintain a close dialog with neurons, ultimately impacting brain function. The complex morphological structure of astrocytes is crucial to the role of astrocytes in brain networks. Therefore, assessing morphologic features of astrocytes will help provide insights into their physiological relevance in healthy and pathological conditions. Currently available tools that allow the tridimensional reconstruction of astrocytes present a number of disadvantages, including the need for advanced computational skills and powerful hardware, and are either time-consuming or costly. In this study, we optimized and validated the FIJI-ImageJ, Simple Neurite Tracer (SNT) plugin, an open-source software that aids in the reconstruction of GFAP-stained structure of astrocytes. We describe (1) the loading of confocal microscopy Z-stacks, (2) the selection criteria, (3) the reconstruction process, and (4) the post-reconstruction analysis of morphological features (process length, number, thickness, and arbor complexity). SNT allows the quantification of astrocyte morphometric parameters in a simple, efficient, and semi-automated manner. While SNT is simple to learn, and does not require advanced computational skills, it provides reproducible results, in different brain regions or pathophysiological states.
Collapse
Affiliation(s)
- Gabriela Tavares
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Manuella Martins
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Joana Sofia Correia
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Vanessa Morais Sardinha
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Sónia Guerra-Gomes
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Sofia Pereira das Neves
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Fernanda Marques
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - João Filipe Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal. .,ICVS/3B's, PT Government Associate Laboratory, Braga, Guimarães, Portugal. .,DIGARC, Polytechnic Institute of Cávado and Ave, 4750-810, Barcelos, Portugal.
| |
Collapse
|
139
|
Krencik R, van Asperen JV, Ullian EM. Human astrocytes are distinct contributors to the complexity of synaptic function. Brain Res Bull 2016; 129:66-73. [PMID: 27570101 DOI: 10.1016/j.brainresbull.2016.08.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/07/2016] [Accepted: 08/22/2016] [Indexed: 01/03/2023]
Abstract
Cellular components of synaptic circuits have been adjusted for increased human brain size, neural cell density, energy consumption and developmental duration. How does the human brain make these accommodations? There is evidence that astrocytes are one of the most divergent neural cell types in primate brain evolution and it is now becoming clear that they have critical roles in controlling synaptic development, function and plasticity. Yet, we still do not know how the precise developmental appearance of these cells and subsequent astrocyte-derived signals modulate diverse neuronal circuit subtypes. Here, we discuss what is currently known about the influence of glial factors on synaptic maturation and focus on unique features of human astrocytes including their potential roles in regenerative and translational medicine. Human astrocyte distinctiveness may be a major contributor to high level neuronal processing of the human brain and act in novel ways during various neuropathies ranging from autism spectrum disorders, viral infection, injury and neurodegenerative conditions.
Collapse
Affiliation(s)
- Robert Krencik
- Departments of Ophthalmology and Physiology, Neuroscience Program, University of California San Francisco, United States.
| | - Jessy V van Asperen
- Departments of Ophthalmology and Physiology, Neuroscience Program, University of California San Francisco, United States
| | - Erik M Ullian
- Departments of Ophthalmology and Physiology, Neuroscience Program, University of California San Francisco, United States
| |
Collapse
|
140
|
Abstract
The endocannabinoid system (ECS) is abundantly expressed in the brain. This system regulates a plethora of physiological functions and is composed of cannabinoid receptors, their endogenous ligands (endocannabinoids), and the enzymes involved in the metabolism of endocannabinoids. In this review, we highlight the new advances in cannabinoid signaling, focusing on a key component of the ECS, the type-1 cannabinoid receptor (CB
1). In recent years, the development of new imaging and molecular tools has demonstrated that this receptor can be distributed in many cell types (e.g., neuronal or glial cells) and intracellular compartments (e.g., mitochondria). Interestingly, cellular and molecular effects are differentially mediated by CB
1 receptors according to their specific localization (e.g., glutamatergic or GABAergic neurons). Moreover, this receptor is expressed in the periphery, where it can modulate periphery-brain connections. Finally, the better understanding of the CB
1 receptor structure led researchers to propose interesting and new allosteric modulators. Thus, the advances and the new directions of the CB
1 receptor field will provide new insights and better approaches to profit from its interesting therapeutic profile.
Collapse
Affiliation(s)
- Arnau Busquets Garcia
- Endocannabinoids and Neuroadaptation, INSERM U1215 NeuroCentre Magendie, Bordeaux, 33077, France; University of Bordeaux, Bordeaux, France
| | - Edgar Soria-Gomez
- Endocannabinoids and Neuroadaptation, INSERM U1215 NeuroCentre Magendie, Bordeaux, 33077, France; University of Bordeaux, Bordeaux, France
| | - Luigi Bellocchio
- Endocannabinoids and Neuroadaptation, INSERM U1215 NeuroCentre Magendie, Bordeaux, 33077, France; University of Bordeaux, Bordeaux, France
| | - Giovanni Marsicano
- Endocannabinoids and Neuroadaptation, INSERM U1215 NeuroCentre Magendie, Bordeaux, 33077, France; University of Bordeaux, Bordeaux, France
| |
Collapse
|
141
|
Caffeine exposure during rat brain development causes memory impairment in a sex selective manner that is offset by caffeine consumption throughout life. Behav Brain Res 2016; 303:76-84. [DOI: 10.1016/j.bbr.2016.01.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 01/07/2016] [Accepted: 01/09/2016] [Indexed: 12/30/2022]
|
142
|
Bolaños JP. Bioenergetics and redox adaptations of astrocytes to neuronal activity. J Neurochem 2016; 139 Suppl 2:115-125. [PMID: 26968531 PMCID: PMC5018236 DOI: 10.1111/jnc.13486] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 11/19/2015] [Accepted: 11/23/2015] [Indexed: 12/14/2022]
Abstract
Neuronal activity is a high‐energy demanding process recruiting all neural cells that adapt their metabolism to sustain the energy and redox balance of neurons. During neurotransmission, synaptic cleft glutamate activates its receptors in neurons and in astrocytes, before being taken up by astrocytes through energy costly transporters. In astrocytes, the energy requirement for glutamate influx is likely to be met by glycolysis. To enable this, astrocytes are constitutively glycolytic, robustly expressing 6‐phosphofructo‐2‐kinase/fructose‐2,6‐bisphosphatase‐3 (PFKFB3), an enzyme that is negligibly present in neurons by continuous degradation because of the ubiquitin‐proteasome pathway via anaphase‐promoting complex/cyclosome (APC)‐Cdh1. Additional factors contributing to the glycolytic frame of astrocytes may include 5′‐AMP‐activated protein kinase (AMPK), hypoxia‐inducible factor‐1 (HIF‐1), pyruvate kinase muscle isoform‐2 (PKM2), pyruvate dehydrogenase kinase‐4 (PDK4), lactate dehydrogenase‐B, or monocarboxylate transporter‐4 (MCT4). Neurotransmission‐associated messengers, such as nitric oxide or ammonium, stimulate lactate release from astrocytes. Astrocyte‐derived glycolytic lactate thus sustains the energy needs of neurons, which in contrast to astrocytes mainly rely on oxidative phosphorylation. Neuronal activity unavoidably triggers reactive oxygen species, but the antioxidant defense of neurons is weak; hence, they use glucose for oxidation through the pentose‐phosphate pathway to preserve the redox status. Furthermore, neural activity is coupled with erythroid‐derived erythroid‐derived 2‐like 2 (Nrf2) mediated transcriptional activation of antioxidant genes in astrocytes, which boost the de novo glutathione biosynthesis in neighbor neurons. Thus, the bioenergetics and redox programs of astrocytes are adapted to sustain neuronal activity and survival. Developing therapeutic strategies to interfere with these pathways may be useful to combat neurological diseases.
Our current knowledge on brain's management of bioenergetics and redox requirements associated with neural activity is herein revisited. The astrocyte‐neuronal lactate shuttle (ANLS) explains the energy needs of neurotransmission. Furthermore, neurotransmission unavoidably triggers increased mitochondrial reactive oxygen species in neurons. By coupling glutamatergic activity with transcriptional activation of antioxidant genes, astrocytes provide neurons with neuroprotective glutathione through an astrocyte‐neuronal glutathione shuttle (ANGS).
This article is part of the60th Anniversary special issue.
Collapse
Affiliation(s)
- Juan P Bolaños
- Institute of Functional Biology and Genomics (IBFG), University of Salamanca-CSIC-IBSAL, Salamanca, Spain.
| |
Collapse
|
143
|
Petrelli F, Bezzi P. Novel insights into gliotransmitters. Curr Opin Pharmacol 2016; 26:138-45. [DOI: 10.1016/j.coph.2015.11.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 11/20/2015] [Accepted: 11/23/2015] [Indexed: 12/13/2022]
|
144
|
Rial D, Lemos C, Pinheiro H, Duarte JM, Gonçalves FQ, Real JI, Prediger RD, Gonçalves N, Gomes CA, Canas PM, Agostinho P, Cunha RA. Depression as a Glial-Based Synaptic Dysfunction. Front Cell Neurosci 2016; 9:521. [PMID: 26834566 PMCID: PMC4722129 DOI: 10.3389/fncel.2015.00521] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 12/27/2015] [Indexed: 01/23/2023] Open
Abstract
Recent studies combining pharmacological, behavioral, electrophysiological and molecular approaches indicate that depression results from maladaptive neuroplastic processes occurring in defined frontolimbic circuits responsible for emotional processing such as the prefrontal cortex, hippocampus, amygdala and ventral striatum. However, the exact mechanisms controlling synaptic plasticity that are disrupted to trigger depressive conditions have not been elucidated. Since glial cells (astrocytes and microglia) tightly and dynamically interact with synapses, engaging a bi-directional communication critical for the processing of synaptic information, we now revisit the role of glial cells in the etiology of depression focusing on a dysfunction of the “quad-partite” synapse. This interest is supported by the observations that depressive-like conditions are associated with a decreased density and hypofunction of astrocytes and with an increased microglia “activation” in frontolimbic regions, which is expected to contribute for the synaptic dysfunction present in depression. Furthermore, the traditional culprits of depression (glucocorticoids, biogenic amines, brain-derived neurotrophic factor, BDNF) affect glia functioning, whereas antidepressant treatments (serotonin-selective reuptake inhibitors, SSRIs, electroshocks, deep brain stimulation) recover glia functioning. In this context of a quad-partite synapse, systems modulating glia-synapse bidirectional communication—such as the purinergic neuromodulation system operated by adenosine 5′-triphosphate (ATP) and adenosine—emerge as promising candidates to “re-normalize” synaptic function by combining direct synaptic effects with an ability to also control astrocyte and microglia function. This proposed triple action of purines to control aberrant synaptic function illustrates the rationale to consider the interference with glia dysfunction as a mechanism of action driving the design of future pharmacological tools to manage depression.
Collapse
Affiliation(s)
- Daniel Rial
- CNC - Center for Neuroscience and Cell Biology, University of CoimbraCoimbra, Portugal; Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SCBrazil
| | - Cristina Lemos
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra Coimbra, Portugal
| | - Helena Pinheiro
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra Coimbra, Portugal
| | - Joana M Duarte
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra Coimbra, Portugal
| | - Francisco Q Gonçalves
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra Coimbra, Portugal
| | - Joana I Real
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra Coimbra, Portugal
| | - Rui D Prediger
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC Brazil
| | - Nélio Gonçalves
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra Coimbra, Portugal
| | - Catarina A Gomes
- CNC - Center for Neuroscience and Cell Biology, University of CoimbraCoimbra, Portugal; Faculty of Medicine, University of CoimbraCoimbra, Portugal
| | - Paula M Canas
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra Coimbra, Portugal
| | - Paula Agostinho
- CNC - Center for Neuroscience and Cell Biology, University of CoimbraCoimbra, Portugal; Faculty of Medicine, University of CoimbraCoimbra, Portugal
| | - Rodrigo A Cunha
- CNC - Center for Neuroscience and Cell Biology, University of CoimbraCoimbra, Portugal; Faculty of Medicine, University of CoimbraCoimbra, Portugal
| |
Collapse
|
145
|
Hristovska I, Pascual O. Deciphering Resting Microglial Morphology and Process Motility from a Synaptic Prospect. Front Integr Neurosci 2016; 9:73. [PMID: 26834588 PMCID: PMC4717304 DOI: 10.3389/fnint.2015.00073] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/21/2015] [Indexed: 12/31/2022] Open
Abstract
Microglia, the resident immune cells of the central nervous system (CNS), were traditionally believed to be set into action only in case of injury or disease. Accordingly, microglia were assumed to be inactive or resting in the healthy brain. However, recent studies revealed that microglia carry out active tissue sampling in the intact brain by extending and retracting their ramified processes while periodically contacting synapses. Microglial morphology and motility as well as the frequency and duration of physical contacts with synaptic elements were found to be modulated by neuronal activity, sensory experience and neurotransmission; however findings have not been straightforward. Microglial cells are the most morphologically plastic element of the CNS. This unique feature confers them the possibility to locally sense activity, and to respond adequately by establishing synaptic contacts to regulate synaptic inputs by the secretion of signaling molecules. Indeed, microglial cells can hold new roles as critical players in maintaining brain homeostasis and regulating synaptic number, maturation and plasticity. For this reason, a better characterization of microglial cells and cues mediating neuron-to-microglia communication under physiological conditions may help advance our understanding of the microglial behavior and its regulation in the healthy brain. This review highlights recent findings on the instructive role of neuronal activity on microglial motility and microglia-synapse interactions, focusing on the main transmitters involved in this communication and including newly described communication at the tripartite synapse.
Collapse
Affiliation(s)
- Ines Hristovska
- INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research CenterLyon, France; Université Claude Bernard Lyon 1Lyon, France
| | - Olivier Pascual
- INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research CenterLyon, France; Université Claude Bernard Lyon 1Lyon, France
| |
Collapse
|
146
|
von Bernhardi R, Eugenín-von Bernhardi J, Flores B, Eugenín León J. Glial Cells and Integrity of the Nervous System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 949:1-24. [PMID: 27714682 DOI: 10.1007/978-3-319-40764-7_1] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Today, there is enormous progress in understanding the function of glial cells, including astroglia, oligodendroglia, Schwann cells, and microglia. Around 150 years ago, glia were viewed as a glue among neurons. During the course of the twentieth century, microglia were discovered and neuroscientists' views evolved toward considering glia only as auxiliary cells of neurons. However, over the last two to three decades, glial cells' importance has been reconsidered because of the evidence on their involvement in defining central nervous system architecture, brain metabolism, the survival of neurons, development and modulation of synaptic transmission, propagation of nerve impulses, and many other physiological functions. Furthermore, increasing evidence shows that glia are involved in the mechanisms of a broad spectrum of pathologies of the nervous system, including some psychiatric diseases, epilepsy, and neurodegenerative diseases to mention a few. It appears safe to say that no neurological disease can be understood without considering neuron-glia crosstalk. Thus, this book aims to show different roles played by glia in the healthy and diseased nervous system, highlighting some of their properties while considering that the various glial cell types are essential components not only for cell function and integration among neurons, but also for the emergence of important brain homeostasis.
Collapse
Affiliation(s)
- Rommy von Bernhardi
- Department of Neurology, School of Medicine, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile.
| | - Jaime Eugenín-von Bernhardi
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University, Pettenkoferstr.12, 80336, Munich, Germany.,Graduate School of Systemic Neuroscience, Ludwig-Maximilians-University, 82152, Planegg-Martinsried, Munich, Germany
| | - Betsi Flores
- Department of Neurology, School of Medicine, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Jaime Eugenín León
- Department of Biology, Faculty of Chemistry and Biology, USACH, Santiago, Chile
| |
Collapse
|