101
|
Leiva C, Pérez-Sorribes L, González-Delgado S, Ortiz S, Wangensteen OS, Pérez-Portela R. Exceptional population genomic homogeneity in the black brittle star Ophiocomina nigra (Ophiuroidea, Echinodermata) along the Atlantic-Mediterranean coast. Sci Rep 2023; 13:12349. [PMID: 37524805 PMCID: PMC10390532 DOI: 10.1038/s41598-023-39584-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/27/2023] [Indexed: 08/02/2023] Open
Abstract
The Atlantic-Mediterranean marine transition is characterised by strong oceanographic barriers and steep environmental gradients that generally result in connectivity breaks between populations from both basins and may lead to local adaptation. Here, we performed a population genomic study of the black brittle star, Ophiocomina nigra, covering most of its distribution range along the Atlantic-Mediterranean region. Interestingly, O. nigra is extremely variable in its coloration, with individuals ranging from black to yellow-orange, and different colour morphs inhabiting different depths and habitats. In this work, we used a fragment of the mitochondrial COI gene and 2,374 genome-wide ddRADseq-derived SNPs to explore: (a) whether the different colour morphs of O. nigra represent different evolutionary units; (b) the disruptive effects of major oceanographic fronts on its population structure; and (c) genomic signals of local adaptation to divergent environments. Our results revealed exceptional population homogeneity, barely affected by oceanographic fronts, with no signals of local adaptation nor genetic differentiation between colour morphs. This remarkable panmixia likely results from a long pelagic larval duration, a large effective population size and recent demographic expansions. Our study unveils an extraordinary phenotypic plasticity in O. nigra, opening further research questions on the ecological and molecular mechanisms underpinning coloration in Ophiuroidea.
Collapse
Affiliation(s)
- Carlos Leiva
- Departament de Biologia Evolutiva, Facultat de Biologia, Ecologia i Ciències Ambientals, Universitat de Barcelona (UB), Av. Diagonal 643, 08028, Barcelona, Spain.
- University of Guam Marine Laboratory, 303 University Drive, Mangilao, GU, 96923, USA.
| | - Laia Pérez-Sorribes
- Departament de Biologia Evolutiva, Facultat de Biologia, Ecologia i Ciències Ambientals, Universitat de Barcelona (UB), Av. Diagonal 643, 08028, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Sara González-Delgado
- Departamento de Biología Animal, Edafología y Geología, Facultad de Ciencias, Universidad de la Laguna, Canary Islands, Spain
| | - Sandra Ortiz
- Departament de Biologia Evolutiva, Facultat de Biologia, Ecologia i Ciències Ambientals, Universitat de Barcelona (UB), Av. Diagonal 643, 08028, Barcelona, Spain
| | - Owen S Wangensteen
- Departament de Biologia Evolutiva, Facultat de Biologia, Ecologia i Ciències Ambientals, Universitat de Barcelona (UB), Av. Diagonal 643, 08028, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Rocío Pérez-Portela
- Departament de Biologia Evolutiva, Facultat de Biologia, Ecologia i Ciències Ambientals, Universitat de Barcelona (UB), Av. Diagonal 643, 08028, Barcelona, Spain.
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain.
| |
Collapse
|
102
|
Langschied F, Leisegang MS, Brandes RP, Ebersberger I. ncOrtho: efficient and reliable identification of miRNA orthologs. Nucleic Acids Res 2023; 51:e71. [PMID: 37260093 PMCID: PMC10359484 DOI: 10.1093/nar/gkad467] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 05/04/2023] [Accepted: 05/30/2023] [Indexed: 06/02/2023] Open
Abstract
MicroRNAs (miRNAs) are post-transcriptional regulators that finetune gene expression via translational repression or degradation of their target mRNAs. Despite their functional relevance, frameworks for the scalable and accurate detection of miRNA orthologs are missing. Consequently, there is still no comprehensive picture of how miRNAs and their associated regulatory networks have evolved. Here we present ncOrtho, a synteny informed pipeline for the targeted search of miRNA orthologs in unannotated genome sequences. ncOrtho matches miRNA annotations from multi-tissue transcriptomes in precision, while scaling to the analysis of hundreds of custom-selected species. The presence-absence pattern of orthologs to 266 human miRNA families across 402 vertebrate species reveals four bursts of miRNA acquisition, of which the most recent event occurred in the last common ancestor of higher primates. miRNA families are rarely modified or lost, but notable exceptions for both events exist. miRNA co-ortholog numbers faithfully indicate lineage-specific whole genome duplications, and miRNAs are powerful markers for phylogenomic analyses. Their exceptionally low genetic diversity makes them suitable to resolve clades where the phylogenetic signal is blurred by incomplete lineage sorting of ancestral alleles. In summary, ncOrtho allows to routinely consider miRNAs in evolutionary analyses that were thus far reserved to protein-coding genes.
Collapse
Affiliation(s)
- Felix Langschied
- Applied Bioinformatics Group, Institute of Cell Biology and Neuroscience, Goethe University, Frankfurt, Germany
| | - Matthias S Leisegang
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt, Germany
- German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt, Germany
| | - Ralf P Brandes
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt, Germany
- German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt, Germany
| | - Ingo Ebersberger
- Applied Bioinformatics Group, Institute of Cell Biology and Neuroscience, Goethe University, Frankfurt, Germany
- Senckenberg Biodiversity and Climate Research Centre (S-BIK-F), Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (TBG), Frankfurt am Main, Germany
| |
Collapse
|
103
|
Luo H, Jiang X, Li B, Wu J, Shen J, Xu Z, Zhou X, Hou M, Huang Z, Ou X, Xu L. A high-quality genome assembly highlights the evolutionary history of the great bustard (Otis tarda, Otidiformes). Commun Biol 2023; 6:746. [PMID: 37463976 PMCID: PMC10354230 DOI: 10.1038/s42003-023-05137-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/11/2023] [Indexed: 07/20/2023] Open
Abstract
Conservation genomics often relies on non-invasive methods to obtain DNA fragments which limit the power of multi-omic analyses for threatened species. Here, we report multi-omic analyses based on a well-preserved great bustard individual (Otis tarda, Otidiformes) that was found dead in the mountainous region in Gansu, China. We generate a near-complete genome assembly containing only 18 gaps scattering in 8 out of the 40 assembled chromosomes. We characterize the DNA methylation landscape which is correlated with GC content and gene expression. Our phylogenomic analysis suggests Otidiformes and Musophagiformes are sister groups that diverged from each other 46.3 million years ago. The genetic diversity of great bustard is found the lowest among the four available Otidiformes genomes, possibly due to population declines during past glacial periods. As one of the heaviest migratory birds, great bustard possesses several expanded gene families related to cardiac contraction, actin contraction, calcium ion signaling transduction, as well as positively selected genes enriched for metabolism. Finally, we identify an extremely young evolutionary stratum on the sex chromosome, a rare case among birds. Together, our study provides insights into the conservation genomics, adaption and chromosome evolution of the great bustard.
Collapse
Affiliation(s)
- Haoran Luo
- MOE Key Laboratory of Freshwater Fish Reproduction and Development, Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Ministry of Education for the Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Xinrui Jiang
- MOE Key Laboratory of Freshwater Fish Reproduction and Development, Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Boping Li
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, Longdong University, Qingyang, Gansu Province, 745000, China
| | - Jiahong Wu
- MOE Key Laboratory of Freshwater Fish Reproduction and Development, Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Jiexin Shen
- MOE Key Laboratory of Freshwater Fish Reproduction and Development, Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Zaoxu Xu
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, Longdong University, Qingyang, Gansu Province, 745000, China
| | - Xiaoping Zhou
- Key Laboratory of Ministry of Education for the Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Minghao Hou
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, Longdong University, Qingyang, Gansu Province, 745000, China
| | - Zhen Huang
- Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, China.
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China.
| | - Xiaobin Ou
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, Longdong University, Qingyang, Gansu Province, 745000, China.
| | - Luohao Xu
- MOE Key Laboratory of Freshwater Fish Reproduction and Development, Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
104
|
Theissinger K, Fernandes C, Formenti G, Bista I, Berg PR, Bleidorn C, Bombarely A, Crottini A, Gallo GR, Godoy JA, Jentoft S, Malukiewicz J, Mouton A, Oomen RA, Paez S, Palsbøll PJ, Pampoulie C, Ruiz-López MJ, Secomandi S, Svardal H, Theofanopoulou C, de Vries J, Waldvogel AM, Zhang G, Jarvis ED, Bálint M, Ciofi C, Waterhouse RM, Mazzoni CJ, Höglund J. How genomics can help biodiversity conservation. Trends Genet 2023; 39:545-559. [PMID: 36801111 DOI: 10.1016/j.tig.2023.01.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/08/2022] [Accepted: 01/19/2023] [Indexed: 02/18/2023]
Abstract
The availability of public genomic resources can greatly assist biodiversity assessment, conservation, and restoration efforts by providing evidence for scientifically informed management decisions. Here we survey the main approaches and applications in biodiversity and conservation genomics, considering practical factors, such as cost, time, prerequisite skills, and current shortcomings of applications. Most approaches perform best in combination with reference genomes from the target species or closely related species. We review case studies to illustrate how reference genomes can facilitate biodiversity research and conservation across the tree of life. We conclude that the time is ripe to view reference genomes as fundamental resources and to integrate their use as a best practice in conservation genomics.
Collapse
Affiliation(s)
- Kathrin Theissinger
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, 60325 Frankfurt/Main, Germany
| | - Carlos Fernandes
- CE3C - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; Faculdade de Psicologia, Universidade de Lisboa, Alameda da Universidade, 1649-013 Lisboa, Portugal
| | - Giulio Formenti
- The Rockefeller University, 1230 York Ave, New York, NY 10065, USA
| | - Iliana Bista
- Naturalis Biodiversity Center, Darwinweg 2, 2333, CR, Leiden, The Netherlands; Wellcome Sanger Institute, Tree of Life, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Paul R Berg
- NIVA - Norwegian Institute for Water Research, Økernveien, 94, 0579 Oslo, Norway; Centre for Coastal Research, University of Agder, Gimlemoen 25j, 4630 Kristiansand, Norway; Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, PO BOX 1066 Blinderm, 0316 Oslo, Norway
| | - Christoph Bleidorn
- University of Göttingen, Department of Animal Evolution and Biodiversity, Untere Karspüle, 2, 37073, Göttingen, Germany
| | | | - Angelica Crottini
- CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos, Rua Padre Armando Quintas, 7, 4485-661, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002 Porto, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Guido R Gallo
- Department of Biosciences, University of Milan, Milan, Italy
| | - José A Godoy
- Estación Biológica de Doñana, CSIC, Calle Americo Vespucio 26, 41092, Sevillle, Spain
| | - Sissel Jentoft
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, PO BOX 1066 Blinderm, 0316 Oslo, Norway
| | - Joanna Malukiewicz
- Primate Genetics Laborator, German Primate Center, Kellnerweg 4, 37077, Göttingen, Germany
| | - Alice Mouton
- InBios - Conservation Genetics Lab, University of Liege, Chemin de la Vallée 4, 4000, Liege, Belgium
| | - Rebekah A Oomen
- Centre for Coastal Research, University of Agder, Gimlemoen 25j, 4630 Kristiansand, Norway; Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, PO BOX 1066 Blinderm, 0316 Oslo, Norway
| | - Sadye Paez
- The Rockefeller University, 1230 York Ave, New York, NY 10065, USA
| | - Per J Palsbøll
- Groningen Institute of Evolutionary Life Sciences, University of Groningen, Nijenborgh, 9747, AG, Groningen, The Netherlands; Center for Coastal Studies, 5 Holway Avenue, Provincetown, MA 02657, USA
| | - Christophe Pampoulie
- Marine and Freshwater Research Institute, Fornubúðir, 5,220, Hanafjörður, Iceland
| | - María J Ruiz-López
- Estación Biológica de Doñana, CSIC, Calle Americo Vespucio 26, 41092, Sevillle, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain
| | | | - Hannes Svardal
- Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| | - Constantina Theofanopoulou
- The Rockefeller University, 1230 York Ave, New York, NY 10065, USA; Hunter College, City University of New York, NY, USA
| | - Jan de Vries
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goettingen Center for Molecular Biosciences (GZMB), Campus Institute Data Science (CIDAS), Goldschmidtstr. 1, 37077, Goettingen, Germany
| | - Ann-Marie Waldvogel
- Institute of Zoology, University of Cologne, Zülpicherstrasse 47b, D-50674, Cologne, Germany
| | - Guojie Zhang
- Evolutionary & Organismal Biology Research Center, Zhejiang University School of Medicine, Hangzhou, 310058, China; Villum Center for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Denmark; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Erich D Jarvis
- The Rockefeller University, 1230 York Ave, New York, NY 10065, USA
| | - Miklós Bálint
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, 60325 Frankfurt/Main, Germany
| | - Claudio Ciofi
- University of Florence, Department of Biology, Via Madonna del Piano 6, Sesto Fiorentino, (FI) 50019, Italy
| | - Robert M Waterhouse
- University of Lausanne, Department of Ecology and Evolution, Le Biophore, UNIL-Sorge, 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Camila J Mazzoni
- Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Str 17, 10315 Berlin, Germany; Berlin Center for Genomics in Biodiversity Research (BeGenDiv), Koenigin-Luise-Str 6-8, 14195 Berlin, Germany
| | - Jacob Höglund
- Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75246, Uppsala, Sweden.
| |
Collapse
|
105
|
Larivière D, Abueg L, Brajuka N, Gallardo-Alba C, Grüning B, Ko BJ, Ostrovsky A, Palmada-Flores M, Pickett BD, Rabbani K, Balacco JR, Chaisson M, Cheng H, Collins J, Denisova A, Fedrigo O, Gallo GR, Giani AM, Gooder GM, Jain N, Johnson C, Kim H, Lee C, Marques-Bonet T, O'Toole B, Rhie A, Secomandi S, Sozzoni M, Tilley T, Uliano-Silva M, van den Beek M, Waterhouse RM, Phillippy AM, Jarvis ED, Schatz MC, Nekrutenko A, Formenti G. Scalable, accessible, and reproducible reference genome assembly and evaluation in Galaxy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.28.546576. [PMID: 37425881 PMCID: PMC10327048 DOI: 10.1101/2023.06.28.546576] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Improvements in genome sequencing and assembly are enabling high-quality reference genomes for all species. However, the assembly process is still laborious, computationally and technically demanding, lacks standards for reproducibility, and is not readily scalable. Here we present the latest Vertebrate Genomes Project assembly pipeline and demonstrate that it delivers high-quality reference genomes at scale across a set of vertebrate species arising over the last ~500 million years. The pipeline is versatile and combines PacBio HiFi long-reads and Hi-C-based haplotype phasing in a new graph-based paradigm. Standardized quality control is performed automatically to troubleshoot assembly issues and assess biological complexities. We make the pipeline freely accessible through Galaxy, accommodating researchers even without local computational resources and enhanced reproducibility by democratizing the training and assembly process. We demonstrate the flexibility and reliability of the pipeline by assembling reference genomes for 51 vertebrate species from major taxonomic groups (fish, amphibians, reptiles, birds, and mammals).
Collapse
Affiliation(s)
- Delphine Larivière
- Dept. of Biochemistry and Molecular Biology, Pennsylvania State University, USA
| | - Linelle Abueg
- Vertebrate Genome Laboratory, The Rockefeller University, USA
| | | | - Cristóbal Gallardo-Alba
- Bioinformatics Group, Department of Computer Science, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Bjorn Grüning
- Bioinformatics Group, Department of Computer Science, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Byung June Ko
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Alex Ostrovsky
- Departments of Biology and Computer Science, Johns Hopkins University, USA
| | - Marc Palmada-Flores
- Department of Medicine and Life Sciences (MELIS), Institut de Biologia Evolutiva, Universitat Pompeu Fabra-CSIC, Barcelona 08003, Spain
| | - Brandon D Pickett
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Keon Rabbani
- Department of Quantitative and Computational Biology, University of Southern California
| | | | - Mark Chaisson
- Department of Quantitative and Computational Biology, University of Southern California
| | - Haoyu Cheng
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Joanna Collins
- Wellcome Sanger Institute, Cambridge CB10 1SA, United Kingdom
| | - Alexandra Denisova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Russia
| | - Olivier Fedrigo
- Vertebrate Genome Laboratory, The Rockefeller University, USA
| | | | | | | | - Nivesh Jain
- Vertebrate Genome Laboratory, The Rockefeller University, USA
| | - Cassidy Johnson
- Vertebrate Genome Laboratory, The Rockefeller University, USA
| | - Heebal Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- eGnome, Inc, Seoul, Republic of Korea
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| | - Chul Lee
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York City, NY, 10065, USA
| | - Tomas Marques-Bonet
- Department of Medicine and Life Sciences (MELIS), Institut de Biologia Evolutiva, Universitat Pompeu Fabra-CSIC, Barcelona 08003, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Barcelona 08010, Spain
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Brian O'Toole
- Vertebrate Genome Laboratory, The Rockefeller University, USA
| | - Arang Rhie
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Simona Secomandi
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Marcella Sozzoni
- University of Florence, Department of Biology, Via Madonna del Piano 6, Sesto Fiorentino (FI)
| | - Tatiana Tilley
- Vertebrate Genome Laboratory, The Rockefeller University, USA
| | | | - Marius van den Beek
- Dept. of Biochemistry and Molecular Biology, Pennsylvania State University, USA
| | - Robert M Waterhouse
- Department of Ecology & Evolution and Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - Adam M Phillippy
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Erich D Jarvis
- Vertebrate Genome Laboratory, The Rockefeller University, USA
| | - Michael C Schatz
- Departments of Biology and Computer Science, Johns Hopkins University, USA
| | - Anton Nekrutenko
- Dept. of Biochemistry and Molecular Biology, Pennsylvania State University, USA
| | - Giulio Formenti
- Vertebrate Genome Laboratory, The Rockefeller University, USA
| |
Collapse
|
106
|
Leavitt SD, DeBolt A, McQuhae E, Allen JL. Genomic Resources for the First Federally Endangered Lichen: The Florida Perforate Cladonia ( Cladonia perforata). J Fungi (Basel) 2023; 9:698. [PMID: 37504687 PMCID: PMC10381751 DOI: 10.3390/jof9070698] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 07/29/2023] Open
Abstract
Thirty years after its designation as a federally endangered species, the Florida Perforate Cladonia (FPC) remains imperiled in isolated populations in the Florida scrub in the southeastern USA. For threatened and endangered species, such as FPC, reference genomes provide critical insight into genomic diversity, local adaptations, landscape-level genetics, and phylogenomics. Using high-throughput sequencing, we assemble the first draft nuclear and mitochondrial genomes for the FPC mycobiont-Cladonia perforata. We also assess genetic diversity within and among populations in southeastern Florida using genome-scale data and investigate diversity across the entire nuclear ribosomal cistron, including the standard DNA barcoding marker for fungi. The draft nuclear genome spanned 33.6 Mb, and the complete, circular mitochondrial genome was 59 Kb. We also generated the first chloroplast genome, to our knowledge, for the photobiont genus associated with FPC, an undescribed Asterochloris species. We inferred the presence of multiple, distinct mycobiont parental genotypes (genets) occurring at local scales in southeastern Florida, and strikingly, no genets were shared among even the closest sample sites. All sampled thalli shared identical mitochondrial genomes, while the nuclear ribosomal cistron showed limited variability-highlighting the genetic resolution provided by nuclear genome-scale datasets. The genomic resources generated here provide critical resources for informed conservation efforts for the FPC.
Collapse
Affiliation(s)
- Steven D Leavitt
- M.L. Bean Life Science Museum and Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Ann DeBolt
- Department of Biology, Boise State University, Boise, ID 83725, USA
| | - Ethan McQuhae
- Plant and Wildlife Sciences, Brigham Young University, Provo, UT 84602, USA
| | - Jessica L Allen
- Department of Biology, Eastern Washington University, Cheney, WA 99004, USA
| |
Collapse
|
107
|
Gomes-Dos-Santos A, Lopes-Lima M, Machado MA, Teixeira A, C Castro LF, Froufe E. PacBio Hi-Fi genome assembly of the Iberian dolphin freshwater mussel Unio delphinus Spengler, 1793. Sci Data 2023; 10:340. [PMID: 37264040 DOI: 10.1038/s41597-023-02251-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/18/2023] [Indexed: 06/03/2023] Open
Abstract
Mussels of order Unionida are a group of strictly freshwater bivalves with nearly 1,000 described species widely dispersed across world freshwater ecosystems. They are highly threatened showing the highest record of extinction events within faunal taxa. Conservation is particularly concerning in species occurring in the Mediterranean biodiversity hotspot that are exposed to multiple anthropogenic threats, possibly acting in synergy. That is the case of the dolphin freshwater mussel Unio delphinus Spengler, 1793, endemic to the western Iberian Peninsula with recently strong population declines. To date, only four genome assemblies are available for the order Unionida and only one European species. We present the first genome assembly of Unio delphinus. We used the PacBio HiFi to generate a highly contiguous genome assembly. The assembly is 2.5 Gb long, possessing 1254 contigs with a contig N50 length of 10 Mbp. This is the most contiguous freshwater mussel genome assembly to date and is an essential resource for investigating the species' biology and evolutionary history that ultimately will help to support conservation strategies.
Collapse
Affiliation(s)
- André Gomes-Dos-Santos
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, P, 4450-208, Matosinhos, Portugal.
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre 1021/1055, 4169-007, Porto, Portugal.
| | - Manuel Lopes-Lima
- BIOPOLIS Program in Genomics, Biodiversity and Ecosystems, CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal.
- IUCN SSC Mollusc Specialist Group, c/o IUCN, David Attenborough Building, Pembroke St, Cambridge, England.
| | - M André Machado
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, P, 4450-208, Matosinhos, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre 1021/1055, 4169-007, Porto, Portugal
| | - Amílcar Teixeira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - L Filipe C Castro
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, P, 4450-208, Matosinhos, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre 1021/1055, 4169-007, Porto, Portugal
| | - Elsa Froufe
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, P, 4450-208, Matosinhos, Portugal.
| |
Collapse
|
108
|
Reboud EL, Nabholz B, Chevalier E, Tilak MK, Bito D, Condamine FL. Genomics, Population Divergence, and Historical Demography of the World's Largest and Endangered Butterfly, The Queen Alexandra's Birdwing. Genome Biol Evol 2023; 15:evad040. [PMID: 36896590 PMCID: PMC10101050 DOI: 10.1093/gbe/evad040] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 02/24/2023] [Indexed: 03/11/2023] Open
Abstract
The world's largest butterfly is the microendemic Papua New Guinean Ornithoptera alexandrae. Despite years of conservation efforts to protect its habitat and breed this up-to-28-cm butterfly, this species still figures as endangered in the IUCN Red List and is only known from two allopatric populations occupying a total of only ∼140 km². Here we aim at assembling reference genomes for this species to investigate its genomic diversity, historical demography and determine whether the population is structured, which could provide guidance for conservation programs attempting to (inter)breed the two populations. Using a combination of long and short DNA reads and RNA sequencing, we assembled six reference genomes of the tribe Troidini, with four annotated genomes of O. alexandrae and two genomes of related species Ornithoptera priamus and Troides oblongomaculatus. We estimated the genomic diversity of the three species, and we proposed scenarios for the historical population demography using two polymorphism-based methods taking into account the characteristics of low-polymorphic invertebrates. Indeed, chromosome-scale assemblies reveal very low levels of nuclear heterozygosity across Troidini, which appears to be exceptionally low for O. alexandrae (lower than 0.01%). Demographic analyses demonstrate low and steadily declining Ne throughout O. alexandrae history, with a divergence into two distinct populations about 10,000 years ago. These results suggest that O. alexandrae distribution has been microendemic for a long time. It should also make local conservation programs aware of the genomic divergence of the two populations, which should not be ignored if any attempt is made to cross the two populations.
Collapse
Affiliation(s)
- Eliette L Reboud
- Institut des Sciences de l’Evolution de Montpellier, Université Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Benoit Nabholz
- Institut des Sciences de l’Evolution de Montpellier, Université Montpellier, CNRS, IRD, EPHE, Montpellier, France
- Institut Universitaire de France (IUF), Paris, France
| | - Emmanuelle Chevalier
- Institut des Sciences de l’Evolution de Montpellier, Université Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Marie-ka Tilak
- Institut des Sciences de l’Evolution de Montpellier, Université Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Darren Bito
- Pacific Adventist University, Private Mail Bag, BOROKO 111, National Capital District, Port Moresby, Papua New Guinea
| | - Fabien L Condamine
- Institut des Sciences de l’Evolution de Montpellier, Université Montpellier, CNRS, IRD, EPHE, Montpellier, France
| |
Collapse
|
109
|
Larragy SJ, Möllmann JS, Stout JC, Carolan JC, Colgan TJ. Signatures of Adaptation, Constraints, and Potential Redundancy in the Canonical Immune Genes of a Key Pollinator. Genome Biol Evol 2023; 15:evad039. [PMID: 37042738 PMCID: PMC10116582 DOI: 10.1093/gbe/evad039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 04/13/2023] Open
Abstract
All organisms require an immune system to recognize, differentiate, and defend against pathogens. From an evolutionary perspective, immune systems evolve under strong selective pressures exerted by fast-evolving pathogens. However, the functional diversity of the immune system means that different immune components and their associated genes may evolve under varying forms of selection. Insect pollinators, which provide essential ecosystem services, are an important system in which to understand how selection has shaped immune gene evolution as their populations are experiencing declines with pathogens highlighted as a potential contributing factor. To improve our understanding of the genetic variation found in the immune genes of an essential pollinator, we performed whole-genome resequencing of wild-caught Bombus terrestris males. We first assessed nucleotide diversity and extended haplotype homozygosity for canonical immune genes finding the strongest signatures of positive selection acting on genes involved in pathogen recognition and antiviral defense, possibly driven by growing pathogen spread in wild populations. We also identified immune genes evolving under strong purifying selection, highlighting potential constraints on the bumblebee immune system. Lastly, we highlight the potential loss of function alleles present in the immune genes of wild-caught haploid males, suggesting that such genes are potentially less essential for development and survival and represent redundancy in the gene repertoire of the bumblebee immune system. Collectively, our analysis provides novel insights into the recent evolutionary history of the immune system of a key pollinator, highlighting targets of selection, constraints to adaptation, and potential redundancy.
Collapse
Affiliation(s)
- Sarah J Larragy
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Jannik S Möllmann
- Institute for Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jane C Stout
- School of Natural Sciences, Trinity College Dublin, College Green, Co. Dublin, Ireland
| | - James C Carolan
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Thomas J Colgan
- Institute for Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
- School of Biological, Earth and Environmental Sciences, University College Cork, Co. Cork, Ireland
| |
Collapse
|
110
|
Lo Brutto S, Badalucco A, Iacovera R, Cilli E, Sarà M. Checklist of the Mammal Collection Preserved at the University of Palermo under the Framework of the National Biodiversity Future Center. DIVERSITY 2023. [DOI: 10.3390/d15040518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
The latest reorganization of the Vertebrate collections preserved at the “Pietro Doderlein” Museum of Zoology of the University of Palermo (Italy) has made it possible to draw up a check-list of the Mammal taxa present in the stuffed (M), fluid-preserved (ML) and anatomical (AN) collections. The intervention was planned under the National Biodiversity Future Center (NBFC) agenda, focused on the enhancement of Italian natural history museums. The growing interest in museum collections strongly demands databases available to the academic and policy world. In this paper, we record 679 specimens belonging to 157 specific taxa arranged in 58 families and 16 orders. Most of the species (75.1%) come from the Palaearctic Region (southern Mediterranean and North Africa), with a minority of taxa coming from the Afrotropical (7.8%), Neotropical (4.6%), Indo-Malayan (3.4%) and Australasian (1%) regions. Among the 24% of the taxa listed in the IUCN categories as threatened (VU, EN, CR, RE) the specimens of the Sicilian wolf, a regional endemic subspecies that became extinct in the last century, stand out. Even if small (<1000 specimens), the collection of mammals of the Museum of Zoology is an important asset for research on biodiversity in the Mediterranean area, representing an international reference for those wishing to conduct morphological and genetic studies in this area.
Collapse
Affiliation(s)
- Sabrina Lo Brutto
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF)—Section of Botany, Anthropology, Zoology, University of Palermo, 90133 Palermo, Italy
- National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133 Palermo, Italy
| | - Antonina Badalucco
- National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133 Palermo, Italy
| | - Rocco Iacovera
- Laboratory of Ancient DNA, Department of Cultural Heritage (DBC), University of Bologna, 48121 Ravenna, Italy
| | - Elisabetta Cilli
- Laboratory of Ancient DNA, Department of Cultural Heritage (DBC), University of Bologna, 48121 Ravenna, Italy
| | - Maurizio Sarà
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF)—Section of Botany, Anthropology, Zoology, University of Palermo, 90133 Palermo, Italy
- National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133 Palermo, Italy
| |
Collapse
|
111
|
Wold JR, Guhlin JG, Dearden PK, Santure AW, Steeves TE. The promise and challenges of characterizing genome-wide structural variants: A case study in a critically endangered parrot. Mol Ecol Resour 2023. [PMID: 36916824 DOI: 10.1111/1755-0998.13783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/24/2023] [Accepted: 03/09/2023] [Indexed: 03/15/2023]
Abstract
There is growing interest in the role of structural variants (SVs) as drivers of local adaptation and speciation. From a biodiversity genomics perspective, the characterization of genome-wide SVs provides an exciting opportunity to complement single nucleotide polymorphisms (SNPs). However, little is known about the impacts of SV discovery and genotyping strategies on the characterization of genome-wide SV diversity within and among populations. Here, we explore a near whole-species resequence data set, and long-read sequence data for a subset of highly represented individuals in the critically endangered kākāpō (Strigops habroptilus). We demonstrate that even when using a highly contiguous reference genome, different discovery and genotyping strategies can significantly impact the type, size and location of SVs characterized genome-wide. Further, we found that the mean number of SVs in each of two kākāpō lineages differed both within and across generations. These combined results suggest that genome-wide characterization of SVs remains challenging at the population-scale. We are optimistic that increased accessibility to long-read sequencing and advancements in bioinformatic approaches including multireference approaches like genome graphs will alleviate at least some of the challenges associated with resolving SV characteristics below the species level. In the meantime, we address caveats, highlight considerations, and provide recommendations for the characterization of genome-wide SVs in biodiversity genomic research.
Collapse
Affiliation(s)
- Jana R Wold
- University of Canterbury, Christchurch, New Zealand
| | - Joseph G Guhlin
- Genomics Aotearoa and Biochemistry Department, University of Otago, Dunedin, New Zealand
| | - Peter K Dearden
- Genomics Aotearoa and Biochemistry Department, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|
112
|
Dodge TO, Farquharson KA, Ford C, Cavanagh L, Schubert K, Schumer M, Belov K, Hogg CJ. Genomes of two Extinct-in-the-Wild reptiles from Christmas Island reveal distinct evolutionary histories and conservation insights. Mol Ecol Resour 2023. [PMID: 36872490 DOI: 10.1111/1755-0998.13780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/16/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
Genomics can play important roles in biodiversity conservation, especially for Extinct-in-the-Wild species where genetic factors greatly influence risk of total extinction and probability of successful reintroductions. The Christmas Island blue-tailed skink (Cryptoblepharus egeriae) and Lister's gecko (Lepidodactylus listeri) are two endemic reptile species that went extinct in the wild shortly after the introduction of a predatory snake. After a decade of management, captive populations have expanded from 66 skinks and 43 geckos to several thousand individuals; however, little is known about patterns of genetic variation in these species. Here, we use PacBio HiFi long-read and Hi-C sequencing to generate highly contiguous reference genomes for both reptiles, including the XY chromosome pair in the skink. We then analyse patterns of genetic diversity to infer ancient demography and more recent histories of inbreeding. We observe high genome-wide heterozygosity in the skink (0.007 heterozygous sites per base-pair) and gecko (0.005), consistent with large historical population sizes. However, nearly 10% of the blue-tailed skink reference genome falls within long (>1 Mb) runs of homozygosity (ROH), resulting in homozygosity at all major histocompatibility complex (MHC) loci. In contrast, we detect a single ROH in Lister's gecko. We infer from the ROH lengths that related skinks may have established the captive populations. Despite a shared recent extinction in the wild, our results suggest important differences in these species' histories and implications for management. We show how reference genomes can contribute evolutionary and conservation insights, and we provide resources for future population-level and comparative genomic studies in reptiles.
Collapse
Affiliation(s)
- Tristram O Dodge
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales, Australia
- Department of Biology, Stanford University, Stanford, California, USA
- Australian-American Fulbright Commission, Deakin, Australian Capital Territory, Australia
| | - Katherine A Farquharson
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Claire Ford
- Taronga Conservation Society Australia, Mosman, New South Wales, Australia
| | - Lisa Cavanagh
- Taronga Conservation Society Australia, Mosman, New South Wales, Australia
| | | | - Molly Schumer
- Department of Biology, Stanford University, Stanford, California, USA
| | - Katherine Belov
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Carolyn J Hogg
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
113
|
Cerca J, Cotoras DD, Bieker VC, De-Kayne R, Vargas P, Fernández-Mazuecos M, López-Delgado J, White O, Stervander M, Geneva AJ, Guevara Andino JE, Meier JI, Roeble L, Brée B, Patiño J, Guayasamin JM, Torres MDL, Valdebenito H, Castañeda MDR, Chaves JA, Díaz PJ, Valente L, Knope ML, Price JP, Rieseberg LH, Baldwin BG, Emerson BC, Rivas-Torres G, Gillespie R, Martin MD. Evolutionary genomics of oceanic island radiations. Trends Ecol Evol 2023:S0169-5347(23)00032-0. [PMID: 36870806 DOI: 10.1016/j.tree.2023.02.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 03/06/2023]
Abstract
A recurring feature of oceanic archipelagos is the presence of adaptive radiations that generate endemic, species-rich clades that can offer outstanding insight into the links between ecology and evolution. Recent developments in evolutionary genomics have contributed towards solving long-standing questions at this interface. Using a comprehensive literature search, we identify studies spanning 19 oceanic archipelagos and 110 putative adaptive radiations, but find that most of these radiations have not yet been investigated from an evolutionary genomics perspective. Our review reveals different gaps in knowledge related to the lack of implementation of genomic approaches, as well as undersampled taxonomic and geographic areas. Filling those gaps with the required data will help to deepen our understanding of adaptation, speciation, and other evolutionary processes.
Collapse
Affiliation(s)
- José Cerca
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway.
| | - Darko D Cotoras
- Department of Terrestrial Zoology, Senckenberg Research Institute and Natural History Museum, Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Department of Entomology, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA 94118, USA
| | - Vanessa C Bieker
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Rishi De-Kayne
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Pablo Vargas
- Biodiversity and Conservation, Real Jardín Botánico, 28014 Madrid, Spain
| | - Mario Fernández-Mazuecos
- Departamento de Biología (Botánica), Facultad de Ciencias, Universidad Autónoma de Madrid, Calle Darwin 2, 28049 Madrid, Spain; Centro de Investigación en Biodiversidad y Cambio Global, Universidad Autónoma de Madrid (CIBC-UAM), Calle Darwin 2, 28049 Madrid, Spain
| | - Julia López-Delgado
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Oliver White
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Martin Stervander
- Bird Group, Natural History Museum, Akeman Street, Tring, Hertfordshire HP23 6AP, UK
| | - Anthony J Geneva
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, NJ, USA
| | - Juan Ernesto Guevara Andino
- Grupo de Investigación en Biodiversidad Medio Ambiente y Salud (BIOMAS), Universidad de las Américas, Quito, Ecuador
| | - Joana Isabel Meier
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Lizzie Roeble
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, The Netherlands; Groningen Institute for Evolutionary Life Sciences, University of Groningen, Box 11103, 9700, 5 CC Groningen, The Netherlands
| | - Baptiste Brée
- Université de Pau et des Pays de l'Adour (UPPA), Energy Environment Solutions (E2S), Centre National de la Recherche Scientifique (CNRS), Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM), 64000 Pau, France
| | - Jairo Patiño
- Island Ecology and Evolution Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), Calle Astrofísico Francisco Sánchez 3, 38206 La Laguna, Tenerife, Canary Islands, 38206, Spain
| | - Juan M Guayasamin
- Laboratorio de Biología Evolutiva, Instituto Biósfera, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito (USFQ), Calle Diego de Robles y Avenida Pampite, Cumbayá, 170901 Quito, Ecuador; Galapagos Science Center, Universidad San Francisco de Quito (USFQ) and University of North Carolina (UNC) at Chapel Hill, San Cristobal, Galapagos, Ecuador
| | - María de Lourdes Torres
- Laboratorio de Biotecnología Vegetal, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito (USFQ), Calle Diego de Robles y Avenida Pampite, Cumbayá, Quito, Ecuador; Galapagos Science Center, Universidad San Francisco de Quito (USFQ) and University of North Carolina (UNC) at Chapel Hill, San Cristobal, Galapagos, Ecuador
| | - Hugo Valdebenito
- Galapagos Science Center, Universidad San Francisco de Quito (USFQ) and University of North Carolina (UNC) at Chapel Hill, San Cristobal, Galapagos, Ecuador; Herbarium of Economic Botany of Ecuador (Herabario QUSF), Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito (USFQ), Calle Diego de Robles y Avenida Pampite, Cumbayá, Quito, Ecuador
| | | | - Jaime A Chaves
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA; Laboratorio de Biología Evolutiva, Instituto Biósfera, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito (USFQ), Calle Diego de Robles y Avenida Pampite, Cumbayá, 170901 Quito, Ecuador
| | - Patricia Jaramillo Díaz
- Estación Científica Charles Darwin, Fundación Charles Darwin, Santa Cruz, Galápagos, Ecuador; Department of Botany and Plant Physiology, University of Málaga, Málaga, Spain
| | - Luis Valente
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, The Netherlands; Groningen Institute for Evolutionary Life Sciences, University of Groningen, Box 11103, 9700, 5 CC Groningen, The Netherlands
| | - Matthew L Knope
- Department of Biology, University of Hawai'i at Hilo, 200 West Kawili Street, Hilo, 96720, HI, USA
| | - Jonathan P Price
- Department of Biology, University of Hawai'i at Hilo, 200 West Kawili Street, Hilo, 96720, HI, USA
| | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Bruce G Baldwin
- Jepson Herbarium and Department of Integrative Biology, 1001 Valley Life Sciences Building 2465, University of California, Berkeley, CA 94720-2465, USA
| | - Brent C Emerson
- Island Ecology and Evolution Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), La Laguna, Spain
| | - Gonzalo Rivas-Torres
- Estación Científica Charles Darwin, Fundación Charles Darwin, Santa Cruz, Galápagos, Ecuador; Estación de Biodiversidad Tiputini, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito (USFQ), Quito, Ecuador
| | - Rosemary Gillespie
- Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA, USA
| | - Michael D Martin
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
114
|
Yakupova A, Tomarovsky A, Totikov A, Beklemisheva V, Logacheva M, Perelman PL, Komissarov A, Dobrynin P, Krasheninnikova K, Tamazian G, Serdyukova NA, Rayko M, Bulyonkova T, Cherkasov N, Pylev V, Peterfeld V, Penin A, Balanovska E, Lapidus A, DNA Zoo Consortium, OBrien SJ, Graphodatsky A, Koepfli KP, Kliver S. Chromosome-Length Assembly of the Baikal Seal (Pusa sibirica) Genome Reveals a Historically Large Population Prior to Isolation in Lake Baikal. Genes (Basel) 2023; 14:genes14030619. [PMID: 36980891 PMCID: PMC10048373 DOI: 10.3390/genes14030619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/31/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Pusa sibirica, the Baikal seal, is the only extant, exclusively freshwater, pinniped species. The pending issue is, how and when they reached their current habitat—the rift lake Baikal, more than three thousand kilometers away from the Arctic Ocean. To explore the demographic history and genetic diversity of this species, we generated a de novo chromosome-length assembly, and compared it with three closely related marine pinniped species. Multiple whole genome alignment of the four species compared with their karyotypes showed high conservation of chromosomal features, except for three large inversions on chromosome VI. We found the mean heterozygosity of the studied Baikal seal individuals was relatively low (0.61 SNPs/kbp), but comparable to other analyzed pinniped samples. Demographic reconstruction of seals revealed differing trajectories, yet remarkable variations in Ne occurred during approximately the same time periods. The Baikal seal showed a significantly more severe decline relative to other species. This could be due to the difference in environmental conditions encountered by the earlier populations of Baikal seals, as ice sheets changed during glacial–interglacial cycles. We connect this period to the time of migration to Lake Baikal, which occurred ~3–0.3 Mya, after which the population stabilized, indicating balanced habitat conditions.
Collapse
Affiliation(s)
- Aliya Yakupova
- Computer Technologies Laboratory, ITMO University, 19701 Saint Petersburg, Russia
- Correspondence: (A.Y.); (A.G.)
| | - Andrey Tomarovsky
- Computer Technologies Laboratory, ITMO University, 19701 Saint Petersburg, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Department of the Diversity and Evolution of Genomes, Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia
| | - Azamat Totikov
- Computer Technologies Laboratory, ITMO University, 19701 Saint Petersburg, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Department of the Diversity and Evolution of Genomes, Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia
| | - Violetta Beklemisheva
- Department of the Diversity and Evolution of Genomes, Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia
| | - Maria Logacheva
- Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Polina L. Perelman
- Department of the Diversity and Evolution of Genomes, Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia
| | - Aleksey Komissarov
- Applied Genomics Laboratory, SCAMT Institute, ITMO University, 9 Ulitsa Lomonosova, 191002 Saint Petersburg, Russia
| | - Pavel Dobrynin
- Computer Technologies Laboratory, ITMO University, 19701 Saint Petersburg, Russia
- Human Genetics Laboratory, Vavilov Institute of General Genetics RAS, 119991 Moscow, Russia
| | | | - Gaik Tamazian
- Centre for Computational Biology, Peter the Great Saint Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Natalia A. Serdyukova
- Department of the Diversity and Evolution of Genomes, Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia
| | - Mike Rayko
- Center for Bioinformatics and Algorithmic Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Tatiana Bulyonkova
- Laboratory of Mixed Computations, A.P. Ershov Institute of Informatics Systems SB RAS, 630090 Novosibirsk, Russia
| | - Nikolay Cherkasov
- Centre for Computational Biology, Peter the Great Saint Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Vladimir Pylev
- Laboratory of Human Population Genetics, Research Centre for Medical Genetics, 115522 Moscow, Russia
| | - Vladimir Peterfeld
- Baikal Branch of State Research and Industrial Center of Fisheries, 670034 Ulan-Ude, Russia
| | - Aleksey Penin
- Institute for Information Transmission Problems of the Russian Academy of Sciences, 127051 Moscow, Russia
| | - Elena Balanovska
- Laboratory of Human Population Genetics, Research Centre for Medical Genetics, 115522 Moscow, Russia
| | - Alla Lapidus
- Center for Bioinformatics and Algorithmic Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - DNA Zoo Consortium
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Stephen J. OBrien
- Guy Harvey Oceanographic Center, Halmos College of Arts and Sciences, NOVA Southeastern University, Fort Lauderdale, FL 33004, USA
| | - Alexander Graphodatsky
- Department of the Diversity and Evolution of Genomes, Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia
- Correspondence: (A.Y.); (A.G.)
| | - Klaus-Peter Koepfli
- Smithsonian-Mason School of Conservation, George Mason University, 1500 Remount Road, Front Royal, VA 22630, USA
- Center for Species Survival, Smithsonian’s National Zoo and Conservation Biology Institute, 1500 Remount Road, Front Royal, VA 22630, USA
| | - Sergei Kliver
- Center for Evolutionary Hologenomics, The Globe Institute, The University of Copenhagen, 5A, Oester Farimagsgade, 1353 Copenhagen, Denmark
| |
Collapse
|
115
|
Peris D, Ubbelohde EJ, Kuang MC, Kominek J, Langdon QK, Adams M, Koshalek JA, Hulfachor AB, Opulente DA, Hall DJ, Hyma K, Fay JC, Leducq JB, Charron G, Landry CR, Libkind D, Gonçalves C, Gonçalves P, Sampaio JP, Wang QM, Bai FY, Wrobel RL, Hittinger CT. Macroevolutionary diversity of traits and genomes in the model yeast genus Saccharomyces. Nat Commun 2023; 14:690. [PMID: 36755033 PMCID: PMC9908912 DOI: 10.1038/s41467-023-36139-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 01/17/2023] [Indexed: 02/10/2023] Open
Abstract
Species is the fundamental unit to quantify biodiversity. In recent years, the model yeast Saccharomyces cerevisiae has seen an increased number of studies related to its geographical distribution, population structure, and phenotypic diversity. However, seven additional species from the same genus have been less thoroughly studied, which has limited our understanding of the macroevolutionary events leading to the diversification of this genus over the last 20 million years. Here, we show the geographies, hosts, substrates, and phylogenetic relationships for approximately 1,800 Saccharomyces strains, covering the complete genus with unprecedented breadth and depth. We generated and analyzed complete genome sequences of 163 strains and phenotyped 128 phylogenetically diverse strains. This dataset provides insights about genetic and phenotypic diversity within and between species and populations, quantifies reticulation and incomplete lineage sorting, and demonstrates how gene flow and selection have affected traits, such as galactose metabolism. These findings elevate the genus Saccharomyces as a model to understand biodiversity and evolution in microbial eukaryotes.
Collapse
Grants
- R01 GM080669 NIGMS NIH HHS
- T32 GM007133 NIGMS NIH HHS
- We thank the University of Wisconsin Biotechnology Center DNA Sequencing Facility for providing Illumina and Sanger sequencing facilities and services; Maria Sardi, Audrey Gasch, and Ursula Bond for providing strains; Sean McIlwain for providing guidance for genome ultra-scaffolding; Yury V. Bukhman for discussing applications of the Growth Curve Analysis Tool (GCAT); Mick McGee for HPLC analysis; Raúl Ortíz-Merino for assistance during YGAP annotations; Jessica Leigh for assistance with PopART; Cecile Ané for suggestions about BUCKy utilization and phylogenetic network analyses; Samina Naseeb and Daniela Delneri for sharing preliminary multi-locus Saccharomyces jurei data; and Branden Timm, Brian Kyle, and Dan Metzger for computational assistance. Some computations were performed on Tirant III of the Spanish Supercomputing Network (‘‘Servei d’Informàtica de la Universitat de València”) under the project BCV-2021-1-0001 granted to DP, while others were performed at the Wisconsin Energy Institute and the Center for High-Throughput Computing of the University of Wisconsin-Madison. During a portion of this project, DP was a researcher funded by the European Union’s Horizon 2020 research and innovation programme Marie Sklodowska-Curie, grant agreement No. 747775, the Research Council of Norway (RCN) grant Nos. RCN 324253 and 274337, and the Generalitat Valenciana plan GenT grant No. CIDEGENT/2021/039. DP is a recipient of an Illumina Grant for Illumina Sequencing Saccharomyces strains in this study. QKL was supported by the National Science Foundation under Grant No. DGE-1256259 (Graduate Research Fellowship) and the Predoctoral Training Program in Genetics, funded by the National Institutes of Health (5T32GM007133). This material is based upon work supported in part by the Great Lakes Bioenergy Research Center, Office of Science, Office of Biological and Environmental Research under Award Numbers DE-SC0018409 and DE-FC02-07ER64494; the National Science Foundation under Grant Nos. DEB-1253634, DEB-1442148, and DEB-2110403; and the USDA National Institute of Food and Agriculture Hatch Project Number 1020204. C.T.H. is an H. I. Romnes Faculty Fellow, supported by the Office of the Vice Chancellor for Research and Graduate Education with funding from Wisconsin Alumni Research Foundation. QMW was supported by the National Natural Science Foundation of China (NSFC) under Grant Nos. 31770018 and 31961133020. CRL holds the Canada Research Chair in Cellular Systems and Synthetic Biology, and his research on wild yeast is supported by a NSERC Discovery Grant.
Collapse
Affiliation(s)
- David Peris
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA.
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA.
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway.
- Department of Food Biotechnology, Institute of Agrochemistry and Food Technology (IATA), CSIC, Valencia, Spain.
| | - Emily J Ubbelohde
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Meihua Christina Kuang
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
| | - Jacek Kominek
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Quinn K Langdon
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
| | - Marie Adams
- Biotechnology Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Justin A Koshalek
- Biotechnology Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Amanda Beth Hulfachor
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Dana A Opulente
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Katie Hyma
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Justin C Fay
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Jean-Baptiste Leducq
- Departement des Sciences Biologiques, Université de Montréal, Montreal, QC, Canada
- Département de Biologie, PROTEO, Pavillon Charles‑Eugène‑Marchand, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC, Canada
| | - Guillaume Charron
- Canada Natural Resources, Laurentian Forestry Centre, Quebec City, QC, Canada
| | - Christian R Landry
- Département de Biologie, PROTEO, Pavillon Charles‑Eugène‑Marchand, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC, Canada
| | - Diego Libkind
- Centro de Referencia en Levaduras y Tecnología Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), Consejo Nacional de Investigaciones, Científicas y Técnicas (CONICET)-Universidad Nacional del Comahue, Bariloche, Argentina
| | - Carla Gonçalves
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO-i4HB, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
- Vanderbilt University, Department of Biological Sciences, Nashville, TN, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| | - Paula Gonçalves
- UCIBIO-i4HB, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - José Paulo Sampaio
- UCIBIO-i4HB, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Qi-Ming Wang
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Feng-Yan Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Russel L Wrobel
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Chris Todd Hittinger
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA.
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
116
|
Pampoulie C, Berg PR, Jentoft S. Hidden but revealed: After years of genetic studies behavioural monitoring combined with genomics uncover new insight into the population dynamics of Atlantic cod in Icelandic waters. Evol Appl 2023; 16:223-233. [PMID: 36793686 PMCID: PMC9923494 DOI: 10.1111/eva.13471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 05/29/2022] [Accepted: 08/18/2022] [Indexed: 11/27/2022] Open
Abstract
Stock structure is of paramount importance for sustainable management of exploited resources. In that context, genetic markers have been used for more than two decades to resolve spatial structure of marine exploited resources and to fully fathom stock dynamics and interactions. While genetic markers such as allozymes and RFLP dominated the debate in the early era of genetics, technology advances have provided scientists with new tools every decade to better assess stock discrimination and interactions (i.e. gene flow). Here, we provide a review of genetic studies performed to understand stock structure of Atlantic cod in Icelandic waters, from the early allozyme approaches to the genomic work currently carried out. We further highlight the importance of the generation of a chromosome-anchored genome assembly together with whole-genome population data, which drastically changed our perception of the possible management units to consider. After nearly 60 years of genetic investigation of Atlantic cod structure in Icelandic waters, genetic (and later genomic) data combined with behavioural monitoring using Data Storage Tags shifted the attention from geographical population structures to behavioural ecotypes. This review also demonstrates the need for future research to further disentangle the impact of these ecotypes (and gene flow among them) on the population structure of Atlantic cod in Icelandic waters. It also highlights the importance of whole-genome data to unravel unexpected within-species diversity related to chromosomal inversions and associated supergenes, which are important to consider for future development of sustainable management programmes of the species within the North Atlantic.
Collapse
Affiliation(s)
| | - Paul Ragnar Berg
- Norwegian Institute for Water ResearchOsloNorway
- Department of Natural Sciences, Centre for Coastal Research (CCR)University of AgderKristiansandNorway
| | - Sissel Jentoft
- Centre for Ecological and Evolutionary SynthesisOsloNorway
| |
Collapse
|
117
|
Heckenhauer J, Razuri-Gonzales E, Mwangi FN, Schneider J, Pauls SU. Holotype sequencing of Silvataresholzenthali Rázuri-Gonzales, Ngera & Pauls, 2022 (Trichoptera, Pisuliidae). Zookeys 2023; 1159:1-15. [PMID: 37213527 PMCID: PMC10193998 DOI: 10.3897/zookeys.1159.98439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/06/2023] [Indexed: 05/23/2023] Open
Abstract
While DNA barcodes are increasingly provided in descriptions of new species, the whole mitochondrial and nuclear genomes are still rarely included. This is unfortunate because whole genome sequencing of holotypes allows perpetual genetic characterization of the most representative specimen for a given species. Thus, de novo genomes are invaluable additional diagnostic characters in species descriptions, provided the structural integrity of the holotype specimens remains intact. Here, we used a minimally invasive method to extract DNA of the type specimen of the recently described caddisfly species Silvataresholzenthali Rázuri-Gonzales, Ngera & Pauls, 2022 (Trichoptera: Pisuliidae) from the Democratic Republic of the Congo. A low-cost next generation sequencing strategy was used to generate the complete mitochondrial and draft nuclear genome of the holotype. The data in its current form is an important extension to the morphological species description and valuable for phylogenomic studies.
Collapse
Affiliation(s)
- Jacqueline Heckenhauer
- Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt, GermanySenckenberg Research Institute and Natural History Museum FrankfurtFrankfurtGermany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE‐TBG), Frankfurt, GermanyLOEWE Centre for Translational Biodiversity GenomicsFrankfurtGermany
| | - Ernesto Razuri-Gonzales
- Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt, GermanySenckenberg Research Institute and Natural History Museum FrankfurtFrankfurtGermany
| | - Francois Ngera Mwangi
- Centre de Recherche en Sciences Naturelles, Lwiro, Bukavu, Democratic Republic of the CongoCentre de Recherche en Sciences NaturellesBukavuDemocratic Republic of the Congo
| | - Julio Schneider
- Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt, GermanySenckenberg Research Institute and Natural History Museum FrankfurtFrankfurtGermany
| | - Steffen U. Pauls
- Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt, GermanySenckenberg Research Institute and Natural History Museum FrankfurtFrankfurtGermany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE‐TBG), Frankfurt, GermanyLOEWE Centre for Translational Biodiversity GenomicsFrankfurtGermany
- Institute for Insect Biotechnology, Justus-Liebig-University, Gießen, GermanyJustus-Liebig-UniversityGießenGermany
| |
Collapse
|
118
|
Willey C, Korstanje R. Sequencing and assembling bear genomes: the bare necessities. Front Zool 2022; 19:30. [PMID: 36451195 PMCID: PMC9710173 DOI: 10.1186/s12983-022-00475-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 11/08/2022] [Indexed: 12/12/2022] Open
Abstract
Unique genetic adaptations are present in bears of every species across the world. From (nearly) shutting down important organs during hibernation to preventing harm from lifestyles that could easily cause metabolic diseases in humans, bears may hold the answer to various human ailments. However, only a few of these unique traits are currently being investigated at the molecular level, partly because of the lack of necessary tools. One of these tools is well-annotated genome assemblies from the different, extant bear species. These reference genomes are needed to allow us to identify differences in genetic variants, isoforms, gene expression, and genomic features such as transposons and identify those that are associated with biomedical-relevant traits. In this review we assess the current state of the genome assemblies of the eight different bear species, discuss current gaps, and the future benefits these reference genomes may have in informing human biomedical applications, while at the same time improving bear conservation efforts.
Collapse
|
119
|
Shaffer HB, Toffelmier E, Corbett-Detig RB, Escalona M, Erickson B, Fiedler P, Gold M, Harrigan RJ, Hodges S, Luckau TK, Miller C, Oliveira DR, Shaffer KE, Shapiro B, Sork VL, Wang IJ. Landscape Genomics to Enable Conservation Actions: The California Conservation Genomics Project. J Hered 2022; 113:577-588. [PMID: 35395669 DOI: 10.1093/jhered/esac020] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 07/04/2022] [Indexed: 12/16/2022] Open
Abstract
The California Conservation Genomics Project (CCGP) is a unique, critically important step forward in the use of comprehensive landscape genetic data to modernize natural resource management at a regional scale. We describe the CCGP, including all aspects of project administration, data collection, current progress, and future challenges. The CCGP will generate, analyze, and curate a single high-quality reference genome and 100-150 resequenced genomes for each of 153 species projects (representing 235 individual species) that span the ecological and phylogenetic breadth of California's marine, freshwater, and terrestrial ecosystems. The resulting portfolio of roughly 20 000 resequenced genomes will be analyzed with identical informatic and landscape genomic pipelines, providing a comprehensive overview of hotspots of within-species genomic diversity, potential and realized corridors connecting these hotspots, regions of reduced diversity requiring genetic rescue, and the distribution of variation critical for rapid climate adaptation. After 2 years of concerted effort, full funding ($12M USD) has been secured, species identified, and funds distributed to 68 laboratories and 114 investigators drawn from all 10 University of California campuses. The remaining phases of the CCGP include completion of data collection and analyses, and delivery of the resulting genomic data and inferences to state and federal regulatory agencies to help stabilize species declines. The aspirational goals of the CCGP are to identify geographic regions that are critical to long-term preservation of California biodiversity, prioritize those regions based on defensible genomic criteria, and provide foundational knowledge that informs management strategies at both the individual species and ecosystem levels.
Collapse
Affiliation(s)
- H Bradley Shaffer
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA.,La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California, Los Angeles, CA 90095, USA.,California Department of Fish and Wildlife, Fisheries Branch, West Sacramento, CA 95605, USA
| | - Erin Toffelmier
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA.,La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California, Los Angeles, CA 90095, USA
| | - Russ B Corbett-Detig
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Merly Escalona
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Bjorn Erickson
- U.S. Fish and Wildlife Service, Sacramento, CA 95825, USA
| | - Peggy Fiedler
- Natural Reserve System, Office of the President, University of California, Oakland, CA 94607, USA
| | - Mark Gold
- California Natural Resources Agency, 1416 Ninth Street, Suite 1311, Sacramento, CA 95814, USA
| | - Ryan J Harrigan
- La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California, Los Angeles, CA 90095, USA.,Center for Tropical Research, Institute for Environment and Sustainability, University of California, Los Angeles, CA 90095, USA
| | - Scott Hodges
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA 93106, USA
| | - Tara K Luckau
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA.,La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California, Los Angeles, CA 90095, USA
| | - Courtney Miller
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA.,La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California, Los Angeles, CA 90095, USA
| | - Daniel R Oliveira
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA.,La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California, Los Angeles, CA 90095, USA
| | - Kevin E Shaffer
- California Department of Fish and Wildlife, Fisheries Branch, West Sacramento, CA 95605, USA
| | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA.,Howard Hughes Medical Institute, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Victoria L Sork
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA.,La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California, Los Angeles, CA 90095, USA
| | - Ian J Wang
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720, USA.,Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
120
|
DeBiasse MB, Schiebelhut LM, Escalona M, Beraut E, Fairbairn C, Marimuthu MPA, Nguyen O, Sahasrabudhe R, Dawson MN. A chromosome-level reference genome for the giant pink sea star, Pisaster brevispinus, a species severely impacted by wasting. J Hered 2022; 113:689-698. [PMID: 36044245 PMCID: PMC9709977 DOI: 10.1093/jhered/esac044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Efforts to protect the ecologically and economically significant California Current Ecosystem from global change will greatly benefit from data about patterns of local adaptation and population connectivity. To facilitate that work, we present a reference-quality genome for the giant pink sea star, Pisaster brevispinus, a species of ecological importance along the Pacific west coast of North America that has been heavily impacted by environmental change and disease. We used Pacific Biosciences HiFi long sequencing reads and Dovetail Omni-C proximity reads to generate a highly contiguous genome assembly of 550 Mb in length. The assembly contains 127 scaffolds with a contig N50 of 4.6 Mb and a scaffold N50 of 21.4 Mb; the BUSCO completeness score is 98.70%. The P. brevispinus genome assembly is comparable to the genome of the congener species P. ochraceus in size and completeness. Both Pisaster assemblies are consistent with previously published karyotyping results showing sea star genomes are organized into 22 autosomes. The reference genome for P. brevispinus is an important first step toward the goal of producing a comprehensive, population genomics view of ecological and evolutionary processes along the California coast. This resource will help scientists, managers, and policy makers in their task of understanding and protecting critical coastal regions from the impacts of global change.
Collapse
Affiliation(s)
- Melissa B DeBiasse
- Department of Life and Environmental Sciences, University of California, Merced, CA, United States
| | - Lauren M Schiebelhut
- Department of Life and Environmental Sciences, University of California, Merced, CA, United States
| | - Merly Escalona
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, United States
| | - Eric Beraut
- Ecology & Evolutionary Biology Department, University of California Santa Cruz, Santa Cruz, CA, United States
| | - Colin Fairbairn
- Ecology & Evolutionary Biology Department, University of California Santa Cruz, Santa Cruz, CA, United States
| | - Mohan P A Marimuthu
- DNA Technologies and Expression Analysis Core Laboratory, Genome Center, University of California Davis, Davis, CA, United States
| | - Oanh Nguyen
- DNA Technologies and Expression Analysis Core Laboratory, Genome Center, University of California Davis, Davis, CA, United States
| | - Ruta Sahasrabudhe
- DNA Technologies and Expression Analysis Core Laboratory, Genome Center, University of California Davis, Davis, CA, United States
| | - Michael N Dawson
- Department of Life and Environmental Sciences, University of California, Merced, CA, United States
| |
Collapse
|
121
|
Nilsson P, Ravinet M, Cui Y, Berg PR, Zhang Y, Guo R, Luo T, Song Y, Trucchi E, Hoff SNK, Lv R, Schmid BV, Easterday WR, Jakobsen KS, Stenseth NC, Yang R, Jentoft S. Polygenic plague resistance in the great gerbil uncovered by population sequencing. PNAS NEXUS 2022; 1:pgac211. [PMID: 36712379 PMCID: PMC9802093 DOI: 10.1093/pnasnexus/pgac211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 09/15/2022] [Accepted: 09/27/2022] [Indexed: 06/18/2023]
Abstract
Pathogens can elicit high selective pressure on hosts, potentially altering genetic diversity over short evolutionary timescales. Intraspecific variation in immune response is observable as variable survivability from specific infections. The great gerbil (Rhombomys opimus) is a rodent plague host with a heterogenic but highly resistant phenotype. Here, we investigate the genomic basis for plague-resistant phenotypes by exposing wild-caught great gerbils to plague (Yersinia pestis). Whole genome sequencing of 10 survivors and 10 moribund individuals revealed a subset of genomic regions showing elevated differentiation. Gene ontology analysis of candidate genes in these regions demonstrated enrichment of genes directly involved in immune functions, cellular metabolism and the regulation of apoptosis as well as pathways involved in transcription, translation, and gene regulation. Transcriptomic analysis revealed that the early activated great gerbil immune response to plague consisted of classical components of the innate immune system. Our approach combining challenge experiments with transcriptomics and population level sequencing, provides new insight into the genetic background of plague-resistance and confirms its complex nature, most likely involving multiple genes and pathways of both the immune system and regulation of basic cellular functions.
Collapse
Affiliation(s)
- Pernille Nilsson
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, 0371 Oslo, Norway
| | | | | | | | | | - Rong Guo
- Xinjiang Center for Disease Control and Prevention, Urumqi 830002, China
| | - Tao Luo
- Xinjiang Center for Disease Control and Prevention, Urumqi 830002, China
| | - Yajun Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Emiliano Trucchi
- Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| | - Siv N K Hoff
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, 0371 Oslo, Norway
| | - Ruichen Lv
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Boris V Schmid
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, 0371 Oslo, Norway
| | - W Ryan Easterday
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, 0371 Oslo, Norway
| | | | | | - Ruifu Yang
- To whom correspondence should be addressed:
| | | |
Collapse
|
122
|
Bock SL, Smaga CR, McCoy JA, Parrott BB. Genome-wide DNA methylation patterns harbour signatures of hatchling sex and past incubation temperature in a species with environmental sex determination. Mol Ecol 2022; 31:5487-5505. [PMID: 35997618 PMCID: PMC9826120 DOI: 10.1111/mec.16670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 01/11/2023]
Abstract
Conservation of thermally sensitive species depends on monitoring organismal and population-level responses to environmental change in real time. Epigenetic processes are increasingly recognized as key integrators of environmental conditions into developmentally plastic responses, and attendant epigenomic data sets hold potential for revealing cryptic phenotypes relevant to conservation efforts. Here, we demonstrate the utility of genome-wide DNA methylation (DNAm) patterns in the face of climate change for a group of especially vulnerable species, those with temperature-dependent sex determination (TSD). Due to their reliance on thermal cues during development to determine sexual fate, contemporary shifts in temperature are predicted to skew offspring sex ratios and ultimately destabilize sensitive populations. Using reduced-representation bisulphite sequencing, we profiled the DNA methylome in blood cells of hatchling American alligators (Alligator mississippiensis), a TSD species lacking reliable markers of sexual dimorphism in early life stages. We identified 120 sex-associated differentially methylated cytosines (DMCs; FDR < 0.1) in hatchlings incubated under a range of temperatures, as well as 707 unique temperature-associated DMCs. We further developed DNAm-based models capable of predicting hatchling sex with 100% accuracy (in 20 training samples and four test samples) and past incubation temperature with a mean absolute error of 1.2°C (in four test samples) based on the methylation status of 20 and 24 loci, respectively. Though largely independent of epigenomic patterning occurring in the embryonic gonad during TSD, DNAm patterns in blood cells may serve as nonlethal markers of hatchling sex and past incubation conditions in conservation applications. These findings also raise intriguing questions regarding tissue-specific epigenomic patterning in the context of developmental plasticity.
Collapse
Affiliation(s)
- Samantha L. Bock
- Eugene P. Odum School of EcologyUniversity of GeorgiaAthensGeorgiaUSA
- Savannah River Ecology LaboratoryAikenSouth CarolinaUSA
| | - Christopher R. Smaga
- Eugene P. Odum School of EcologyUniversity of GeorgiaAthensGeorgiaUSA
- Savannah River Ecology LaboratoryAikenSouth CarolinaUSA
| | - Jessica A. McCoy
- Department of BiologyCollege of CharlestonCharlestonSouth CarolinaUSA
| | - Benjamin B. Parrott
- Eugene P. Odum School of EcologyUniversity of GeorgiaAthensGeorgiaUSA
- Savannah River Ecology LaboratoryAikenSouth CarolinaUSA
| |
Collapse
|
123
|
Çilingir FG, A'Bear L, Hansen D, Davis LR, Bunbury N, Ozgul A, Croll D, Grossen C. Chromosome-level genome assembly for the Aldabra giant tortoise enables insights into the genetic health of a threatened population. Gigascience 2022; 11:giac090. [PMID: 36251273 PMCID: PMC9553416 DOI: 10.1093/gigascience/giac090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/22/2022] [Accepted: 09/12/2022] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND The Aldabra giant tortoise (Aldabrachelys gigantea) is one of only two giant tortoise species left in the world. The species is endemic to Aldabra Atoll in Seychelles and is listed as Vulnerable on the International Union for Conservation of Nature Red List (v2.3) due to its limited distribution and threats posed by climate change. Genomic resources for A. gigantea are lacking, hampering conservation efforts for both wild and ex situpopulations. A high-quality genome would also open avenues to investigate the genetic basis of the species' exceptionally long life span. FINDINGS We produced the first chromosome-level de novo genome assembly of A. gigantea using PacBio High-Fidelity sequencing and high-throughput chromosome conformation capture. We produced a 2.37-Gbp assembly with a scaffold N50 of 148.6 Mbp and a resolution into 26 chromosomes. RNA sequencing-assisted gene model prediction identified 23,953 protein-coding genes and 1.1 Gbp of repetitive sequences. Synteny analyses among turtle genomes revealed high levels of chromosomal collinearity even among distantly related taxa. To assess the utility of the high-quality assembly for species conservation, we performed a low-coverage resequencing of 30 individuals from wild populations and two zoo individuals. Our genome-wide population structure analyses detected genetic population structure in the wild and identified the most likely origin of the zoo-housed individuals. We further identified putatively deleterious mutations to be monitored. CONCLUSIONS We establish a high-quality chromosome-level reference genome for A. gigantea and one of the most complete turtle genomes available. We show that low-coverage whole-genome resequencing, for which alignment to the reference genome is a necessity, is a powerful tool to assess the population structure of the wild population and reveal the geographic origins of ex situ individuals relevant for genetic diversity management and rewilding efforts.
Collapse
Affiliation(s)
- F Gözde Çilingir
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich 8057, Switzerland
| | - Luke A'Bear
- Seychelles Islands Foundation, Victoria, Republic of Seychelles
| | - Dennis Hansen
- Zoological Museum, University of Zurich, Zurich 8006, Switzerland
- Indian Ocean Tortoise Alliance, Ile Cerf, Victoria, Republic of Seychelles
| | | | - Nancy Bunbury
- Seychelles Islands Foundation, Victoria, Republic of Seychelles
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| | - Arpat Ozgul
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich 8057, Switzerland
| | - Daniel Croll
- Institute of Biology, University of Neuchâtel, Neuchâtel 2000, Switzerland
| | - Christine Grossen
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich 8057, Switzerland
| |
Collapse
|
124
|
Development of Genomic Resources in Mexican Bursera (Section: Bullockia: Burseraceae): Genome Assembly, Annotation, and Marker Discovery for Three Copal Species. Genes (Basel) 2022; 13:genes13101741. [PMID: 36292626 PMCID: PMC9601875 DOI: 10.3390/genes13101741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Bursera comprises ~100 tropical shrub and tree species, with the center of the species diversification in Mexico. The genomic resources developed for the genus are scarce, and this has limited the study of the gene flow, local adaptation, and hybridization dynamics. In this study, based on ~155 million Illumina paired-end reads per species, we performed a de novo genome assembly and annotation of three Bursera species of the Bullockia section: Bursera bipinnata, Bursera cuneata, and Bursera palmeri. The total lengths of the genome assemblies were 253, 237, and 229 Mb for B. cuneata, B. palmeri, and B. bipinnata, respectively. The assembly of B. palmeri retrieved the most complete and single-copy BUSCOs (87.3%) relative to B. cuneata (86.5%) and B. bipinnata (76.6%). The ab initio gene prediction recognized between 21,000 and 32,000 protein-coding genes. Other genomic features, such as simple sequence repeats (SSRs), were also detected. Using the de novo genome assemblies as a reference, we identified single-nucleotide polymorphisms (SNPs) for a set of 43 Bursera individuals. Moreover, we mapped the filtered reads of each Bursera species against the chloroplast genomes of five Burseraceae species, obtaining consensus sequences ranging from 156 to 160 kb in length. Our work contributes to the generation of genomic resources for an important but understudied genus of tropical-dry-forest species.
Collapse
|
125
|
Marcos S, Parejo M, Estonba A, Alberdi A. Recovering High-Quality Host Genomes from Gut Metagenomic Data through Genotype Imputation. ADVANCED GENETICS (HOBOKEN, N.J.) 2022; 3:2100065. [PMID: 36620197 PMCID: PMC9744478 DOI: 10.1002/ggn2.202100065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 03/05/2022] [Indexed: 01/11/2023]
Abstract
Metagenomic datasets of host-associated microbial communities often contain host DNA that is usually discarded because the amount of data is too low for accurate host genetic analyses. However, genotype imputation can be employed to reconstruct host genotypes if a reference panel is available. Here, the performance of a two-step strategy is tested to impute genotypes from four types of reference panels built using different strategies to low-depth host genome data (≈2× coverage) recovered from intestinal samples of two chicken genetic lines. First, imputation accuracy is evaluated in 12 samples for which both low- and high-depth sequencing data are available, obtaining high imputation accuracies for all tested panels (>0.90). Second, the impact of reference panel choice in population genetics statistics on 100 chickens is assessed, all four panels yielding comparable results. In light of the observations, the feasibility and application of the applied imputation strategy are discussed for different species with regard to the host DNA proportion, genomic diversity, and availability of a reference panel. This method enables leveraging insofar discarded host DNA to get insights into the genetic structure of host populations, and in doing so, facilitates the implementation of hologenomic approaches that jointly analyze host and microbial genomic data.
Collapse
Affiliation(s)
- Sofia Marcos
- Applied Genomics and BioinformaticsUniversity of the Basque Country (UPV/EHU)LeioaBilbao48940Spain
| | - Melanie Parejo
- Applied Genomics and BioinformaticsUniversity of the Basque Country (UPV/EHU)LeioaBilbao48940Spain
| | - Andone Estonba
- Applied Genomics and BioinformaticsUniversity of the Basque Country (UPV/EHU)LeioaBilbao48940Spain
| | - Antton Alberdi
- Center for Evolutionary HologenomicsGLOBE InstituteUniversity of CopenhagenCopenhagen1353Denmark
| |
Collapse
|
126
|
Gomes-Dos-Santos A, Machado AM, Castro LFC, Prié V, Teixeira A, Lopes-Lima M, Froufe E. The gill transcriptome of threatened European freshwater mussels. Sci Data 2022; 9:494. [PMID: 35963883 PMCID: PMC9376081 DOI: 10.1038/s41597-022-01613-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/27/2022] [Indexed: 11/24/2022] Open
Abstract
Genomic tools applied to non-model organisms are critical to design successful conservation strategies of particularly threatened groups. Freshwater mussels of the Unionida order are among the most vulnerable taxa and yet almost no genetic resources are available. Here, we present the gill transcriptomes of five European freshwater mussels with high conservation concern: Margaritifera margaritifera, Unio crassus, Unio pictorum, Unio mancus and Unio delphinus. The final assemblies, with N50 values ranging from 1069–1895 bp and total BUSCO scores above 90% (Eukaryote and Metazoan databases), were structurally and functionally annotated, and made available. The transcriptomes here produced represent a valuable resource for future studies on these species’ biology and ultimately guide their conservation. Measurement(s) | transcriptomics | Technology Type(s) | Illumina sequencing | Sample Characteristic - Organism | Margaritifera margaritifera • Unio crassus • Unio delphinus • Unio mancus • Unio pictorum | Sample Characteristic - Location | Europe |
Collapse
Affiliation(s)
- André Gomes-Dos-Santos
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, P 4450-208, Matosinhos, Portugal. .,Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre 1021/1055, 4169-007, Porto, Portugal.
| | - André M Machado
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, P 4450-208, Matosinhos, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre 1021/1055, 4169-007, Porto, Portugal
| | - L Filipe C Castro
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, P 4450-208, Matosinhos, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre 1021/1055, 4169-007, Porto, Portugal
| | - Vincent Prié
- National Museum of Natural History (MNHN), CNRS, SU, EPHE, UA CP 51, 57 rue Cuvier, 75005, Paris, France
| | - Amílcar Teixeira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Manuel Lopes-Lima
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, P 4450-208, Matosinhos, Portugal.,CIBIO/InBIO - Research Center in Biodiversity and Genetic Resources, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal.,IUCN SSC Mollusc Specialist Group, c/o IUCN, David Attenborough Building, Pembroke St., Cambridge, England
| | - Elsa Froufe
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, P 4450-208, Matosinhos, Portugal.
| |
Collapse
|
127
|
Seeber PA, Epp LS. Environmental
DNA
and metagenomics of terrestrial mammals as keystone taxa of recent and past ecosystems. Mamm Rev 2022. [DOI: 10.1111/mam.12302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Peter A. Seeber
- Limnological Institute University of Konstanz Konstanz Germany
| | - Laura S. Epp
- Limnological Institute University of Konstanz Konstanz Germany
| |
Collapse
|
128
|
Schmidt A, Schneider C, Decker P, Hohberg K, Römbke J, Lehmitz R, Bálint M. Shotgun metagenomics of soil invertebrate communities reflects taxonomy, biomass, and reference genome properties. Ecol Evol 2022; 12:e8991. [PMID: 35784064 PMCID: PMC9170594 DOI: 10.1002/ece3.8991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 12/03/2022] Open
Abstract
Metagenomics - shotgun sequencing of all DNA fragments from a community DNA extract - is routinely used to describe the composition, structure, and function of microorganism communities. Advances in DNA sequencing and the availability of genome databases increasingly allow the use of shotgun metagenomics on eukaryotic communities. Metagenomics offers major advances in the recovery of biomass relationships in a sample, in comparison to taxonomic marker gene-based approaches (metabarcoding). However, little is known about the factors which influence metagenomics data from eukaryotic communities, such as differences among organism groups, the properties of reference genomes, and genome assemblies.We evaluated how shotgun metagenomics records composition and biomass in artificial soil invertebrate communities at different sequencing efforts. We generated mock communities of controlled biomass ratios from 28 species from all major soil mesofauna groups: mites, springtails, nematodes, tardigrades, and potworms. We shotgun sequenced these communities and taxonomically assigned them with a database of over 270 soil invertebrate genomes.We recovered over 95% of the species, and observed relatively high false-positive detection rates. We found strong differences in reads assigned to different taxa, with some groups (e.g., springtails) consistently attracting more hits than others (e.g., enchytraeids). Original biomass could be predicted from read counts after considering these taxon-specific differences. Species with larger genomes, and with more complete assemblies, consistently attracted more reads than species with smaller genomes. The GC content of the genome assemblies had no effect on the biomass-read relationships. Results were similar among different sequencing efforts.The results show considerable differences in taxon recovery and taxon specificity of biomass recovery from metagenomic sequence data. The properties of reference genomes and genome assemblies also influence biomass recovery, and they should be considered in metagenomic studies of eukaryotes. We show that low- and high-sequencing efforts yield similar results, suggesting high cost-efficiency of metagenomics for eukaryotic communities. We provide a brief roadmap for investigating factors which influence metagenomics-based eukaryotic community reconstructions. Understanding these factors is timely as accessibility of DNA sequencing and momentum for reference genomes projects show a future where the taxonomic assignment of DNA from any community sample becomes a reality.
Collapse
Affiliation(s)
- Alexandra Schmidt
- Senckenberg Biodiversity Climate Research CenterFrankfurt am MainGermany
- Biology DepartmentJ.W. Goethe UniversityFrankfurt am MainGermany
- Loewe Center for Translational Biodiversity Genomics (LOEWE‐TBG)Frankfurt am MainGermany
- Limnological Institute (Environmental Genomics)University of KonstanzKonstanzGermany
| | - Clément Schneider
- Loewe Center for Translational Biodiversity Genomics (LOEWE‐TBG)Frankfurt am MainGermany
- Soil Zoology DepartmentSenckenberg Museum of Natural History GörlitzGörlitzGermany
| | - Peter Decker
- Loewe Center for Translational Biodiversity Genomics (LOEWE‐TBG)Frankfurt am MainGermany
- Blumenstr. 5GörlitzGermany
| | - Karin Hohberg
- Loewe Center for Translational Biodiversity Genomics (LOEWE‐TBG)Frankfurt am MainGermany
- Soil Zoology DepartmentSenckenberg Museum of Natural History GörlitzGörlitzGermany
| | - Jörg Römbke
- ECT Oekotoxikologie GmbHFlörsheim am MainGermany
| | - Ricarda Lehmitz
- Loewe Center for Translational Biodiversity Genomics (LOEWE‐TBG)Frankfurt am MainGermany
- Soil Zoology DepartmentSenckenberg Museum of Natural History GörlitzGörlitzGermany
| | - Miklós Bálint
- Senckenberg Biodiversity Climate Research CenterFrankfurt am MainGermany
- Loewe Center for Translational Biodiversity Genomics (LOEWE‐TBG)Frankfurt am MainGermany
- Institute for Insect BiotechnologyJustus Liebig UniversityGießenGermany
| |
Collapse
|
129
|
Feron R, Waterhouse RM. Exploring new genomic territories with emerging model insects. CURRENT OPINION IN INSECT SCIENCE 2022; 51:100902. [PMID: 35301165 DOI: 10.1016/j.cois.2022.100902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/24/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Improvements in reference genome generation for insects and across the tree of life are extending the concept and utility of model organisms beyond traditional laboratory-tractable supermodels. Species or groups of species with comprehensive genome resources can be developed into model systems for studying a large variety of biological phenomena. Advances in sequencing and assembly technologies are supporting these emerging genome-enabled model systems by producing resources that are increasingly accurate and complete. Nevertheless, quality controls including assessing gene content completeness are required to ensure that these data can be included in expanding catalogues of high-quality references that will greatly advance understanding of insect biology and evolution.
Collapse
Affiliation(s)
- Romain Feron
- Department of Ecology and Evolution, University of Lausanne, and the Swiss Institute of Bioinformatics,1015 Lausanne, Switzerland
| | - Robert M Waterhouse
- Department of Ecology and Evolution, University of Lausanne, and the Swiss Institute of Bioinformatics,1015 Lausanne, Switzerland.
| |
Collapse
|
130
|
A complete, telomere-to-telomere human genome sequence presents new opportunities for evolutionary genomics. Nat Methods 2022; 19:635-638. [PMID: 35689027 DOI: 10.1038/s41592-022-01512-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
131
|
Andrello M, D'Aloia C, Dalongeville A, Escalante MA, Guerrero J, Perrier C, Torres-Florez JP, Xuereb A, Manel S. Evolving spatial conservation prioritization with intraspecific genetic data. Trends Ecol Evol 2022; 37:553-564. [PMID: 35450706 DOI: 10.1016/j.tree.2022.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 12/15/2022]
Abstract
Spatial conservation prioritization (SCP) is a planning framework used to identify new conservation areas on the basis of the spatial distribution of species, ecosystems, and their services to human societies. The ongoing accumulation of intraspecific genetic data on a variety of species offers a way to gain knowledge of intraspecific genetic diversity and to estimate several population characteristics useful in conservation, such as dispersal and population size. Here, we review how intraspecific genetic data have been integrated into SCP and highlight their potential for identifying conservation area networks that represent intraspecific genetic diversity comprehensively and that ensure the long-term persistence of biodiversity in the face of global change.
Collapse
Affiliation(s)
- Marco Andrello
- Institute for the study of Anthropic impacts and Sustainability in the marine environment, National Research Council, CNR-IAS, Rome, Italy.
| | - Cassidy D'Aloia
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | | | - Marco A Escalante
- Laboratory of Molecular Ecology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czech Republic
| | - Jimena Guerrero
- Sociedad Científica de Investigación Transdisciplinaria y Especialización (SCITE), Calimaya, México
| | - Charles Perrier
- CBGP, INRAe, CIRAD, IRD, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Juan Pablo Torres-Florez
- Instituto Chico Mendes de Conservação da Biodiversidade, Centro Nacional de Pesquisa e Conservação de Mamíferos Aquáticos, Santos, Brazil
| | - Amanda Xuereb
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Stéphanie Manel
- CEFE, Univ Montpellier, CNRS, EPHE-PSL University, IRD, Montpellier, France
| |
Collapse
|
132
|
Russo A, Mayjonade B, Frei D, Potente G, Kellenberger RT, Frachon L, Copetti D, Studer B, Frey JE, Grossniklaus U, Schlüter PM. Low-Input High-Molecular-Weight DNA Extraction for Long-Read Sequencing From Plants of Diverse Families. FRONTIERS IN PLANT SCIENCE 2022; 13:883897. [PMID: 35665166 PMCID: PMC9161206 DOI: 10.3389/fpls.2022.883897] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/21/2022] [Indexed: 05/16/2023]
Abstract
Long-read DNA sequencing technologies require high molecular weight (HMW) DNA of adequate purity and integrity, which can be difficult to isolate from plant material. Plant leaves usually contain high levels of carbohydrates and secondary metabolites that can impact DNA purity, affecting downstream applications. Several protocols and kits are available for HMW DNA extraction, but they usually require a high amount of input material and often lead to substantial DNA fragmentation, making sequencing suboptimal in terms of read length and data yield. We here describe a protocol for plant HMW DNA extraction from low input material (0.1 g) which is easy to follow and quick (2.5 h). This method successfully enabled us to extract HMW from four species from different families (Orchidaceae, Poaceae, Brassicaceae, Asteraceae). In the case of recalcitrant species, we show that an additional purification step is sufficient to deliver a clean DNA sample. We demonstrate the suitability of our protocol for long-read sequencing on the Oxford Nanopore Technologies PromethION® platform, with and without the use of a short fragment depletion kit.
Collapse
Affiliation(s)
- Alessia Russo
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Centre, University of Zurich, Zurich, Switzerland
- Department of Plant Evolutionary Biology, Institute of Biology, University of Hohenheim, Stuttgart, Germany
- Department of Systematic and Evolutionary Botany and Zurich-Basel Plant Science Centre, University of Zurich, Zurich, Switzerland
| | - Baptiste Mayjonade
- Laboratoire des Interactions Plantes Microbes Environnement (LIPME), INRAE, Toulouse, France
| | - Daniel Frei
- Department of Method Development and Analytics, Agroscope, Wädenswil, Switzerland
| | - Giacomo Potente
- Department of Systematic and Evolutionary Botany and Zurich-Basel Plant Science Centre, University of Zurich, Zurich, Switzerland
| | | | - Léa Frachon
- Department of Systematic and Evolutionary Botany and Zurich-Basel Plant Science Centre, University of Zurich, Zurich, Switzerland
| | - Dario Copetti
- Institute of Agricultural Sciences and Zurich-Basel Plant Science Centre, ETH Zürich, Zurich, Switzerland
| | - Bruno Studer
- Institute of Agricultural Sciences and Zurich-Basel Plant Science Centre, ETH Zürich, Zurich, Switzerland
| | - Jürg E. Frey
- Department of Method Development and Analytics, Agroscope, Wädenswil, Switzerland
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Centre, University of Zurich, Zurich, Switzerland
| | - Philipp M. Schlüter
- Department of Plant Evolutionary Biology, Institute of Biology, University of Hohenheim, Stuttgart, Germany
- Department of Systematic and Evolutionary Botany and Zurich-Basel Plant Science Centre, University of Zurich, Zurich, Switzerland
| |
Collapse
|
133
|
Marx V. Conservation genomics in practice. Nat Methods 2022; 19:522-525. [PMID: 35545717 DOI: 10.1038/s41592-022-01477-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
134
|
Waterhouse RM, Adam-Blondon AF, Agosti D, Baldrian P, Balech B, Corre E, Davey RP, Lantz H, Pesole G, Quast C, Glöckner FO, Raes N, Sandionigi A, Santamaria M, Addink W, Vohradsky J, Nunes-Jorge A, Willassen NP, Lanfear J. Recommendations for connecting molecular sequence and biodiversity research infrastructures through ELIXIR. F1000Res 2021; 10:ELIXIR-1238. [PMID: 35999898 PMCID: PMC9360911 DOI: 10.12688/f1000research.73825.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/27/2022] [Indexed: 12/03/2022] Open
Abstract
Threats to global biodiversity are increasingly recognised by scientists and the public as a critical challenge. Molecular sequencing technologies offer means to catalogue, explore, and monitor the richness and biogeography of life on Earth. However, exploiting their full potential requires tools that connect biodiversity infrastructures and resources. As a research infrastructure developing services and technical solutions that help integrate and coordinate life science resources across Europe, ELIXIR is a key player. To identify opportunities, highlight priorities, and aid strategic thinking, here we survey approaches by which molecular technologies help inform understanding of biodiversity. We detail example use cases to highlight how DNA sequencing is: resolving taxonomic issues; Increasing knowledge of marine biodiversity; helping understand how agriculture and biodiversity are critically linked; and playing an essential role in ecological studies. Together with examples of national biodiversity programmes, the use cases show where progress is being made but also highlight common challenges and opportunities for future enhancement of underlying technologies and services that connect molecular and wider biodiversity domains. Based on emerging themes, we propose key recommendations to guide future funding for biodiversity research: biodiversity and bioinformatic infrastructures need to collaborate closely and strategically; taxonomic efforts need to be aligned and harmonised across domains; metadata needs to be standardised and common data management approaches widely adopted; current approaches need to be scaled up dramatically to address the anticipated explosion of molecular data; bioinformatics support for biodiversity research needs to be enabled and sustained; training for end users of biodiversity research infrastructures needs to be prioritised; and community initiatives need to be proactive and focused on enabling solutions. For sequencing data to deliver their full potential they must be connected to knowledge: together, molecular sequence data collection initiatives and biodiversity research infrastructures can advance global efforts to prevent further decline of Earth's biodiversity.
Collapse
Affiliation(s)
- Robert M. Waterhouse
- Department of Ecology and Evolution and Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Vaud, 1015, Switzerland
| | | | | | - Petr Baldrian
- Institute of Microbiology of the Czech Academy of Sciences, Praha, 142 20, Czech Republic
| | - Bachir Balech
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, CNR, Bari, 70126, Italy
| | - Erwan Corre
- CNRS/Sorbonne Université, Station Biologique de Roscoff, Roscoff, 29680, France
| | | | - Henrik Lantz
- Department of Medical Biochemistry and Microbiology/NBIS, Uppsala University, Uppsala, Sweden
| | - Graziano Pesole
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, CNR, Bari, 70126, Italy
- Department of Biosciences. Biotechnology and Biopharmaceutics, University of Bari “A. Moro”, Bari, 70126, Italy
| | - Christian Quast
- Life Sciences & Chemistry, Jacobs University Bremen gGmbH, Bremen, Germany
| | - Frank Oliver Glöckner
- MARUM - Center for Marine Environmental Sciences, University of Bremen, Bremerhaven, 27570, Germany
- Alfred Wegener Institute, Helmholtz Center for Polar- and Marine Research, Bremerhaven, 27570, Germany
| | - Niels Raes
- NLBIF - Netherlands Biodiversity Information Facility, Naturalis Biodiversity Center, Leiden, 2300 RA, The Netherlands
| | | | - Monica Santamaria
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, CNR, Bari, 70126, Italy
| | - Wouter Addink
- DiSSCo - Distributed System of Scientific Collections, Naturalis Biodiversity Center, Leiden, 2300 RA, The Netherlands
| | - Jiri Vohradsky
- Laboratory of Bioinformatics, Institute of Microbiology, Prague, 142 20, Czech Republic
| | | | | | - Jerry Lanfear
- ELIXIR Hub, Wellcome Genome Campus, Cambridge, CB10 1SD, UK
| |
Collapse
|