101
|
Cheng C, Feng S, Jiao J, Huang W, Huang J, Wang L, Jiang W, Jiang C, Dai M, Li Z, Zhang R, Sun J, Shao J. DLC2 inhibits development of glioma through regulating the expression ratio of TAp73α/TAp73β. Am J Cancer Res 2018; 8:1200-1213. [PMID: 30094094 PMCID: PMC6079157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 05/04/2018] [Indexed: 06/08/2023] Open
Abstract
To date, the anti-tumor mechanism of the deleted in liver cancer 2 (DLC2) in gliomas is still unclear. The study shows that TAp73α expression and TAp73α/TAp73β ratio are frequently high in gliomas and that TAp73α and TAp73β have opposite roles in regulating proliferation and apoptosis of glioma cells. Moreover, DLC2 is low-expressed in gliomas, which negatively correlates with TAp73α expression and TAp73α/TAp73β ratio. More importantly, DLC2 inhibits development of glioma by decreasing expression of TAp73α, which changes the expression ratio of TAp73α/TAp73β in glioma cells. Mechanically, DLC2 interacts directly with TAp73α and induces TAp73α ubiquitination and degradation, which is mediated through SAM domain of DLC2 and TAp73α. In detail, DLC2 with SAM domain deletion fails to interact with TAp73α and induce TAp73α ubiquitination and degradation, and SAM deletion decreased tumorigenesis-inhibition effect of DLC2. In conclusion, DLC2 inhibits glioma development by inducing TAp73α degradation and subsequent change of TAp73α/TAp73β expression ratio.
Collapse
Affiliation(s)
- Chao Cheng
- Department of Neurosurgery, Wuxi People’s Hospital of Nanjing Medical UniversityWuxi 214023, Jiangsu, China
| | - Suyin Feng
- Department of Neurosurgery, Wuxi People’s Hospital of Nanjing Medical UniversityWuxi 214023, Jiangsu, China
| | - Jiantong Jiao
- Department of Neurosurgery, Wuxi People’s Hospital of Nanjing Medical UniversityWuxi 214023, Jiangsu, China
| | - Weiyi Huang
- Department of Neurosurgery, Wuxi People’s Hospital of Nanjing Medical UniversityWuxi 214023, Jiangsu, China
| | - Jin Huang
- Department of Neurosurgery, Wuxi People’s Hospital of Nanjing Medical UniversityWuxi 214023, Jiangsu, China
| | - Long Wang
- Department of Neurosurgery, Peace Hospital of Changzhi Medical CollegeChangzhi 046000, Shanxi, China
| | - Wei Jiang
- Department of Neurosurgery, Changzhou Wujin People’s Hospital of Jiangsu UniversityChangzhou 213100, Jiangsu, China
| | - Chen Jiang
- Department of Neurosurgery, Wuxi People’s Hospital of Nanjing Medical UniversityWuxi 214023, Jiangsu, China
| | - Minchao Dai
- Department of Neurosurgery, Wuxi People’s Hospital of Nanjing Medical UniversityWuxi 214023, Jiangsu, China
| | - Zheng Li
- Department of Neurosurgery, Wuxi People’s Hospital of Nanjing Medical UniversityWuxi 214023, Jiangsu, China
| | - Rui Zhang
- Department of Neurosurgery, Wuxi People’s Hospital of Nanjing Medical UniversityWuxi 214023, Jiangsu, China
| | - Jun Sun
- Department of Neurosurgery, Wuxi People’s Hospital of Nanjing Medical UniversityWuxi 214023, Jiangsu, China
| | - Junfei Shao
- Department of Neurosurgery, Wuxi People’s Hospital of Nanjing Medical UniversityWuxi 214023, Jiangsu, China
| |
Collapse
|
102
|
Perricone U, Gulotta MR, Lombino J, Parrino B, Cascioferro S, Diana P, Cirrincione G, Padova A. An overview of recent molecular dynamics applications as medicinal chemistry tools for the undruggable site challenge. MEDCHEMCOMM 2018; 9:920-936. [PMID: 30108981 PMCID: PMC6072422 DOI: 10.1039/c8md00166a] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 04/19/2018] [Indexed: 12/14/2022]
Abstract
Molecular dynamics (MD) has become increasingly popular due to the development of hardware and software solutions and the improvement in algorithms, which allowed researchers to scale up calculations in order to speed them up. MD simulations are usually used to address protein folding issues or protein-ligand complex stability through energy profile analysis over time. In recent years, the development of new tools able to deeply explore a potential energy surface (PES) has allowed researchers to focus on the dynamic nature of the binding recognition process and binding-induced protein conformational changes. Moreover, modern approaches have been demonstrated to be effective and reliable in calculating some kinetic and thermodynamic parameters behind the host-guest recognition process. Starting from all of these considerations, several efforts have been made in order to integrate MD within the virtual screening process in drug discovery. Knowledge retrieved from MD can, in fact, be exploited as a starting point to build pharmacophores or docking constraints in the early stage of the screening campaign as well as to define key features, in order to unravel hidden binding modes and help the optimisation of the molecular structure of a lead compound. Based on these outcomes, researchers are nowadays using MD as an invaluable tool to discover and target previously considered undruggable binding sites, including protein-protein interactions and allosteric sites on a protein surface. As a matter of fact, the use of MD has been recognised as vital to the discovery of selective protein-protein interaction modulators. The use of a dynamic overview on how the host-guest recognition occurs and of the relative conformational modifications induced allows researchers to optimise small molecules and small peptides capable of tightly interacting within the cleft between two proteins. In this review, we aim to present the most recent applications of MD as an integrated tool to be used in the rational design of small molecules or small peptides able to modulate undruggable targets, such as allosteric sites and protein-protein interactions.
Collapse
Affiliation(s)
- Ugo Perricone
- Computational and Medicinal Chemistry Group , Fondazione Ri.MED , Via Bandiera 11 , 90133 Palermo , Italy .
| | - Maria Rita Gulotta
- Computational and Medicinal Chemistry Group , Fondazione Ri.MED , Via Bandiera 11 , 90133 Palermo , Italy .
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF) , Università degli Studi di Palermo , Via Archirafi 32 , 90123 Palermo , Italy
| | - Jessica Lombino
- Computational and Medicinal Chemistry Group , Fondazione Ri.MED , Via Bandiera 11 , 90133 Palermo , Italy .
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF) , Università degli Studi di Palermo , Via Archirafi 32 , 90123 Palermo , Italy
| | - Barbara Parrino
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF) , Università degli Studi di Palermo , Via Archirafi 32 , 90123 Palermo , Italy
| | - Stella Cascioferro
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF) , Università degli Studi di Palermo , Via Archirafi 32 , 90123 Palermo , Italy
| | - Patrizia Diana
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF) , Università degli Studi di Palermo , Via Archirafi 32 , 90123 Palermo , Italy
| | - Girolamo Cirrincione
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF) , Università degli Studi di Palermo , Via Archirafi 32 , 90123 Palermo , Italy
| | - Alessandro Padova
- Computational and Medicinal Chemistry Group , Fondazione Ri.MED , Via Bandiera 11 , 90133 Palermo , Italy .
| |
Collapse
|
103
|
Ciudad S, Bayó-Puxán N, Varese M, Seco J, Teixidó M, García J, Giralt E. ‘À La Carte’ Cyclic Hexapeptides: Fine Tuning Conformational Diversity while Preserving the Peptide Scaffold. ChemistrySelect 2018. [DOI: 10.1002/slct.201800254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Sonia Ciudad
- Institute for Research in Biomedicine (IRB Barcelona); Barcelona Institute of Science and Technology; Baldiri Reixac, 10 08028 Barcelona Spain
| | - Núria Bayó-Puxán
- Institute for Research in Biomedicine (IRB Barcelona); Barcelona Institute of Science and Technology; Baldiri Reixac, 10 08028 Barcelona Spain
| | - Monica Varese
- Institute for Research in Biomedicine (IRB Barcelona); Barcelona Institute of Science and Technology; Baldiri Reixac, 10 08028 Barcelona Spain
| | - Jesús Seco
- Institute for Research in Biomedicine (IRB Barcelona); Barcelona Institute of Science and Technology; Baldiri Reixac, 10 08028 Barcelona Spain
| | - Meritxell Teixidó
- Institute for Research in Biomedicine (IRB Barcelona); Barcelona Institute of Science and Technology; Baldiri Reixac, 10 08028 Barcelona Spain
| | - Jesús García
- Institute for Research in Biomedicine (IRB Barcelona); Barcelona Institute of Science and Technology; Baldiri Reixac, 10 08028 Barcelona Spain
| | - Ernest Giralt
- Institute for Research in Biomedicine (IRB Barcelona); Barcelona Institute of Science and Technology; Baldiri Reixac, 10 08028 Barcelona Spain
- Department of Inorganic and Organic Chemistry; University of; Barcelona Spain
| |
Collapse
|
104
|
Wang Z, Kang Y, Li D, Sun H, Dong X, Yao X, Xu L, Chang S, Li Y, Hou T. Benchmark Study Based on 2P2I DB to Gain Insights into the Discovery of Small-Molecule PPI Inhibitors. J Phys Chem B 2018; 122:2544-2555. [PMID: 29420886 DOI: 10.1021/acs.jpcb.7b12658] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Protein-protein interactions (PPIs) have been regarded as novel and highly promising drug targets in drug discovery. Numerous new experimental techniques and computational approaches have been developed to assist the design of PPI modulators during the past two decades. However, identification and optimization of small-molecule inhibitors targeting PPIs is still a particularly challenging task due to the "undruggable" profiles of PPI interfaces. Nowadays, in silico screening, especially docking-based virtual screening, has emerged as an effective method to complement experimental high-throughput screening in identifying novel and potent small-molecule PPI inhibitors. Here, on the basis of the 2P2IDB database, we explored the structural features of the known small-molecule PPI inhibitors and analyzed the characteristics of the PPI binding pockets. More importantly, we evaluated the sampling power and screening power of six popular docking programs for PPI targets. Our results indicate that the chlorinated conjugate group and amidelike linkage are two types of privileged fragments of PPI inhibitors; the average druggability of the binding sites of the PPI targets in 2P2IDB is slightly worse than that of traditional ones; both academic and commercial docking programs exhibit an acceptable accuracy on pose prediction for PPI inhibitors, but their screening powers for identifying PPI inhibitors are still not satisfactory. It is expected that our work can provide valuable guidance on the construction of PPI-focused library, the determination of druggable PPI binding pocket, and the selection of docking program for the screening of small-molecule PPI inhibitors.
Collapse
Affiliation(s)
- Zhe Wang
- College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , Zhejiang 310058 , China
| | - Yu Kang
- College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , Zhejiang 310058 , China
| | - Dan Li
- College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , Zhejiang 310058 , China
| | - Huiyong Sun
- College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , Zhejiang 310058 , China
| | - Xiaowu Dong
- College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , Zhejiang 310058 , China
| | - Xiaojun Yao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health , Macau University of Science and Technology , Avenida Wai Long , Taipa , Macau (SAR) , China
| | - Lei Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering , Jiangsu University of Technology , Changzhou 213001 , China
| | - Shan Chang
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering , Jiangsu University of Technology , Changzhou 213001 , China
| | - Youyong Li
- Institute of Functional Nano and Soft Materials (FUNSOM) , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Tingjun Hou
- College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , Zhejiang 310058 , China
| |
Collapse
|
105
|
The Biological Properties and Potential Interacting Proteins of d-Alanyl-d-alanine Ligase A from Mycobacterium tuberculosis. Molecules 2018; 23:molecules23020324. [PMID: 29401644 PMCID: PMC6017538 DOI: 10.3390/molecules23020324] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 01/23/2018] [Accepted: 02/01/2018] [Indexed: 12/12/2022] Open
Abstract
(1) Background: d-alanine-d-alanine ligase (DdlA), an effective target for drug development to combat against Mycobacterium tuberculosis (Mtb), which threatens human health globally, supplies a substrate of d-alanyl-d-alanine for peptidoglycan crosslinking by catalyzing the dimerization of two d-alanines. To obtain a better understanding of DdlA profiles and develop a colorimetric assay for high-throughput inhibitor screening, we focused on explicating and characterizing Tb-DdlA. (2) Methods and Results: Rv2981c (ddlA) was expressed in Escherichia coli, and the purified Tb-DdlA was identified using (anti)-polyhistidine antibody followed by DdlA activity confirmation by measuring the released orthophosphate via colorimetric assay and the yielded d-alanyl-d-alanine through high performance thin layer chromatography (HP-TLC). The kinetic assays on Tb-DdlA indicated that Tb-DdlA exhibited a higher affinity to ATP (KmATP: 50.327 ± 4.652 μmol/L) than alanine (KmAla: 1.011 ± 0.094 mmol/L). A colorimetric assay for Tb-DdlA activity was developed for high-throughput screening of DdlA inhibitors in this study. In addition, we presented an analysis on Tb-DdlA interaction partners by pull-down assay and MS/MS. Eight putative interaction partners of Tb-DdlA were identified. (3) Conclusions: Our dataset provided a valuable resource for exploring Tb-DdlA biology, and developed an easy colorimetric assay for screening of Tb-DdlA inhibitors.
Collapse
|
106
|
Sugiki T, Furuita K, Fujiwara T, Kojima C. Current NMR Techniques for Structure-Based Drug Discovery. Molecules 2018; 23:molecules23010148. [PMID: 29329228 PMCID: PMC6017608 DOI: 10.3390/molecules23010148] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/28/2017] [Accepted: 01/09/2018] [Indexed: 12/22/2022] Open
Abstract
A variety of nuclear magnetic resonance (NMR) applications have been developed for structure-based drug discovery (SBDD). NMR provides many advantages over other methods, such as the ability to directly observe chemical compounds and target biomolecules, and to be used for ligand-based and protein-based approaches. NMR can also provide important information about the interactions in a protein-ligand complex, such as structure, dynamics, and affinity, even when the interaction is too weak to be detected by ELISA or fluorescence resonance energy transfer (FRET)-based high-throughput screening (HTS) or to be crystalized. In this study, we reviewed current NMR techniques. We focused on recent progress in NMR measurement and sample preparation techniques that have expanded the potential of NMR-based SBDD, such as fluorine NMR (19F-NMR) screening, structure modeling of weak complexes, and site-specific isotope labeling of challenging targets.
Collapse
Affiliation(s)
- Toshihiko Sugiki
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan.
| | - Kyoko Furuita
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan.
| | | | - Chojiro Kojima
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan.
- Graduate School of Engineering, Yokohama National University, Yokohama 240-8501, Japan.
| |
Collapse
|
107
|
Alihodžić S, Bukvić M, Elenkov IJ, Hutinec A, Koštrun S, Pešić D, Saxty G, Tomašković L, Žiher D. Current Trends in Macrocyclic Drug Discovery and beyond -Ro5. PROGRESS IN MEDICINAL CHEMISTRY 2018; 57:113-233. [DOI: 10.1016/bs.pmch.2018.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
108
|
Peptide Derivatives of Erythropoietin in the Treatment of Neuroinflammation and Neurodegeneration. THERAPEUTIC PROTEINS AND PEPTIDES 2018; 112:309-357. [DOI: 10.1016/bs.apcsb.2018.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
109
|
Collaborative routes to clarifying the murky waters of aqueous supramolecular chemistry. Nat Chem 2017; 10:8-16. [DOI: 10.1038/nchem.2894] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 10/20/2017] [Indexed: 12/19/2022]
|
110
|
Affimer proteins inhibit immune complex binding to FcγRIIIa with high specificity through competitive and allosteric modes of action. Proc Natl Acad Sci U S A 2017; 115:E72-E81. [PMID: 29247053 DOI: 10.1073/pnas.1707856115] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Protein-protein interactions are essential for the control of cellular functions and are critical for regulation of the immune system. One example is the binding of Fc regions of IgG to the Fc gamma receptors (FcγRs). High sequence identity (98%) between the genes encoding FcγRIIIa (expressed on macrophages and natural killer cells) and FcγRIIIb (expressed on neutrophils) has prevented the development of monospecific agents against these therapeutic targets. We now report the identification of FcγRIIIa-specific artificial binding proteins called "Affimer" that block IgG binding and abrogate FcγRIIIa-mediated downstream effector functions in macrophages, namely TNF release and phagocytosis. Cocrystal structures and molecular dynamics simulations have revealed the structural basis of this specificity for two Affimer proteins: One binds directly to the Fc binding site, whereas the other acts allosterically.
Collapse
|
111
|
Maubach G, Schmädicke AC, Naumann M. NEMO Links Nuclear Factor-κB to Human Diseases. Trends Mol Med 2017; 23:1138-1155. [PMID: 29128367 DOI: 10.1016/j.molmed.2017.10.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/16/2017] [Accepted: 10/19/2017] [Indexed: 12/13/2022]
Abstract
The nuclear factor (NF)-κB essential modulator (NEMO) is a key regulator in NF-κB-mediated signaling. By transmitting extracellular or intracellular signals, NEMO can control NF-κB-regulated genes. NEMO dysfunction is associated with inherited diseases such as incontinentia pigmenti (IP), ectodermal dysplasia, anhidrotic, with immunodeficiency (EDA-ID), and some cancers. We focus on molecular studies, human case reports, and mouse models emphasizing the significance of NEMO molecular interactions and modifications in health and diseases. This knowledge opens new opportunities to engineer suitable drugs that may putatively target precise NEMO functions attributable to various diseases, while leaving other functions intact, and eliminating cytotoxicity. Indeed, with the advent of novel gene editing tools such as clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas)9, treating some inherited diseases may in the long run, become a reality.
Collapse
Affiliation(s)
- Gunter Maubach
- Institute of Experimental Internal Medicine, Otto von Guericke University, Magdeburg, Germany
| | - Ann-Christin Schmädicke
- Institute of Experimental Internal Medicine, Otto von Guericke University, Magdeburg, Germany
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Otto von Guericke University, Magdeburg, Germany.
| |
Collapse
|
112
|
Watkins AM, Craven TW, Renfrew PD, Arora PS, Bonneau R. Rotamer Libraries for the High-Resolution Design of β-Amino Acid Foldamers. Structure 2017; 25:1771-1780.e3. [PMID: 29033287 PMCID: PMC5845441 DOI: 10.1016/j.str.2017.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 06/21/2017] [Accepted: 09/14/2017] [Indexed: 01/28/2023]
Abstract
β-Amino acids offer attractive opportunities to develop biologically active peptidomimetics, either employed alone or in conjunction with natural α-amino acids. Owing to their potential for unique conformational preferences that deviate considerably from α-peptide geometries, β-amino acids greatly expand the possible chemistries and physical properties available to polyamide foldamers. Complete in silico support for designing new molecules incorporating non-natural amino acids typically requires representing their side-chain conformations as sets of discrete rotamers for model refinement and sequence optimization. Such rotamer libraries are key components of several state-of-the-art design frameworks. Here we report the development, incorporation in to the Rosetta macromolecular modeling suite, and validation of rotamer libraries for β3-amino acids.
Collapse
Affiliation(s)
- Andrew M Watkins
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Timothy W Craven
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10009, USA; Institute for Protein Design, University of Washington, Seattle, WA 98102, USA
| | - P Douglas Renfrew
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10009, USA; Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY 10010, USA
| | - Paramjit S Arora
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Richard Bonneau
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10009, USA; Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY 10010, USA; Courant Institute of Mathematical Sciences, Computer Science Department, New York University, New York, NY 10009, USA.
| |
Collapse
|
113
|
Bruzzoni-Giovanelli H, Alezra V, Wolff N, Dong CZ, Tuffery P, Rebollo A. Interfering peptides targeting protein-protein interactions: the next generation of drugs? Drug Discov Today 2017; 23:272-285. [PMID: 29097277 DOI: 10.1016/j.drudis.2017.10.016] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/22/2017] [Accepted: 10/17/2017] [Indexed: 12/28/2022]
Abstract
Protein-protein interactions (PPIs) are well recognized as promising therapeutic targets. Consequently, interfering peptides (IPs) - natural or synthetic peptides capable of interfering with PPIs - are receiving increasing attention. Given their physicochemical characteristics, IPs seem better suited than small molecules to interfere with the large surfaces implicated in PPIs. Progress on peptide administration, stability, biodelivery and safety are also encouraging the interest in peptide drug development. The concept of IPs has been validated for several PPIs, generating great expectations for their therapeutic potential. Here, we describe approaches and methods useful for IPs identification and in silico, physicochemical and biological-based strategies for their design and optimization. Selected promising in-vivo-validated examples are described and advantages, limitations and potential of IPs as therapeutic tools are discussed.
Collapse
Affiliation(s)
- Heriberto Bruzzoni-Giovanelli
- Université Paris 7 Denis Diderot, Université Sorbonne Paris Cité, Paris, France; UMRS 1160 Inserm, Paris, France; Centre d'Investigation Clinique 1427 Inserm/AP-HP Hôpital Saint Louis, Paris, France
| | - Valerie Alezra
- Université Paris-Sud, Laboratoire de Méthodologie, Synthèse et Molécules Thérapeutiques, ICMMO, UMR 8182, CNRS, Université Paris-Saclay, Faculté des Sciences d'Orsay, France
| | - Nicolas Wolff
- Unité de Résonance Magnétique Nucléaire des Biomolécules, CNRS, UMR 3528, Institut Pasteur, F-75015 Paris, France
| | - Chang-Zhi Dong
- Université Paris 7 Denis Diderot, Université Sorbonne Paris Cité, Paris, France; ITODYS, UMR 7086 CNRS, Paris, France
| | - Pierre Tuffery
- Université Paris 7 Denis Diderot, Université Sorbonne Paris Cité, Paris, France; Inserm UMR-S 973, RPBS, Paris, France
| | - Angelita Rebollo
- CIMI Paris, UPMC, Inserm U1135, Hôpital Pitié Salpétrière, Paris, France.
| |
Collapse
|
114
|
Tiwari S, Awasthi M, Singh S, Pandey VP, Dwivedi UN. Modulation of interaction of mutant TP53 and wild type BRCA1 by alkaloids: a computational approach towards targeting protein-protein interaction as a futuristic therapeutic intervention strategy for breast cancer impediment. J Biomol Struct Dyn 2017; 36:3376-3387. [PMID: 28978265 DOI: 10.1080/07391102.2017.1388286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Protein-protein interactions (PPI) are a new emerging class of novel therapeutic targets. In order to probe these interactions, computational tools provide a convenient and quick method towards the development of therapeutics. Keeping this in view the present study was initiated to analyse interaction of tumour suppressor protein p53 (TP53) and breast cancer associated protein (BRCA1) as promising target against breast cancer. Using computational approaches such as protein-protein docking, hot spot analyses, molecular docking and molecular dynamics simulation (MDS), stepwise analyses of the interactions of the wild type and mutant TP53 with that of wild type BRCA1 and their modulation by alkaloids were done. Protein-protein docking method was used to generate both wild type and mutant complexes of TP53-BRCA1. Subsequently, the complexes were docked using sixteen different alkaloids, fulfilling ADMET and Lipinski's rule of five criteria, and were compared with that of a well-known inhibitor of PPI, namely nutlin. The alkaloid dicentrine was found to be the best docked alkaloid among all the docked alklaloids as well as that of nutlin. Furthermore, MDS analyses of both wild type and mutant complexes with the best docked alkaloid i.e. dicentrine, revealed higher stability of mutant complex than that of the wild one, in terms of average RMSD, RMSF and binding free energy, corroborating the results of docking. Results suggested more pronounced interaction of BRCA1 with mutant TP53 leading to increased expression of mutated TP53 thus showing a dominant negative gain of function and hampering wild type TP53 function leading to tumour progression.
Collapse
Affiliation(s)
- Sameeksha Tiwari
- a Department of Biochemistry, Centre of Excellence in Bioinformatics, Bioinformatics Infrastructure Facility , University of Lucknow , Lucknow , 226007 , UP , India
| | - Manika Awasthi
- a Department of Biochemistry, Centre of Excellence in Bioinformatics, Bioinformatics Infrastructure Facility , University of Lucknow , Lucknow , 226007 , UP , India
| | - Swati Singh
- a Department of Biochemistry, Centre of Excellence in Bioinformatics, Bioinformatics Infrastructure Facility , University of Lucknow , Lucknow , 226007 , UP , India
| | - Veda P Pandey
- a Department of Biochemistry, Centre of Excellence in Bioinformatics, Bioinformatics Infrastructure Facility , University of Lucknow , Lucknow , 226007 , UP , India
| | - Upendra N Dwivedi
- a Department of Biochemistry, Centre of Excellence in Bioinformatics, Bioinformatics Infrastructure Facility , University of Lucknow , Lucknow , 226007 , UP , India
| |
Collapse
|
115
|
Sønderby P, Rinnan Å, Madsen JJ, Harris P, Bukrinski JT, Peters GHJ. Small-Angle X-ray Scattering Data in Combination with RosettaDock Improves the Docking Energy Landscape. J Chem Inf Model 2017; 57:2463-2475. [DOI: 10.1021/acs.jcim.6b00789] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Pernille Sønderby
- Department
of Chemistry, Technical University of Denmark, DK-2800 Kongens
Lyngby, Denmark
| | - Åsmund Rinnan
- Department
of Food Science, Faculty of Science, University of Copenhagen, DK-1958 Frederiksberg C, Denmark
| | - Jesper J. Madsen
- Department
of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Pernille Harris
- Department
of Chemistry, Technical University of Denmark, DK-2800 Kongens
Lyngby, Denmark
| | | | - Günther H. J. Peters
- Department
of Chemistry, Technical University of Denmark, DK-2800 Kongens
Lyngby, Denmark
| |
Collapse
|
116
|
Pu J, Dewey JA, Hadji A, LaBelle JL, Dickinson BC. RNA Polymerase Tags To Monitor Multidimensional Protein-Protein Interactions Reveal Pharmacological Engagement of Bcl-2 Proteins. J Am Chem Soc 2017; 139:11964-11972. [PMID: 28767232 PMCID: PMC5828006 DOI: 10.1021/jacs.7b06152] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We report the development of a new technology for monitoring multidimensional protein-protein interactions (PPIs) inside live mammalian cells using split RNA polymerase (RNAP) tags. In this new system, a protein-of-interest is tagged with an N-terminal split RNAP (RNAPN), and multiple potential binding partners are each fused to orthogonal C-terminal RNAPs (RNAPC). Assembly of RNAPN with each RNAPC is highly dependent on interactions between the tagged proteins. Each PPI-mediated RNAPN-RNAPC assembly transcribes from a separate promoter on a supplied DNA substrate, thereby generating a unique RNA output signal for each PPI. We develop and validate this new approach in the context of the Bcl-2 family of proteins. These key regulators of apoptosis are important cancer mediators, but are challenging to therapeutically target due to imperfect selectivity that leads to either off-target toxicity or tumor resistance. We demonstrate binary (1 × 1) and ternary (1 × 2) Bcl-2 PPI analyses by imaging fluorescent protein translation from mRNA outputs. Next, we perform a 1 × 4 PPI network analysis by direct measurement of four unique RNA signals via RT-qPCR. Finally, we use these new tools to monitor pharmacological engagement of Bcl-2 protein inhibitors, and uncover inhibitor-dependent competitive PPIs. The split RNAP tags improve upon other protein fragment complementation (PFC) approaches by offering both multidimensionality and sensitive detection using nucleic acid amplification and analysis techniques. Furthermore, this technology opens new opportunities for synthetic biology applications due to the versatility of RNA outputs for cellular engineering applications.
Collapse
Affiliation(s)
- Jinyue Pu
- Department of Chemistry, The University of Chicago, Chicago, IL 60637
| | - Jeffrey A. Dewey
- Department of Chemistry, The University of Chicago, Chicago, IL 60637
| | - Abbas Hadji
- Section of Hematology, Oncology, Stem Cell Transplantation, Department of Pediatrics, The University of Chicago, Comer Children’s Hospital, Chicago, IL, 60637
| | - James L. LaBelle
- Section of Hematology, Oncology, Stem Cell Transplantation, Department of Pediatrics, The University of Chicago, Comer Children’s Hospital, Chicago, IL, 60637
| | | |
Collapse
|
117
|
Exploiting a novel conformational switch to control innate immunity mediated by complement protein C3a. Nat Commun 2017; 8:351. [PMID: 28839129 PMCID: PMC5570900 DOI: 10.1038/s41467-017-00414-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 06/28/2017] [Indexed: 01/02/2023] Open
Abstract
Complement C3a is an important protein in innate and adaptive immunity, but its specific roles in vivo remain uncertain because C3a degrades rapidly to form the C3a-desArg protein, which does not bind to the C3a receptor and is indistinguishable from C3a using antibodies. Here we develop the most potent, stable and highly selective small molecule modulators of C3a receptor, using a heterocyclic hinge to switch between agonist and antagonist ligand conformations. This enables characterization of C3 areceptor-selective pro- vs. anti-inflammatory actions in human mast cells and macrophages, and in rats. A C3a receptor-selective agonist induces acute rat paw inflammation by first degranulating mast cells before activating macrophages and neutrophils. An orally administered C3a receptor-selective antagonist inhibits mast cell degranulation, thereby blocking recruitment and activation of macrophages and neutrophils, expression of inflammatory mediators and inflammation in a rat paw edema model. These novel tools reveal the mechanism of C3a-induced inflammation and provide new insights to complement-based medicines. Complement C3a is an important protein in innate and adaptive immunity, but its roles in vivo are unclear. Here the authors develop novel chemical agonists and antagonists for the C3a receptor, and show that they modulate mast cell degranulation and inflammation in a rat paw edema model
Collapse
|
118
|
Abstract
A large body of evidence indicates that genome annotation pipelines have biased our view of coding sequences because they generally undersample small proteins and peptides. The recent development of genome-wide translation profiling reveals the prevalence of small/short open reading frames (smORFs or sORFs), which are scattered over all classes of transcripts, including both mRNAs and presumptive long noncoding RNAs. Proteomic approaches further confirm an unexpected variety of smORF-encoded peptides (SEPs), representing an overlooked reservoir of bioactive molecules. Indeed, functional studies in a broad range of species from yeast to humans demonstrate that SEPs can harbor key activities for the control of development, differentiation, and physiology. Here we summarize recent advances in the discovery and functional characterization of smORF/SEPs and discuss why these small players can no longer be ignored with regard to genome function.
Collapse
Affiliation(s)
- Serge Plaza
- Laboratoire de Recherches en Sciences Végétales, Université de Toulouse, Université Paul Sabatier, 31326 Castanet Tolosan, France; .,CNRS, UMR5546, Laboratoire de Recherches en Sciences Végétales, 31326 Castanet Tolosan, France
| | - Gerben Menschaert
- Department of Mathematical Modeling, Statistics and Bioinformatics, University of Ghent, 9000 Gent, Belgium
| | - François Payre
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, CNRS, Université Paul Sabatier, 31062 Toulouse, France;
| |
Collapse
|
119
|
Cossar P, Abdel-Hamid MK, Ma C, Sakoff JA, Trinh TN, Gordon CP, Lewis PJ, McCluskey A. Small-Molecule Inhibitors of the NusB-NusE Protein-Protein Interaction with Antibiotic Activity. ACS OMEGA 2017; 2:3839-3857. [PMID: 30023707 PMCID: PMC6044933 DOI: 10.1021/acsomega.7b00273] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 06/29/2017] [Indexed: 06/08/2023]
Abstract
The NusB-NusE protein-protein interaction (PPI) is critical to the formation of stable antitermination complexes required for stable RNA transcription in all bacteria. This PPI is an emerging antibacterial drug target. Pharmacophore-based screening of the mini-Maybridge compound library (56 000 molecules) identified N,N'-[1,4-butanediylbis(oxy-4,1-phenylene)]bis(N-ethyl)urea 1 as a lead of interest. Competitive enzyme-linked immunosorbent assay screening validated 1 as a 20 μM potent inhibitor of NusB-NusE. Four focused compound libraries based on 1, comprising 34 compounds in total were designed, synthesized, and evaluated as NusB-NusE PPI inhibitors. Ten analogues displayed NusB-NusE PPI inhibition ≥50% at 25 μM concentration in vitro. In contrast to representative Gram-negative Escherichia coli and Gram-positive Bacillus subtilis species, these analogues showed up to 100% growth inhibition at 200 μM. 2-((Z)-4-(((Z)-4-(4-((E)-(Carbamimidoylimino)methyl)phenoxy)but-2-en-1-yl)oxy)benzylidene)hydrazine-1-carboximidamide 22 showed excellent activity against important pathogens. With minimum inhibitory concentration values of ≤3 μg/mL for Gram-positive Streptococcus pneumoniae and methicillin-resistant Staphylococcus aureus and ≤51 μg/mL for Gram-negative Pseudomonas aeruginosa and Acinetobacter baumannii, 22 is a potent lead for a novel antibacterial target. Epifluorescence studies in live bacteria were consistent with 22, inhibiting the NusB-NusE PPI as proposed.
Collapse
Affiliation(s)
- Peter
J. Cossar
- Chemistry,
School of Environmental & Life Sciences and Biology, Centre
for Chemical Biology and Clinical Pharmacology, School of Environmental
& Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Mohammed K. Abdel-Hamid
- Chemistry,
School of Environmental & Life Sciences and Biology, Centre
for Chemical Biology and Clinical Pharmacology, School of Environmental
& Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
- Department
of Medicinal Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Cong Ma
- Chemistry,
School of Environmental & Life Sciences and Biology, Centre
for Chemical Biology and Clinical Pharmacology, School of Environmental
& Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Jennette A. Sakoff
- Experimental
Therapeutics Group, Department of Medical Oncology, Calvary Mater Newcastle Hospital, Edith Street, Waratah, NSW 2298, Australia
| | - Trieu N. Trinh
- Chemistry,
School of Environmental & Life Sciences and Biology, Centre
for Chemical Biology and Clinical Pharmacology, School of Environmental
& Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Christopher P. Gordon
- Nanoscale
Organization and Dynamics Group, School of Science and Health, University of Western Sydney, Penrith South DC, NSW 2751, Australia
| | - Peter J. Lewis
- Chemistry,
School of Environmental & Life Sciences and Biology, Centre
for Chemical Biology and Clinical Pharmacology, School of Environmental
& Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Adam McCluskey
- Chemistry,
School of Environmental & Life Sciences and Biology, Centre
for Chemical Biology and Clinical Pharmacology, School of Environmental
& Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| |
Collapse
|
120
|
Protein-Protein Interaction Modulators for Epigenetic Therapies. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 110:65-84. [PMID: 29413000 DOI: 10.1016/bs.apcsb.2017.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Targeting protein-protein interactions (PPIs) is becoming an attractive approach for drug discovery. This is particularly true for difficult or emerging targets, such as epitargets that may be elusive to drugs that fall into the traditional chemical space. The chemical nature of the PPIs makes attractive the use of peptides or peptidomimetics to selectively modulate such interactions. Despite the fact peptide-based drug discovery has been challenging, the use of peptides as leads compounds for drug discovery is still a valid strategy. This chapter discusses the current status of PPIs in epigenetic drug discovery. A special emphasis is made on peptides and peptide-like compounds as potential drug candidates.
Collapse
|
121
|
Liu LJ, Wang W, Huang SY, Hong Y, Li G, Lin S, Tian J, Cai Z, Wang HMD, Ma DL, Leung CH. Inhibition of the Ras/Raf interaction and repression of renal cancer xenografts in vivo by an enantiomeric iridium(iii) metal-based compound. Chem Sci 2017; 8:4756-4763. [PMID: 28959398 PMCID: PMC5603957 DOI: 10.1039/c7sc00311k] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 05/08/2017] [Indexed: 01/09/2023] Open
Abstract
Targeting protein-protein interactions (PPIs) offers tantalizing opportunities for therapeutic intervention for the treatment of human diseases. Modulating PPI interfaces with organic small molecules has been found to be exceptionally challenging, and few candidates have been successfully developed into clinical drugs. Meanwhile, the striking array of distinctive properties exhibited by metal compounds renders them attractive scaffolds for the development of bioactive leads. Here, we report the identification of iridium(iii) compounds as inhibitors of the H-Ras/Raf-1 PPI. The lead iridium(iii) compound 1 exhibited potent inhibitory activity against the H-Ras/Raf-1 interaction and its signaling pathway in vitro and in vivo, and also directly engaged both H-Ras and Raf-1-RBD in cell lysates. Moreover, 1 repressed tumor growth in a mouse renal xenograft tumor model. Intriguingly, the Δ-enantiomer of 1 showed superior potency in the biological assays compared to Λ-1 or racemic 1. These compounds could potentially be used as starting scaffolds for the development of more potent Ras/Raf PPI inhibitors for the treatment of kidney cancer or other proliferative diseases.
Collapse
Affiliation(s)
- Li-Juan Liu
- State Key Laboratory of Quality Research in Chinese Medicine , Institute of Chinese Medical Sciences , University of Macau , Macao , China .
| | - Wanhe Wang
- Department of Chemistry , Hong Kong Baptist University , Kowloon Tong , Hong Kong , China .
| | - Shi-Ying Huang
- College of Oceanology and Food Science , Quanzhou Normal University , Quanzhou 362000 , China
- Key Laboratory for the Development of Bioactive Material from Marine Algae , Quanzhou 362000 , China
| | - Yanjun Hong
- Partner State Key Laboratory of Environmental and Biological Analysis , Department of Chemistry , Hong Kong Baptist University , 224 Waterloo Road , Kowloon Tong , Hong Kong SAR , P. R. China .
| | - Guodong Li
- State Key Laboratory of Quality Research in Chinese Medicine , Institute of Chinese Medical Sciences , University of Macau , Macao , China .
| | - Sheng Lin
- Department of Chemistry , Hong Kong Baptist University , Kowloon Tong , Hong Kong , China .
| | - Jinglin Tian
- Partner State Key Laboratory of Environmental and Biological Analysis , Department of Chemistry , Hong Kong Baptist University , 224 Waterloo Road , Kowloon Tong , Hong Kong SAR , P. R. China .
| | - Zongwei Cai
- Partner State Key Laboratory of Environmental and Biological Analysis , Department of Chemistry , Hong Kong Baptist University , 224 Waterloo Road , Kowloon Tong , Hong Kong SAR , P. R. China .
| | - Hui-Min David Wang
- Graduate Institute of Biomedical Engineering , National Chung Hsing University , Taichung 402 , Taiwan .
| | - Dik-Lung Ma
- Department of Chemistry , Hong Kong Baptist University , Kowloon Tong , Hong Kong , China .
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine , Institute of Chinese Medical Sciences , University of Macau , Macao , China .
| |
Collapse
|
122
|
Sawyer N, Watkins AM, Arora PS. Protein Domain Mimics as Modulators of Protein-Protein Interactions. Acc Chem Res 2017; 50:1313-1322. [PMID: 28561588 DOI: 10.1021/acs.accounts.7b00130] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Protein-protein interactions (PPIs) are ubiquitous in biological systems and often misregulated in disease. As such, specific PPI modulators are desirable to unravel complex PPI pathways and expand the number of druggable targets available for therapeutic intervention. However, the large size and relative flatness of PPI interfaces make them challenging molecular targets. This Account describes our systematic approach using secondary and tertiary protein domain mimics (PDMs) to specifically modulate PPIs. Our strategy focuses on mimicry of regular secondary and tertiary structure elements from one of the PPI partners to inspire rational PDM design. We have compiled three databases (HIPPDB, SIPPDB, and DIPPDB) of secondary and tertiary structures at PPI interfaces to guide our designs and better understand the energetics of PPI secondary and tertiary structures. Our efforts have focused on three of the most common secondary and tertiary structures: α-helices, β-strands, and helix dimers (e.g., coiled coils). To mimic α-helices, we designed the hydrogen bond surrogate (HBS) as an isosteric PDM and the oligooxopiperazine helix mimetic (OHM) as a topographical PDM. The nucleus of the HBS approach is a peptide macrocycle in which the N-terminal i, i + 4 main-chain hydrogen bond is replaced with a covalent carbon-carbon bond. In mimicking a main-chain hydrogen bond, the HBS approach stabilizes the α-helical conformation while leaving all helical faces available for functionalization to tune binding affinity and specificity. The OHM approach, in contrast, envisions a tetrapeptide to mimic one face of a two-turn helix. We anticipated that placement of ethylene bridges between adjacent amides constrains the tetrapeptide backbone to mimic the i, i + 4, and i + 7 side chains on one face of an α-helix. For β-strands, we developed triazolamers, a topographical PDM where the peptide bonds are replaced by triazoles. The triazoles simultaneously stabilize the extended, zigzag conformation of β-strands and transform an otherwise ideal protease substrate into a stable molecule by replacement of the peptide bonds. We turned to a salt bridge surrogate (SBS) approach as a means for stabilizing very short helix dimers. As with the HBS approach, the SBS strategy replaces a noncovalent interaction with a covalent bond. Specifically, we used a bis-triazole linkage that mimics a salt bridge interaction to drive helix association and folding. Using this approach, we were able to stabilize helix dimers that are less than half of the length required to form a coiled coil from two independent strands. In addition to demonstrating the stabilization of desired structures, we have also shown that our designed PDMs specifically modulate target PPIs in vitro and in vivo. Examples of PPIs successfully targeted include HIF1α/p300, p53/MDM2, Bcl-xL/Bak, Ras/Sos, and HIV gp41. The PPI databases and designed PDMs created in these studies will aid development of a versatile set of molecules to probe complex PPI functions and, potentially, PPI-based therapeutics.
Collapse
Affiliation(s)
- Nicholas Sawyer
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Andrew M. Watkins
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Paramjit S. Arora
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| |
Collapse
|
123
|
Nielsen DS, Shepherd NE, Xu W, Lucke AJ, Stoermer MJ, Fairlie DP. Orally Absorbed Cyclic Peptides. Chem Rev 2017; 117:8094-8128. [PMID: 28541045 DOI: 10.1021/acs.chemrev.6b00838] [Citation(s) in RCA: 294] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Peptides and proteins are not orally bioavailable in mammals, although a few peptides are intestinally absorbed in small amounts. Polypeptides are generally too large and polar to passively diffuse through lipid membranes, while most known active transport mechanisms facilitate cell uptake of only very small peptides. Systematic evaluations of peptides with molecular weights above 500 Da are needed to identify parameters that influence oral bioavailability. Here we describe 125 cyclic peptides containing four to thirty-seven amino acids that are orally absorbed by mammals. Cyclization minimizes degradation in the gut, blood, and tissues by removing cleavable N- and C-termini and by shielding components from metabolic enzymes. Cyclization also folds peptides into bioactive conformations that determine exposure of polar atoms to solvation by water and lipids and therefore can influence oral bioavailability. Key chemical properties thought to influence oral absorption and bioavailability are analyzed, including molecular weight, octanol-water partitioning, hydrogen bond donors/acceptors, rotatable bonds, and polar surface area. The cyclic peptides violated to different degrees all of the limits traditionally considered to be important for oral bioavailability of drug-like small molecules, although fewer hydrogen bond donors and reduced flexibility generally favored oral absorption.
Collapse
Affiliation(s)
- Daniel S Nielsen
- Division of Chemistry and Structural Biology, and ‡Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland , Brisbane, QLD 4072, Australia
| | - Nicholas E Shepherd
- Division of Chemistry and Structural Biology, and ‡Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland , Brisbane, QLD 4072, Australia
| | - Weijun Xu
- Division of Chemistry and Structural Biology, and ‡Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland , Brisbane, QLD 4072, Australia
| | - Andrew J Lucke
- Division of Chemistry and Structural Biology, and ‡Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland , Brisbane, QLD 4072, Australia
| | - Martin J Stoermer
- Division of Chemistry and Structural Biology, and ‡Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland , Brisbane, QLD 4072, Australia
| | - David P Fairlie
- Division of Chemistry and Structural Biology, and ‡Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland , Brisbane, QLD 4072, Australia
| |
Collapse
|
124
|
Spyrakis F, Ahmed MH, Bayden AS, Cozzini P, Mozzarelli A, Kellogg GE. The Roles of Water in the Protein Matrix: A Largely Untapped Resource for Drug Discovery. J Med Chem 2017; 60:6781-6827. [PMID: 28475332 DOI: 10.1021/acs.jmedchem.7b00057] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The value of thoroughly understanding the thermodynamics specific to a drug discovery/design study is well known. Over the past decade, the crucial roles of water molecules in protein structure, function, and dynamics have also become increasingly appreciated. This Perspective explores water in the biological environment by adopting its point of view in such phenomena. The prevailing thermodynamic models of the past, where water was seen largely in terms of an entropic gain after its displacement by a ligand, are now known to be much too simplistic. We adopt a set of terminology that describes water molecules as being "hot" and "cold", which we have defined as being easy and difficult to displace, respectively. The basis of these designations, which involve both enthalpic and entropic water contributions, are explored in several classes of biomolecules and structural motifs. The hallmarks for characterizing water molecules are examined, and computational tools for evaluating water-centric thermodynamics are reviewed. This Perspective's summary features guidelines for exploiting water molecules in drug discovery.
Collapse
Affiliation(s)
- Francesca Spyrakis
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino , Via Pietro Giuria 9, 10125 Torino, Italy
| | - Mostafa H Ahmed
- Department of Medicinal Chemistry & Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University , Richmond, Virginia 23298-0540, United States
| | - Alexander S Bayden
- CMD Bioscience , 5 Science Park, New Haven, Connecticut 06511, United States
| | - Pietro Cozzini
- Dipartimento di Scienze degli Alimenti e del Farmaco, Laboratorio di Modellistica Molecolare, Università degli Studi di Parma , Parco Area delle Scienze 59/A, 43121 Parma, Italy
| | - Andrea Mozzarelli
- Dipartimento di Scienze degli Alimenti e del Farmaco, Laboratorio di Biochimica, Università degli Studi di Parma , Parco Area delle Scienze 23/A, 43121 Parma, Italy.,Istituto di Biofisica, Consiglio Nazionale delle Ricerche , Via Moruzzi 1, 56124 Pisa, Italy
| | - Glen E Kellogg
- Department of Medicinal Chemistry & Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University , Richmond, Virginia 23298-0540, United States
| |
Collapse
|
125
|
Adachi Y, Sakamoto K, Umemoto T, Fukuda Y, Tani A, Asami T. Investigation on cellular uptake and pharmacodynamics of DOCK2-inhibitory peptides conjugated with cell-penetrating peptides. Bioorg Med Chem 2017; 25:2148-2155. [PMID: 28284862 DOI: 10.1016/j.bmc.2017.02.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/09/2017] [Accepted: 02/10/2017] [Indexed: 10/20/2022]
Abstract
Protein-protein interaction between dedicator of cytokinesis 2 (DOCK2) and Ras-related C3 botulinum toxin substrate 1 (Rac1) is an attractive intracellular target for transplant rejection and inflammatory diseases. Recently, DOCK2-selective inhibitory peptides have been discovered, and conjugation with oligoarginine cell-penetrating peptide (CPP) improved inhibitory activity in a cell migration assay. Although a number of CPPs have been reported, oligoarginine was only one example introduced to the inhibitory peptides. In this study, we aimed to confirm the feasibility of CPP-conjugation approach for DOCK2-inhibitory peptides, and select preferable sequences as CPP moiety. First, we evaluated cell permeability of thirteen known CPPs and partial sequences of influenza A viral protein PB1-F2 using an internalization assay system based on luciferin-luciferase reaction, and then selected four CPPs with efficient cellular uptake. Among four conjugates of these CPPs and a DOCK2-inhibitory peptide, the inhibitory activity of a novel CPP, PB1-F2 fragment 5 (PF5), conjugate was comparable to oligoarginine conjugate and higher than that of the non-conjugated peptide. Finally, internalization assay revealed that oligoarginine and PF5 increased the cellular uptake of inhibitory peptides to the same extent. Hence, we demonstrated that CPP-conjugation approach is applicable to the development of novel anti-inflammatory drugs based on DOCK2 inhibition by investigating both cellular uptake and bioactivity.
Collapse
Affiliation(s)
- Yusuke Adachi
- Pharmaceutical Research Division, Takeda Pharmaceutical Company, Ltd., Fujisawa 251-8555, Japan
| | - Kotaro Sakamoto
- Pharmaceutical Research Division, Takeda Pharmaceutical Company, Ltd., Fujisawa 251-8555, Japan
| | - Tadashi Umemoto
- Pharmaceutical Research Division, Takeda Pharmaceutical Company, Ltd., Fujisawa 251-8555, Japan
| | - Yasunori Fukuda
- Pharmaceutical Research Division, Takeda Pharmaceutical Company, Ltd., Fujisawa 251-8555, Japan
| | - Akiyoshi Tani
- Pharmaceutical Research Division, Takeda Pharmaceutical Company, Ltd., Fujisawa 251-8555, Japan
| | - Taiji Asami
- Pharmaceutical Research Division, Takeda Pharmaceutical Company, Ltd., Fujisawa 251-8555, Japan.
| |
Collapse
|
126
|
So Many Targets ∗. J Am Coll Cardiol 2017; 69:434-436. [PMID: 28126161 DOI: 10.1016/j.jacc.2016.10.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 10/17/2016] [Indexed: 11/24/2022]
|
127
|
Zhang Q, Jiang F, Zhao B, Lin H, Tian Y, Xie M, Bai G, Gilbert AM, Goetz GH, Liras S, Mathiowetz AA, Price DA, Song K, Tu M, Wu Y, Wang T, Flanagan ME, Wu YD, Li Z. Chiral Sulfoxide-Induced Single Turn Peptide α-Helicity. Sci Rep 2016; 6:38573. [PMID: 27934919 PMCID: PMC5146914 DOI: 10.1038/srep38573] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 11/09/2016] [Indexed: 11/25/2022] Open
Abstract
Inducing α-helicity through side-chain cross-linking is a strategy that has been pursued to improve peptide conformational rigidity and bio-availability. Here we describe the preparation of small peptides tethered to chiral sulfoxide-containing macrocyclic rings. Furthermore, a study of structure-activity relationships (SARs) disclosed properties with respect to ring size, sulfur position, oxidation state, and stereochemistry that show a propensity to induce α-helicity. Supporting data include circular dichroism spectroscopy (CD), NMR spectroscopy, and a single crystal X-ray structure for one such stabilized peptide. Finally, theoretical studies are presented to elucidate the effect of chiral sulfoxides in inducing backbone α-helicity.
Collapse
Affiliation(s)
- Qingzhou Zhang
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Fan Jiang
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Bingchuan Zhao
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Huacan Lin
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Yuan Tian
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Mingsheng Xie
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Guoyun Bai
- Cardiovascular and Metabolic Diseases Medicinal Chemistry, Pfizer, Inc., 620 Memorial Drive, Cambridge, MA, 02142, USA
| | - Adam M Gilbert
- Cardiovascular and Metabolic Diseases Medicinal Chemistry, Pfizer, Inc., 620 Memorial Drive, Cambridge, MA, 02142, USA
| | - Gilles H Goetz
- Cardiovascular and Metabolic Diseases Medicinal Chemistry, Pfizer, Inc., 620 Memorial Drive, Cambridge, MA, 02142, USA
| | - Spiros Liras
- Cardiovascular and Metabolic Diseases Medicinal Chemistry, Pfizer, Inc., 620 Memorial Drive, Cambridge, MA, 02142, USA
| | - Alan A Mathiowetz
- Cardiovascular and Metabolic Diseases Medicinal Chemistry, Pfizer, Inc., 620 Memorial Drive, Cambridge, MA, 02142, USA
| | - David A Price
- Cardiovascular and Metabolic Diseases Medicinal Chemistry, Pfizer, Inc., 620 Memorial Drive, Cambridge, MA, 02142, USA
| | - Kun Song
- Cardiovascular and Metabolic Diseases Medicinal Chemistry, Pfizer, Inc., 620 Memorial Drive, Cambridge, MA, 02142, USA
| | - Meihua Tu
- Cardiovascular and Metabolic Diseases Medicinal Chemistry, Pfizer, Inc., 620 Memorial Drive, Cambridge, MA, 02142, USA
| | - Yujie Wu
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Tao Wang
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Mark E Flanagan
- Center for Chemistry Innovation and Excellence, Pfizer Inc., Eastern Point Road, Groton, CT, 06340, USA
| | - Yun-Dong Wu
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.,College of Chemistry, Peking University, Beijing, 100871, China
| | - Zigang Li
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| |
Collapse
|
128
|
Watkins AM, Bonneau R, Arora PS. Side-Chain Conformational Preferences Govern Protein-Protein Interactions. J Am Chem Soc 2016; 138:10386-9. [PMID: 27483190 DOI: 10.1021/jacs.6b04892] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Protein secondary structures serve as geometrically constrained scaffolds for the display of key interacting residues at protein interfaces. Given the critical role of secondary structures in protein folding and the dependence of folding propensities on backbone dihedrals, secondary structure is expected to influence the identity of residues that are important for complex formation. Counter to this expectation, we find that a narrow set of residues dominates the binding energy in protein-protein complexes independent of backbone conformation. This finding suggests that the binding epitope may instead be substantially influenced by the side-chain conformations adopted. We analyzed side-chain conformational preferences in residues that contribute significantly to binding. This analysis suggests that preferred rotamers contribute directly to specificity in protein complex formation and provides guidelines for peptidomimetic inhibitor design.
Collapse
Affiliation(s)
| | - Richard Bonneau
- Center for Computational Biology, Simons Foundation , New York, New York 10010, United States
| | | |
Collapse
|