101
|
Brummell DA, Bowen JK, Gapper NE. Biotechnological approaches for controlling postharvest fruit softening. Curr Opin Biotechnol 2022; 78:102786. [PMID: 36081292 DOI: 10.1016/j.copbio.2022.102786] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 12/14/2022]
Abstract
Fruit softening is the major factor determining the postharvest life of fruit, affecting bruise and damage susceptibility, pathogen colonisation, and consumer satisfaction, all of which contribute to product losses in the supply chain and consumers' homes. Ripening-related changes to the cell wall, cuticle and soluble sugars largely determine softening, and some are amenable to biotechnological intervention, for example, by manipulation of the expression of genes encoding cell wall-modifying proteins or wax and cutin synthases. In this review, we discuss work exploring the role of genes involved in cell wall and cuticle properties, and recent developments in the silencing of multiple genes by targeting single transcription factors. Identification of transcription factors that control the expression of suites of genes encoding cell wall-modifying proteins provides exciting targets for biotechnology.
Collapse
Affiliation(s)
- David A Brummell
- The New Zealand Institute for Plant and Food Research Limited, Food Industry Science Centre, Private Bag 11600, Palmerston North 4442, New Zealand
| | - Joanna K Bowen
- The New Zealand Institute for Plant and Food Research Limited, Mount Albert Research Centre, Private Bag 92169, Auckland 1142, New Zealand
| | - Nigel E Gapper
- The New Zealand Institute for Plant and Food Research Limited, Mount Albert Research Centre, Private Bag 92169, Auckland 1142, New Zealand.
| |
Collapse
|
102
|
Su Q, Li X, Wang L, Wang B, Feng Y, Yang H, Zhao Z. Variation in Cell Wall Metabolism and Flesh Firmness of Four Apple Cultivars during Fruit Development. Foods 2022; 11:3518. [PMID: 36360131 PMCID: PMC9656455 DOI: 10.3390/foods11213518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/19/2022] [Accepted: 11/02/2022] [Indexed: 08/03/2023] Open
Abstract
Fruit ripening and softening are highly complex processes, and there is an interplay and coordination between the metabolic pathways that are involved in the biological processes. In this study, we aimed to elucidate the variation in the characters and possible causes of cell wall materials and morphological structure during apple fruits development. We studied the cell wall material (CWM), structure, cellular morphology, hydrolase activity, and the transcriptional levels of the related genes in four apple varieties 'Ruixue' and 'Ruixianghong' and their parents ('Pink Lady' and 'Fuji') during fruit development. The decrease in the contents of CWMs, sodium carbonate soluble pectin, hemicellulose, and cellulose were positively correlated with the decline in the hardness during the fruit development. In general, the activities of polygalacturonase, β-galactosidase, and cellulase enzymes increased during the late developmental period. As the fruit grew, the fruit cells of all of the cultivars gradually became larger, and the cell arrangement became more relaxed, the fruit cell walls became thinner, and the intercellular space became larger. In conclusion, the correlation analysis indicated that the up-regulation of the relative expression levels of ethylene synthesis and cell wall hydrolase genes enhanced the activity of the cell wall hydrolase, resulting in the degradation of the CWMs and the depolymerization of the cell wall structure, which affected the final firmness of the apple cultivars in the mature period.
Collapse
Affiliation(s)
- Qiufang Su
- College of Horticulture, Northwest A & F University, Yangling 712100, China
| | - Xianglu Li
- College of Horticulture, Northwest A & F University, Yangling 712100, China
| | - Lexing Wang
- College of Horticulture, Northwest A & F University, Yangling 712100, China
| | - Bochen Wang
- College of Horticulture, Northwest A & F University, Yangling 712100, China
| | - Yifeng Feng
- College of Horticulture, Northwest A & F University, Yangling 712100, China
| | - Huijuan Yang
- College of Horticulture, Northwest A & F University, Yangling 712100, China
- Apple Engineering and Technology Research Center of Shaanxi Province, Yangling 712100, China
| | - Zhengyang Zhao
- College of Horticulture, Northwest A & F University, Yangling 712100, China
- Apple Engineering and Technology Research Center of Shaanxi Province, Yangling 712100, China
| |
Collapse
|
103
|
Qi X, Dong Y, Liu C, Song L, Chen L, Li M. The PavNAC56 transcription factor positively regulates fruit ripening and softening in sweet cherry (Prunus avium). PHYSIOLOGIA PLANTARUM 2022; 174:e13834. [PMID: 36437693 DOI: 10.1111/ppl.13834] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/11/2022] [Accepted: 11/24/2022] [Indexed: 06/16/2023]
Abstract
The rapid softening of sweet cherry fruits during ripening results in the deterioration of fruit quality. However, few genes related to sweet cherry fruit ripening and softening have been identified, and the molecular regulatory mechanisms underlying this process are poorly understood. Here, we identified and functionally characterized PavNAC56, a NAC transcription factor that positively regulates sweet cherry fruit ripening and softening. Gene expression analyses showed that PavNAC56 was specifically and abundantly expressed in the fruit, and its transcript levels increased in response to abscisic acid (ABA). A subcellular localization analysis revealed that PavNAC56 is a nucleus-localized protein. Virus-induced gene silencing of PavNAC56 inhibited fruit ripening, enhanced fruit firmness, decreased the contents of ABA, anthocyanins, and soluble solids, and down-regulated several fruit ripening-related genes. Yeast one-hybrid and dual-luciferase assays showed that PavNAC56 directly binds to the promoters of several genes related to cell wall metabolism (PavPG2, PavEXPA4, PavPL18, and PavCEL8) and activates their expression. Overall, our findings show that PavNAC56 plays an indispensable role in controlling the ripening and softening of sweet cherry fruit and provides new insights into the regulatory mechanisms by which NAC transcription factors affect nonclimacteric fruit ripening and softening.
Collapse
Affiliation(s)
- Xiliang Qi
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Yuanxin Dong
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Congli Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Lulu Song
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Lei Chen
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Ming Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| |
Collapse
|
104
|
Li S, Hu X, Chen S, Wang X, Shang H, Zhou Y, Dai J, Xiao L, Qin W, Liu Y. Synthesis of γ-cyclodextrin metal-organic framework as ethylene absorber for improving postharvest quality of kiwi fruit. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
105
|
Antimicrobial and Antioxidant Activity of Apricot (Mimusopsis comersonii) Phenolic-Rich Extract and Its Application as an Edible Coating for Fresh-Cut Vegetable Preservation. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8440304. [DOI: 10.1155/2022/8440304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 08/17/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022]
Abstract
Edible coatings have several advantages in preserving foods, such as avoiding water loss, controlling microbial growth, and reducing the need for preservatives added directly to the product. Antimicrobial action can be obtained by adding antimicrobial substances including phenolic compounds commonly found in plant extracts. This study evaluated the phenolic compounds content, antioxidant and antimicrobial activity of pulp, and seed extracts of Mimusopsis comersonii (popularly known in Brazil as abrico), besides the phenolic compounds were identified and quantified in the pulp extract. Edible coatings were incorporated with pulp extract in order to evaluate the preservation of minimally processed apples and baroa potatoes against foodborne bacteria, and enzymatic browning was also determined. Myricetin-3-glucoside, quercetin-3-glucoside, and kaempferol-3-glucoside were identified as major flavonoids in the apricot pulp extract. The seed and pulp extracts inhibited all tested microorganisms, especially Staphylococcus aureus and Salmonella Typhimurium. Edible coatings added with 9% of phenolic extract showed in vitro antimicrobial activity, in addition to being effective in preventing enzymatic browning in minimally processed apples and baroa potatoes for up to 15 days of storage. They were also effective in reducing up to 2 log CFU/g of aerobic mesophiles after 15 days of storage for apples, even though no microbial inhibition in baroa potatoes was observed under the same conditions. The addition of pulp phenolic extract in edible coatings proved to be an alternative in the preservation of apples and in the antibrowning activity of minimally processed baroa potatoes.
Collapse
|
106
|
Peng Z, Liu G, Li H, Wang Y, Gao H, Jemrić T, Fu D. Molecular and Genetic Events Determining the Softening of Fleshy Fruits: A Comprehensive Review. Int J Mol Sci 2022; 23:12482. [PMID: 36293335 PMCID: PMC9604029 DOI: 10.3390/ijms232012482] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/28/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Fruit softening that occurs during fruit ripening and postharvest storage determines the fruit quality, shelf life and commercial value and makes fruits more attractive for seed dispersal. In addition, over-softening results in fruit eventual decay, render fruit susceptible to invasion by opportunistic pathogens. Many studies have been conducted to reveal how fruit softens and how to control softening. However, softening is a complex and delicate life process, including physiological, biochemical and metabolic changes, which are closely related to each other and are affected by environmental conditions such as temperature, humidity and light. In this review, the current knowledge regarding fruit softening mechanisms is summarized from cell wall metabolism (cell wall structure changes and cell-wall-degrading enzymes), plant hormones (ETH, ABA, IAA and BR et al.), transcription factors (MADS-Box, AP2/ERF, NAC, MYB and BZR) and epigenetics (DNA methylation, histone demethylation and histone acetylation) and a diagram of the regulatory relationship between these factors is provided. It will provide reference for the cultivation of anti-softening fruits.
Collapse
Affiliation(s)
- Zhenzhen Peng
- Laboratory of Fruit Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Gangshuai Liu
- Laboratory of Fruit Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Hongli Li
- Laboratory of Fruit Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yunxiang Wang
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
| | - Haiyan Gao
- Key Laboratory of Post-Harvest Handing of Fruits, Ministry of Agriculture and Rural Affairs, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Tomislav Jemrić
- Department of Pomology, Division of Horticulture and Landscape Architecture, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| | - Daqi Fu
- Laboratory of Fruit Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
107
|
Li X, He W, Fang J, Liang Y, Zhang H, Chen D, Wu X, Zhang Z, Wang L, Han P, Zhang B, Xue T, Zheng W, He J, Bai C. Genomic and transcriptomic-based analysis of agronomic traits in sugar beet ( Beta vulgaris L.) pure line IMA1. FRONTIERS IN PLANT SCIENCE 2022; 13:1028885. [PMID: 36311117 PMCID: PMC9608375 DOI: 10.3389/fpls.2022.1028885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Sugar beet (Beta vulgaris L.) is an important sugar-producing and energy crop worldwide. The sugar beet pure line IMA1 independently bred by Chinese scientists is a standard diploid parent material that is widely used in hybrid-breeding programs. In this study, a high-quality, chromosome-level genome assembly for IMA1was conducted, and 99.1% of genome sequences were assigned to nine chromosomes. A total of 35,003 protein-coding genes were annotated, with 91.56% functionally annotated by public databases. Compared with previously released sugar beet assemblies, the new genome was larger with at least 1.6 times larger N50 size, thereby substantially improving the completeness and continuity of the sugar beet genome. A Genome-Wide Association Studies analysis identified 10 disease-resistance genes associated with three important beet diseases and five genes associated with sugar yield per hectare, which could be key targets to improve sugar productivity. Nine highly expressed genes associated with pollen fertility of sugar beet were also identified. The results of this study provide valuable information to identify and dissect functional genes affecting sugar beet agronomic traits, which can increase sugar beet production and help screen for excellent sugar beet breeding materials. In addition, information is provided that can precisely incorporate biotechnology tools into breeding efforts.
Collapse
Affiliation(s)
- Xiaodong Li
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Wenjin He
- Life Science College of Fujian Normal University, Fuzhou, China
| | - Jingping Fang
- Life Science College of Fujian Normal University, Fuzhou, China
| | - Yahui Liang
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
- Inner Mongolia Key Laboratory of Sugarbeet Genetics & Germplasm Enhancement, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Huizhong Zhang
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
- Inner Mongolia Key Laboratory of Sugarbeet Genetics & Germplasm Enhancement, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Duo Chen
- Life Science College of Fujian Normal University, Fuzhou, China
| | - Xingrong Wu
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
- Inner Mongolia Key Laboratory of Sugarbeet Genetics & Germplasm Enhancement, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Ziqiang Zhang
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
- Inner Mongolia Key Laboratory of Sugarbeet Genetics & Germplasm Enhancement, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Liang Wang
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
- Inner Mongolia Key Laboratory of Sugarbeet Genetics & Germplasm Enhancement, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Pingan Han
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
- Inner Mongolia Key Laboratory of Sugarbeet Genetics & Germplasm Enhancement, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Bizhou Zhang
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
- Inner Mongolia Key Laboratory of Sugarbeet Genetics & Germplasm Enhancement, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Ting Xue
- Life Science College of Fujian Normal University, Fuzhou, China
| | - Wenzhe Zheng
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
- Inner Mongolia Key Laboratory of Sugarbeet Genetics & Germplasm Enhancement, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Jiangfeng He
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
- Inner Mongolia Key Laboratory of Sugarbeet Genetics & Germplasm Enhancement, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Chen Bai
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
- Inner Mongolia Key Laboratory of Sugarbeet Genetics & Germplasm Enhancement, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| |
Collapse
|
108
|
Huang W, Shi Y, Yan H, Wang H, Wu D, Grierson D, Chen K. The calcium-mediated homogalacturonan pectin complexation in cell walls contributes the firmness increase in loquat fruit during postharvest storage. J Adv Res 2022:S2090-1232(22)00211-9. [PMID: 36198382 DOI: 10.1016/j.jare.2022.09.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/11/2022] [Accepted: 09/24/2022] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION Postharvest textural changes in fruit are mainly divided into softening and lignification. Loquat fruit could have severe lignification with increased firmness during postharvest storage. Pectin is mainly associated with the postharvest softening of fruit, but some studies also found that pectin could be involved in strengthening the mechanical properties of the plant. OBJECTIVES This study focused on characterizing the dynamics of pectin and its complexation in the cell wall of lignified loquat fruit during postharvest storage, and how these changes could influence fruit firmness. METHODS The homogalacturonan (HG) pectin in the cell wall of loquat fruit was identified using monoclonal antibodies. An oligogalacturonide (OG) probe was used to label the egg-box structure formed by Ca2+ cross-linking with low-methylesterified HG. An exogenous injection was used to verify the role of egg-box structures in the firmness increase in loquat fruit. RESULTS The JIM5 antibody revealed that low-methylesterified HG accumulated in the tricellular junctions and middle lamella of loquat fruit that had severe lignification symptoms. The pectin methylesterase (PME) activity increased during the early stages of storage at 0°C, and the calcium-pectate content and flesh firmness constantly increased during storage. The OG probe demonstrated the accumulation of egg-box structures at the cellular level. The exogenous injection of PME and Ca2+ into the loquat flesh led to an increase in firmness with more low-methylesterified HG and egg-box structure signals. CONCLUSION PME-mediated demethylesterification generated large amounts of low-methylesterified HG in the cell wall. This low-methylesterified HG further cross-linked with Ca2+ to form egg-box structures. The pectin-involved complexations then contributed to the increased firmness in loquat fruit. Overall, besides being involved in fruit softening, pectin could also be involved in strengthening the mechanical properties of postharvest fruit. This study provides new ideas for obtaining a better texture of postharvest loquat fruits based on pectin regulation.
Collapse
Affiliation(s)
- Weinan Huang
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, 310058 Hangzhou, P. R. China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, P. R. China
| | - Yanna Shi
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, 310058 Hangzhou, P. R. China
| | - He Yan
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Hao Wang
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Di Wu
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, 310058 Hangzhou, P. R. China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, P. R. China.
| | - Donald Grierson
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, 310058 Hangzhou, P. R. China; Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Loughborough, UK
| | - Kunsong Chen
- College of Agriculture and Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, 310058 Hangzhou, P. R. China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, P. R. China
| |
Collapse
|
109
|
Salazar JA, Ruiz D, Zapata P, Martínez-García PJ, Martínez-Gómez P. Whole Transcriptome Analyses of Apricots and Japanese Plum Fruits after 1-MCP (Ethylene-Inhibitor) and Ethrel (Ethylene-Precursor) Treatments Reveal New Insights into the Physiology of the Ripening Process. Int J Mol Sci 2022; 23:ijms231911045. [PMID: 36232348 PMCID: PMC9569840 DOI: 10.3390/ijms231911045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
The physiology of Prunus fruit ripening is a complex and not completely understood process. To improve this knowledge, postharvest behavior during the shelf-life period at the transcriptomic level has been studied using high-throughput sequencing analysis (RNA-Seq). Monitoring of fruits has been analyzed after different ethylene regulator treatments, including 1-MCP (ethylene-inhibitor) and Ethrel (ethylene-precursor) in two contrasting selected apricot (Prunus armeniaca L.) and Japanese plum (P. salicina L.) cultivars, ‘Goldrich’ and ‘Santa Rosa’. KEEG and protein–protein interaction network analysis unveiled that the most significant metabolic pathways involved in the ripening process were photosynthesis and plant hormone signal transduction. In addition, previously discovered genes linked to fruit ripening, such as pectinesterase or auxin-responsive protein, have been confirmed as the main genes involved in this process. Genes encoding pectinesterase in the pentose and glucuronate interconversions pathway were the most overexpressed in both species, being upregulated by Ethrel. On the other hand, auxin-responsive protein IAA and aquaporin PIP were both upregulated by 1-MCP in ‘Goldrich’ and ‘Santa Rosa’, respectively. Results also showed the upregulation of chitinase and glutaredoxin 3 after Ethrel treatment in ‘Goldrich’ and ‘Santa Rosa’, respectively, while photosystem I subunit V psaG (photosynthesis) was upregulated after 1-MCP in both species. Furthermore, the overexpression of genes encoding GDP-L-galactose and ferredoxin in the ascorbate and aldarate metabolism and photosynthesis pathways caused by 1-MCP favored antioxidant activity and therefore slowed down the fruit senescence process.
Collapse
Affiliation(s)
- Juan A Salazar
- Department of Plant Breeding, CEBAS-CSIC, Espinardo, 30100 Murcia, Spain
| | - David Ruiz
- Department of Plant Breeding, CEBAS-CSIC, Espinardo, 30100 Murcia, Spain
| | - Patricio Zapata
- Facultad de Medicina Y Ciencia, Universidad San Sebastián, Santiago 7510157, Chile
| | | | | |
Collapse
|
110
|
Shi Y, Li BJ, Su G, Zhang M, Grierson D, Chen KS. Transcriptional regulation of fleshy fruit texture. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1649-1672. [PMID: 35731033 DOI: 10.1111/jipb.13316] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/22/2022] [Indexed: 05/24/2023]
Abstract
Fleshy fruit texture is a critically important quality characteristic of ripe fruit. Softening is an irreversible process which operates in most fleshy fruits during ripening which, together with changes in color and taste, contributes to improvements in mouthfeel and general attractiveness. Softening results mainly from the expression of genes encoding enzymes responsible for cell wall modifications but starch degradation and high levels of flavonoids can also contribute to texture change. Some fleshy fruit undergo lignification during development and post-harvest, which negatively affects eating quality. Excessive softening can also lead to physical damage and infection, particularly during transport and storage which causes severe supply chain losses. Many transcription factors (TFs) that regulate fruit texture by controlling the expression of genes involved in cell wall and starch metabolism have been characterized. Some TFs directly regulate cell wall targets, while others act as part of a broader regulatory program governing several aspects of the ripening process. In this review, we focus on advances in our understanding of the transcriptional regulatory mechanisms governing fruit textural change during fruit development, ripening and post-harvest. Potential targets for breeding and future research directions for the control of texture and quality improvement are discussed.
Collapse
Affiliation(s)
- Yanna Shi
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Bai-Jun Li
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Guanqing Su
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Mengxue Zhang
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Donald Grierson
- State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Kun-Song Chen
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| |
Collapse
|
111
|
Li D, Deng L, Dai T, Chen M, Liang R, Liu W, Liu C, Chen J, Sun J. Ripening induced degradation of pectin and cellulose affects the far infrared drying kinetics of mangoes. Carbohydr Polym 2022; 291:119582. [DOI: 10.1016/j.carbpol.2022.119582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 11/02/2022]
|
112
|
Keren-Keiserman A, Shtern A, Levy M, Chalupowicz D, Furumizu C, Alvarez JP, Amsalem Z, Arazi T, Alkalai-Tuvia S, Efroni I, Ori N, Bowman JL, Fallik E, Goldshmidt A. CLASS-II KNOX genes coordinate spatial and temporal ripening in tomato. PLANT PHYSIOLOGY 2022; 190:657-668. [PMID: 35703985 PMCID: PMC9434150 DOI: 10.1093/plphys/kiac290] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/31/2022] [Indexed: 05/13/2023]
Abstract
Fruits can be divided into dry and fleshy types. Dry fruits mature through senescence and fleshy fruits through ripening. Previous studies have indicated that partially common molecular networks could govern fruit maturation in these different fruit types. However, the nature of such networks remains obscure. CLASS-II KNOX genes were shown to regulate the senescence of the Arabidopsis (Arabidopsis thaliana) dry fruits, the siliques, but their roles in fleshy-fruit development are unknown. Here, we investigated the roles of the tomato (Solanum lycopersicum) CLASS-II KNOX (TKN-II) genes in fleshy fruit ripening using knockout alleles of individual genes and an artificial microRNA line (35S:amiR-TKN-II) simultaneously targeting all genes. 35S:amiR-TKN-II plants, as well as a subset of tkn-II single and double mutants, have smaller fruits. Strikingly, the 35S:amiR-TKN-II and tknII3 tknII7/+ fruits showed early ripening of the locular domain while their pericarp ripening was stalled. Further examination of the ripening marker-gene RIPENING INHIBITOR (RIN) expression and 35S:amiR-TKN-II rin-1 mutant fruits suggested that TKN-II genes arrest RIN activity at the locular domain and promote it in the pericarp. These findings imply that CLASS-II KNOX genes redundantly coordinate maturation in both dry and fleshy fruits. In tomato, these genes also control spatial patterns of fruit ripening, utilizing differential regulation of RIN activity at different fruit domains.
Collapse
Affiliation(s)
- Alexandra Keren-Keiserman
- Institute of Plant Sciences, ARO, Volcani Institute, HaMaccabbim Road 68, Rishon LeZion 7505101, Israel
| | - Amit Shtern
- Institute of Plant Sciences, ARO, Volcani Institute, HaMaccabbim Road 68, Rishon LeZion 7505101, Israel
| | - Matan Levy
- Department of Plant Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, PO Box 12, Rehovot 7610001, Israel
| | - Daniel Chalupowicz
- Institute of Postharvest and Food Sciences, ARO, Volcani Institute, HaMaccabbim Road 68, Rishon LeZion 7505101, Israel
| | | | - John Paul Alvarez
- School of Biological Sciences, Monash University, Wellington Road, Clayton, Melbourne, Victoria 3800, Australia
| | - Ziva Amsalem
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tzahi Arazi
- Institute of Plant Sciences, ARO, Volcani Institute, HaMaccabbim Road 68, Rishon LeZion 7505101, Israel
| | - Sharon Alkalai-Tuvia
- Institute of Postharvest and Food Sciences, ARO, Volcani Institute, HaMaccabbim Road 68, Rishon LeZion 7505101, Israel
| | - Idan Efroni
- Department of Plant Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, PO Box 12, Rehovot 7610001, Israel
| | - Naomi Ori
- Department of Plant Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, PO Box 12, Rehovot 7610001, Israel
| | - John L Bowman
- School of Biological Sciences, Monash University, Wellington Road, Clayton, Melbourne, Victoria 3800, Australia
| | - Elazar Fallik
- Institute of Postharvest and Food Sciences, ARO, Volcani Institute, HaMaccabbim Road 68, Rishon LeZion 7505101, Israel
| | | |
Collapse
|
113
|
Kaur A, Sharma S, Navprem S. Comparison studies on sucrose metabolism and phenolic content during fruit growth and maturation in pear cultivars. ACTA ALIMENTARIA 2022. [DOI: 10.1556/066.2022.00044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
‘Patharnakh’ (Pyrus pyrifolia Burm.) (PN), a hard pear and ‘Punjab Beauty’ (Pyrus communis L. × Pyrus pyrifolia Burm.) (PB), a soft pear are dominant low-chill pear cultivars of subtropics of India. Present investigation reports the changes in sugar metabolism and related enzymatic activities in fruits of ‘PN’ and ‘PB’ cultivars harvested at different developmental stages from 45 to 150 days after fruit set. Total soluble sugars, fructose, and sucrose contents were higher in ‘PB’ as compared to ‘PN’ during fruit growth and maturation stages. Total phenols and flavanols increased initially and then showed a decreasing trend towards maturity. Sucrose synthase (SS) and sucrose phosphate synthase (SPS) activities strongly correlated to sucrose content in ‘PN’ but SPS was weakly related in ‘PB’ fruits. Acid and neutral invertases showed a negative correlation with sucrose content in ‘PN’, and a reverse trend in ‘PB’ cultivar was observed. It is concluded that SS and SPS are crucial for sucrose accumulation in ‘PN’, but invertase enzymes are also important for sucrose accumulation in ‘PB’ fruits.
Collapse
Affiliation(s)
- A. Kaur
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, 141 004, India
| | - S. Sharma
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, 141 004, India
| | - S. Navprem
- Department of Fruit Science, Punjab Agricultural University, Ludhiana, 141 004, India
| |
Collapse
|
114
|
Lin X, Feng C, Lin T, Harris AJ, Li Y, Kang M. Jackfruit genome and population genomics provide insights into fruit evolution and domestication history in China. HORTICULTURE RESEARCH 2022; 9:uhac173. [PMID: 36204202 PMCID: PMC9533223 DOI: 10.1093/hr/uhac173] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/25/2022] [Indexed: 05/28/2023]
Abstract
As the largest known tree-borne fruit in the world, jackfruit (Artocarpus heterophyllus) is an important cultivated crop in tropical regions of South and Southeast Asia. The species has been cultivated in China for more than 1000 years, but the history of its introduction to the country remains unclear. We assembled a high-quality chromosome-level genome of jackfruit into 985.63 Mb with scaffold N50 of 32.81 Mb. We analyzed whole-genome resequencing data of 295 landraces to investigate the domestication history in China and agronomic trait evolution of jackfruit. Population structure analysis revealed that jackfruits of China could be traced back to originate from Southeast Asia and South Asia independently. Selection signals between jackfruit and its edible congener, cempedak (Artocarpus integer), revealed several important candidate genes associated with fruit development and ripening. Moreover, analyses of selective sweeps and gene expression revealed that the AhePG1 gene may be the major factor in determining fruit texture. This study not only resolves the origins of jackfruit of China, but also provides valuable genomic resources for jackfruit breeding improvement and offers insights into fruit size evolution and fruit texture changes.
Collapse
Affiliation(s)
| | | | - Tao Lin
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650 Guangzhou, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - A J Harris
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, 510650 Guangzhou, China
| | | | | |
Collapse
|
115
|
Lin Y, Lin H, Lin M, Zheng Y, Chen Y, Wang H, Fan Z, Chen Y, Lin Y. DNP and ATP modulate the developments of pulp softening and breakdown in Phomopsis longanae Chi-infected fresh longan through regulating the cell wall polysaccharides metabolism. Food Chem 2022; 397:133837. [DOI: 10.1016/j.foodchem.2022.133837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/20/2022] [Accepted: 07/29/2022] [Indexed: 11/28/2022]
|
116
|
Transcriptome analysis of peach fruit under 1-MCP treatment provides insights into regulation network in melting peach softening. FOOD QUALITY AND SAFETY 2022. [DOI: 10.1093/fqsafe/fyac048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
Peach (Prunus persica L.) displays distinguish texture phenotype during postharvest, which could be classified into three types, including melting flesh (MF), non-melting flesh (NMF) and stony-hard (SH). Of that MF peach would soften rapidly with an outbreak of ethylene production, which cause a huge waste during fruit transportation and storage. 1-methylcyclopropene (1-MCP) was used to alleviate fruit softening. In this study, we performed RNA-sequencing on two MF peach cultivars (‘YuLu’ and ‘Yanhong’) after 1-MCP treatment to identify the candidate genes participating in peach fruit softening. 167 genes were identified by WGCNA and correlation analysis, which could respond to 1-MCP treatment and might be related to softening. Among them, 5 auxin related genes including 2 IAAs, 1 ARF and 2 SAURs, and 4 cell wall modifying genes (PpPG1, PpPG2, PpPG24 and PpPMEI) were characterized as key genes participating in MF peach softening. Furthermore, 2 transcription factors, which belong to HD-ZIP and MYB were predicted as candidates regulating softening process by constructing transcriptional network of these 4 cell wall modifying genes combined with expression pattern analysis, of that the HD-ZIP could trans-activate promoter of PpPG1.
Collapse
|
117
|
Huang P, Zang F, Li C, Lin F, Zang D, Li B, Zheng Y. The Akebia Genus as a Novel Forest Crop: A Review of Its Genetic Resources, Nutritional Components, Biosynthesis, and Biological Studies. FRONTIERS IN PLANT SCIENCE 2022; 13:936571. [PMID: 35958221 PMCID: PMC9360799 DOI: 10.3389/fpls.2022.936571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
The genus Akebia belongs to the Lardizabalaceae family and comprises five species that are primarily distributed in East Asia. Plants of the Akebia genus comprise deciduous and semi-evergreen perennial twining vines that have been used in Chinese herbal medicine for at least 2000 years. The plants of this genus have the potential to form a novel forest crop with high nutritional and economic value because their fruit has a delicious sweet taste and rich nutrient components. In this study, we organized, analyzed, and evaluated the available published scientific literature on the botanical, ecological, and phytochemical characteristics of Akebia plants. Based on these studies, we briefly introduced botanical and ecological characteristics and focused on reviewing the development and utilization of wild genetic resources in the genus Akebia. We further explored the genus' rich nutritional components, such as triterpenes, flavonoids, polyphenols, polysaccharides, and fatty acids, and their potential use in food and health improvement applications. In addition, several papers describing advances in biotechnological research focusing on micropropagation, nutrient biosynthesis, and fruit ripeness were also included. This review provides comprehensive knowledge of the Akebia genus as a new forest crop for food and fruit utilization, and we also discuss future breeding and research prospects.
Collapse
Affiliation(s)
- Ping Huang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Forest Silviculture and Tree Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Fengqi Zang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Forest Silviculture and Tree Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Changhong Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Forest Silviculture and Tree Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Furong Lin
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Forest Silviculture and Tree Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Dekui Zang
- Key Laboratory of State Forestry Administration for Silviculture of the Lower Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, China
| | - Bin Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Forest Silviculture and Tree Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Yongqi Zheng
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Forest Silviculture and Tree Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
118
|
Hamidinasab M, Ahadi N, Bodaghifard MA, Brahmachari G. Sustainable and Bio-Based Catalysts for Multicomponent Organic Synthesis: An Overview. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2097278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
| | - Najmieh Ahadi
- Institute of Nanosciences &Nanotechnology, Arak University, Arak, Iran
| | - Mohammad Ali Bodaghifard
- Institute of Nanosciences &Nanotechnology, Arak University, Arak, Iran
- Department of Chemistry, Faculty of Science, Arak University, Arak, Iran
| | - Goutam Brahmachari
- Laboratory of Natural Products & Organic Synthesis Department of Chemistry, Visva-Bharati University, Santiniketan, West Bengal, India
| |
Collapse
|
119
|
Transcriptome Analysis of Soursop (Annona muricata L.) Fruit under Postharvest Storage Identifies Genes Families Involved in Ripening. PLANTS 2022; 11:plants11141798. [PMID: 35890432 PMCID: PMC9325311 DOI: 10.3390/plants11141798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 11/23/2022]
Abstract
Soursop (Annona muricata L.) is climacteric fruit with a short ripening period and postharvest shelf life, leading to a rapid softening. In this study, transcriptome analysis of soursop fruits was performed to identify key gene families involved in ripening under postharvest storage conditions (Day 0, Day 3 stored at 28 ± 2 °C, Day 6 at 28 ± 2 °C, Day 3 at 15 ± 2 °C, Day 6 at 15 ± 2 °C, Day 9 at 15 ± 2 °C). The transcriptome analysis showed 224,074 transcripts assembled clustering into 95, 832 unigenes, of which 21, 494 had ORF. RNA-seq analysis showed the highest number of differentially expressed genes on Day 9 at 15 ± 2 °C with 9291 genes (4772 up-regulated and 4519 down-regulated), recording the highest logarithmic fold change in pectin-related genes. Enrichment analysis presented significantly represented GO terms and KEGG pathways associated with molecular function, metabolic process, catalytic activity, biological process terms, as well as biosynthesis of secondary metabolites, plant hormone signal, starch, and sucrose metabolism, plant–pathogen interaction, plant–hormone signal transduction, and MAPK-signaling pathways, among others. Network analysis revealed that pectinesterase genes directly regulate the loss of firmness in fruits stored at 15 ± 2 °C.
Collapse
|
120
|
Arabia A, Munné-Bosch S, Muñoz P. Melatonin triggers tissue-specific changes in anthocyanin and hormonal contents during postharvest decay of Angeleno plums. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 320:111287. [PMID: 35643621 DOI: 10.1016/j.plantsci.2022.111287] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/07/2022] [Accepted: 04/11/2022] [Indexed: 06/15/2023]
Abstract
Plum is a stone fruit that stands out for having a short shelf-life because of its high susceptibility to rapid deterioration. Part of this deterioration is explained by fruit overripening. Recently, the role of melatonin in delaying postharvest decay has been investigated but its regulatory function during overripening is still under extensive debate. In this study, to understand physiological events taking place in plums overripening and elucidate the role of melatonin on the postharvest quality of these fruits and its relationship to other plant hormones, Angeleno plums were sprayed with 10-4 M of melatonin solution immediately after harvest. We carried out tissue-specific (mesocarp and exocarp) analysis of total phenols and anthocyanin quantification, as well as the evaluation of different phytohormones by LC-MS/MS and fruit quality parameters. Results showed that during postharvest, endogenous melatonin contents decreased both in the mesocarp and the exocarp of Angeleno plums. Likewise, plum firmness also decreased and a strong correlation was found for this parameter with jasmonic acid (JA) and cytokinins. Conversely, after exogenous melatonin application, endogenous melatonin content increased both in mesocarp and exocarp but it had a differential effect depending on the plum tissue. Indeed, total phenol and anthocyanin contents arose by 21% and 58%, respectively, in the mesocarp after melatonin treatment but no variations were found in the exocarp of Angeleno plums. Hormonal analysis of Angeleno mesocarp also revealed an increase in the JA and its precursor, 12-oxo-phytodienoic acid (OPDA), on the fourth day after melatonin application as well as a positive correlation between melatonin and gibberellin 1 (GA1). These results suggest that melatonin may be acting as a signal molecule increasing phenolic compounds contents through direct regulation and by signaling with other phytohormones. Therefore, this research provides valuable information for understanding the regulatory role of melatonin and its relationship with plant hormones during overripening to contribute to improve the postharvest quality of plums.
Collapse
Affiliation(s)
- Alba Arabia
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain; Research Institute of Nutrition and Food Safety, University of Barcelona, Barcelona, Spain
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain; Research Institute of Nutrition and Food Safety, University of Barcelona, Barcelona, Spain
| | - Paula Muñoz
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain; Research Institute of Nutrition and Food Safety, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
121
|
Effects of electrolysed water and levulinic acid combination on microbial safety and polysaccharide nanostructure of organic strawberry. Food Chem 2022; 394:133533. [PMID: 35752125 DOI: 10.1016/j.foodchem.2022.133533] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 06/07/2022] [Accepted: 06/18/2022] [Indexed: 11/23/2022]
Abstract
This study aimed to better understand the effects of acidic electrolysed water (AEW, 4 mg/L) and levulinic acid (LA, food grade, 2%) combination on organic strawberry over 7 days. This combined method reduced the population of strawberry's natural microbiota by 1-2 log CFU/g and kept the level of inoculated Escherichia coli O157:H7 and Salmonella below the detection limit (2 log CFU/g) during the whole storage period. Meanwhile, AEW + LA did not affect the physicochemical qualities of strawberries significantly, maintaining most texture and biochemical attributes at an acceptable level (e.g., firmness, colour, soluble solids content and organic acid content). Atomic force microscopy further revealed that the treatment containing LA preserved the sodium carbonate soluble pectin (SSP) nanostructure best by maintaining their length and height, and slowed the breakdown of SSP chains by promoting acid-induced bonding and soluble pectin precipitation. These results demonstrated that low concentration AEW and LA combination is a promising sanitising approach for organic strawberry preservation.
Collapse
|
122
|
Zou J, Li N, Hu N, Tang N, Cao H, Liu Y, Chen J, Jian W, Gao Y, Yang J, Li Z. Co-silencing of ABA receptors (SlRCAR) reveals interactions between ABA and ethylene signaling during tomato fruit ripening. HORTICULTURE RESEARCH 2022; 9:uhac057. [PMID: 35685223 PMCID: PMC9171117 DOI: 10.1093/hr/uhac057] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 02/20/2022] [Indexed: 06/06/2023]
Abstract
The ripening of fleshy fruits is highly dependent on the regulation of endogenous hormones, including ethylene, abscisic acid (ABA) and other phytohormones. However, the regulatory mechanism of ABA signaling and its interaction with ethylene signaling in fruit ripening are still unclear. In this study, multi-gene interference (RNAi) was applied to silence the ABA receptor genes in tomato for screening the specific receptors that mediate ABA signaling during fruit ripening. The results indicated that the ABA receptors, including SlRCAR9, SlRCAR12, SlRCAR11, and SlRCAR13, participate in the regulation of tomato fruit ripening. Comparative analysis showed that SlRCAR11 and SlRCAR13 play more important roles in mediating ABA signaling during tomato fruit ripening. Co-silencing of the four genes encoding these receptors could weaken the ethylene biosynthesis and signaling pathway at the early stage of tomato fruit ripening, leading to delayed fruit ripening. Meanwhile, co-silencing enhanced fruit firmness, and altered the shelf-life and susceptibility to Botrytis cinerea of the transgenic fruits. Furthermore, blocking ABA signaling did not affect the ability of ethylene to induce fruit ripening, whereas the block may inhibit the effectiveness of ABA in promoting fruit ripening. These results suggested that ABA signaling may be located upstream of ethylene signaling in regulating fruit ripening. Our findings provide a new insight into the complex regulatory network of phytohormones in regulating fruit ripening in tomato.
Collapse
Affiliation(s)
- Jian Zou
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), School of Life Science, China West Normal University, Nanchong, Sichuan 637009, China
| | - Ning Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
- School of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China
| | - Nan Hu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Ning Tang
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
- Collaborative Innovation Center of Special Plant Industry in Chongqing, Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, Chongqing 402160, China
| | - Haohao Cao
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Yudong Liu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Jing Chen
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Wei Jian
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Yanqiang Gao
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Jun Yang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), School of Life Science, China West Normal University, Nanchong, Sichuan 637009, China
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
| |
Collapse
|
123
|
Li Y, Ding S, Kitazawa H, Wang Y. Storage temperature effect on quality related with cell wall metabolism of shiitake mushrooms (Lentinula edodes) and its modeling. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100865] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
124
|
Rhamnogalacturonan Endolyase Family 4 Enzymes: An Update on Their Importance in the Fruit Ripening Process. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Fruit ripening is a process that produces fruit with top sensory qualities that are ideal for consumption. For the plant, the final objective is seed dispersal. One of the fruit characteristics observed by consumers is texture, which is related to the ripening and softening of the fruit. Controlled and orchestrated events occur to regulate the expression of genes involved in disassembling and solubilizing the cell wall. Studies have shown that changes in pectins are closely related to the loss of firmness and fruit softening. For this reason, studying the mechanisms and enzymes that act on pectins could help to elucidate the molecular events that occur in the fruit. This paper provides a review of the enzyme rhamnogalacturonan endolyase (RGL; EC 4.2.2.23), which is responsible for cleavage of the pectin rhamnogalacturonan I (RGL-I) between rhamnose (Rha) and galacturonic acid (GalA) through the mechanism of β-elimination during fruit ripening. RGL promotes the loosening and weakening of the cell wall and exposes the backbone of the polysaccharide to the action of other enzymes. Investigations into RGL and its relationship with fruit ripening have reliably demonstrated that this enzyme has an important role in this process.
Collapse
|
125
|
Song X, Dai H, Wang S, Ji S, Zhou X, Li J, Zhou Q. Putrescine Treatment Delayed the Softening of Postharvest Blueberry Fruit by Inhibiting the Expression of Cell Wall Metabolism Key Gene VcPG1. PLANTS 2022; 11:plants11101356. [PMID: 35631781 PMCID: PMC9143846 DOI: 10.3390/plants11101356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 12/02/2022]
Abstract
The postharvest shelf life of blueberries is very short at room temperature owing to softening, which reduces their edible value. Putrescine (Put) plays an important role in maintaining the firmness and prolonging the storage time of fruits. Therefore, we investigated the relationship between Put and the cell wall metabolism and their roles in the postharvest softening of blueberry. Harvested blueberry fruit was immersed in 1 mM Put aqueous solution for 10 min. After treatment, the blueberries were stored at 20 ± 0.5 °C and 80% relative humidity for 10 days. The results show that Put delayed the softening of the blueberries. Compared to the control, the blueberry fruit treated with Put showed higher levels of firmness and protopectin. Moreover, the activity and expression levels of the cell wall metabolism enzymes were markedly inhibited by the Put treatment, including polygalacturonase (PG), β−galactosylase (β−Gal), and β−glucosidase (β−Glu). The Put treatment promoted the expression of the Put synthesis gene VcODC and inhibited the expression of the Put metabolism gene VcSPDS. Further tests showed that the fruit firmness decreased significantly after the overexpression of VcPG1, which verified that VcPG1 is a key gene for fruit softening. The key transcription factors of fruit softening were preliminarily predicted and the expressions were analyzed, laying a foundation for the subsequent study of transcriptional regulation. These results indicate that Put delays the softening of postharvest blueberry by restraining the cell wall metabolism and maintaining the fruit firmness.
Collapse
Affiliation(s)
- Xiangchong Song
- College of Food, Shenyang Agricultural University, Shenyang 110866, China; (X.S.); (H.D.); (S.J.); (X.Z.); (J.L.)
| | - Hongyu Dai
- College of Food, Shenyang Agricultural University, Shenyang 110866, China; (X.S.); (H.D.); (S.J.); (X.Z.); (J.L.)
| | - Siyao Wang
- School of Public Health, Shenyang Medical College, Shenyang 110034, China;
| | - Shujuan Ji
- College of Food, Shenyang Agricultural University, Shenyang 110866, China; (X.S.); (H.D.); (S.J.); (X.Z.); (J.L.)
| | - Xin Zhou
- College of Food, Shenyang Agricultural University, Shenyang 110866, China; (X.S.); (H.D.); (S.J.); (X.Z.); (J.L.)
| | - Jianan Li
- College of Food, Shenyang Agricultural University, Shenyang 110866, China; (X.S.); (H.D.); (S.J.); (X.Z.); (J.L.)
| | - Qian Zhou
- College of Food, Shenyang Agricultural University, Shenyang 110866, China; (X.S.); (H.D.); (S.J.); (X.Z.); (J.L.)
- Correspondence:
| |
Collapse
|
126
|
Balic I, Olmedo P, Zepeda B, Rojas B, Ejsmentewicz T, Barros M, Aguayo D, Moreno AA, Pedreschi R, Meneses C, Campos-Vargas R. Metabolomic and biochemical analysis of mesocarp tissues from table grape berries with contrasting firmness reveals cell wall modifications associated to harvest and cold storage. Food Chem 2022; 389:133052. [PMID: 35489260 DOI: 10.1016/j.foodchem.2022.133052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 03/11/2022] [Accepted: 04/21/2022] [Indexed: 11/04/2022]
Abstract
Tissue texture influences the grape berry consumers acceptance. We studied the biological differences between the inner and outer mesocarp tissues in hard and soft berries of table grapes cv NN107. Texture analysis revealed lower levels of firmness in the inner mesocarp as compared with the outer tissue. HPAEC-PAD analysis showed an increased abundance of cell wall monosaccharides in the inner mesocarp of harder berries at harvest. Immunohistochemical analysis displayed differences in homogalacturonan methylesterification and cell wall calcium between soft and hard berries. This last finding correlated with a differential abundance of calcium measured in the alcohol-insoluble residues (AIR) of the inner tissue of the hard berries. Analysis of abundance of polar metabolites suggested changes in cell wall carbon supply precursors, providing new clues in the identification of the biochemical factors that define the texture of the mesocarp of grape berries.
Collapse
Affiliation(s)
- Iván Balic
- Departamento de Acuicultura y Recursos Agroalimentarios, Universidad de Los Lagos, Osorno, Chile
| | - Patricio Olmedo
- Centro de Estudios Postcosecha, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago, Chile; Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Baltasar Zepeda
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, Wageningen, The Netherlands
| | - Bárbara Rojas
- Centro de Estudios Postcosecha, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago, Chile; Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Troy Ejsmentewicz
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Miriam Barros
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Daniel Aguayo
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Adrián A Moreno
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Romina Pedreschi
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota, Chile
| | - Claudio Meneses
- Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile; Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; ANID - Millennium Science Initiative Program - Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, Chile; Fondo de Desarrollo de Areas Prioritarias, Center for Genome Regulation, Santiago, Chile
| | - Reinaldo Campos-Vargas
- Centro de Estudios Postcosecha, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
127
|
He X, Chavan SG, Hamoui Z, Maier C, Ghannoum O, Chen ZH, Tissue DT, Cazzonelli CI. Smart Glass Film Reduced Ascorbic Acid in Red and Orange Capsicum Fruit Cultivars without Impacting Shelf Life. PLANTS (BASEL, SWITZERLAND) 2022; 11:985. [PMID: 35406965 PMCID: PMC9003265 DOI: 10.3390/plants11070985] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 11/27/2022]
Abstract
Smart Glass Film (SGF) is a glasshouse covering material designed to permit 80% transmission of photosynthetically active light and block heat-generating solar energy. SGF can reduce crop water and nutrient consumption and improve glasshouse energy use efficiency yet can reduce crop yield. The effect of SGF on the postharvest shelf life of fruits remains unknown. Two capsicum varieties, Red (Gina) and Orange (O06614), were cultivated within a glasshouse covered in SGF to assess fruit quality and shelf life during the winter season. SGF reduced cuticle thickness in the Red cultivar (5%) and decreased ascorbic acid in both cultivars (9-14%) without altering the overall morphology of the mature fruits. The ratio of total soluble solids (TSSs) to titratable acidity (TA) was significantly higher in Red (29%) and Orange (89%) cultivars grown under SGF. The Red fruits had a thicker cuticle that reduced water loss and extended shelf life when compared to the Orange fruits, yet neither water loss nor firmness were impacted by SGF. Reducing the storage temperature to 2 °C and increasing relative humidity to 90% extended the shelf life in both cultivars without evidence of chilling injury. In summary, SGF had minimal impact on fruit development and postharvest traits and did not compromise the shelf life of mature fruits. SGF provides a promising technology to block heat-generating solar radiation energy without affecting fruit ripening and marketable quality of capsicum fruits grown during the winter season.
Collapse
Affiliation(s)
- Xin He
- National Vegetable Protected Cropping Centre, Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia; (X.H.); (S.G.C.); (C.M.); (O.G.); (Z.-H.C.); (D.T.T.)
| | - Sachin G. Chavan
- National Vegetable Protected Cropping Centre, Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia; (X.H.); (S.G.C.); (C.M.); (O.G.); (Z.-H.C.); (D.T.T.)
| | - Ziad Hamoui
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia;
| | - Chelsea Maier
- National Vegetable Protected Cropping Centre, Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia; (X.H.); (S.G.C.); (C.M.); (O.G.); (Z.-H.C.); (D.T.T.)
| | - Oula Ghannoum
- National Vegetable Protected Cropping Centre, Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia; (X.H.); (S.G.C.); (C.M.); (O.G.); (Z.-H.C.); (D.T.T.)
| | - Zhong-Hua Chen
- National Vegetable Protected Cropping Centre, Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia; (X.H.); (S.G.C.); (C.M.); (O.G.); (Z.-H.C.); (D.T.T.)
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia;
| | - David T. Tissue
- National Vegetable Protected Cropping Centre, Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia; (X.H.); (S.G.C.); (C.M.); (O.G.); (Z.-H.C.); (D.T.T.)
- Global Centre for Land Based Innovation, Western Sydney University, Hawkesbury Campus, Richmond, NSW 2753, Australia
| | - Christopher I. Cazzonelli
- National Vegetable Protected Cropping Centre, Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia; (X.H.); (S.G.C.); (C.M.); (O.G.); (Z.-H.C.); (D.T.T.)
| |
Collapse
|
128
|
Zhang W, Xu S, Gao M, Peng S, Chen L, Lao F, Liao X, Wu J. Profiling the water soluble pectin in clear red raspberry (Rubus idaeus L. cv. Heritage) juice: Impact of high hydrostatic pressure and high-temperature short-time processing on the pectin properties. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
129
|
The role of hydrogen water in delaying ripening of banana fruit during postharvest storage. Food Chem 2022; 373:131590. [PMID: 34802805 DOI: 10.1016/j.foodchem.2021.131590] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/03/2021] [Accepted: 11/08/2021] [Indexed: 11/24/2022]
Abstract
Experiments were conducted to identify the role of hydrogen water (HW) in banana fruit ripening. Banana fruit soaked with 0.8 ppm HW showed longer ripening than control fruit. HW treatment significantly reduced ethylene production and respiratory rate, and inhibited the expressions of ethylene synthesis- and signaling-related genes. Similarly, HW treatment inhibited the down-regulation of chlorophylls binding proteins and delayed the increase of chromaticity a*, b* and L* in banana peel. Furthermore, HW-treated peel exhibited lower expressions of cell wall degradation-related genes and higher levels of fruit firmness, pectin, hemicellulose and lignin. In addition, HW-treated pulp exhibited higher levels of starch, lower level of total soluble solids (TSS) and lower expression of flavor-related genes. Microstructural observation further confirmed that HW treatment delayed the degradations of starch and cell walls. Those results indicated that HW treatment delayed banana ripening via the role of ethylene in relation to degreening, flavor and softening.
Collapse
|
130
|
Coculo D, Lionetti V. The Plant Invertase/Pectin Methylesterase Inhibitor Superfamily. FRONTIERS IN PLANT SCIENCE 2022; 13:863892. [PMID: 35401607 PMCID: PMC8990755 DOI: 10.3389/fpls.2022.863892] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/02/2022] [Indexed: 05/08/2023]
Abstract
Invertases (INVs) and pectin methylesterases (PMEs) are essential enzymes coordinating carbohydrate metabolism, stress responses, and sugar signaling. INVs catalyzes the cleavage of sucrose into glucose and fructose, exerting a pivotal role in sucrose metabolism, cellulose biosynthesis, nitrogen uptake, reactive oxygen species scavenging as well as osmotic stress adaptation. PMEs exert a dynamic control of pectin methylesterification to manage cell adhesion, cell wall porosity, and elasticity, as well as perception and signaling of stresses. INV and PME activities can be regulated by specific proteinaceous inhibitors, named INV inhibitors (INVIs) and PME Inhibitors (PMEIs). Despite targeting different enzymes, INVIs and PMEIs belong to the same large protein family named "Plant Invertase/Pectin Methylesterase Inhibitor Superfamily." INVIs and PMEIs, while showing a low aa sequence identity, they share several structural properties. The two inhibitors showed mainly alpha-helices in their secondary structure and both form a non-covalent 1:1 complex with their enzymatic counterpart. Some PMEI members are organized in a gene cluster with specific PMEs. Although the most important physiological information was obtained in Arabidopsis thaliana, there are now several characterized INVI/PMEIs in different plant species. This review provides an integrated and updated overview of this fascinating superfamily, from the specific activity of characterized isoforms to their specific functions in plant physiology. We also highlight INVI/PMEIs as biotechnological tools to control different aspects of plant growth and defense. Some isoforms are discussed in view of their potential applications to improve industrial processes. A review of the nomenclature of some isoforms is carried out to eliminate confusion about the identity and the names of some INVI/PMEI member. Open questions, shortcoming, and opportunities for future research are also presented.
Collapse
Affiliation(s)
| | - Vincenzo Lionetti
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Rome, Italy
| |
Collapse
|
131
|
Xu Z, Dai J, Kang T, Shah K, Li Q, Liu K, Xing L, Ma J, Zhang D, Zhao C. PpePL1 and PpePL15 Are the Core Members of the Pectate Lyase Gene Family Involved in Peach Fruit Ripening and Softening. FRONTIERS IN PLANT SCIENCE 2022; 13:844055. [PMID: 35401624 PMCID: PMC8990770 DOI: 10.3389/fpls.2022.844055] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/07/2022] [Indexed: 06/12/2023]
Abstract
Pectin is the major component in the primary cell wall and middle lamella, maintaining the physical stability and mechanical strength of the cell wall. Pectate lyase (PL), a cell wall modification enzyme, has a major influence on the structure of pectin. However, little information and no comprehensive analysis is available on the PL gene family in peach (Prunus persica L. Batsch). In this study, 20 PpePL genes were identified in peach. We characterized their physicochemical characteristics, sequence alignments, chromosomal locations, and gene structures. The PpePL family members were classified into five groups based on their phylogenetic relationships. Among those, PpePL1, 9, 10, 15, and 18 had the higher expression abundance in ripe fruit, and PpePL1, 15, and 18 were upregulated during storage. Detailed RT-qPCR analysis revealed that PpePL1 and PpePL15 were responsive to ETH treatment (1 g L-1 ethephon) with an abundant transcript accumulation, which suggested these genes were involved in peach ripening and softening. In addition, virus-induced gene silencing (VIGS) technology was used to identify the roles of PpePL1 and PpePL15. Compared to controls, the RNAi fruit maintained greater firmness in the early storage stage, increased acid-soluble pectin (ASP), and reduced water-soluble pectin (WSP). Moreover, transmission electron microscopy (TEM) showed that cell wall degradation was reduced in the fruit of RNAi-1 and RNAi-15, which indicated that softening of the RNAi fruit has been delayed. Our results indicated that PpePL1 and PpePL15 play an important role in peach softening by depolymerizing pectin and degrading cell wall.
Collapse
|
132
|
Lodhi MS, Shaheen A, Khan MT, Shafiq MI, Samra ZQ, Wei DQ. A novel method of affinity purification and characterization of polygalacturonase of Aspergillus flavus by galacturonic acid engineered magnetic nanoparticle. Food Chem 2022; 372:131317. [PMID: 34818738 DOI: 10.1016/j.foodchem.2021.131317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 09/13/2021] [Accepted: 10/02/2021] [Indexed: 11/24/2022]
Abstract
Pectinases hydrolyze pectin and make up 25% of global food processing enzyme sales. In this study, we aimed to purify exo-polygalacturonase (Exo-PG) by using galacturonic acid conjugated magnetic nanoparticles (MNPs) and examined its application in juice purification. The submerged fermentation was carried out in the presence of apple pectin (1%) to promote production of exo-PG from Aspergillus flavus. Maximum exo-PG activity was observed after 4 days (30 °C and pH 5.0). A single protein band (66 kDa) of purified exo-PG was observed in SDS-PAGE. Purification of exo-PG enzyme was ∼ 10 fold with a yield of 29%. The enzyme retained 98% activity in the presence of 15 % glycerol at 4 °C. The purified exo-PG using MNPs yielded a 10-12% increase in juice production as compare to without treated fruit juice. To the best of our knowledge, this is the first report of affinity purification of exo-PG enzyme, using engineered magnetic nanoparticles.
Collapse
Affiliation(s)
- Madeeha Shahzad Lodhi
- Institute of Biochemistry and Biotechnology University of the Punjab, Lahore, Pakistan; Institute of Molecular Biology and Biotechnology University of the Lahore, Lahore 58810, Pakistan.
| | - Ayesha Shaheen
- Institute of Biochemistry and Biotechnology, Quaid-i-Azam Campus, University of the Punjab, Lahore 54590, Pakistan
| | - Muhammad Tahir Khan
- Institute of Molecular Biology and Biotechnology University of the Lahore, Lahore 58810, Pakistan; State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Shanghai Jiao Tong University, 800 Dongchuan Road Shanghai, Minhang District, Shanghai 200240, China.
| | - Muhammad Imtiaz Shafiq
- Institute of Biochemistry and Biotechnology, Quaid-i-Azam Campus, University of the Punjab, Lahore 54590, Pakistan; School of Biochemistry and Biotechnology, University of the Punjab, Lahore and Centre for Bioinformatics and Drug Design, University of the Punjab, Lahore.
| | - Zahoor Qadir Samra
- Institute of Biochemistry and Biotechnology University of the Punjab, Lahore, Pakistan
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Shanghai Jiao Tong University, 800 Dongchuan Road Shanghai, Minhang District, Shanghai 200240, China; Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nanshan District, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
133
|
Genome-wide identification of expansin in Fragaria vesca and expression profiling analysis of the FvEXPs in different fruit development. Gene 2022; 814:146162. [PMID: 34995732 DOI: 10.1016/j.gene.2021.146162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/28/2021] [Accepted: 12/06/2021] [Indexed: 12/21/2022]
Abstract
Strawberry is a highly efficient and economical horticultural crop plant, and strawberry fruits are easy to soften after ripening and decay after harvest, which severely impacts the economic benefits. Expansins are plant cell-wall loosening proteins involved in the process of fruit softening, loosening cell walls and reducing fruit firmness. In this study, 35 FvEXPs genes were identified in the F. vesaca genome. These genes were divided into four subfamilies (27 FvEXPAs, 5 FvEXPBs, 1 FvEXLAs, and 2 FvEXLBs) and were unevenly distributed on 7 chromosomes. Gene structure and motif analysis showed the conserved structure and motif in same subgroup, however, the different motifs and structures may reveal functional divergence of multigene family members of FvEXPs in different developmental stages of fruits. The expression profiling by RNA-seq and qRT-PCR analysis revealed that the FvEXP genes have distinct expression patterns among different stages of strawberry development and ripening. Among them, 3 genes (FvEXPA9, FvEXPA12, and FvEXPA27) were highly expressed in the ripening stage, FvEXPA9 and FvEXPA12 were especially highly expressed in turning stage, whereas FvEXPA27 was especially highly expressed in red stage. Our study provides a better understanding of the FvEXP genes, which may benefit strawberry biotechnological breeding and genetic modification for improving fruit quality and delaying fruit softening.
Collapse
|
134
|
Calcium Ascorbate Coating Improves Postharvest Quality and Storability of Fresh-Cut Slices of Coscia and Abate Fétel Pears (Pyrus communis L.). HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8030227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Flesh firmness is closely related to fruit ripeness and is typically a reliable indicator of shelf-life potential so it could be considered a crucial quality index for the determination of pear quality. Flesh softening after cutting could considerably affect consumer acceptance of fresh-cut pears (Pyrus communis L.). Indeed, mechanical stress (cutting, peeling, etc.) could lead to ethylene production that results in the hydrolysis of pectic substances in the cell walls. The effectiveness of an edible coating treatment on the physical-chemical, nutraceutical, and sensorial analysis was evaluated on two pear cultivars: the summer-ripening ‘Coscia’ and the late-ripening ‘Abate Fétel’, both harvested at their commercial ripening stage. Pear fruit slices were treated with calcium ascorbate, xanthan gum or HPMC coating and stored at 4 °C for 12 days. Weight loss, flesh firmness, soluble solid content, titratable acidity, ΔE color, browning surface, total polyphenol content, and antioxidant capacity were measured. Sensory analysis was carried out. Results showed that calcium ascorbate treatment applied to fruit slices significantly extended their shelf-life because it considerably inhibited browning and color changes in fresh-cut slices of both pear cultivars over seven days of storage. Furthermore, pear slices treated with calcium ascorbate revealed a higher antioxidant capacity and a lower content of total phenols during cold storage.
Collapse
|
135
|
The Use of Opuntia ficus-indica Mucilage and Aloe arborescens as Edible Coatings to Improve the Physical, Chemical, and Microbiological Properties of ‘Hayward’ Kiwifruit Slices. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8030219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Edible coatings (EC) with mucilage of Opuntia ficus-indica or Aloe arborescens are promising to extend the shelf life of fresh-cut fruit products by reducing weight loss and microbial spoilage. In this work, fresh-cut kiwifruits (cv. Hayward) were coated in solutions with mucilage extracted from Opuntia ficus-indica (MC) and A. arborescens (AL). We used three alternative treatments with AL or MC, MC+AL, and with distilled water as control, and stored in passive atmosphere at 5 °C for 3, 5, 7, and 9 d, respectively. For all treatments at each storage period, firmness, weight loss, color, visual quality score, respiration rate, pectin content, and microbiological characteristics were observed. The treatments with mucilage and A. arborescens applied on fresh-cut kiwi slices showed different significant effects until 9 days of storage, in terms of firmness and total pectin. Microbial spoilage analysis revealed the beneficial effects of this strategy after 3 d, particularly in terms of bacteria and yeast. A. arborescens provided a reduction of microbial activity, probably due to the higher quantity of aloin if related to Aloe species. Furthermore, the treatment with MC and AL increased the total pectin content, showing positive effects in terms weight loss and firmness. The results showed that the MC+AL treatment improved the visual score of fresh-cut kiwi fruit until 7 d of storage.
Collapse
|
136
|
Shi L, Liu Q, Qiao Q, Zhu Y, Huang W, Wang X, Ren Z. Exploring the effects of pectate and pectate lyase on the fruit softening and transcription profiling of Solanum lycopersicum. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
137
|
Vargas-Torrico MF, von Borries-Medrano E, Valle-Guadarrama S, Aguilar-Méndez MA. Development of gelatin-carboxymethylcellulose coatings incorporated with avocado epicarp and coconut endocarp extracts to control fungal growth in strawberries for shelf-life extension. CYTA - JOURNAL OF FOOD 2022. [DOI: 10.1080/19476337.2021.2024607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Maria Fernanda Vargas-Torrico
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaria, Ciudad de México, México
| | - Erich von Borries-Medrano
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaria, Ciudad de México, México
| | | | - Miguel A. Aguilar-Méndez
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaria, Ciudad de México, México
| |
Collapse
|
138
|
Liu GS, Li HL, Grierson D, Fu DQ. NAC Transcription Factor Family Regulation of Fruit Ripening and Quality: A Review. Cells 2022; 11:cells11030525. [PMID: 35159333 PMCID: PMC8834055 DOI: 10.3390/cells11030525] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 01/18/2023] Open
Abstract
The NAC transcription factor (TF) family is one of the largest plant-specific TF families and its members are involved in the regulation of many vital biological processes during plant growth and development. Recent studies have found that NAC TFs play important roles during the ripening of fleshy fruits and the development of quality attributes. This review focuses on the advances in our understanding of the function of NAC TFs in different fruits and their involvement in the biosynthesis and signal transduction of plant hormones, fruit textural changes, color transformation, accumulation of flavor compounds, seed development and fruit senescence. We discuss the theoretical basis and potential regulatory models for NAC TFs action and provide a comprehensive view of their multiple roles in modulating different aspects of fruit ripening and quality.
Collapse
Affiliation(s)
- Gang-Shuai Liu
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (G.-S.L.); (H.-L.L.)
| | - Hong-Li Li
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (G.-S.L.); (H.-L.L.)
| | - Donald Grierson
- Laboratory of Fruit Quality Biology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China;
- Plant Sciences Division, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK
| | - Da-Qi Fu
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (G.-S.L.); (H.-L.L.)
- Correspondence:
| |
Collapse
|
139
|
Zhang H, Zhang Y, Wang P, Zhang J. Transcriptome profiling of genes associated with fruit firmness in the melon variety 'Baogua' ( Cucumis melo ssp. agrestis Jeffrey). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:301-313. [PMID: 35400878 PMCID: PMC8943068 DOI: 10.1007/s12298-022-01131-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
UNLABELLED Fruit firmness is an important trait of melons due to its effect on fresh fruit consumption, storage, and transport. However, information on the expression of genes influencing the fruit firmness of 'Baogua' (BG) melon (Cucumis melo ssp. agrestis Jeffrey) remains rare. This study aimed to identify the key genes associated with the firmness of BG fruit sampled at 14 and 28 days after pollination (dap) via transcriptome sequencing. A total of 1113 up-regulated and 2224 down-regulated differentially expressed genes (DEGs) were identified. The main Gene Ontology terms assigned to the DEGs were phosphotransferase activity, alcohol group as acceptor, protein phosphorylation, and protein kinase activity. The enriched KEGG pathways involving the DEGs were starch and sucrose metabolism, diterpenoid biosynthesis, plant hormone signal transduction, and MAPK signaling pathway-plant. In addition, qRT-PCR verified that four GAL genes, namely, CmGAL1-4, were differentially expressed at 0, 7, 14, 21, and 28 dap. Our data revealed that CmGAL1 expression was highest at 21 dap. However, the expression levels of CmGAL2-4 were highest at 14 dap. The sequence of CmGAL1 was similar to the sequences of homologs from melon and cucumber. Subcellular localization analysis revealed CmGAL1 was located in the cell membrane and cytoplasm. Our findings implied that fruit development at 14 dap, which is a key time-point, varies considerably from fruit development at 28 dap. Our present study provides new information on the genes associated with BG fruit firmness and help improve the storage and transport of BG fruit prior to processing. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-022-01131-5.
Collapse
Affiliation(s)
- Huijun Zhang
- School of Life Sciences, Huaibei Normal University, Huaibei, 235000 Anhui Province China
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Jianghuai Horticulture Seeds Co., Ltd, Huaibei, 235000 Anhui Province China
| | - Yan Zhang
- School of Life Sciences, Huaibei Normal University, Huaibei, 235000 Anhui Province China
| | - Pengcheng Wang
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, 230031 Anhui Province China
- Key Laboratory of Intelligent Seedling Breeding in Vegetable Factory, Ma-an-shan, 238200 Anhui Province China
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crops, Hefei, 230031 Anhui Province China
| | - Jian Zhang
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, 230031 Anhui Province China
- Key Laboratory of Intelligent Seedling Breeding in Vegetable Factory, Ma-an-shan, 238200 Anhui Province China
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crops, Hefei, 230031 Anhui Province China
| |
Collapse
|
140
|
Aguilar-Veloz LM, Calderón-Santoyo M, Carvajal-Millan E, Martínez-Robinson K, Ragazzo-Sánchez JA. Artocarpus heterophyllus Lam. leaf extracts added to pectin-based edible coating for Alternaria sp. control in tomato. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.113022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
141
|
Leng F, Wang Y, Cao J, Wang S, Wu D, Jiang L, Li X, Bao J, Karim N, Sun C. Transcriptomic Analysis of Root Restriction Effects on the Primary Metabolites during Grape Berry Development and Ripening. Genes (Basel) 2022; 13:281. [PMID: 35205325 PMCID: PMC8872613 DOI: 10.3390/genes13020281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/23/2022] [Accepted: 01/28/2022] [Indexed: 02/01/2023] Open
Abstract
Root restriction (RR) has been reported to enhance grape berry quality in diverse aspects of grape life. In this study, RR-induced increases in the main primary metabolites in the grape berry and the expression of their related genes were studied at different developmental stages. Mainly the transcriptomic and metabolomic level were analyzed using 'Summer Black' grape berry as a material. The main results were as follows: A total of 11 transcripts involved in the primary metabolic pathways were significantly changed by the RR treatment. Metabolites such as sugars, organic acids, amino acids, starch, pectin, and cellulose were qualitatively and quantitatively analyzed along with their metabolic pathways. Sucrose synthase (VIT_07s0005g00750, VIT_11s0016g00470) and sucrose phosphate synthase (VIT_18s0089g00410) were inferred to play critical roles in the accumulation of starch, sucrose, glucose, and fructose, which was induced by the RR treatment. RR treatment also promoted the malic acid and tartaric acid accumulation in the young berry. In addition, the grape berries after the RR treatment tended to have lower pectin and cellulose content.
Collapse
Affiliation(s)
- Feng Leng
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; (F.L.); (Y.W.); (D.W.); (X.L.); (C.S.)
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Yue Wang
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; (F.L.); (Y.W.); (D.W.); (X.L.); (C.S.)
| | - Jinping Cao
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; (F.L.); (Y.W.); (D.W.); (X.L.); (C.S.)
| | - Shiping Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Di Wu
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; (F.L.); (Y.W.); (D.W.); (X.L.); (C.S.)
| | - Ling Jiang
- Wujiang Research Institute of Grape, Jinhua 321017, China;
| | - Xian Li
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; (F.L.); (Y.W.); (D.W.); (X.L.); (C.S.)
| | - Jinsong Bao
- Institute of Nuclear Agricultural Sciences, Zijingang Campus, Zhejiang University, Hangzhou 310058, China;
| | - Naymul Karim
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China;
| | - Chongde Sun
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; (F.L.); (Y.W.); (D.W.); (X.L.); (C.S.)
| |
Collapse
|
142
|
Punia Bangar S, Trif M, Ozogul F, Kumar M, Chaudhary V, Vukic M, Tomar M, Changan S. Recent developments in cold plasma-based enzyme activity (browning, cell wall degradation, and antioxidant) in fruits and vegetables. Compr Rev Food Sci Food Saf 2022; 21:1958-1978. [PMID: 35080794 DOI: 10.1111/1541-4337.12895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 12/24/2022]
Abstract
According to the Food and Agriculture Organization of United Nations reports, approximately half of the total harvested fruits and vegetables vanish before they reach the end consumer due to their perishable nature. Enzymatic browning is one of the most common problems faced by fruit and vegetable processing. The perishability of fruits and vegetables is contributed by the various browning enzymes (polyphenol oxidase, peroxidase, and phenylalanine ammonia-lyase) and ripening or cell wall degrading enzyme (pectin methyl-esterase). In contrast, antioxidant enzymes (superoxide dismutase and catalase) assist in reversing the damage caused by reactive oxygen species or free radicals. The cold plasma technique has emerged as a novel, economic, and environmentally friendly approach that reduces the expression of ripening and browning enzymes while increasing the activity of antioxidant enzymes; microorganisms are significantly inhibited, therefore improving the shelf life of fruits and vegetables. This review narrates the mechanism and principle involved in the use of cold plasma technique as a nonthermal agent and its application in impeding the activity of browning and ripening enzymes and increasing the expression of antioxidant enzymes for improving the shelf life and quality of fresh fruits and vegetables and preventing spoilage and pathogenic germs from growing. An overview of hurdles and sustainability advantages of cold plasma technology is presented.
Collapse
Affiliation(s)
- Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, South Carolina, USA
| | - Monica Trif
- Food Research Department, Centre for Innovative Process Engineering (Centiv) GmbH, Stuhr, Germany.,CENCIRA Agrofood Research and Innovation Centre, Cluj-Napoca, Romania
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai, India
| | - Vandana Chaudhary
- Department of Dairy Technology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Milan Vukic
- Faculty of Technology Zvornik, University of East Sarajevo, Zvornik, Bosnia and Herzegovina
| | - Maharishi Tomar
- Seed Technology Division, ICAR-Indian Grassland and Fodder Research Institute, Jhansi, India
| | - Sushil Changan
- Division of Crop Physiology, Biochemistry and Post-Harvest Technology, ICAR-Central Potato Research Institute, Shimla, India
| |
Collapse
|
143
|
Yang Y, Lu L, Sun D, Wang J, Wang N, Qiao L, Guo Q, Wang C. Fungus Polygalacturonase-Generated Oligogalacturonide Restrains Fruit Softening in Ripening Tomato. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:759-769. [PMID: 34932342 DOI: 10.1021/acs.jafc.1c04972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fruit softening exacerbates mechanical damage incurred during shipping and handling and the increase in pathogen susceptibility. Here, oligogalacturonides (OGs) produced by fungal polygalacturonase (PG) delayed fruit softening in tomato and maintained fruit firmness at 8.37 ± 0.45 N at 13 d of storage, which was consistent with the fruit firmness level of 5 d in the control groups. From RNA sequencing data in line production of phytohormones, we confirmed ethylene and jasmonic acid signals, the MAPK signaling cascade, and calmodulin involved in the OG-mediated firmness response of whole fruit. SlPG2, SlPL3, and SlPL5 were the major contributing factors for fruit softening, and their expression decreased continuously upon OG application. Suppression of the expression of ethylene response factors using a virus-induced gene-silencing strategy revealed that SlERF6 was negatively involved in OG-restrained fruit softening. Taken together, these results indicated that fungal PG-generated OGs have potential application value in controlling tomato fruit softening.
Collapse
Affiliation(s)
- Ying Yang
- Tianjin Key Laboratory of Food Quality and Health, State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Laifeng Lu
- Tianjin Key Laboratory of Food Quality and Health, State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Dandan Sun
- Tianjin Key Laboratory of Food Quality and Health, State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Jinghao Wang
- Tianjin Key Laboratory of Food Quality and Health, State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Nifei Wang
- Tianjin Key Laboratory of Food Quality and Health, State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Liping Qiao
- Tianjin Key Laboratory of Food Quality and Health, State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Qingbin Guo
- Tianjin Key Laboratory of Food Quality and Health, State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Changlu Wang
- Tianjin Key Laboratory of Food Quality and Health, State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| |
Collapse
|
144
|
Leng F, Wang C, Sun L, Li P, Cao J, Wang Y, Zhang C, Sun C. Effects of Different Treatments on Physicochemical Characteristics of ‘Kyoho’ Grapes during Storage at Low Temperature. HORTICULTURAE 2022; 8:94. [DOI: 10.3390/horticulturae8020094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Low temperature storage is widely used to maintain the postharvest quality of table grape. However, grape clusters easily undergo deterioration without treatment during the storage time. The main goal of this study was to evaluate the effect of postharvest 1-methylcyclopropene (1-MCP), calcium chloride (1%) and ethanol (16%), and the combination of 1-MCP with calcium chloride and ethanol treatments on maintenance of quality of table grapes ‘Kyoho’ (Vitis vinifera × Vitis labrusca) under 5 °C and 0 °C storage. Changes in decay incidence, weight loss, rachis browning and quality indexes of grape clusters were investigated. The results were as follows: all treatments significantly reduced the decay incidence, weight loss, rachis browning at both low temperatures storage; 1-MCP had positive effect for reducing the decay incidence in early stage, but no effect in late stage; there are no significant variations of taste and color quality indexes under two low temperatures storage, regardless of the treatments. Overall findings suggested that the combination of 1-MCP with calcium chloride and ethanol treatment is suitable for short-term 0 °C storage, while for long-term 0 °C storage, calcium chloride (1%) and ethanol (16%) treatment should be selected.
Collapse
Affiliation(s)
- Feng Leng
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Chengyang Wang
- Zhoushan Academy of Agriculture Sciences, Zhoushan 316000, China
| | - Liping Sun
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Pei Li
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Jinping Cao
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Yue Wang
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Changfeng Zhang
- Shandong Key Laboratory of Storage and Transportation Technology of Agricultural Products, Shandong Institute of Commerce and Technology, Jinan 250103, China
| | - Chongde Sun
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| |
Collapse
|
145
|
Fournier GP, Parsons CW, Cutts EM, Tamre E. Standard Candles for Dating Microbial Lineages. Methods Mol Biol 2022; 2569:41-74. [PMID: 36083443 DOI: 10.1007/978-1-0716-2691-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Molecular clock analyses are challenging for microbial phylogenies, due to a lack of fossil calibrations that can reliably provide absolute time constraints. An alternative source of temporal constraints for microbial groups is provided by the inheritance of proteins that are specific for the utilization of eukaryote-derived substrates, which have often been dispersed across the Tree of Life via horizontal gene transfer. In particular, animal, algal, and plant-derived substrates are often produced by groups with more precisely known divergence times, providing an older-bound on their availability within microbial environments. Therefore, these ages can serve as "standard candles" for dating microbial groups across the Tree of Life, expanding the reach of informative molecular clock investigations. Here, we formally develop the concept of substrate standard candles and describe how they can be propagated and applied using both microbial species trees and individual gene family phylogenies. We also provide detailed evaluations of several candidate standard candles and discuss their suitability in light of their often complex evolutionary and metabolic histories.
Collapse
Affiliation(s)
- Gregory P Fournier
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Chris W Parsons
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Elise M Cutts
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Erik Tamre
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
146
|
Changes in Homogalacturonan Metabolism in Banana Peel during Fruit Development and Ripening. Int J Mol Sci 2021; 23:ijms23010243. [PMID: 35008668 PMCID: PMC8745247 DOI: 10.3390/ijms23010243] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 01/14/2023] Open
Abstract
Though numerous studies have focused on the cell wall disassembly of bananas during the ripening process, the modification of homogalacturonan (HG) during fruit development remains exclusive. To better understand the role of HGs in controlling banana fruit growth and ripening, RNA-Seq, qPCR, immunofluorescence labeling, and biochemical methods were employed to reveal their dynamic changes in banana peels during these processes. Most HG-modifying genes in banana peels showed a decline in expression during fruit development. Four polygalacturonase and three pectin acetylesterases showing higher expression levels at later developmental stages than earlier ones might be related to fruit expansion. Six out of the 10 top genes in the Core Enrichment Gene Set were HG degradation genes, and all were upregulated after softening, paralleled to the significant increase in HG degradation enzyme activities, decline in peel firmness, and the epitope levels of 2F4, CCRC-M38, JIM7, and LM18 antibodies. Most differentially expressed alpha-1,4-galacturonosyltransferases were upregulated by ethylene treatment, suggesting active HG biosynthesis during the fruit softening process. The epitope level of the CCRC-M38 antibody was positively correlated to the firmness of banana peel during fruit development and ripening. These results have provided new insights into the role of cell wall HGs in fruit development and ripening.
Collapse
|
147
|
Inhibitory Effects of CaCl2 and Pectin Methylesterase on Fruit Softening of Raspberry during Cold Storage. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae8010001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Quality of raspberry fruit experiences a rapid decline after harvest due to its vulnerable texture and high moisture content. Application of calcium chloride (CaCl2) combined with pectin methylesterase (PME) is efficient in delaying fruit softening. In this study, the effects of exogenous CaCl2 alone or in combination with PME on the structure of the cell wall, the molecular properties of pectin, and the amount of free water of raspberry during postharvest storage were investigated. The results showed that CaCl2 combined with PME treatment could maintain fruit firmness and inhibit weight loss. The treatment of CaCl2+PME maintained the cell wall structure via sustaining middle lamella integrity and reducing the activities of cell wall-degrading enzymes, such as polygalacturonase, pectin methylesterase, β-galactosidase, α-L-arabinofuranosidase, and β-xylosidase. In addition, CaCl2+PME treatment could effectively increase the content of chelate-soluble pectin (CSP) and develop a cross-linked structure between Ca2+ and CSP. Moreover, CaCl2+PME treatment was of benefit in maintaining free water content. CaCl2 in combination with PME treatment could be a promising method for inhibiting softening and maintaining the quality of postharvest raspberry during cold storage.
Collapse
|
148
|
Wang L, Gao Y, Wang S, Zhang Q, Yang S. Genome-wide identification of PME genes, evolution and expression analyses in soybean (Glycine max L.). BMC PLANT BIOLOGY 2021; 21:578. [PMID: 34872520 PMCID: PMC8647493 DOI: 10.1186/s12870-021-03355-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Pectin methylesterase (PME) is one of pectin-modifying enzyme that affects the pectin homeostasis in cell wall and regulates plant growth and diverse biological processes. The PME genes have been well explored and characterized in different plants. Nevertheless, systematic research on the soybean (Glycine max L.) PME genes remain lacking. RESULTS We identified 127 Glycine max PME genes (GmPME) from the soybean Wm82.a2.v1 genome, which unevenly distributed on 20 soybean chromosomes. Phylogenetic analysis classified the GmPME genes into four clades (Group I, Group II, Group III and Group IV). GmPME gene members in the same clades displayed similar gene structures and motif patterns. The gene family expansion analysis demonstrated that segmental duplication was the major driving force to acquire novel GmPME genes compared to the tandem duplication events. Further synteny and evolution analyses showed that the GmPME gene family experienced strong purifying selective pressures during evolution. The cis-element analyses together with the expression patterns of the GmPME genes in various tissues suggested that the GmPME genes broadly participate in distinct biological processes and regulate soybean developments. Importantly, based on the transcriptome data and quantitative RT-PCR validations, we examined the potential roles of the GmPME genes in regulating soybean flower bud development and seed germination. CONCLUSION In conclusion, we provided a comprehensive characterization of the PME genes in soybean, and our work laid a foundation for the functional study of GmPME genes in the future.
Collapse
Affiliation(s)
- Liang Wang
- Soybean Research Institute, National Center for Soybean, Key Improvement Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yingqi Gao
- Soybean Research Institute, National Center for Soybean, Key Improvement Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Songming Wang
- Soybean Research Institute, National Center for Soybean, Key Improvement Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Qiqi Zhang
- Soybean Research Institute, National Center for Soybean, Key Improvement Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Shouping Yang
- Soybean Research Institute, National Center for Soybean, Key Improvement Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
149
|
Huang B, Hu G, Wang K, Frasse P, Maza E, Djari A, Deng W, Pirrello J, Burlat V, Pons C, Granell A, Li Z, van der Rest B, Bouzayen M. Interaction of two MADS-box genes leads to growth phenotype divergence of all-flesh type of tomatoes. Nat Commun 2021; 12:6892. [PMID: 34824241 PMCID: PMC8616914 DOI: 10.1038/s41467-021-27117-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/02/2021] [Indexed: 12/19/2022] Open
Abstract
All-flesh tomato cultivars are devoid of locular gel and exhibit enhanced firmness and improved postharvest storage. Here, we show that SlMBP3 is a master regulator of locular tissue in tomato fruit and that a deletion at the gene locus underpins the All-flesh trait. Intriguingly, All-flesh varieties lack the deleterious phenotypes reported previously for SlMBP3 under-expressing lines and which preclude any potential commercial use. We resolve the causal factor for this phenotypic divergence through the discovery of a natural mutation at the SlAGL11 locus, a close homolog of SlMBP3. Misexpressing SlMBP3 impairs locular gel formation through massive transcriptomic reprogramming at initial phases of fruit development. SlMBP3 influences locule gel formation by controlling cell cycle and cell expansion genes, indicating that important components of fruit softening are determined at early pre-ripening stages. Our findings define potential breeding targets for improved texture in tomato and possibly other fleshy fruits.
Collapse
Affiliation(s)
- Baowen Huang
- grid.508721.9Université de Toulouse, INRAe/INP Toulouse, UMR990 Génomique et Biotechnologie des Fruits, Avenue de l’Agrobiopole, Castanet-Tolosan, F-31326 France ,grid.15781.3a0000 0001 0723 035XLaboratoire de Recherche en Sciences Végétales - UMR5546, Université de Toulouse, CNRS, UPS, Toulouse, INP France
| | - Guojian Hu
- grid.508721.9Université de Toulouse, INRAe/INP Toulouse, UMR990 Génomique et Biotechnologie des Fruits, Avenue de l’Agrobiopole, Castanet-Tolosan, F-31326 France ,grid.15781.3a0000 0001 0723 035XLaboratoire de Recherche en Sciences Végétales - UMR5546, Université de Toulouse, CNRS, UPS, Toulouse, INP France
| | - Keke Wang
- grid.508721.9Université de Toulouse, INRAe/INP Toulouse, UMR990 Génomique et Biotechnologie des Fruits, Avenue de l’Agrobiopole, Castanet-Tolosan, F-31326 France ,grid.15781.3a0000 0001 0723 035XLaboratoire de Recherche en Sciences Végétales - UMR5546, Université de Toulouse, CNRS, UPS, Toulouse, INP France
| | - Pierre Frasse
- grid.508721.9Université de Toulouse, INRAe/INP Toulouse, UMR990 Génomique et Biotechnologie des Fruits, Avenue de l’Agrobiopole, Castanet-Tolosan, F-31326 France ,grid.15781.3a0000 0001 0723 035XLaboratoire de Recherche en Sciences Végétales - UMR5546, Université de Toulouse, CNRS, UPS, Toulouse, INP France
| | - Elie Maza
- grid.508721.9Université de Toulouse, INRAe/INP Toulouse, UMR990 Génomique et Biotechnologie des Fruits, Avenue de l’Agrobiopole, Castanet-Tolosan, F-31326 France ,grid.15781.3a0000 0001 0723 035XLaboratoire de Recherche en Sciences Végétales - UMR5546, Université de Toulouse, CNRS, UPS, Toulouse, INP France
| | - Anis Djari
- grid.508721.9Université de Toulouse, INRAe/INP Toulouse, UMR990 Génomique et Biotechnologie des Fruits, Avenue de l’Agrobiopole, Castanet-Tolosan, F-31326 France ,grid.15781.3a0000 0001 0723 035XLaboratoire de Recherche en Sciences Végétales - UMR5546, Université de Toulouse, CNRS, UPS, Toulouse, INP France
| | - Wei Deng
- grid.190737.b0000 0001 0154 0904Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331 Chongqing, China
| | - Julien Pirrello
- grid.508721.9Université de Toulouse, INRAe/INP Toulouse, UMR990 Génomique et Biotechnologie des Fruits, Avenue de l’Agrobiopole, Castanet-Tolosan, F-31326 France ,grid.15781.3a0000 0001 0723 035XLaboratoire de Recherche en Sciences Végétales - UMR5546, Université de Toulouse, CNRS, UPS, Toulouse, INP France
| | - Vincent Burlat
- grid.15781.3a0000 0001 0723 035XLaboratoire de Recherche en Sciences Végétales - UMR5546, Université de Toulouse, CNRS, UPS, Toulouse, INP France
| | - Clara Pons
- grid.4711.30000 0001 2183 4846Instituto de Biología Molecular y Cellular de Plantas, Consejo Superior de Investigaciones Cientificas- Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Antonio Granell
- grid.4711.30000 0001 2183 4846Instituto de Biología Molecular y Cellular de Plantas, Consejo Superior de Investigaciones Cientificas- Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331, Chongqing, China. .,Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, 401331, Chongqing, China.
| | - Benoît van der Rest
- Université de Toulouse, INRAe/INP Toulouse, UMR990 Génomique et Biotechnologie des Fruits, Avenue de l'Agrobiopole, Castanet-Tolosan, F-31326, France. .,Laboratoire de Recherche en Sciences Végétales - UMR5546, Université de Toulouse, CNRS, UPS, Toulouse, INP, France.
| | - Mondher Bouzayen
- Université de Toulouse, INRAe/INP Toulouse, UMR990 Génomique et Biotechnologie des Fruits, Avenue de l'Agrobiopole, Castanet-Tolosan, F-31326, France. .,Laboratoire de Recherche en Sciences Végétales - UMR5546, Université de Toulouse, CNRS, UPS, Toulouse, INP, France. .,Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, 401331, Chongqing, China.
| |
Collapse
|
150
|
Zhai Z, Feng C, Wang Y, Sun Y, Peng X, Xiao Y, Zhang X, Zhou X, Jiao J, Wang W, Du B, Wang C, Liu Y, Li T. Genome-Wide Identification of the Xyloglucan endotransglucosylase/Hydrolase ( XTH) and Polygalacturonase ( PG) Genes and Characterization of Their Role in Fruit Softening of Sweet Cherry. Int J Mol Sci 2021; 22:ijms222212331. [PMID: 34830211 PMCID: PMC8621145 DOI: 10.3390/ijms222212331] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 11/16/2022] Open
Abstract
Fruit firmness is an important economical trait in sweet cherry (Prunus avium L.) where the change of this trait is related to cell wall degradation. Xyloglucan endotransglycosylase/hydrolase (XTH) and polygalacturonases (PGs) are critical cell-wall-modifying enzymes that occupy a crucial position in fruit ripening and softening. Herein, we identified 18 XTHs and 45 PGs designated PavXTH1-18 and PavPG1-45 based on their locations in the genome of sweet cherry. We provided a systematical overview of PavXTHs and PavPGs, including phylogenetic relationships, conserved motifs, and expression profiling of these genes. The results showed that PavXTH14, PavXTH15 and PavPG38 were most likely to participated in fruit softening owing to the substantial increment in expression during fruit development and ripening. Furthermore, the phytohormone ABA, MeJA, and ethephon significantly elevated the expression of PavPG38 and PavXTH15, and thus promoted fruit softening. Importantly, transient expression PavXTH14, PavXTH15 and PavPG38 in cherry fruits significantly reduced the fruit firmness, and the content of various cell wall components including hemicellulose and pectin significantly changed correspondingly in the transgenic fruit. Taken together, these results present an extensive analysis of XTHs and PGs in sweet cherry and provide potential targets for breeding softening-resistant sweet cherry cultivars via manipulating cell wall-associated genes.
Collapse
|