101
|
Expression pattern of the expanded noggin gene family in the planarian Schmidtea mediterranea. Gene Expr Patterns 2009; 9:246-53. [PMID: 19174194 DOI: 10.1016/j.gep.2008.12.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2008] [Revised: 12/22/2008] [Accepted: 12/24/2008] [Indexed: 01/04/2023]
Abstract
Noggin genes are mainly known as inhibitors of the Bone Morphogenetic Protein (BMP) signalling pathway. Noggin genes play an important role in various developmental processes such as axis formation and neural differentiation. In vertebrates, inhibition of the BMP pathway is usually carried out together with other inhibitory molecules: chordin and follistatin. Recently, it has been shown in planarians that the BMP pathway has a conserved function in the maintenance and re-establishment of the dorsoventral axis during homeostasis and regeneration. In an attempt to further characterize the BMP pathway in this model we have undertaken an in silico search of noggin genes in the genome of Schmidtea mediterranea. In contrast to other systems in which between one and four noggin genes have been reported, ten genes containing a noggin domain are present in S. mediterranea. These genes have been classified into two groups: noggin genes (two genes) and noggin-like genes (eight genes). Noggin-like genes are characterized by the presence of an insertion of 50-60 amino acids in the middle of the noggin domain. Here, we report the characterization of this expanded family of noggin genes in planarians as well as their expression patterns in both intact and regenerating animals. In situ hybridizations show that planarian noggin genes are expressed in a variety of cell types located in different regions of the planarian body.
Collapse
|
102
|
Rentzsch F, Fritzenwanker JH, Scholz CB, Technau U. FGF signalling controls formation of the apical sensory organ in the cnidarian Nematostella vectensis. Development 2008; 135:1761-9. [PMID: 18441276 DOI: 10.1242/dev.020784] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Fibroblast growth factor (FGF) signalling regulates essential developmental processes in vertebrates and invertebrates, but its role during early metazoan evolution remains obscure. Here, we analyse the function of FGF signalling in a non-bilaterian animal, the sea anemone Nematostella vectensis. We identified the complete set of FGF ligands and FGF receptors, of which two paralogous FGFs (NvFGFa1 and NvFGFa2) and one FGF receptor (NvFGFRa) are specifically coexpressed in the developing apical organ, a sensory structure located at the aboral pole of ciliated larvae from various phyla. Morpholino-mediated knockdown experiments reveal that NvFGFa1 and NvFGFRa are required for the formation of the apical organ, whereas NvFGFa2 counteracts NvFGFRa signalling to prevent precocious and ectopic apical organ development. Marker gene expression analysis shows that FGF signalling regulates local patterning in the aboral region. Furthermore, NvFGFa1 activates its own expression and that of the antagonistic NvFGFa2, thereby establishing positive- and negative-feedback loops. Finally, we show that loss of the apical organ upon NvFGFa1 knockdown blocks metamorphosis into polyps. We propose that the control of the development of sensory structures at the apical pole of ciliated larvae is an ancestral function of FGF signalling.
Collapse
Affiliation(s)
- Fabian Rentzsch
- Sars Centre for Marine Molecular Biology, University of Bergen, N-5008 Bergen, Norway.
| | | | | | | |
Collapse
|
103
|
Heino J, Huhtala M, Käpylä J, Johnson MS. Evolution of collagen-based adhesion systems. Int J Biochem Cell Biol 2008; 41:341-8. [PMID: 18790075 DOI: 10.1016/j.biocel.2008.08.021] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 08/08/2008] [Accepted: 08/11/2008] [Indexed: 12/22/2022]
Abstract
Collagens are large, triple-helical proteins that form fibrils and network-like structures in the extracellular matrix. The collagens may have participated in the evolution of the metazoans from their very earliest origins. Cell adhesion receptors, such as the integrins, are at least as old as the collagens. Still, the early metazoan cells might not have been able to anchor directly to collagen fibrils, since the integrin-type collagen receptors have only been identified in vertebrates. Instead, the early metazoans may have used integrin-type receptors in the recognition of collagen-binding glycoproteins. It is possible that specialized, high-avidity collagen-receptor integrins have become instrumental for the evolution of bone, cartilage, circulatory and immune systems in the chordates. In vertebrates, specific collagen-binding receptor tyrosine kinases send signals into cells after adhesion to collagen. These receptors are members of the discoidin domain receptor (DDR) group. The evolutionary history of DDRs is poorly known at this time. DDR orthologs have been found in many invertebrates, but their ability to function as collagen receptors has not yet been tested. The two main categories of collagens, fibrillar and non-fibrillar, already exist in the most primitive metazoans, such as the sponges. Interestingly, both integrin and DDR families seem to have members that favor either one or the other of these two groups of collagens.
Collapse
Affiliation(s)
- Jyrki Heino
- Department of Biochemistry and Food Chemistry, University of Turku, FI-20014 Turku, Finland.
| | | | | | | |
Collapse
|
104
|
Mann K, Poustka AJ, Mann M. The sea urchin (Strongylocentrotus purpuratus) test and spine proteomes. Proteome Sci 2008; 6:22. [PMID: 18694502 PMCID: PMC2527298 DOI: 10.1186/1477-5956-6-22] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Accepted: 08/11/2008] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The organic matrix of biominerals plays an important role in biomineral formation and in determining biomineral properties. However, most components of biomineral matrices remain unknown at present. In sea urchin, which is an important model organism for developmental biology and biomineralization, only few matrix components have been identified and characterized at the protein level. The recent publication of the Strongylocentrotus purpuratus genome sequence rendered possible not only the identification of possible matrix proteins at the gene level, but also the direct identification of proteins contained in matrices of skeletal elements by in-depth, high-accuracy, proteomic analysis. RESULTS We identified 110 proteins as components of sea urchin test and spine organic matrix. Fourty of these proteins occurred in both compartments while others were unique to their respective compartment. More than 95% of the proteins were detected in sea urchin skeletal matrices for the first time. The most abundant protein in both matrices was the previously characterized spicule matrix protein SM50, but at least eight other members of this group, many of them only known as conceptual translation products previously, were identified by mass spectrometric sequence analysis of peptides derived from in vitro matrix degradation. The matrices also contained proteins implicated in biomineralization processes previously by inhibition studies using antibodies or specific enzyme inhibitors, such as matrix metalloproteases and members of the mesenchyme-specific MSP130 family. Other components were carbonic anhydrase, collagens, echinonectin, a alpha2-macroglobulin-like protein and several proteins containing scavenger receptor cysteine-rich domains. A few possible signal transduction pathway components, such as GTP-binding proteins, a semaphorin and a possible tyrosine kinase were also identified. CONCLUSION This report presents the most comprehensive list of sea urchin skeletal matrix proteins available at present. The complex mixture of proteins identified in matrices of the sea urchin skeleton may reflect many different aspects of the mineralization process. Because LC-MS/MS-based methods directly measures peptides our results validate many predicted genes and confirm the existence of the corresponding proteins. Considering the many newly identified matrix proteins, this proteomic study may serve as a road map for the further exploration of biomineralization processes in an important model organism.
Collapse
Affiliation(s)
- Karlheinz Mann
- Max-Planck-Institut für Biochemie, Abteilung Proteomics und Signaltransduktion, D-82152, Martinsried, Am Klopferspitz, 18, Germany
| | - Albert J Poustka
- Max-Planck-Institut für Molekulare Genetik, Evolution and Development Group, D-14195, Berlin, Ihnestrasse, 73, Germany
| | - Matthias Mann
- Max-Planck-Institut für Biochemie, Abteilung Proteomics und Signaltransduktion, D-82152, Martinsried, Am Klopferspitz, 18, Germany
| |
Collapse
|
105
|
Wagh PK, Peace BE, Waltz SE. Met-related receptor tyrosine kinase Ron in tumor growth and metastasis. Adv Cancer Res 2008; 100:1-33. [PMID: 18620091 DOI: 10.1016/s0065-230x(08)00001-8] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The Ron receptor is a member of the Met family of cell surface receptor tyrosine kinases and is primarily expressed on epithelial cells and macrophages. The biological response of Ron is mediated by binding of its ligand, hepatocyte growth factor-like protein/macrophage stimulating-protein (HGFL). HGFL is primarily synthesized and secreted from hepatocytes as an inactive precursor and is activated at the cell surface. Binding of HGFL to Ron activates Ron and leads to the induction of a variety of intracellular signaling cascades that leads to cellular growth, motility and invasion. Recent studies have documented Ron overexpression in a variety of human cancers including breast, colon, liver, pancreas, and bladder. Moreover, clinical studies have also shown that Ron overexpression is associated with both worse patient outcomes as well as metastasis. Forced overexpression of Ron in transgenic mice leads to tumorigenesis in both the lung and the mammary gland and is associated with metastatic dissemination. While Ron overexpression appears to be a hallmark of many human cancers, the mechanisms by which Ron induces tumorigenesis and metastasis are still unclear. Several strategies are currently being undertaken to inhibit Ron as a potential therapeutic target; current strategies include the use of Ron blocking proteins, small interfering RNA (siRNA), monoclonal antibodies, and small molecule inhibitors. In total, these data suggest that Ron is a critical factor in tumorigenesis and that inhibition of this protein, alone or in combination with current therapies, may prove beneficial in the treatment of cancer patients.
Collapse
Affiliation(s)
- Purnima K Wagh
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0558, USA
| | | | | |
Collapse
|
106
|
Duboc V, Lapraz F, Besnardeau L, Lepage T. Lefty acts as an essential modulator of Nodal activity during sea urchin oral–aboral axis formation. Dev Biol 2008; 320:49-59. [DOI: 10.1016/j.ydbio.2008.04.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Revised: 04/02/2008] [Accepted: 04/03/2008] [Indexed: 10/22/2022]
|
107
|
Covi JA, Kim HW, Mykles DL. Expression of alternatively spliced transcripts for a myostatin-like protein in the blackback land crab, Gecarcinus lateralis. Comp Biochem Physiol A Mol Integr Physiol 2008; 150:423-30. [DOI: 10.1016/j.cbpa.2008.04.608] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 04/24/2008] [Accepted: 04/30/2008] [Indexed: 01/17/2023]
|
108
|
Bovolenta P, Esteve P, Ruiz JM, Cisneros E, Lopez-Rios J. Beyond Wnt inhibition: new functions of secreted Frizzled-related proteins in development and disease. J Cell Sci 2008; 121:737-46. [PMID: 18322270 DOI: 10.1242/jcs.026096] [Citation(s) in RCA: 476] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The secreted Frizzled-related proteins (SFRPs) are a family of soluble proteins that are structurally related to Frizzled (Fz) proteins, the serpentine receptors that mediate the extensively used cell-cell communication pathway involving Wnt signalling. Because of their homology with the Wnt-binding domain on the Fz receptors, SFRPs were immediately characterised as antagonists that bind to Wnt proteins to prevent signal activation. Since these initial studies, interest in the family of SFRPs has grown progressively, offering new perspectives on their function and mechanism of action in both development and disease. These studies indicate that SFRPs are not merely Wnt-binding proteins, but can also antagonise one another's activity, bind to Fz receptors and influence axon guidance, interfere with BMP signalling by acting as proteinase inhibitors, and interact with other receptors or matrix molecules. Furthermore, their expression is altered in different types of cancers, bone pathologies, retinal degeneration and hypophosphatemic diseases, indicating that their activity is fundamental for tissue homeostasis. Here we review some of the debated aspects of SFRP-Wnt interactions and discuss the new and emerging roles of SFRPs.
Collapse
Affiliation(s)
- Paola Bovolenta
- Departamento de Neurobiología Molecular, Celular y del Desarrollo, Instituto Cajal, CSIC, Dr Arce 37, Madrid 28002, Spain.
| | | | | | | | | |
Collapse
|
109
|
Abstract
Recent studies have revealed that the TAM receptor protein tyrosine kinases--TYRO3, AXL and MER--have pivotal roles in innate immunity. They inhibit inflammation in dendritic cells and macrophages, promote the phagocytosis of apoptotic cells and membranous organelles, and stimulate the maturation of natural killer cells. Each of these phenomena may depend on a cooperative interaction between TAM receptor and cytokine receptor signalling systems. Although its importance was previously unrecognized, TAM signalling promises to have an increasingly prominent role in studies of innate immune regulation.
Collapse
Affiliation(s)
- Greg Lemke
- Molecular Neurobiology Laboratory, The Salk Institute, 10010 N. Torrey Pines Road, La Jolla, California 92037, USA.
| | | |
Collapse
|
110
|
Freeman RM, Wu M, Cordonnier-Pratt MM, Pratt LH, Gruber CE, Smith M, Lander ES, Stange-Thomann N, Lowe CJ, Gerhart J, Kirschner M. cDNA sequences for transcription factors and signaling proteins of the hemichordate Saccoglossus kowalevskii: efficacy of the expressed sequence tag (EST) approach for evolutionary and developmental studies of a new organism. THE BIOLOGICAL BULLETIN 2008; 214:284-302. [PMID: 18574105 DOI: 10.2307/25470670] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We describe a collection of expressed sequence tags (ESTs) for Saccoglossus kowalevskii, a direct-developing hemichordate valuable for evolutionary comparisons with chordates. The 202,175 ESTs represent 163,633 arrayed clones carrying cDNAs prepared from embryonic libraries, and they assemble into 13,677 continuous sequences (contigs), leaving 10,896 singletons (excluding mitochondrial sequences). Of the contigs, 53% had significant matches when BLAST was used to query the NCBI databases (< or = 10(-10)), as did 51% of the singletons. Contigs most frequently matched sequences from amphioxus (29%), chordates (67%), and deuterostomes (87%). From the clone array, we isolated 400 full-length sequences for transcription factors and signaling proteins of use for evolutionary and developmental studies. The set includes sequences for fox, pax, tbx, hox, and other homeobox-containing factors, and for ligands and receptors of the TGFbeta, Wnt, Hh, Delta/Notch, and RTK pathways. At least 80% of key sequences have been obtained, when judged against gene lists of model organisms. The median length of these cDNAs is 2.3 kb, including 1.05 kb of 3' untranslated region (UTR). Only 30% are entirely matched by single contigs assembled from ESTs. We conclude that an EST collection based on 150,000 clones is a rich source of sequences for molecular developmental work, and that the EST approach is an efficient way to initiate comparative studies of a new organism.
Collapse
Affiliation(s)
- R M Freeman
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Romancino DP, Montana G, Cavalieri V, Spinelli G, Di Carlo M. EGFR signalling is required for Paracentrotus lividus endomesoderm specification. Arch Biochem Biophys 2008; 474:167-74. [PMID: 18395511 DOI: 10.1016/j.abb.2008.03.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 03/06/2008] [Accepted: 03/07/2008] [Indexed: 10/22/2022]
Abstract
The EGFR pathway is critical for cell fate specification throughout the development of several organisms. Here we identified in sea urchin an EGFR-related antigen maternally expressed and showing a dynamic pattern of localization during development. To investigate the role played by the EGFR in Paracentrotus lividus development we blocked its activity by using the EGFR kinase inhibitor AG1478. This treatment produces decrease of EGFR phosphorylation, and embryos with various defects especially in the endomesoderm territory until to obtain an animalized phenotype. These effects are rescued by the addition of TGF-alpha, an EGFR ligand. The role played by EGFR-like along the animal/vegetal axis was also detected, after AG1478 treatment, by the extended distribution of HE and decreased nuclearization of beta-catenin in vegetal cells. Moreover, inhibition of EGFR-like reduced ERK phosphorylation, necessary for cell fate specification in the micromeres and their derivates. Taken together these results indicate that EGFR-like activity is required both for A/V axis formation and endomesoderm differentiation.
Collapse
Affiliation(s)
- Daniele P Romancino
- Istituto di Biomedicina ed Immunologia Molecolare (IBIM) "Alberto Monroy", CNR, sez. Biologia dello Sviluppo, via Ugo La Malfa 153, 90146 Palermo, PA, Italy
| | | | | | | | | |
Collapse
|
112
|
Rast JP, Messier-Solek C. Marine invertebrate genome sequences and our evolving understanding of animal immunity. THE BIOLOGICAL BULLETIN 2008; 214:274-283. [PMID: 18574104 DOI: 10.2307/25470669] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Animal immunity is under intense evolutionary pressure, and the mechanisms that carry out recognition and elimination of pathogens are among the most rapidly evolving genetic systems. It is increasingly apparent that this has led to the emergence of novel molecular mechanisms not only among vertebrates, where immunity is by far best characterized, but also across invertebrate phyla. This propensity for rapid divergence has been a serious obstacle for progress in the field of comparative immunology. The variety of recent genome sequences from marine invertebrates representing new phyla offers a means to move forward in this area. Genome sequences provide much improved sensitivity for the detection of gene homologs and a framework for unbiased computational and experimental searches for novel immune mediators. Furthermore, new genomes now offer a more complete and unbiased view of immunity across bilaterian phyla, especially among deuterostomes. In this review we summarize these findings with particular attention toward immunity in Strongylocentrotus purpuratus, the purple sea urchin, and outline the changing perspective on the evolution of deuterostome immunity.
Collapse
Affiliation(s)
- Jonathan P Rast
- Department of Medical Biophysics, University of Toronto, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Rm. S126B, Toronto, Ontario M4N 3M5, Canada.
| | | |
Collapse
|
113
|
Wu SY, Yang YP, McClay DR. Twist is an essential regulator of the skeletogenic gene regulatory network in the sea urchin embryo. Dev Biol 2008; 319:406-15. [PMID: 18495103 DOI: 10.1016/j.ydbio.2008.04.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Revised: 01/16/2008] [Accepted: 04/01/2008] [Indexed: 10/22/2022]
Abstract
Recent work on the sea urchin endomesoderm gene regulatory network (GRN) offers many opportunities to study the specification and differentiation of each cell type during early development at a mechanistic level. The mesoderm lineages consist of two cell populations, primary and secondary mesenchyme cells (PMCs and SMCs). The micromere-PMC GRN governs the development of the larval skeleton, which is the exclusive fate of PMCs, and SMCs diverge into four lineages, each with its own GRN state. Here we identify a sea urchin ortholog of the Twist transcription factor, and show that it plays an essential role in the PMC GRN and later is involved in SMC formation. Perturbations of Twist either by morpholino knockdown or by overexpression result in defects in progressive phases of PMC development, including specification, ingression/EMT, differentiation and skeletogenesis. Evidence is presented that Twist expression is required for the maintenance of the PMC specification state, and a reciprocal regulation between Alx1 and Twist offers stability for the subsequent processes, such as PMC differentiation and skeletogenesis. These data illustrate the significance of regulatory state maintenance and continuous progression during cell specification, and the dynamics of the sequential events that depend on those earlier regulatory states.
Collapse
Affiliation(s)
- Shu-Yu Wu
- Department of Biology, French Family Science Center, Duke University, Durham, NC 27708, USA.
| | | | | |
Collapse
|
114
|
Röttinger E, Saudemont A, Duboc V, Besnardeau L, McClay D, Lepage T. FGF signals guide migration of mesenchymal cells, control skeletal morphogenesis and regulate gastrulation during sea urchin development. Development 2008; 135:353-65. [DOI: 10.1242/dev.014282] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The sea urchin embryo is emerging as an attractive model to study morphogenetic processes such as directed migration of mesenchyme cells and cell sheet invagination, but surprisingly, few of the genes regulating these processes have yet been characterized. We present evidence that FGFA, the first FGF family member characterized in the sea urchin, regulates directed migration of mesenchyme cells, morphogenesis of the skeleton and gastrulation during early development. We found that at blastula stages, FGFA and a novel putative FGF receptor are expressed in a pattern that prefigures morphogenesis of the skeletogenic mesoderm and that suggests that FGFA is one of the elusive signals that guide migration of primary mesenchyme cells (PMCs). We first show that fgfA expression is correlated with abnormal migration and patterning of the PMCs following treatments that perturb specification of the ectoderm along the oral-aboral and animal-vegetal axes. Specification of the ectoderm initiated by Nodal is required to restrict fgfA to the lateral ectoderm, and in the absence of Nodal, fgfA is expressed ectopically throughout most of the ectoderm. Inhibition of either FGFA, FGFR1 or FGFR2 function severely affects morphogenesis of the skeleton. Furthermore,inhibition of FGFA and FGFR1 signaling dramatically delays invagination of the archenteron, prevents regionalization of the gut and abrogates formation of the stomodeum. We identified several genes acting downstream of fgfAin these processes, including the transcription factors pea3 and pax2/5/8 and the signaling molecule sprouty in the lateral ectoderm and SM30 and SM50 in the primary mesenchyme cells. This study identifies the FGF signaling pathway as an essential regulator of gastrulation and directed cell migration in the sea urchin embryo and as a key player in the gene regulatory network directing morphogenesis of the skeleton.
Collapse
Affiliation(s)
- Eric Röttinger
- UMR 7009 CNRS, Université Pierre et Marie Curie (Paris 6) Observatoire Océanologique, 06230 Villefranche sur mer, France
| | - Alexandra Saudemont
- UMR 7009 CNRS, Université Pierre et Marie Curie (Paris 6) Observatoire Océanologique, 06230 Villefranche sur mer, France
| | - Véronique Duboc
- UMR 7009 CNRS, Université Pierre et Marie Curie (Paris 6) Observatoire Océanologique, 06230 Villefranche sur mer, France
| | - Lydia Besnardeau
- UMR 7009 CNRS, Université Pierre et Marie Curie (Paris 6) Observatoire Océanologique, 06230 Villefranche sur mer, France
| | - David McClay
- Department of Biology, French Family Science Center, Duke University Durham,NC 27708, USA
| | - Thierry Lepage
- UMR 7009 CNRS, Université Pierre et Marie Curie (Paris 6) Observatoire Océanologique, 06230 Villefranche sur mer, France
| |
Collapse
|
115
|
Bannister R, McGonnell IM, Graham A, Thorndyke MC, Beesley PW. Coelomic expression of a novel bone morphogenetic protein in regenerating arms of the brittle star Amphiura filiformis. Dev Genes Evol 2008; 218:33-8. [PMID: 18060425 DOI: 10.1007/s00427-007-0193-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Accepted: 10/24/2007] [Indexed: 10/22/2022]
Abstract
The bone morphogenetic proteins (BMPs) are a family of signalling molecules involved in numerous developmental processes including cell fate determination in embryonic ectoderm of vertebrate and invertebrate species. Recently, published evidence has indicated that BMPs are involved in echinoderm adult tissue regeneration. We have cloned a novel member of the BMP2/4 subfamily from the ophiuroid echinoderm Amphiura filiformis, which we have named afBMP2/4. Whole-mount in-situ hybridisation performed on non-regenerating brittle star arms revealed that expression of afBMP2/4 is localised to the radial water canal (RWC) and that this expression is upregulated at segmental intervals along the arm. This observed expression pattern suggests a putative active role for this echinoderm BMP transcript in somatic growth and maintenance of the brittle star arm. Expression of this factor has also been observed in regenerating arms 2 weeks post-ablation, implicating the RWC as a source of cells for ophiuroid arm regeneration.
Collapse
Affiliation(s)
- Richard Bannister
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, UK
| | | | | | | | | |
Collapse
|
116
|
Gestal C, Costa M, Figueras A, Novoa B. Analysis of differentially expressed genes in response to bacterial stimulation in hemocytes of the carpet-shell clam Ruditapes decussatus: Identification of new antimicrobial peptides. Gene 2007; 406:134-43. [PMID: 17881157 DOI: 10.1016/j.gene.2007.07.030] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Revised: 07/26/2007] [Accepted: 07/31/2007] [Indexed: 11/20/2022]
Abstract
Suppression subtractive hybridization was used to identify differentially expressed genes in hemocytes from carpet-shell clam Ruditapes decussatus stimulated with a mixture of dead bacterial strains. Putative function could be assigned to 100 of the 253 sequenced cDNAs. Based on sequence homologies, 3.16% of the total identified genes were possibly related to immune functions. Clam myticin isoforms 1, 2 and 3, and clam mytilin, with similarity with myticins and mytilins previously reported on Mytilus galloprovincialis were identified and characterized for the first time in clams. The analysis of their expression levels by quantitative PCR showed that they were induced by bacterial challenge. The results obtained in this work could be the first step leading to the understanding of molecular mechanisms by which these economically important marine bivalves respond to pathogens.
Collapse
Affiliation(s)
- Camino Gestal
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas, Eduardo Cabello 6, Vigo, Spain
| | | | | | | |
Collapse
|
117
|
Song JL, Wessel GM. Genes involved in the RNA interference pathway are differentially expressed during sea urchin development. Dev Dyn 2007; 236:3180-90. [DOI: 10.1002/dvdy.21353] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
118
|
Range R, Lapraz F, Quirin M, Marro S, Besnardeau L, Lepage T. Cis-regulatory analysis of nodal and maternal control of dorsal-ventral axis formation by Univin, a TGF-β related to Vg1. Development 2007; 134:3649-64. [PMID: 17855430 DOI: 10.1242/dev.007799] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The TGF-β family member Nodal is essential for specification of the dorsal-ventral axis of the sea urchin embryo, but the molecular factors regulating its expression are not known. Analysis of the nodalpromoter is an excellent entry point to identify these factors and to dissect the regulatory logic driving dorsal-ventral axis specification. Using phylogenetic footprinting, we delineated two regulatory regions located in the 5′ region of the nodal promoter and in the intron that are required for correct spatial expression and for autoregulation. The 5′regulatory region contains essential binding sites for homeodomain, bZIP, Oct,Tcf/Lef, Sox and Smad transcription factors, and a binding site for an unidentified spatial repressor possibly related to Myb. Soon after its initiation, nodal expression critically requires autoregulation by Nodal and signaling by the maternal TGF-β Univin. We show that Univin is related to Vg1, that both Nodal and Univin signal through Alk4/5/7, and that zygotic expression of univin, like that of nodal, is dependent on SoxB1 function and Tcf/β-catenin signaling. This work shows that Tcf, SoxB1 and Univin play essential roles in the regulation of nodal expression in the sea urchin and suggests that some of the regulatory interactions controlling nodal expression predate the chordates. The data are consistent with a model of nodal regulation in which a maternal TGF-β acts in synergy with maternal transcription factors and with spatial repressors to establish the dorsal-ventral axis of the sea urchin embryo.
Collapse
Affiliation(s)
- Ryan Range
- UMR 7009 CNRS, Université Pierre et Marie Curie (Paris 6 Observatoire Océanologique, 06230 Villefranche-sur-mer, France
| | | | | | | | | | | |
Collapse
|
119
|
Duloquin L, Lhomond G, Gache C. Localized VEGF signaling from ectoderm to mesenchyme cells controls morphogenesis of the sea urchin embryo skeleton. Development 2007; 134:2293-302. [PMID: 17507391 DOI: 10.1242/dev.005108] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During development, cell migration plays an important role in morphogenetic processes. The construction of the skeleton of the sea urchin embryo by a small number of cells, the primary mesenchyme cells (PMCs), offers a remarkable model to study cell migration and its involvement in morphogenesis. During gastrulation, PMCs migrate and become positioned along the ectodermal wall following a stereotypical pattern that determines skeleton morphology. Previous studies have shown that interactions between ectoderm and PMCs regulate several aspects of skeletal morphogenesis, but little is known at the molecular level. Here we show that VEGF signaling between ectoderm and PMCs is crucial in this process. The VEGF receptor (VEGFR) is expressed exclusively in PMCs, whereas VEGF expression is restricted to two small areas of the ectoderm, in front of the positions where the ventrolateral PMC clusters that initiate skeletogenesis will form. Overexpression of VEGF leads to skeletal abnormalities, whereas inhibition of VEGF/VEGFR signaling results in incorrect positioning of the PMCs, downregulation of PMC-specific genes and loss of skeleton. We present evidence that localized VEGF acts as both a guidance cue and a differentiation signal, providing a crucial link between the positioning and differentiation of the migrating PMCs and leading to morphogenesis of the embryonic skeleton.
Collapse
Affiliation(s)
- Louise Duloquin
- Developmental Biology Unit, University Pierre et Marie Curie, Paris 6 and CNRS, Observatoire Océanologique, 06230 Villefranche-sur-Mer, France
| | | | | |
Collapse
|
120
|
Lapraz F, Duboc V, Lepage T. A genomic view of TGF-β signal transduction in an invertebrate deuterostome organism and lessons from the functional analyses of Nodal and BMP2/4 during sea urchin development. ACTA ACUST UNITED AC 2007. [DOI: 10.1002/sita.200600125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
121
|
Burke RD, Angerer LM, Elphick MR, Humphrey GW, Yaguchi S, Kiyama T, Liang S, Mu X, Agca C, Klein WH, Brandhorst BP, Rowe M, Wilson K, Churcher AM, Taylor JS, Chen N, Murray G, Wang D, Mellott D, Olinski R, Hallböök F, Thorndyke MC. A genomic view of the sea urchin nervous system. Dev Biol 2006; 300:434-60. [PMID: 16965768 PMCID: PMC1950334 DOI: 10.1016/j.ydbio.2006.08.007] [Citation(s) in RCA: 182] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 07/29/2006] [Accepted: 08/02/2006] [Indexed: 10/24/2022]
Abstract
The sequencing of the Strongylocentrotus purpuratus genome provides a unique opportunity to investigate the function and evolution of neural genes. The neurobiology of sea urchins is of particular interest because they have a close phylogenetic relationship with chordates, yet a distinctive pentaradiate body plan and unusual neural organization. Orthologues of transcription factors that regulate neurogenesis in other animals have been identified and several are expressed in neurogenic domains before gastrulation indicating that they may operate near the top of a conserved neural gene regulatory network. A family of genes encoding voltage-gated ion channels is present but, surprisingly, genes encoding gap junction proteins (connexins and pannexins) appear to be absent. Genes required for synapse formation and function have been identified and genes for synthesis and transport of neurotransmitters are present. There is a large family of G-protein-coupled receptors, including 874 rhodopsin-type receptors, 28 metabotropic glutamate-like receptors and a remarkably expanded group of 161 secretin receptor-like proteins. Absence of cannabinoid, lysophospholipid and melanocortin receptors indicates that this group may be unique to chordates. There are at least 37 putative G-protein-coupled peptide receptors and precursors for several neuropeptides and peptide hormones have been identified, including SALMFamides, NGFFFamide, a vasotocin-like peptide, glycoprotein hormones and insulin/insulin-like growth factors. Identification of a neurotrophin-like gene and Trk receptor in sea urchin indicates that this neural signaling system is not unique to chordates. Several hundred chemoreceptor genes have been predicted using several approaches, a number similar to that for other animals. Intriguingly, genes encoding homologues of rhodopsin, Pax6 and several other key mammalian retinal transcription factors are expressed in tube feet, suggesting tube feet function as photosensory organs. Analysis of the sea urchin genome presents a unique perspective on the evolutionary history of deuterostome nervous systems and reveals new approaches to investigate the development and neurobiology of sea urchins.
Collapse
Affiliation(s)
- R D Burke
- Department of Biology, University of Victoria, Victoria, POB 3020, STN CSC, Victoria, BC, Canada V8W 3N5.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Yaguchi S, Yaguchi J, Burke RD. Sp-Smad2/3 mediates patterning of neurogenic ectoderm by nodal in the sea urchin embryo. Dev Biol 2006; 302:494-503. [PMID: 17101124 DOI: 10.1016/j.ydbio.2006.10.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Revised: 09/15/2006] [Accepted: 10/05/2006] [Indexed: 01/25/2023]
Abstract
Nodal functions in axis and tissue specification during embryogenesis. In sea urchin embryos, Nodal is crucial for specification of oral ectoderm and is thought to pattern neurogenesis in the animal plate. To determine if Nodal functions directly in suppressing neuron differentiation we have prepared mutant forms of Sp-Smad2/3. Expressing an activated form produces embryos similar to embryos overexpressing Nodal, but with fewer neurons. In chimeras in which Nodal is suppressed, cells expressing activated Sp-Smad2/3 form oral ectoderm, but not neurons. In embryos with vegetal signaling blocked, neurons do not form if activated Smad2/3 is co-expressed. Expression of dominant negative mutants produces embryos identical to those resulting from blocking Nodal expression. In chimeras overexpressing Nodal, cells expressing dominant negative Sp-Smad2/3 form aboral ectoderm and give rise to neurons. In permanent blastula chimeras dominant negative Sp-Smad2/3 is able to suppress the effects of Nodal permitting neuron differentiation. In these chimeras Nodal expression in one half suppresses neural differentiation across the interface. Anti-phospho-Smad3 reveals that the cells adjacent to cells expressing Nodal have nuclear immunoreactivity. We conclude Sp-Smad2/3 is a component of the Nodal signaling pathway in sea urchins and that Nodal diffuses short distances to suppress neural differentiation.
Collapse
Affiliation(s)
- Shunsuke Yaguchi
- Department of Biology, University of Victoria, Victoria, POB 3020, STN CSC, 3800 Finnerty Rd, Victoria, BC, Canada V8W 3N5
| | | | | |
Collapse
|
123
|
Bradham CA, Foltz KR, Beane WS, Arnone MI, Rizzo F, Coffman JA, Mushegian A, Goel M, Morales J, Geneviere AM, Lapraz F, Robertson AJ, Kelkar H, Loza-Coll M, Townley IK, Raisch M, Roux MM, Lepage T, Gache C, McClay DR, Manning G. The sea urchin kinome: a first look. Dev Biol 2006; 300:180-93. [PMID: 17027740 DOI: 10.1016/j.ydbio.2006.08.074] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Revised: 08/19/2006] [Accepted: 08/22/2006] [Indexed: 12/31/2022]
Abstract
This paper reports a preliminary in silico analysis of the sea urchin kinome. The predicted protein kinases in the sea urchin genome were identified, annotated and classified, according to both function and kinase domain taxonomy. The results show that the sea urchin kinome, consisting of 353 protein kinases, is closer to the Drosophila kinome (239) than the human kinome (518) with respect to total kinase number. However, the diversity of sea urchin kinases is surprisingly similar to humans, since the urchin kinome is missing only 4 of 186 human subfamilies, while Drosophila lacks 24. Thus, the sea urchin kinome combines the simplicity of a non-duplicated genome with the diversity of function and signaling previously considered to be vertebrate-specific. More than half of the sea urchin kinases are involved with signal transduction, and approximately 88% of the signaling kinases are expressed in the developing embryo. These results support the strength of this nonchordate deuterostome as a pivotal developmental and evolutionary model organism.
Collapse
|