101
|
Sinha T, Li D, Théveniau-Ruissy M, Hutson MR, Kelly RG, Wang J. Loss of Wnt5a disrupts second heart field cell deployment and may contribute to OFT malformations in DiGeorge syndrome. Hum Mol Genet 2014; 24:1704-16. [PMID: 25410658 DOI: 10.1093/hmg/ddu584] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Outflow tract (OFT) malformation accounts for ∼30% of human congenital heart defects and manifests frequently in TBX1 haplo-insufficiency associated DiGeorge (22q11.2 deletion) syndrome. OFT myocardium originates from second heart field (SHF) progenitors in the pharyngeal and splanchnic mesoderm (SpM), but how these progenitors are deployed to the OFT is unclear. We find that SHF progenitors in the SpM gradually gain epithelial character and are deployed to the OFT as a cohesive sheet. Wnt5a, a non-canonical Wnt, is expressed specifically in the caudal SpM and may regulate oriented cell intercalation to incorporate SHF progenitors into an epithelial-like sheet, thereby generating the pushing force to deploy SHF cells rostrally into the OFT. Using enhancer trap and Cre transgenes, our lineage tracing experiments show that in Wnt5a null mice, SHF progenitors are trapped in the SpM and fail to be deployed to the OFT efficiently, resulting in a reduction in the inferior OFT myocardial wall and its derivative, subpulmonary myocardium. Concomitantly, the superior OFT and subaortic myocardium are expanded. Finally, in chick embryos, blocking the Wnt5a function in the caudal SpM perturbs polarized elongation of SHF progenitors, and compromises their deployment to the OFT. Collectively, our results highlight a critical role for Wnt5a in deploying SHF progenitors from the SpM to the OFT. Given that Wnt5a is a putative transcriptional target of Tbx1, and the similar reduction of subpulmonary myocardium in Tbx1 mutant mice, our results suggest that perturbing Wnt5a-mediated SHF deployment may be an important pathogenic mechanism contributing to OFT malformations in DiGeorge syndrome.
Collapse
Affiliation(s)
- Tanvi Sinha
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Alabama, USA
| | - Ding Li
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Alabama, USA
| | | | - Mary R Hutson
- Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina
| | - Robert G Kelly
- Aix Marseille Université, CNRS, IBDM UMR 7288, Marseille 13288, France
| | - Jianbo Wang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Alabama, USA,
| |
Collapse
|
102
|
MacGrogan D, Luxán G, Driessen-Mol A, Bouten C, Baaijens F, de la Pompa JL. How to make a heart valve: from embryonic development to bioengineering of living valve substitutes. Cold Spring Harb Perspect Med 2014; 4:a013912. [PMID: 25368013 DOI: 10.1101/cshperspect.a013912] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Cardiac valve disease is a significant cause of ill health and death worldwide, and valve replacement remains one of the most common cardiac interventions in high-income economies. Despite major advances in surgical treatment, long-term therapy remains inadequate because none of the current valve substitutes have the potential for remodeling, regeneration, and growth of native structures. Valve development is coordinated by a complex interplay of signaling pathways and environmental cues that cause disease when perturbed. Cardiac valves develop from endocardial cushions that become populated by valve precursor mesenchyme formed by an epithelial-mesenchymal transition (EMT). The mesenchymal precursors, subsequently, undergo directed growth, characterized by cellular compartmentalization and layering of a structured extracellular matrix (ECM). Knowledge gained from research into the development of cardiac valves is driving exploration into valve biomechanics and tissue engineering directed at creating novel valve substitutes endowed with native form and function.
Collapse
Affiliation(s)
- Donal MacGrogan
- Program of Cardiovascular Developmental Biology, Department of Cardiovascular Development and Repair, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Guillermo Luxán
- Program of Cardiovascular Developmental Biology, Department of Cardiovascular Development and Repair, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Anita Driessen-Mol
- Biomedical Engineering/Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Carlijn Bouten
- Biomedical Engineering/Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Frank Baaijens
- Biomedical Engineering/Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - José Luis de la Pompa
- Program of Cardiovascular Developmental Biology, Department of Cardiovascular Development and Repair, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| |
Collapse
|
103
|
Nelson DO, Jin DX, Downs KM, Kamp TJ, Lyons GE. Irx4 identifies a chamber-specific cell population that contributes to ventricular myocardium development. Dev Dyn 2014; 243:381-92. [PMID: 24123507 DOI: 10.1002/dvdy.24078] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 10/02/2013] [Accepted: 10/03/2013] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The ventricular myocardium is the most prominent layer of the heart, and the most important for mediating cardiac physiology. Although the ventricular myocardium is critical for heart function, the cellular hierarchy responsible for ventricle-specific myocardium development remains unresolved. RESULTS To determine the pattern and time course of ventricular myocardium development, we investigated IRX4 protein expression, which has not been previously reported. We identified IRX4+ cells in the cardiac crescent, and these cells were positive for markers of the first or second heart fields. From the onset of chamber formation, IRX4+ cells were restricted to the ventricular myocardium. This expression pattern persisted into adulthood. Of interest, we observed that IRX4 exhibits developmentally regulated dynamic intracellular localization. Throughout prenatal cardiogenesis, and up to postnatal day 4, IRX4 was detected in the cytoplasm of ventricular myocytes. However, between postnatal days 5–6, IRX4 translocated to the nucleus of ventricular myocytes. CONCLUSIONS Given the ventricle-specific expression of Irx4 in later stages of heart development, we hypothesize that IRX4+ cells in the cardiac crescent represent the earliest cell population in the cellular hierarchy underlying ventricular myocardium development.
Collapse
|
104
|
Kimura W, Muralidhar S, Canseco DC, Puente B, Zhang CC, Xiao F, Abderrahman YH, Sadek HA. Redox signaling in cardiac renewal. Antioxid Redox Signal 2014; 21:1660-73. [PMID: 25000143 PMCID: PMC4175032 DOI: 10.1089/ars.2014.6029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
SIGNIFICANCE Utilizing oxygen (O2) through mitochondrial oxidative phosphorylation enables organisms to generate adenosine triphosphate (ATP) with a higher efficiency than glycolysis, but it results in increased reactive oxygen species production from mitochondria, which can result in stem cell dysfunction and senescence. RECENT ADVANCES In the postnatal organism, the hematopoietic system represents a classic example of the role of stem cells in cellular turnover and regeneration. However, in other organs such as the heart, both the degree and source of cellular turnover have been heavily contested. CRITICAL ISSUES Although recent evidence suggests that the major source of the limited cardiomyocyte turnover in the adult heart is cardiomyocyte proliferation, the identity and potential role of undifferentiated cardiac progenitor cells remain controversial. Several types of cardiac progenitor cells have been identified, and several studies have identified an important role of redox and metabolic regulation in survival and differentiation of cardiac progenitor cells. Perhaps a simple way to approach these controversies is to focus on the multipotentiality characteristics of a certain progenitor population, and not necessarily its ability to give rise to all cell types within the heart. In addition, it is important to note that cycling cells in the heart may express markers of differentiation or may be truly undifferentiated, and for the purpose of this review, we will refer to these cycling cells as progenitors. FUTURE DIRECTIONS We propose that hypoxia, redox signaling, and metabolic phenotypes are major regulators of cardiac renewal, and may prove to be important therapeutic targets for heart regeneration.
Collapse
Affiliation(s)
- Wataru Kimura
- 1 Division of Cardiology, Department of Internal Medicine, UT Southwestern Medical Center , Dallas, Texas
| | | | | | | | | | | | | | | |
Collapse
|
105
|
Kelly RG, Buckingham ME, Moorman AF. Heart fields and cardiac morphogenesis. Cold Spring Harb Perspect Med 2014; 4:4/10/a015750. [PMID: 25274757 DOI: 10.1101/cshperspect.a015750] [Citation(s) in RCA: 180] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this review, we focus on two important steps in the formation of the embryonic heart: (i) the progressive addition of late differentiating progenitor cells from the second heart field that drives heart tube extension during looping morphogenesis, and (ii) the emergence of patterned proliferation within the embryonic myocardium that generates distinct cardiac chambers. During the transition between these steps, the major site of proliferation switches from progenitor cells outside the early heart to proliferation within the embryonic myocardium. The second heart field and ballooning morphogenesis concepts have major repercussions on our understanding of human heart development and disease. In particular, they provide a framework to dissect the origin of congenital heart defects and the regulation of myocardial proliferation and differentiation of relevance for cardiac repair.
Collapse
Affiliation(s)
- Robert G Kelly
- Aix Marseille University, CNRS, IBDM UMR 7288, 13288 Marseilles, France
| | - Margaret E Buckingham
- Department of Developmental and Stem Cell Biology, URA CNRS 2578, Pasteur Institute, 75015 Paris, France
| | - Antoon F Moorman
- Department of Anatomy, Embryology & Physiology, Academic Medical Centre, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
106
|
Yutzey KE, Demer LL, Body SC, Huggins GS, Towler DA, Giachelli CM, Hofmann-Bowman MA, Mortlock DP, Rogers MB, Sadeghi MM, Aikawa E. Calcific aortic valve disease: a consensus summary from the Alliance of Investigators on Calcific Aortic Valve Disease. Arterioscler Thromb Vasc Biol 2014; 34:2387-93. [PMID: 25189570 DOI: 10.1161/atvbaha.114.302523] [Citation(s) in RCA: 265] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Calcific aortic valve disease (CAVD) is increasingly prevalent worldwide with significant morbidity and mortality. Therapeutic options beyond surgical valve replacement are currently limited. In 2011, the National Heart Lung and Blood Institute assembled a working group on aortic stenosis. This group identified CAVD as an actively regulated disease process in need of further study. As a result, the Alliance of Investigators on CAVD was formed to coordinate and promote CAVD research, with the goals of identifying individuals at risk, developing new therapeutic approaches, and improving diagnostic methods. The group is composed of cardiologists, geneticists, imaging specialists, and basic science researchers. This report reviews the current status of CAVD research and treatment strategies with identification of areas in need of additional investigation for optimal management of this patient population.
Collapse
Affiliation(s)
- Katherine E Yutzey
- From the Heart Institute, Cincinnati Children's Hospital Medical Center, OH (K.E.Y.); Departments of Medicine, Physiology and Bioengineering, University of California, Los Angeles (L.L.D.); Center for Perioperative Genomics, Department of Anesthesiology, Brigham and Women's Hospital, Boston, MA (S.C.B.); MCRI Center for Translational Genomics, Tufts Medical Center and Tufts University School of Medicine, Boston, MA (G.S.H.); Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Center, Orlando, FL (D.A.T.); Bioengineering Department, University of Washington, Seattle (C.M.G.); Department of Medicine, Section of Cardiology, University of Chicago, IL (M.A.H.-B.); Center for Human Genetics Research, Vanderbilt University School of Medicine, Nashville, TN (D.P.M.); Biochemistry and Molecular Biology, Rutgers-NJ Medical School, Newark (M.B.R.); Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (M.M.S.); VA Connecticut Healthcare System, West Haven (M.M.S.); and Center of Excellence in Vascular Biology, Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (E.A.)
| | - Linda L Demer
- From the Heart Institute, Cincinnati Children's Hospital Medical Center, OH (K.E.Y.); Departments of Medicine, Physiology and Bioengineering, University of California, Los Angeles (L.L.D.); Center for Perioperative Genomics, Department of Anesthesiology, Brigham and Women's Hospital, Boston, MA (S.C.B.); MCRI Center for Translational Genomics, Tufts Medical Center and Tufts University School of Medicine, Boston, MA (G.S.H.); Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Center, Orlando, FL (D.A.T.); Bioengineering Department, University of Washington, Seattle (C.M.G.); Department of Medicine, Section of Cardiology, University of Chicago, IL (M.A.H.-B.); Center for Human Genetics Research, Vanderbilt University School of Medicine, Nashville, TN (D.P.M.); Biochemistry and Molecular Biology, Rutgers-NJ Medical School, Newark (M.B.R.); Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (M.M.S.); VA Connecticut Healthcare System, West Haven (M.M.S.); and Center of Excellence in Vascular Biology, Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (E.A.)
| | - Simon C Body
- From the Heart Institute, Cincinnati Children's Hospital Medical Center, OH (K.E.Y.); Departments of Medicine, Physiology and Bioengineering, University of California, Los Angeles (L.L.D.); Center for Perioperative Genomics, Department of Anesthesiology, Brigham and Women's Hospital, Boston, MA (S.C.B.); MCRI Center for Translational Genomics, Tufts Medical Center and Tufts University School of Medicine, Boston, MA (G.S.H.); Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Center, Orlando, FL (D.A.T.); Bioengineering Department, University of Washington, Seattle (C.M.G.); Department of Medicine, Section of Cardiology, University of Chicago, IL (M.A.H.-B.); Center for Human Genetics Research, Vanderbilt University School of Medicine, Nashville, TN (D.P.M.); Biochemistry and Molecular Biology, Rutgers-NJ Medical School, Newark (M.B.R.); Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (M.M.S.); VA Connecticut Healthcare System, West Haven (M.M.S.); and Center of Excellence in Vascular Biology, Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (E.A.)
| | - Gordon S Huggins
- From the Heart Institute, Cincinnati Children's Hospital Medical Center, OH (K.E.Y.); Departments of Medicine, Physiology and Bioengineering, University of California, Los Angeles (L.L.D.); Center for Perioperative Genomics, Department of Anesthesiology, Brigham and Women's Hospital, Boston, MA (S.C.B.); MCRI Center for Translational Genomics, Tufts Medical Center and Tufts University School of Medicine, Boston, MA (G.S.H.); Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Center, Orlando, FL (D.A.T.); Bioengineering Department, University of Washington, Seattle (C.M.G.); Department of Medicine, Section of Cardiology, University of Chicago, IL (M.A.H.-B.); Center for Human Genetics Research, Vanderbilt University School of Medicine, Nashville, TN (D.P.M.); Biochemistry and Molecular Biology, Rutgers-NJ Medical School, Newark (M.B.R.); Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (M.M.S.); VA Connecticut Healthcare System, West Haven (M.M.S.); and Center of Excellence in Vascular Biology, Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (E.A.)
| | - Dwight A Towler
- From the Heart Institute, Cincinnati Children's Hospital Medical Center, OH (K.E.Y.); Departments of Medicine, Physiology and Bioengineering, University of California, Los Angeles (L.L.D.); Center for Perioperative Genomics, Department of Anesthesiology, Brigham and Women's Hospital, Boston, MA (S.C.B.); MCRI Center for Translational Genomics, Tufts Medical Center and Tufts University School of Medicine, Boston, MA (G.S.H.); Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Center, Orlando, FL (D.A.T.); Bioengineering Department, University of Washington, Seattle (C.M.G.); Department of Medicine, Section of Cardiology, University of Chicago, IL (M.A.H.-B.); Center for Human Genetics Research, Vanderbilt University School of Medicine, Nashville, TN (D.P.M.); Biochemistry and Molecular Biology, Rutgers-NJ Medical School, Newark (M.B.R.); Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (M.M.S.); VA Connecticut Healthcare System, West Haven (M.M.S.); and Center of Excellence in Vascular Biology, Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (E.A.)
| | - Cecilia M Giachelli
- From the Heart Institute, Cincinnati Children's Hospital Medical Center, OH (K.E.Y.); Departments of Medicine, Physiology and Bioengineering, University of California, Los Angeles (L.L.D.); Center for Perioperative Genomics, Department of Anesthesiology, Brigham and Women's Hospital, Boston, MA (S.C.B.); MCRI Center for Translational Genomics, Tufts Medical Center and Tufts University School of Medicine, Boston, MA (G.S.H.); Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Center, Orlando, FL (D.A.T.); Bioengineering Department, University of Washington, Seattle (C.M.G.); Department of Medicine, Section of Cardiology, University of Chicago, IL (M.A.H.-B.); Center for Human Genetics Research, Vanderbilt University School of Medicine, Nashville, TN (D.P.M.); Biochemistry and Molecular Biology, Rutgers-NJ Medical School, Newark (M.B.R.); Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (M.M.S.); VA Connecticut Healthcare System, West Haven (M.M.S.); and Center of Excellence in Vascular Biology, Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (E.A.)
| | - Marion A Hofmann-Bowman
- From the Heart Institute, Cincinnati Children's Hospital Medical Center, OH (K.E.Y.); Departments of Medicine, Physiology and Bioengineering, University of California, Los Angeles (L.L.D.); Center for Perioperative Genomics, Department of Anesthesiology, Brigham and Women's Hospital, Boston, MA (S.C.B.); MCRI Center for Translational Genomics, Tufts Medical Center and Tufts University School of Medicine, Boston, MA (G.S.H.); Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Center, Orlando, FL (D.A.T.); Bioengineering Department, University of Washington, Seattle (C.M.G.); Department of Medicine, Section of Cardiology, University of Chicago, IL (M.A.H.-B.); Center for Human Genetics Research, Vanderbilt University School of Medicine, Nashville, TN (D.P.M.); Biochemistry and Molecular Biology, Rutgers-NJ Medical School, Newark (M.B.R.); Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (M.M.S.); VA Connecticut Healthcare System, West Haven (M.M.S.); and Center of Excellence in Vascular Biology, Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (E.A.)
| | - Douglas P Mortlock
- From the Heart Institute, Cincinnati Children's Hospital Medical Center, OH (K.E.Y.); Departments of Medicine, Physiology and Bioengineering, University of California, Los Angeles (L.L.D.); Center for Perioperative Genomics, Department of Anesthesiology, Brigham and Women's Hospital, Boston, MA (S.C.B.); MCRI Center for Translational Genomics, Tufts Medical Center and Tufts University School of Medicine, Boston, MA (G.S.H.); Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Center, Orlando, FL (D.A.T.); Bioengineering Department, University of Washington, Seattle (C.M.G.); Department of Medicine, Section of Cardiology, University of Chicago, IL (M.A.H.-B.); Center for Human Genetics Research, Vanderbilt University School of Medicine, Nashville, TN (D.P.M.); Biochemistry and Molecular Biology, Rutgers-NJ Medical School, Newark (M.B.R.); Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (M.M.S.); VA Connecticut Healthcare System, West Haven (M.M.S.); and Center of Excellence in Vascular Biology, Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (E.A.)
| | - Melissa B Rogers
- From the Heart Institute, Cincinnati Children's Hospital Medical Center, OH (K.E.Y.); Departments of Medicine, Physiology and Bioengineering, University of California, Los Angeles (L.L.D.); Center for Perioperative Genomics, Department of Anesthesiology, Brigham and Women's Hospital, Boston, MA (S.C.B.); MCRI Center for Translational Genomics, Tufts Medical Center and Tufts University School of Medicine, Boston, MA (G.S.H.); Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Center, Orlando, FL (D.A.T.); Bioengineering Department, University of Washington, Seattle (C.M.G.); Department of Medicine, Section of Cardiology, University of Chicago, IL (M.A.H.-B.); Center for Human Genetics Research, Vanderbilt University School of Medicine, Nashville, TN (D.P.M.); Biochemistry and Molecular Biology, Rutgers-NJ Medical School, Newark (M.B.R.); Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (M.M.S.); VA Connecticut Healthcare System, West Haven (M.M.S.); and Center of Excellence in Vascular Biology, Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (E.A.)
| | - Mehran M Sadeghi
- From the Heart Institute, Cincinnati Children's Hospital Medical Center, OH (K.E.Y.); Departments of Medicine, Physiology and Bioengineering, University of California, Los Angeles (L.L.D.); Center for Perioperative Genomics, Department of Anesthesiology, Brigham and Women's Hospital, Boston, MA (S.C.B.); MCRI Center for Translational Genomics, Tufts Medical Center and Tufts University School of Medicine, Boston, MA (G.S.H.); Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Center, Orlando, FL (D.A.T.); Bioengineering Department, University of Washington, Seattle (C.M.G.); Department of Medicine, Section of Cardiology, University of Chicago, IL (M.A.H.-B.); Center for Human Genetics Research, Vanderbilt University School of Medicine, Nashville, TN (D.P.M.); Biochemistry and Molecular Biology, Rutgers-NJ Medical School, Newark (M.B.R.); Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (M.M.S.); VA Connecticut Healthcare System, West Haven (M.M.S.); and Center of Excellence in Vascular Biology, Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (E.A.)
| | - Elena Aikawa
- From the Heart Institute, Cincinnati Children's Hospital Medical Center, OH (K.E.Y.); Departments of Medicine, Physiology and Bioengineering, University of California, Los Angeles (L.L.D.); Center for Perioperative Genomics, Department of Anesthesiology, Brigham and Women's Hospital, Boston, MA (S.C.B.); MCRI Center for Translational Genomics, Tufts Medical Center and Tufts University School of Medicine, Boston, MA (G.S.H.); Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Center, Orlando, FL (D.A.T.); Bioengineering Department, University of Washington, Seattle (C.M.G.); Department of Medicine, Section of Cardiology, University of Chicago, IL (M.A.H.-B.); Center for Human Genetics Research, Vanderbilt University School of Medicine, Nashville, TN (D.P.M.); Biochemistry and Molecular Biology, Rutgers-NJ Medical School, Newark (M.B.R.); Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (M.M.S.); VA Connecticut Healthcare System, West Haven (M.M.S.); and Center of Excellence in Vascular Biology, Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (E.A.).
| |
Collapse
|
107
|
Karbassi E, Vondriska TM. How the proteome packages the genome for cardiovascular development. Proteomics 2014; 14:2115-26. [PMID: 25074278 DOI: 10.1002/pmic.201400131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/24/2014] [Accepted: 07/28/2014] [Indexed: 11/09/2022]
Abstract
The devastating impact of congenital heart defects has made mechanisms of vertebrate heart and vascular development an active area of study. Because myocyte death is a common feature of acquired cardiovascular diseases and the adult heart does not regenerate, the need exists to understand whether features of the developing heart and vasculature-which are more plastic-can be exploited therapeutically in the disease setting. We know that a core network of transcription factors governs commitment to the cardiovascular lineage, and recent studies using genetic loss-of-function approaches and unbiased genomic studies have revealed the role for various chromatin modulatory events. We reason that chromatin structure itself is a causal feature that influences transcriptome complexity along a developmental continuum, and the purpose of this article is to highlight the areas in which 'omics technologies have the potential to reveal new principles of phenotypic plasticity in development. We review the major mechanisms of chromatin structural regulation, highlighting what is known about their actions to control cardiovascular differentiation. We discuss emergent mechanisms of regulation that have been identified on the basis of genomic and proteomic studies of cardiac nuclei and identify current challenges to an integrated understanding of chromatin structure and cardiovascular phenotype.
Collapse
Affiliation(s)
- Elaheh Karbassi
- Departments of Anesthesiology, Medicine and Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | | |
Collapse
|
108
|
DAPT in the control of human hair follicle stem cell proliferation and differentiation. Postepy Dermatol Alergol 2014; 31:201-6. [PMID: 25254004 PMCID: PMC4171676 DOI: 10.5114/pdia.2014.44002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 02/11/2014] [Accepted: 03/21/2014] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Stem cells from hair follicle have great therapeutic applications in regenerative medicine as sources of cells for transplantation. The differentiation pathway selected by hair follicle stem cells (HFSC) is largely determined by local microenvironmental signals. In this study, human hair follicle stem cells were treated with Notch signaling blocker to explore a new approach to modulate human hair follicle stem cell proliferation and differentiation in vitro. AIM To define the functional consequences of blocking the Notch signaling pathway on the proliferation and differentiation of human HSCs. MATERIAL AND METHODS The human hair follicle stem cells were treated with various concentrations of Notch signaling blocker DAPT (24-diamino-5-phenylthiazole). The viability of the cells was investigated with clonogenicity assays. The expression of stem cell markers, cell cycle and cell apoptosis were analysed by flow cytometry. RESULTS Notch blocking leads to promotion of human hair follicle stem cell proliferation and inhibition of differentiation in response to DAPT. The maximum effect of DAPT on the viability of human HFSC was observed at a concentration of 20 µM. We found that DAPT treatment results in downregulation of Hes1 and p21 and upregulation of Wnt10b. CONCLUSIONS γ-Secretase inhibitor DAPT has a modulatory effect on the human HFSC. The DAPT may modulate human hair follicle stem cell proliferation and differentiation through regulation of p21 and Wnt-10b.
Collapse
|
109
|
Lindsey SE, Butcher JT, Yalcin HC. Mechanical regulation of cardiac development. Front Physiol 2014; 5:318. [PMID: 25191277 DOI: 10.3389/fphys.2014.00318/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 08/03/2014] [Indexed: 05/25/2023] Open
Abstract
Mechanical forces are essential contributors to and unavoidable components of cardiac formation, both inducing and orchestrating local and global molecular and cellular changes. Experimental animal studies have contributed substantially to understanding the mechanobiology of heart development. More recent integration of high-resolution imaging modalities with computational modeling has greatly improved our quantitative understanding of hemodynamic flow in heart development. Merging these latest experimental technologies with molecular and genetic signaling analysis will accelerate our understanding of the relationships integrating mechanical and biological signaling for proper cardiac formation. These advances will likely be essential for clinically translatable guidance for targeted interventions to rescue malforming hearts and/or reconfigure malformed circulations for optimal performance. This review summarizes our current understanding on the levels of mechanical signaling in the heart and their roles in orchestrating cardiac development.
Collapse
Affiliation(s)
| | - Jonathan T Butcher
- Department of Biomedical Engineering, Cornell University Ithaca, NY, USA
| | - Huseyin C Yalcin
- Department of Mechanical Engineering, Dogus University Istanbul, Turkey
| |
Collapse
|
110
|
Lindsey SE, Butcher JT, Yalcin HC. Mechanical regulation of cardiac development. Front Physiol 2014; 5:318. [PMID: 25191277 PMCID: PMC4140306 DOI: 10.3389/fphys.2014.00318] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 08/03/2014] [Indexed: 12/21/2022] Open
Abstract
Mechanical forces are essential contributors to and unavoidable components of cardiac formation, both inducing and orchestrating local and global molecular and cellular changes. Experimental animal studies have contributed substantially to understanding the mechanobiology of heart development. More recent integration of high-resolution imaging modalities with computational modeling has greatly improved our quantitative understanding of hemodynamic flow in heart development. Merging these latest experimental technologies with molecular and genetic signaling analysis will accelerate our understanding of the relationships integrating mechanical and biological signaling for proper cardiac formation. These advances will likely be essential for clinically translatable guidance for targeted interventions to rescue malforming hearts and/or reconfigure malformed circulations for optimal performance. This review summarizes our current understanding on the levels of mechanical signaling in the heart and their roles in orchestrating cardiac development.
Collapse
Affiliation(s)
| | - Jonathan T Butcher
- Department of Biomedical Engineering, Cornell University Ithaca, NY, USA
| | - Huseyin C Yalcin
- Department of Mechanical Engineering, Dogus University Istanbul, Turkey
| |
Collapse
|
111
|
Midgett M, Rugonyi S. Congenital heart malformations induced by hemodynamic altering surgical interventions. Front Physiol 2014; 5:287. [PMID: 25136319 PMCID: PMC4117980 DOI: 10.3389/fphys.2014.00287] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 07/14/2014] [Indexed: 11/30/2022] Open
Abstract
Embryonic heart formation results from a dynamic interplay between genetic and environmental factors. Blood flow during early embryonic stages plays a critical role in heart development, as interactions between flow and cardiac tissues generate biomechanical forces that modulate cardiac growth and remodeling. Normal hemodynamic conditions are essential for proper cardiac development, while altered blood flow induced by surgical manipulations in animal models result in heart defects similar to those seen in humans with congenital heart disease. This review compares the altered hemodynamics, changes in tissue properties, and cardiac defects reported after common surgical interventions that alter hemodynamics in the early chick embryo, and shows that interventions produce a wide spectrum of cardiac defects. Vitelline vein ligation and left atrial ligation decrease blood pressure and flow; and outflow tract banding increases blood pressure and flow velocities. These three surgical interventions result in many of the same cardiac defects, which indicate that the altered hemodynamics interfere with common looping, septation and valve formation processes that occur after intervention and that shape the four-chambered heart. While many similar defects develop after the interventions, the varying degrees of hemodynamic load alteration among the three interventions also result in varying incidence and severity of cardiac defects, indicating that the hemodynamic modulation of cardiac developmental processes is strongly dependent on hemodynamic load.
Collapse
Affiliation(s)
- Madeline Midgett
- Department of Biomedical Engineering and Knight Cardiovascular Institute, Center for Developmental Health, Oregon Health and Science University Portland, OR, USA
| | - Sandra Rugonyi
- Department of Biomedical Engineering and Knight Cardiovascular Institute, Center for Developmental Health, Oregon Health and Science University Portland, OR, USA
| |
Collapse
|
112
|
Midgett M, Rugonyi S. Congenital heart malformations induced by hemodynamic altering surgical interventions. Front Physiol 2014; 5:287. [PMID: 25136319 DOI: 10.3389/fphys.2014.00287/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 07/14/2014] [Indexed: 05/25/2023] Open
Abstract
Embryonic heart formation results from a dynamic interplay between genetic and environmental factors. Blood flow during early embryonic stages plays a critical role in heart development, as interactions between flow and cardiac tissues generate biomechanical forces that modulate cardiac growth and remodeling. Normal hemodynamic conditions are essential for proper cardiac development, while altered blood flow induced by surgical manipulations in animal models result in heart defects similar to those seen in humans with congenital heart disease. This review compares the altered hemodynamics, changes in tissue properties, and cardiac defects reported after common surgical interventions that alter hemodynamics in the early chick embryo, and shows that interventions produce a wide spectrum of cardiac defects. Vitelline vein ligation and left atrial ligation decrease blood pressure and flow; and outflow tract banding increases blood pressure and flow velocities. These three surgical interventions result in many of the same cardiac defects, which indicate that the altered hemodynamics interfere with common looping, septation and valve formation processes that occur after intervention and that shape the four-chambered heart. While many similar defects develop after the interventions, the varying degrees of hemodynamic load alteration among the three interventions also result in varying incidence and severity of cardiac defects, indicating that the hemodynamic modulation of cardiac developmental processes is strongly dependent on hemodynamic load.
Collapse
Affiliation(s)
- Madeline Midgett
- Department of Biomedical Engineering and Knight Cardiovascular Institute, Center for Developmental Health, Oregon Health and Science University Portland, OR, USA
| | - Sandra Rugonyi
- Department of Biomedical Engineering and Knight Cardiovascular Institute, Center for Developmental Health, Oregon Health and Science University Portland, OR, USA
| |
Collapse
|
113
|
Abstract
Human heart failure (HF) is one of the leading causes of morbidity and mortality worldwide. Currently, heart transplantation and implantation of mechanical devices represent the only available treatments for advanced HF. Two alternative strategies have emerged to treat patients with HF. One approach relies on transplantation of exogenous stem cells (SCs) of non-cardiac or cardiac origin to induce cardiac regeneration and improve ventricular function. Another complementary strategy relies on stimulation of the endogenous regenerative capacity of uninjured cardiac progenitor cells to rebuild cardiac muscle and restore ventricular function. Various SC types and delivery strategies have been examined in the experimental and clinical settings; however, neither the ideal cell type nor the cell delivery method for cardiac cell therapy has yet emerged. Although the use of bone marrow (BM)-derived cells, most frequently exploited in clinical trials, appears to be safe, the results are controversial. Two recent randomized trials have failed to document any beneficial effects of intracardiac delivery of autologous BM mononuclear cells on cardiac function of patients with HF. The remarkable discovery that various populations of cardiac progenitor cells (CPCs) are present in the adult human heart and that it possesses limited regeneration capacity has opened a new era in cardiac repair. Importantly, unlike BM-derived SCs, autologous CPCs from myocardial biopsies cultured and subsequently delivered by coronary injection to patients have given positive results. Although these data are promising, a better understanding of how to control proliferation and differentiation of CPCs, to enhance their recruitment and survival, is required before CPCs become clinically applicable therapeutics.
Collapse
Affiliation(s)
- Alexander T Akhmedov
- The Molecular Cardiology and Neuromuscular Institute, 75 Raritan Ave., Highland Park, NJ, 08904, USA
| | | |
Collapse
|
114
|
Zeng XXI, Yelon D. Cadm4 restricts the production of cardiac outflow tract progenitor cells. Cell Rep 2014; 7:951-60. [PMID: 24813897 DOI: 10.1016/j.celrep.2014.04.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 03/11/2014] [Accepted: 04/08/2014] [Indexed: 11/29/2022] Open
Abstract
Heart assembly requires input from two populations of progenitor cells, the first and second heart fields (FHF and SHF), that differentiate at distinct times and create different cardiac components. The cardiac outflow tract (OFT) is built through recruitment of late-differentiating, SHF-derived cardiomyocytes to the arterial pole of the heart. The mechanisms responsible for selection of an appropriate number of OFT cells from the SHF remain unclear. Here, we find that cell adhesion molecule 4 (cadm4) is essential for restricting the size of the zebrafish OFT. Knockdown of cadm4 causes dramatic OFT expansion, and overexpression of cadm4 results in a greatly diminished OFT. Moreover, cadm4 activity limits the production of OFT progenitor cells and the duration of their accumulation at the arterial pole. Together, our data suggest a role for cell adhesion in restraining SHF deployment to the OFT, perturbation of which could cause congenital OFT defects.
Collapse
Affiliation(s)
- Xin-Xin I Zeng
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Deborah Yelon
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
115
|
Agopian AJ, Mitchell LE, Glessner J, Bhalla AD, Sewda A, Hakonarson H, Goldmuntz E. Genome-wide association study of maternal and inherited loci for conotruncal heart defects. PLoS One 2014; 9:e96057. [PMID: 24800985 PMCID: PMC4011736 DOI: 10.1371/journal.pone.0096057] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 04/02/2014] [Indexed: 12/05/2022] Open
Abstract
Conotruncal and related heart defects (CTDs) are a group of serious and relatively common birth defects. Although both maternal and inherited genotypes are thought to play a role in the etiology of CTDs, few specific genetic risk factors have been identified. To determine whether common variants acting through the genotype of the mother (e.g. via an in utero effect) or the case are associated with CTDs, we conducted a genome-wide association study of 750 CTD case-parent triads, with follow-up analyses in 358 independent triads. Log-linear analyses were used to assess the association of CTDs with the genotypes of both the mother and case. No association achieved genomewide significance in either the discovery or combined (discovery+follow-up) samples. However, three loci with p-values suggestive of association (p<10−5) in the discovery sample had p-values <0.05 in the follow-up sample and p-values in the combined data that were lower than in the discovery sample. These included suggestive association with an inherited intergenic variant at 20p12.3 (rs6140038, combined p = 1.0×10−5) and an inherited intronic variant in KCNJ4 at 22q13.1 (rs2267386, combined p = 9.8×10−6), as well as with a maternal variant in SLC22A24 at 11q12.3 (rs11231379, combined p = 4.2×10−6). These observations suggest novel candidate loci for CTDs, including loci that appear to be associated with the risk of CTDs via the maternal genotype, but further studies are needed to confirm these associations.
Collapse
Affiliation(s)
- A. J. Agopian
- Human Genetics Center, Division of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, Texas, United States of America
| | - Laura E. Mitchell
- Human Genetics Center, Division of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, Texas, United States of America
- * E-mail:
| | - Joseph Glessner
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Angela D. Bhalla
- Human Genetics Center, Division of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, Texas, United States of America
| | - Anshuman Sewda
- Human Genetics Center, Division of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, Texas, United States of America
| | - Hakon Hakonarson
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Elizabeth Goldmuntz
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Division of Cardiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
116
|
Liang S, Li HC, Wang YX, Wu SS, Cai YJ, Cui HL, Yang YP, Ya J. Pulmonary endoderm, second heart field and the morphogenesis of distal outflow tract in mouse embryonic heart. Dev Growth Differ 2014; 56:276-92. [PMID: 24697670 DOI: 10.1111/dgd.12129] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 02/21/2014] [Accepted: 02/27/2014] [Indexed: 01/01/2023]
Abstract
The second heart field (SHF), foregut endoderm and sonic hedgehog (SHH) signaling pathway are all reported to associate with normal morphogenesis and septation of outflow tract (OFT). However, the morphological relationships of the development of foregut endoderm and expression of SHH signaling pathway members with the development of surrounding SHF and OFT are seldom described. In this study, serial sections of mouse embryos from ED9 to ED13 (midgestation) were stained with a series of marker antibodies for specifically highlighting SHF (Isl-1), endoderm (Foxa2), basement membrane (Laminin), myocardium (MHC) and smooth muscle (α-SMA) respectively, or SHH receptors antibodies including patched1 (Ptc1), patched2 (Ptc2) and smoothened, to observe the spatiotemporal relationship between them and their contributions to OFT morphogenesis. Our results demonstrated that the development of an Isl-1 positive field in the splanchnic mesoderm ventral to foregut, a subset of SHF, is closely coupled with pulmonary endoderm or tracheal groove, the Isl-1 positive cells surrounding pulmonary endoderm are distributed in a special cone-shaped pattern and take part in the formation of the lateral walls of the intrapericardial aorta and pulmonary trunk and the transient aortic-pulmonary septum, and Ptc1 and Ptc2 are exclusively expressed in pulmonary endoderm during this Isl-l positive field development, suggesting special roles played in inducing the Isl-l positive field formation by pulmonary endoderm. It is indicated that pulmonary endoderm plays a role in the development and specification of SHF in midgestation, and that pulmonary endoderm-associated Isl-l positive field is involved in patterning the morphogenesis and septation of the intrapericardial arterial trunks.
Collapse
Affiliation(s)
- Shi Liang
- Department of Histology and Embryology, Shanxi Medical University, 56 Xin Jian Nan Road, Taiyuan, 030001, Shanxi, China
| | | | | | | | | | | | | | | |
Collapse
|
117
|
AcvR1-mediated BMP signaling in second heart field is required for arterial pole development: implications for myocardial differentiation and regional identity. Dev Biol 2014; 390:191-207. [PMID: 24680892 DOI: 10.1016/j.ydbio.2014.03.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 03/17/2014] [Accepted: 03/18/2014] [Indexed: 11/23/2022]
Abstract
BMP signaling plays an essential role in second heart field-derived heart and arterial trunk development, including myocardial differentiation, right ventricular growth, and interventricular, outflow tract and aortico-pulmonary septation. It is mediated by a number of different BMP ligands, and receptors, many of which are present simultaneously. The mechanisms by which they regulate morphogenetic events and degree of redundancy amongst them have still to be elucidated. We therefore assessed the role of BMP Type I receptor AcvR1 in anterior second heart field-derived cell development, and compared it with that of BmpR1a. By removing Acvr1 using the driver Mef2c[AHF]-Cre, we show that AcvR1 plays an essential role in arterial pole morphogenesis, identifying defects in outflow tract wall and cushion morphology that preceded a spectrum of septation defects from double outlet right ventricle to common arterial trunk in mutants. Its absence caused dysregulation in gene expression important for myocardial differentiation (Isl1, Fgf8) and regional identity (Tbx2, Tbx3, Tbx20, Tgfb2). Although these defects resemble to some degree those in the equivalent Bmpr1a mutant, a novel gene knock-in model in which Bmpr1a was expressed in the Acvr1 locus only partially restored septation in Acvr1 mutants. These data show that both BmpR1a and AcvR1 are needed for normal heart development, in which they play some non-redundant roles, and refine our understanding of the genetic and morphogenetic processes underlying Bmp-mediated heart development important in human congenital heart disease.
Collapse
|
118
|
|
119
|
Chester AH, El-Hamamsy I, Butcher JT, Latif N, Bertazzo S, Yacoub MH. The living aortic valve: From molecules to function. Glob Cardiol Sci Pract 2014; 2014:52-77. [PMID: 25054122 PMCID: PMC4104380 DOI: 10.5339/gcsp.2014.11] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 04/28/2014] [Indexed: 12/12/2022] Open
Abstract
The aortic valve lies in a unique hemodynamic environment, one characterized by a range of stresses (shear stress, bending forces, loading forces and strain) that vary in intensity and direction throughout the cardiac cycle. Yet, despite its changing environment, the aortic valve opens and closes over 100,000 times a day and, in the majority of human beings, will function normally over a lifespan of 70–90 years. Until relatively recently heart valves were considered passive structures that play no active role in the functioning of a valve, or in the maintenance of its integrity and durability. However, through clinical experience and basic research the aortic valve can now be characterized as a living, dynamic organ with the capacity to adapt to its complex mechanical and biomechanical environment through active and passive communication between its constituent parts. The clinical relevance of a living valve substitute in patients requiring aortic valve replacement has been confirmed. This highlights the importance of using tissue engineering to develop heart valve substitutes containing living cells which have the ability to assume the complex functioning of the native valve.
Collapse
|
120
|
Qian B, Mo R, Da M, Peng W, Hu Y, Mo X. Common variations in BMP4 confer genetic susceptibility to sporadic congenital heart disease in a Han Chinese population. Pediatr Cardiol 2014; 35:1442-7. [PMID: 25022354 PMCID: PMC4236636 DOI: 10.1007/s00246-014-0951-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 06/03/2014] [Indexed: 12/13/2022]
Abstract
Congenital heart disease (CHD) is the most common birth defect in humans. The genetic causes of sporadic CHD remain largely unknown. Bone morphogenetic protein 4 (BMP4), a member of the transforming growth factor-β (TGF-β) family, is required for normal heart development. Loss of BMP4 gene expression in mice is associated with septal defects, defective endocardial cushion remodeling, and abnormal semilunar valve formation. This study evaluated the contribution of single nucleotide polymorphisms (SNPs) in BMP4 to CHD susceptibility in a case-control study of 575 patients with CHD and 844 non-CHD control subjects in a Chinese population. The BMP4 SNP rs762642 was associated with CHD in an additive model (odds ratio [OR]add 1.22; 95 % confidence interval [CI] 1.04-1.43; P add = 0.02). Stratified analysis by CHD subtypes showed a significant association only between rs762642 and atrial septal defect (ORadd 1.33; 95 % CI 1.04-1.72; P add = 0.03) in the additive model. This study was the first to indicate that a common variant of BMP4 may contribute to susceptibility to sporadic CHD in a Chinese population.
Collapse
Affiliation(s)
- Bo Qian
- Department of Cardiothoracic Surgery, The Affiliated Children’s Hospital of Nanjing Medical University, No. 72 Guangzhou Road, Nanjing, 210008 China
| | - Ran Mo
- Medical School of Nanjing University, Nanjing, China
| | - Min Da
- Department of Cardiothoracic Surgery, The Affiliated Children’s Hospital of Nanjing Medical University, No. 72 Guangzhou Road, Nanjing, 210008 China
| | - Wei Peng
- Department of Cardiothoracic Surgery, The Affiliated Children’s Hospital of Nanjing Medical University, No. 72 Guangzhou Road, Nanjing, 210008 China
| | - Yuanli Hu
- Department of Cardiothoracic Surgery, The Affiliated Children’s Hospital of Nanjing Medical University, No. 72 Guangzhou Road, Nanjing, 210008 China
| | - Xuming Mo
- Department of Cardiothoracic Surgery, The Affiliated Children’s Hospital of Nanjing Medical University, No. 72 Guangzhou Road, Nanjing, 210008 China
| |
Collapse
|
121
|
Kimura W, Sadek HA. The cardiac hypoxic niche: emerging role of hypoxic microenvironment in cardiac progenitors. Cardiovasc Diagn Ther 2013; 2:278-89. [PMID: 24282728 DOI: 10.3978/j.issn.2223-3652.2012.12.02] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Accepted: 12/10/2012] [Indexed: 12/11/2022]
Abstract
Resident stem cells persist throughout the entire lifetime of an organism where they replenishing damaged cells. Numerous types of resident stem cells are housed in a low-oxygen tension (hypoxic) microenvironment, or niches, which seem to be critical for survival and maintenance of stem cells. Recently our group has identified the adult mammalian epicardium and subepicardium as a hypoxic niche for cardiac progenitor cells. Similar to hematopoietic stem cells (LT-HSCs), progenitor cells in the hypoxic epicardial niche utilize cytoplasmic glycolysis instead of mitochondrial oxidative phosphorylation, where hypoxia inducible factor 1α (Hif-1α) maintains them in glycolytic undifferentiated state. In this review we summarize the relationship between hypoxic signaling and stem cell function, and discuss potential roles of several cardiac stem/progenitor cells in cardiac homeostasis and regeneration.
Collapse
Affiliation(s)
- Wataru Kimura
- Department of Internal Medicine, Division of Cardiology, UT Southwestern Medical Center, Dallas, TX, USA
| | | |
Collapse
|
122
|
Abu-Issa R. Heart fields: spatial polarity and temporal dynamics. Anat Rec (Hoboken) 2013; 297:175-82. [PMID: 24443184 DOI: 10.1002/ar.22831] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 10/10/2013] [Accepted: 10/14/2013] [Indexed: 11/06/2022]
Abstract
In chick and mouse, heart fields undergo dynamic morphological spatiotemporal changes during heart tube formation. Here, the dynamic change in spatial polarity of such fields is discussed and a new perspective on the heart fields is proposed. The heart progenitor cells delaminate through the primitive streak and migrate in a semicircular trajectory craniolaterally forming the bilateral heart fields as part of the splanchnic mesoderm. They switch their polarity from anteroposterior to mediolateral. The anterior intestinal portal posterior descent inverts the newly formed heart field mediolateral polarity into lateromedial by 125° bending. The heart fields revert back to their original anteroposterior polarity and fuse at the midline forming a semi heart tube by completing their half circle movement. Several names and roles were assigned to different portions of the heart fields: posterior versus anterior, first versus second, and primary versus secondary heart field. The posterior and anterior heart fields define basically physical fields that form the inflow-outflow axis of the heart tube. The first and second heart fields are, in contrast, temporal fields of differentiating cardiomyocytes expressing myosin light chain 2a and undifferentiated and proliferating precardiac mesoderm expressing Isl1 gene, respectively. The two markers present a complementary pattern and are expressed transiently in all myocardial lineages. Thus, Isl1 is not restricted to a portion of the heart field or one of the two heart lineages as has been often assumed.
Collapse
Affiliation(s)
- Radwan Abu-Issa
- Department of Natural Sciences, University of Michigan-Dearborn, Michigan
| |
Collapse
|
123
|
Poon KL, Brand T. The zebrafish model system in cardiovascular research: A tiny fish with mighty prospects. Glob Cardiol Sci Pract 2013; 2013:9-28. [PMID: 24688998 PMCID: PMC3963735 DOI: 10.5339/gcsp.2013.4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 01/29/2013] [Indexed: 12/26/2022] Open
Affiliation(s)
- Kar Lai Poon
- Harefield Heart Science Centre, National Heart and Lung Institute, Imperial College London, Hill End Road, Harefield, Middlesex, UB9 6JH, United Kingdom
| | - Thomas Brand
- Harefield Heart Science Centre, National Heart and Lung Institute, Imperial College London, Hill End Road, Harefield, Middlesex, UB9 6JH, United Kingdom
| |
Collapse
|
124
|
Driving vascular endothelial cell fate of human multipotent Isl1+ heart progenitors with VEGF modified mRNA. Cell Res 2013; 23:1172-86. [PMID: 24018375 PMCID: PMC3790234 DOI: 10.1038/cr.2013.112] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 03/12/2013] [Accepted: 04/30/2013] [Indexed: 12/17/2022] Open
Abstract
Distinct families of multipotent heart progenitors play a central role in the generation of diverse cardiac, smooth muscle and endothelial cell lineages during mammalian cardiogenesis. The identification of precise paracrine signals that drive the cell-fate decision of these multipotent progenitors, and the development of novel approaches to deliver these signals in vivo, are critical steps towards unlocking their regenerative therapeutic potential. Herein, we have identified a family of human cardiac endothelial intermediates located in outflow tract of the early human fetal hearts (OFT-ECs), characterized by coexpression of Isl1 and CD144/vWF. By comparing angiocrine factors expressed by the human OFT-ECs and non-cardiac ECs, vascular endothelial growth factor (VEGF)-A was identified as the most abundantly expressed factor, and clonal assays documented its ability to drive endothelial specification of human embryonic stem cell (ESC)-derived Isl1+ progenitors in a VEGF receptor-dependent manner. Human Isl1-ECs (endothelial cells differentiated from hESC-derived ISL1+ progenitors) resemble OFT-ECs in terms of expression of the cardiac endothelial progenitor- and endocardial cell-specific genes, confirming their organ specificity. To determine whether VEGF-A might serve as an in vivo cell-fate switch for human ESC-derived Isl1-ECs, we established a novel approach using chemically modified mRNA as a platform for transient, yet highly efficient expression of paracrine factors in cardiovascular progenitors. Overexpression of VEGF-A promotes not only the endothelial specification but also engraftment, proliferation and survival (reduced apoptosis) of the human Isl1+ progenitors in vivo. The large-scale derivation of cardiac-specific human Isl1-ECs from human pluripotent stem cells, coupled with the ability to drive endothelial specification, engraftment, and survival following transplantation, suggest a novel strategy for vascular regeneration in the heart.
Collapse
|
125
|
Liang X, Wang G, Lin L, Lowe J, Zhang Q, Bu L, Chen Y, Chen J, Sun Y, Evans SM. HCN4 dynamically marks the first heart field and conduction system precursors. Circ Res 2013; 113:399-407. [PMID: 23743334 DOI: 10.1161/circresaha.113.301588] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
RATIONALE To date, there has been no specific marker of the first heart field to facilitate understanding of contributions of the first heart field to cardiac lineages. Cardiac arrhythmia is a leading cause of death, often resulting from abnormalities in the cardiac conduction system (CCS). Understanding origins and identifying markers of CCS lineages are essential steps toward modeling diseases of the CCS and for development of biological pacemakers. OBJECTIVE To investigate HCN4 as a marker for the first heart field and for precursors of distinct components of the CCS, and to gain insight into contributions of first and second heart lineages to the CCS. METHODS AND RESULTS HCN4CreERT2, -nuclear LacZ, and -H2BGFP mouse lines were generated. HCN4 expression was examined by means of immunostaining with HCN4 antibody and reporter gene expression. Lineage studies were performed using HCN4CreERT2, Isl1Cre, Nkx2.5Cre, and Tbx18Cre, coupled to coimmunostaining with CCS markers. Results demonstrated that, at cardiac crescent stages, HCN4 marks the first heart field, with HCN4CreERT2 allowing assessment of cell fates adopted by first heart field myocytes. Throughout embryonic development, HCN4 expression marked distinct CCS precursors at distinct stages, marking the entire CCS by late fetal stages. We also noted expression of HCN4 in distinct subsets of endothelium at specific developmental stages. CONCLUSIONS This study provides insight into contributions of first and second heart lineages to the CCS and highlights the potential use of HCN4 in conjunction with other markers for optimization of protocols for generation and isolation of specific conduction system precursors.
Collapse
Affiliation(s)
- Xingqun Liang
- Skaggs School of Pharmacy and Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA.,Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Gang Wang
- Skaggs School of Pharmacy and Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Lizhu Lin
- Skaggs School of Pharmacy and Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Jennifer Lowe
- Skaggs School of Pharmacy and Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Qingquang Zhang
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Lei Bu
- Skaggs School of Pharmacy and Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Yihan Chen
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Ju Chen
- Skaggs School of Pharmacy and Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Yunfu Sun
- Skaggs School of Pharmacy and Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA.,Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Sylvia M Evans
- Skaggs School of Pharmacy and Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| |
Collapse
|
126
|
Steering signal transduction pathway towards cardiac lineage from human pluripotent stem cells: A review. Cell Signal 2013; 25:1096-107. [DOI: 10.1016/j.cellsig.2013.01.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Accepted: 01/25/2013] [Indexed: 10/27/2022]
|
127
|
Guner-Ataman B, Paffett-Lugassy N, Adams MS, Nevis KR, Jahangiri L, Obregon P, Kikuchi K, Poss KD, Burns CE, Burns CG. Zebrafish second heart field development relies on progenitor specification in anterior lateral plate mesoderm and nkx2.5 function. Development 2013; 140:1353-63. [PMID: 23444361 DOI: 10.1242/dev.088351] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Second heart field (SHF) progenitors perform essential functions during mammalian cardiogenesis. We recently identified a population of cardiac progenitor cells (CPCs) in zebrafish expressing latent TGFβ-binding protein 3 (ltbp3) that exhibits several defining characteristics of the anterior SHF in mammals. However, ltbp3 transcripts are conspicuously absent in anterior lateral plate mesoderm (ALPM), where SHF progenitors are specified in higher vertebrates. Instead, ltbp3 expression initiates at the arterial pole of the developing heart tube. Because the mechanisms of cardiac development are conserved evolutionarily, we hypothesized that zebrafish SHF specification also occurs in the ALPM. To test this hypothesis, we Cre/loxP lineage traced gata4(+) and nkx2.5(+) ALPM populations predicted to contain SHF progenitors, based on evolutionary conservation of ALPM patterning. Traced cells were identified in SHF-derived distal ventricular myocardium and in three lineages in the outflow tract (OFT). We confirmed the extent of contributions made by ALPM nkx2.5(+) cells using Kaede photoconversion. Taken together, these data demonstrate that, as in higher vertebrates, zebrafish SHF progenitors are specified within the ALPM and express nkx2.5. Furthermore, we tested the hypothesis that Nkx2.5 plays a conserved and essential role during zebrafish SHF development. Embryos injected with an nkx2.5 morpholino exhibited SHF phenotypes caused by compromised progenitor cell proliferation. Co-injecting low doses of nkx2.5 and ltbp3 morpholinos revealed a genetic interaction between these factors. Taken together, our data highlight two conserved features of zebrafish SHF development, reveal a novel genetic relationship between nkx2.5 and ltbp3, and underscore the utility of this model organism for deciphering SHF biology.
Collapse
Affiliation(s)
- Burcu Guner-Ataman
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Sylva M, van den Hoff MJB, Moorman AFM. Development of the human heart. Am J Med Genet A 2013; 164A:1347-71. [PMID: 23633400 DOI: 10.1002/ajmg.a.35896] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 01/07/2013] [Indexed: 11/12/2022]
Abstract
Molecular and genetic studies around the turn of this century have revolutionized the field of cardiac development. We now know that the primary heart tube, as seen in the early embryo contains little more than the precursors for the left ventricle, whereas the precursor cells for the remainder of the cardiac components are continuously added, to both the venous and arterial pole of the heart tube, from a single center of growth outside the heart. While the primary heart tube is growing by addition of cells, it does not show significant cell proliferation, until chamber differentiation and expansion starts locally in the tube, by which the chambers balloon from the primary heart tube. The transcriptional repressors Tbx2 and Tbx3 locally repress the chamber-specific program of gene expression, by which these regions are allowed to differentiate into the distinct components of the conduction system. Molecular genetic lineage analyses have been extremely valuable to assess the distinct developmental origin of the various component parts of the heart, which currently can be unambiguously identified by their unique molecular phenotype. Despite the enormous advances in our knowledge on cardiac development, even the most common congenital cardiac malformations are only poorly understood. The challenge of the newly developed molecular genetic techniques is to unveil the basic gene regulatory networks underlying cardiac morphogenesis.
Collapse
Affiliation(s)
- Marc Sylva
- Department of Anatomy, Embryology & Physiology, Academic Medical Center, Amsterdam, The Netherlands
| | | | | |
Collapse
|
129
|
Rana MS, Christoffels VM, Moorman AFM. A molecular and genetic outline of cardiac morphogenesis. Acta Physiol (Oxf) 2013; 207:588-615. [PMID: 23297764 DOI: 10.1111/apha.12061] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Revised: 10/26/2012] [Accepted: 01/02/2013] [Indexed: 12/15/2022]
Abstract
Perturbations in cardiac development result in congenital heart disease, the leading cause of birth defect-related infant morbidity and mortality. Advances in cardiac developmental biology have significantly augmented our understanding of signalling pathways and transcriptional networks underlying heart formation. Cardiogenesis is initiated with the formation of mesodermal multipotent cardiac progenitor cells and is governed by cross-talk between developmental cues emanating from endodermal, mesodermal and ectodermal cells. The molecular and transcriptional machineries that direct the specification and differentiation of these cardiac precursors are part of an evolutionarily conserved programme that includes the Nkx-, Gata-, Hand-, T-box- and Mef2 family of transcription factors. Unravelling the hierarchical networks governing the fate and differentiation of cardiac precursors is crucial for our understanding of congenital heart disease and future stem cell-based and gene therapies. Recent molecular and genetic lineage analyses have revealed that subpopulations of cardiac progenitor cells follow distinctive specification and differentiation paths, which determine their final contribution to the heart. In the last decade, progenitor cells that contribute to the arterial pole and right ventricle have received much attention, as abnormal development of these cells frequently results in congenital defects of the aortic and pulmonary outlets, representing the most commonly occurring congenital cardiac defects. In this review, we provide an overview of the building plan of the vertebrate four-chambered heart, with a special focus on cardiac progenitor cell specification, differentiation and deployment during arterial pole development.
Collapse
Affiliation(s)
- M. S. Rana
- Heart Failure Research Center; Department of Anatomy, Embryology & Physiology; Academic Medical Center; University of Amsterdam; Amsterdam; the Netherlands
| | - V. M. Christoffels
- Heart Failure Research Center; Department of Anatomy, Embryology & Physiology; Academic Medical Center; University of Amsterdam; Amsterdam; the Netherlands
| | - A. F. M. Moorman
- Heart Failure Research Center; Department of Anatomy, Embryology & Physiology; Academic Medical Center; University of Amsterdam; Amsterdam; the Netherlands
| |
Collapse
|
130
|
Neeb Z, Lajiness JD, Bolanis E, Conway SJ. Cardiac outflow tract anomalies. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2013; 2:499-530. [PMID: 24014420 DOI: 10.1002/wdev.98] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The mature outflow tract (OFT) is, in basic terms, a short conduit. It is a simple, although vital, connection situated between contracting muscular heart chambers and a vast embryonic vascular network. Unfortunately, it is also a focal point underlying many multifactorial congenital heart defects (CHDs). Through the use of various animal models combined with human genetic investigations, we are beginning to comprehend the molecular and cellular framework that controls OFT morphogenesis. Clear roles of neural crest cells (NCC) and second heart field (SHF) derivatives have been established during OFT formation and remodeling. The challenge now is to determine how the SHF and cardiac NCC interact, the complex reciprocal signaling that appears to be occurring at various stages of OFT morphogenesis, and finally how endocardial progenitors and primary heart field (PHF) communicate with both these colonizing extra-cardiac lineages. Although we are beginning to understand that this dance of progenitor populations is wonderfully intricate, the underlying pathogenesis and the spatiotemporal cell lineage interactions remain to be fully elucidated. What is now clear is that OFT alignment and septation are independent processes, invested via separate SHF and cardiac neural crest (CNC) lineages. This review will focus on our current understanding of the respective contributions of the SHF and CNC lineage during OFT development and pathogenesis.
Collapse
Affiliation(s)
- Zachary Neeb
- Developmental Biology and Neonatal Medicine Program, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | |
Collapse
|
131
|
Rosenquist TH. Folate, Homocysteine and the Cardiac Neural Crest. Dev Dyn 2013; 242:201-18. [DOI: 10.1002/dvdy.23922] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 12/21/2012] [Accepted: 12/21/2012] [Indexed: 12/21/2022] Open
Affiliation(s)
- Thomas H. Rosenquist
- Department of Genetics; Cell Biology and Anatomy; University of Nebraska Medical Center; Omaha; Nebraska
| |
Collapse
|
132
|
Willaredt MA, Gorgas K, Gardner HAR, Tucker KL. Multiple essential roles for primary cilia in heart development. Cilia 2012; 1:23. [PMID: 23351706 PMCID: PMC3563622 DOI: 10.1186/2046-2530-1-23] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 10/18/2012] [Indexed: 12/24/2022] Open
Abstract
Background The primary cilium is a microtubule-based, plasma membrane-ensheathed protrusion projecting from the basal bodies of almost all cell types in the mammalian body. In the past several years a plethora of papers has indicated a crucial role for primary cilia in the development of a wide variety of organs. We have investigated heart development in cobblestone, a hypomorphic allele of the gene encoding the intraflagellar transport protein Ift88, and uncovered a number of the most common congenital heart defects seen in newborn humans. Methods We generated serial sections of mutant cobblestone and wild type embryos in the region encompassing the heart and the cardiac outflow tract. The sections were further processed to generate three-dimensional reconstructions of these structures, and immunofluorescence confocal microscopy, transmission electron microscopy, and in situ hybridization were used to examine signal transduction pathways in the relevant areas. Whole mount in situ hybridization was also employed for certain developmental markers. Results In addition to an enlarged pericardium and failure of both ventricular and atrial septum formation, the cobblestone mutants displayed manifold defects in outflow tract formation, including persistent truncus arteriosus, an overriding aorta, and abnormal transformation of the aortic arches. To discern the basis of these anomalies we examined both the maintenance of primary cilia as well as endogenous and migratory embryonic cell populations that contribute to the outflow tract and atrioventricular septa. The colonization of the embryonic heart by cardiac neural crest occurred normally in the cobblestone mutant, as did the expression of Sonic hedgehog. However, with the loss of primary cilia in the mutant hearts, there was a loss of both downstream Sonic hedgehog signaling and of Islet 1 expression in the second heart field, a derivative of the pharyngeal mesoderm. In addition, defects were recorded in development of atrial laterality and ventricular myocardiogenesis. Finally, we observed a reduction in expression of Bmp4 in the outflow tract, and complete loss of expression of both Bmp2 and Bmp4 in the atrioventricular endocardial cushions. Loss of BMP2/4 signaling may result in the observed proliferative defect in the endocardial cushions, which give rise to both the atrioventricular septa as well as to the septation of the outflow tract. Conclusions Taken together, our results potentially identify a novel link between Sonic hedgehog signaling at the primary cilium and BMP-dependent effects upon cardiogenesis. Our data further point to a potential linkage of atrioventricular septal defects, the most common congenital heart defects, to genes of the transport machinery or basal body of the cilia.
Collapse
Affiliation(s)
- Marc August Willaredt
- Interdisciplinary Center for Neurosciences, University of Heidelberg, Heidelberg, 69120, Germany.
| | | | | | | |
Collapse
|
133
|
Willis MS, Dyer LA, Ren R, Lockyer P, Moreno-Miralles I, Schisler JC, Patterson C. BMPER regulates cardiomyocyte size and vessel density in vivo. Cardiovasc Pathol 2012. [PMID: 23200275 DOI: 10.1016/j.carpath.2012.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND BMPER, an orthologue of Drosophila melanogaster Crossveinless-2, is a secreted factor that regulates bone morphogenetic protein activity in endothelial cell precursors and during early cardiomyocyte differentiation. Although previously described in the heart, the role of BMPER in cardiac development and function remain unknown. METHODS BMPER-deficient hearts were phenotyped histologically and functionally using echocardiography and Doppler analysis. Since BMPER -/- mice die perinatally, adult BMPER +/- mice were challenged to pressure-overload-induced cardiac hypertrophy and hindlimb ischemia to determine changes in angiogenesis and regulation of cardiomyocyte size. RESULTS We identify for the first time the cardiac phenotype associated with BMPER haploinsufficiency. BMPER messenger RNA and protein are present in the heart during cardiac development through at least E14.5 but is lost by E18.5. BMPER +/- ventricles are thinner and less compact than sibling wild-type hearts. In the adult, BMPER +/- hearts present with decreased anterior and posterior wall thickness, decreased cardiomyocyte size and an increase in cardiac vessel density. Despite these changes, BMPER +/- mice respond to pressure-overload-induced cardiac hypertrophy challenge largely to the same extent as wild-type mice. CONCLUSION BMPER appears to play a role in regulating both vessel density and cardiac development in vivo; however, BMPER haploinsufficiency does not result in marked effects on cardiac function or adaptation to pressure overload hypertrophy.
Collapse
Affiliation(s)
- Monte S Willis
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | |
Collapse
|
134
|
Abstract
The heart as a functional organ first appeared in bilaterians as a single peristaltic pump and evolved through arthropods, fish, amphibians, and finally mammals into a four-chambered engine controlling blood-flow within the body. The acquisition of cardiac complexity in the evolving heart was a product of gene duplication events and the co-option of novel signaling pathways to an ancestral cardiac-specific gene network. T-box factors belong to an evolutionary conserved family of transcriptional regulators with diverse roles in development. Their regulatory functions are integral in the initiation and potentiation of heart development, and mutations in these genes are associated with congenital heart defects. In this review we will discuss the evolutionary conserved cardiac regulatory functions of this family as well as their implication in disease in an aim to facilitate future gene-targeted and regenerative therapeutic remedies.
Collapse
Affiliation(s)
- Fadi Hariri
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, C.P. 6128, Succursale, Centre-ville Montréal, Quebec, H3C3J7, Canada
| | | | | |
Collapse
|
135
|
Nakanishi N, Takahashi T, Ogata T, Adachi A, Imoto-Tsubakimoto H, Ueyama T, Matsubara H. PARM-1 promotes cardiomyogenic differentiation through regulating the BMP/Smad signaling pathway. Biochem Biophys Res Commun 2012; 428:500-5. [PMID: 23123625 DOI: 10.1016/j.bbrc.2012.10.078] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 10/20/2012] [Indexed: 11/18/2022]
Abstract
PARM-1, prostatic androgen repressed message-1, is an endoplasmic reticulum (ER) molecule that is involved in ER stress-induced apoptosis in cardiomyocytes. In this study, we assessed whether PARM-1 plays a role in the differentiation of stem cells into cardiomyocytes. While PARM-1 was not expressed in undifferentiated P19CL6 embryonic carcinoma cells, PARM-1 expression was induced during cardiomyogenic differentiation. This expression followed expression of mesodermal markers, and preceded expression of cardiac transcription factors. PARM-1 overexpression did not alter the expression of undifferentiated markers and the proliferative property in undifferentiated P19CL6 cells. Expression of cardiac transcription factors during cardiomyogenesis was markedly enhanced by overexpression of PARM-1, while expression of mesodermal markers was not altered, suggesting that PARM-1 is involved in the differentiation from the mesodermal lineage to cardiomyocytes. Furthermore, overexpression of PARM-1 induced BMP2 mRNA expression in undifferentiated P19CL6 cells and enhanced both BMP2 and BMP4 mRNA expression in the early phase of cardiomyogenesis. PARM-1 overexpression also enhanced phosphorylation of Smads1/5/8. Thus, PARM-1 plays an important role in the cardiomyogenic differentiation of P19CL6 cells through regulating BMP/Smad signaling pathways, demonstrating a novel role of PARM-1 in the cardiomyogenic differentiation of stem cells.
Collapse
Affiliation(s)
- Naohiko Nakanishi
- Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | | | | | | | | | | | | |
Collapse
|
136
|
Francou A, Saint-Michel E, Mesbah K, Théveniau-Ruissy M, Rana MS, Christoffels VM, Kelly RG. Second heart field cardiac progenitor cells in the early mouse embryo. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:795-8. [PMID: 23051926 DOI: 10.1016/j.bbamcr.2012.10.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 09/28/2012] [Accepted: 10/01/2012] [Indexed: 12/22/2022]
Abstract
At the end of the first week of mouse gestation, cardiomyocyte differentiation initiates in the cardiac crescent to give rise to the linear heart tube. The heart tube subsequently elongates by addition of cardiac progenitor cells from adjacent pharyngeal mesoderm to the growing arterial and venous poles. These progenitor cells, termed the second heart field, originate in splanchnic mesoderm medial to cells of the cardiac crescent and are patterned into anterior and posterior domains adjacent to the arterial and venous poles of the heart, respectively. Perturbation of second heart field cell deployment results in a spectrum of congenital heart anomalies including conotruncal and atrial septal defects seen in human patients. Here, we briefly review current knowledge of how the properties of second heart field cells are controlled by a network of transcriptional regulators and intercellular signaling pathways. Focus will be on 1) the regulation of cardiac progenitor cell proliferation in pharyngeal mesoderm, 2) the control of progressive progenitor cell differentiation and 3) the patterning of cardiac progenitor cells in the dorsal pericardial wall. Coordination of these three processes in the early embryo drives progressive heart tube elongation during cardiac morphogenesis. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction.
Collapse
Affiliation(s)
- Alexandre Francou
- Developmental Biology Institute of Marseille-Luminy, Marseille, France
| | | | | | | | | | | | | |
Collapse
|
137
|
Ripoll C, Rivals I, Ait Yahya-Graison E, Dauphinot L, Paly E, Mircher C, Ravel A, Grattau Y, Bléhaut H, Mégarbane A, Dembour G, de Fréminville B, Touraine R, Créau N, Potier MC, Delabar JM. Molecular signatures of cardiac defects in Down syndrome lymphoblastoid cell lines suggest altered ciliome and Hedgehog pathways. PLoS One 2012; 7:e41616. [PMID: 22912673 PMCID: PMC3415405 DOI: 10.1371/journal.pone.0041616] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 06/22/2012] [Indexed: 12/15/2022] Open
Abstract
Forty percent of people with Down syndrome exhibit heart defects, most often an atrioventricular septal defect (AVSD) and less frequently a ventricular septal defect (VSD) or atrial septal defect (ASD). Lymphoblastoid cell lines (LCLs) were established from lymphocytes of individuals with trisomy 21, the chromosomal abnormality causing Down syndrome. Gene expression profiles generated from DNA microarrays of LCLs from individuals without heart defects (CHD−; n = 22) were compared with those of LCLs from patients with cardiac malformations (CHD+; n = 21). After quantile normalization, principal component analysis revealed that AVSD carriers could be distinguished from a combined group of ASD or VSD (ASD+VSD) carriers. From 9,758 expressed genes, we identified 889 and 1,016 genes differentially expressed between CHD− and AVSD and CHD− and ASD+VSD, respectively, with only 119 genes in common. A specific chromosomal enrichment was found in each group of affected genes. Among the differentially expressed genes, more than 65% are expressed in human or mouse fetal heart tissues (GEO dataset). Additional LCLs from new groups of AVSD and ASD+VSD patients were analyzed by quantitative PCR; observed expression ratios were similar to microarray results. Analysis of GO categories revealed enrichment of genes from pathways regulating clathrin-mediated endocytosis in patients with AVSD and of genes involved in semaphorin-plexin-driven cardiogenesis and the formation of cytoplasmic microtubules in patients with ASD-VSD. A pathway-oriented search revealed enrichment in the ciliome for both groups and a specific enrichment in Hedgehog and Jak-stat pathways among ASD+VSD patients. These genes or related pathways are therefore potentially involved in normal cardiogenesis as well as in cardiac malformations observed in individuals with trisomy 21.
Collapse
Affiliation(s)
- Clémentine Ripoll
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, EAC4413 CNRS, Paris, France
| | - Isabelle Rivals
- Equipe de Statistique Appliquée, ESPCI ParisTech, Paris, France
| | - Emilie Ait Yahya-Graison
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, EAC4413 CNRS, Paris, France
| | - Luce Dauphinot
- CRICM, CNRS UMR7225, INSERM UMR975, UPMC Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Evelyne Paly
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, EAC4413 CNRS, Paris, France
| | - Clothilde Mircher
- Institut Médical Jérôme Lejeune et Fondation Jérome Lejeune, Paris, France
| | - Aimé Ravel
- Institut Médical Jérôme Lejeune et Fondation Jérome Lejeune, Paris, France
| | - Yann Grattau
- Institut Médical Jérôme Lejeune et Fondation Jérome Lejeune, Paris, France
| | - Henri Bléhaut
- Institut Médical Jérôme Lejeune et Fondation Jérome Lejeune, Paris, France
| | - André Mégarbane
- Institut Médical Jérôme Lejeune et Fondation Jérome Lejeune, Paris, France
- Unité de Génétique Médicale, Faculté de Médecine, Université Saint-Joseph, Beirut, Lebanon
| | - Guy Dembour
- Cardiologie pédiatrique, Cliniques Universitaires St Luc, Bruxelles, Belgique
| | | | - Renaud Touraine
- Service de Génétique, Centre Hospitalier Universitaire de Saint-Etienne, Saint-Etienne, France
| | - Nicole Créau
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, EAC4413 CNRS, Paris, France
| | - Marie Claude Potier
- CRICM, CNRS UMR7225, INSERM UMR975, UPMC Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Jean Maurice Delabar
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, EAC4413 CNRS, Paris, France
- * E-mail:
| |
Collapse
|
138
|
Sinha T, Wang B, Evans S, Wynshaw-Boris A, Wang J. Disheveled mediated planar cell polarity signaling is required in the second heart field lineage for outflow tract morphogenesis. Dev Biol 2012; 370:135-44. [PMID: 22841628 DOI: 10.1016/j.ydbio.2012.07.023] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 07/15/2012] [Accepted: 07/21/2012] [Indexed: 11/28/2022]
Abstract
Disheveled (Dvl) is a key regulator of both the canonical Wnt and the planar cell polarity (PCP) pathway. Previous genetic studies in mice indicated that outflow tract (OFT) formation requires Dvl1 and 2, but it was unclear which pathway was involved and whether Dvl1/2-mediated signaling was required in the second heart field (SHF) or the cardiac neural crest (CNC) lineage, both of which are critical for OFT development. In this study, we used Dvl1/2 null mice and a set of Dvl2 BAC transgenes that function in a pathway-specific fashion to demonstrate that Dvl1/2-mediated PCP signaling is essential for OFT formation. Lineage-specific gene-ablation further indicated that Dvl1/2 function is dispensable in the CNC, but required in the SHF for OFT lengthening to promote cardiac looping. Mutating the core PCP gene Vangl2 and non-canonical Wnt gene Wnt5a recapitulated the OFT morphogenesis defects observed in Dvl1/2 mutants. Consistent with genetic interaction studies suggesting that Wnt5a signals through the PCP pathway, Dvl1/2 and Wnt5a mutants display aberrant cell packing and defective actin polymerization and filopodia formation specifically in SHF cells in the caudal splanchnic mesoderm (SpM), where Wnt5a and Dvl2 are co-expressed specifically. Our results reveal a critical role of PCP signaling in the SHF during early OFT lengthening and cardiac looping and suggest that a Wnt5a→ Dvl PCP signaling cascade may regulate actin polymerization and protrusive cell behavior in the caudal SpM to promote SHF deployment, OFT lengthening and cardiac looping.
Collapse
Affiliation(s)
- Tanvi Sinha
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Blvd., Birmingham, AL 35294, UK
| | | | | | | | | |
Collapse
|
139
|
Cohen ED, Miller MF, Wang Z, Moon RT, Morrisey EE. Wnt5a and Wnt11 are essential for second heart field progenitor development. Development 2012; 139:1931-40. [PMID: 22569553 DOI: 10.1242/dev.069377] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Wnt/β-catenin has a biphasic effect on cardiogenesis, promoting the induction of cardiac progenitors but later inhibiting their differentiation. Second heart field progenitors and expression of the second heart field transcription factor Islet1 are inhibited by the loss of β-catenin, indicating that Wnt/β-catenin signaling is necessary for second heart field development. However, expressing a constitutively active β-catenin with Islet1-Cre also inhibits endogenous Islet1 expression, reflecting the inhibitory effect of prolonged Wnt/β-catenin signaling on second heart field development. We show that two non-canonical Wnt ligands, Wnt5a and Wnt11, are co-required to regulate second heart field development in mice. Loss of Wnt5a and Wnt11 leads to a dramatic loss of second heart field progenitors in the developing heart. Importantly, this loss of Wnt5a and Wnt11 is accompanied by an increase in Wnt/β-catenin signaling, and ectopic Wnt5a/Wnt11 inhibits β-catenin signaling and promotes cardiac progenitor development in differentiating embryonic stem cells. These data show that Wnt5a and Wnt11 are essential regulators of the response of second heart field progenitors to Wnt/β-catenin signaling and that they act by restraining Wnt/β-catenin signaling during cardiac development.
Collapse
Affiliation(s)
- Ethan David Cohen
- Department of Medicine, Division of Endocrinology, University of Rochester, Rochester, NY 14642, USA.
| | | | | | | | | |
Collapse
|
140
|
New developments in the second heart field. Differentiation 2012; 84:17-24. [DOI: 10.1016/j.diff.2012.03.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 02/24/2012] [Accepted: 03/07/2012] [Indexed: 11/18/2022]
|
141
|
Keyte A, Hutson MR. The neural crest in cardiac congenital anomalies. Differentiation 2012; 84:25-40. [PMID: 22595346 DOI: 10.1016/j.diff.2012.04.005] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 04/02/2012] [Accepted: 04/04/2012] [Indexed: 02/07/2023]
Abstract
This review discusses the function of neural crest as they relate to cardiovascular defects. The cardiac neural crest cells are a subpopulation of cranial neural crest discovered nearly 30 years ago by ablation of premigratory neural crest. The cardiac neural crest cells are necessary for normal cardiovascular development. We begin with a description of the crest cells in normal development, including their function in remodeling the pharyngeal arch arteries, outflow tract septation, valvulogenesis, and development of the cardiac conduction system. The cells are also responsible for modulating signaling in the caudal pharynx, including the second heart field. Many of the molecular pathways that are known to influence specification, migration, patterning and final targeting of the cardiac neural crest cells are reviewed. The cardiac neural crest cells play a critical role in the pathogenesis of various human cardiocraniofacial syndromes such as DiGeorge, Velocardiofacial, CHARGE, Fetal Alcohol, Alagille, LEOPARD, and Noonan syndromes, as well as Retinoic Acid Embryopathy. The loss of neural crest cells or their dysfunction may not always directly cause abnormal cardiovascular development, but are involved secondarily because crest cells represent a major component in the complex tissue interactions in the head, pharynx and outflow tract. Thus many of the human syndromes linking defects in the heart, face and brain can be better understood when considered within the context of a single cardiocraniofacial developmental module with the neural crest being a key cell type that interconnects the regions.
Collapse
Affiliation(s)
- Anna Keyte
- Department of Pediatrics (Neonatology), Neonatal-Perinatal Research Institute, Box 103105, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
142
|
Wu G, Shan J, Pang S, Wei X, Zhang H, Yan B. Genetic analysis of the promoter region of the GATA4 gene in patients with ventricular septal defects. Transl Res 2012; 159:376-82. [PMID: 22500510 DOI: 10.1016/j.trsl.2011.10.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 10/21/2011] [Accepted: 10/27/2011] [Indexed: 01/06/2023]
Abstract
Ventricular septal defects (VSDs) are the most common type of congenital heart diseases (CHDs). To date, the genetic causes for sporadic VSDs remain largely unknown. GATA transcription factor 4 (GATA4) is a zinc-finger transcription factor that is expressed in developing heart and adult cardiomyocytes. Mutations in the coding region of the GATA4 gene have been identified in CHD patients, including VSD. As the GATA4 factor is a dosage-sensitive regulator, we hypothesized that the promoter region variants of the GATA4 gene may be genetic causes of VSD. In this study, we analyzed the promoter region of the GATA4 gene by bidirectional sequencing in 172 VSD patients and 171 healthy controls. The results showed that 5 heterozygous sequence variants (NG_008177:g.4071T>C, NG_008177:g.4148C>A, NG_008177:g.4566C>T, NG_008177:g.4653G>T, and NG_008177:g.4690G>deletion) within the promoter region of the GATA gene were identified in 5 VSD patients, but in none of controls. One heterozygous sequence variant (g.4762C>A) was found only in one control, which may have no functional significance. A functional analysis revealed that the transcriptional activity of variant NG_008177:g.4566C>T was reduced significantly, whereas the transcriptional activities of the variants (NG_008177:g.4071T>C, NG_008177:g.4148C>A, NG_008177:g.4653G>T, and NG_008177:g.4690G>deletion) were increased significantly compared with the wild-type GATA4 gene promoter. As GATA4 is a dosage-sensitive regulator during development, our data suggest that these sequence variants within the promoter region of the GATA4 gene may contribute to the VSD etiology by altering its gene expression. Additional studies in experimental animals will deepen our understanding of the genetic basis of VSD and shed light on designing novel molecular therapies for adult VSD patients carrying these variants.
Collapse
Affiliation(s)
- Guanghua Wu
- Shandong Provincial Key Laboratory of Cardiac Disease Diagnosis and Treatment, Jining Medical College Affiliated Hospital, Jining Medical College, Jining, Shandong 272029, China
| | | | | | | | | | | |
Collapse
|
143
|
Winston JB, Schulkey CE, Chen IBD, Regmi SD, Efimova M, Erlich JM, Green CA, Aluko A, Jay PY. Complex trait analysis of ventricular septal defects caused by Nkx2-5 mutation. ACTA ACUST UNITED AC 2012; 5:293-300. [PMID: 22534315 DOI: 10.1161/circgenetics.111.961136] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The occurrence of a congenital heart defect has long been thought to have a multifactorial basis, but the evidence is indirect. Complex trait analysis could provide a more nuanced understanding of congenital heart disease. METHODS AND RESULTS We assessed the role of genetic and environmental factors on the incidence of ventricular septal defects (VSDs) caused by a heterozygous Nkx2-5 knockout mutation. We phenotyped >3100 hearts from a second-generation intercross of the inbred mouse strains C57BL/6 and FVB/N. Genetic linkage analysis mapped loci with lod scores of 5 to 7 on chromosomes 6, 8, and 10 that influence the susceptibility to membranous VSDs in Nkx2-5(+/-) animals. The chromosome 6 locus overlaps one for muscular VSD susceptibility. Multiple logistic regression analysis for environmental variables revealed that maternal age is correlated with the risk of membranous and muscular VSD in Nkx2-5(+/-) but not wild-type animals. The maternal age effect is unrelated to aneuploidy or a genetic polymorphism in the affected individuals. The risk of a VSD is not only complex but dynamic. Whereas the effect of genetic modifiers on risk remains constant, the effect of maternal aging increases over time. CONCLUSIONS Enumerable factors contribute to the presentation of a congenital heart defect. The factors that modify rather than cause congenital heart disease substantially affect risk in predisposed individuals. Their characterization in a mouse model offers the potential to narrow the search space in human studies and to develop alternative strategies for prevention.
Collapse
Affiliation(s)
- Julia B Winston
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Chen L, Ashraf M, Wang Y, Zhou M, Zhang J, Qin G, Rubinstein J, Weintraub NL, Tang Y. The role of notch 1 activation in cardiosphere derived cell differentiation. Stem Cells Dev 2012; 21:2122-9. [PMID: 22239539 DOI: 10.1089/scd.2011.0463] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cardiosphere derived cells (CDC) are present in the human heart and include heterogeneous cell populations of cardiac progenitor cells, multipotent progenitors that play critical roles in the physiological and pathological turnover of heart tissue. Little is known about the molecular pathways that control the differentiation of CDC. In this study, we examined the role of Notch 1/J kappa-recombining binding protein (RBPJ) signaling, a critical cell-fate decision pathway, in CDC differentiation. We isolated CDC from mouse cardiospheres and analyzed the differentiation of transduced cells expressing the Notch1 intracellular domain (N1-ICD), the active form of Notch1, using a terminal differentiation marker polymerase chain reaction (PCR) array. We found that Notch1 primarily supported the differentiation of CDC into smooth muscle cells (SMC), as demonstrated by the upreguation of key SMC proteins, including smooth muscle myosin heavy chain (Myh11) and SM22α (Tagln), in N1-ICD expressing CDC. Conversely, genetic ablation of RBPJ in CDC diminished the expression of SMC differentiation markers, confirming that SMC differentiation CDC is dependent on RBPJ. Finally, in vivo experiments demonstrate enhanced numbers of smooth muscle actin-expressing implanted cells after an injection of N1-ICD-expressing CDC into ischemic myocardium (44±8/high power field (hpf) vs. 11±4/high power field (hpf), n=7 sections, P<0.05). Taken together, these results provide strong evidence that Notch1 promotes SMC differentiation of CDC through an RBPJ-dependent signaling pathway in vitro, which may have important implications for progenitor cell-mediated angiogenesis.
Collapse
Affiliation(s)
- Lijuan Chen
- Division of Cardiovascular Disease, Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45243, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Sizarov A, Lamers WH, Mohun TJ, Brown NA, Anderson RH, Moorman AFM. Three-dimensional and molecular analysis of the arterial pole of the developing human heart. J Anat 2012; 220:336-49. [PMID: 22296102 DOI: 10.1111/j.1469-7580.2012.01474.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Labeling experiments in chicken and mouse embryos have revealed important roles for different cell lineages in the development of the cardiac arterial pole. These data can only fully be exploited when integrated into the continuously changing morphological context and compared with the patterns of gene expression. As yet, studies on the formation of separate ventricular outlets and arterial trunks in the human heart are exclusively based on histologically stained sections. So as to expand these studies, we performed immunohistochemical analyses of serially sectioned human embryos, along with three-dimensional reconstructions. The development of the cardiac arterial pole involves several parallel and independent processes of formation and fusion of outflow tract cushions, remodeling of the aortic sac and closure of an initial aortopulmonary foramen through formation of a transient aortopulmonary septum. Expression patterns of the transcription factors ISL1, SOX9 and AP2α show that, in addition to fusion of the SOX9-positive endocardial cushions, intrapericardial protrusion of pharyngeal mesenchyme derived from the neural crest contributes to the separation of the developing ascending aorta from the pulmonary trunk. The non-adjacent walls of the intrapericardial arterial trunks are formed through addition of ISL1-positive cells to the distal outflow tract, while the facing parts of the walls form from the protruding mesenchyme. The morphogenetic steps, along with the gene expression patterns reported in this study, are comparable to those observed in the mouse. They confirm the involvement of mesenchymal tissues derived from endocardium, mesoderm and migrating neural crest cells in the process of initial septation of the distal part of the outflow tract, and its subsequent separation into discrete intrapericardial arterial trunks.
Collapse
Affiliation(s)
- Aleksander Sizarov
- Department of Anatomy, Embryology & Physiology, Academic Medical Center, Amsterdam, the Netherlands
| | | | | | | | | | | |
Collapse
|
146
|
Liu W, Brown K, Legros S, Foley AC. Nodal mutant eXtraembryonic ENdoderm (XEN) stem cells upregulate markers for the anterior visceral endoderm and impact the timing of cardiac differentiation in mouse embryoid bodies. Biol Open 2012; 1:208-19. [PMID: 23213411 PMCID: PMC3507291 DOI: 10.1242/bio.2012038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Interactions between the endoderm and mesoderm that mediate myocardial induction are difficult to study in vivo because of the small size of mammalian embryos at relevant stages. However, we and others have demonstrated that signals from endodermal cell lines can influence myocardial differentiation from both mouse and human embryoid bodies (EBs), and because of this, assays that utilize embryonic stem (ES) cells and endodermal cell lines provide excellent in vitro models to study early cardiac differentiation. Extraembryonic endoderm (XEN) stem cells have a particular advantage over other heart-inducing cell lines in that they can easily be derived from both wild type and mutant mouse blastocysts. Here we describe the first isolation of a Nodal mutant XEN stem cell line. Nodal−/− XEN cell lines were not isolated at expected Mendelian ratios, and those that were successfully established, showed an increase in markers for the anterior visceral endoderm (AVE). Since AVE represents the heart-inducing endoderm in the mouse, cardiac differentiation was compared in EBs treated with conditioned medium (CM) collected from wild type or Nodal−/− XEN cells. EBs treated with CM from Nodal−/− cells began beating earlier and showed early activation of myocardial genes, but this early cardiac differentiation did not cause an overall increase in cardiomyocyte yield. By comparison, CM from wild type XEN cells both delayed cardiac differentiation and caused a concomitant increase in overall cardiomyocyte formation. Detailed marker analysis suggested that early activation of cardiac differentiation by Nodal−/− XEN CM caused premature differentiation and subsequent depletion of cardiac progenitors.
Collapse
Affiliation(s)
- Wenrui Liu
- Greenberg Division of Cardiology, Weill Cornell Medical College , New York, NY 10065 , USA
| | | | | | | |
Collapse
|
147
|
Archbold HC, Yang YX, Chen L, Cadigan KM. How do they do Wnt they do?: regulation of transcription by the Wnt/β-catenin pathway. Acta Physiol (Oxf) 2012; 204:74-109. [PMID: 21624092 DOI: 10.1111/j.1748-1716.2011.02293.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Wnt/β-catenin signalling is known to play many roles in metazoan development and tissue homeostasis. Misregulation of the pathway has also been linked to many human diseases. In this review, specific aspects of the pathway's involvement in these processes are discussed, with an emphasis on how Wnt/β-catenin signalling regulates gene expression in a cell and temporally specific manner. The T-cell factor (TCF) family of transcription factors, which mediate a large portion of Wnt/β-catenin signalling, will be discussed in detail. Invertebrates contain a single TCF gene that contains two DNA-binding domains, the high mobility group (HMG) domain and the C-clamp, which increases the specificity of DNA binding. In vertebrates, the situation is more complex, with four TCF genes producing many isoforms that contain the HMG domain, but only some of which possess a C-clamp. Vertebrate TCFs have been reported to act in concert with many other transcription factors, which may explain how they obtain sufficient specificity for specific DNA sequences, as well as how they achieve a wide diversity of transcriptional outputs in different cells.
Collapse
Affiliation(s)
- H C Archbold
- Program in Cell and Molecular Biology, University of Michigan, Ann Arbor, 48109-1048, USA
| | | | | | | |
Collapse
|
148
|
Barnett P, van den Boogaard M, Christoffels V. Localized and temporal gene regulation in heart development. Curr Top Dev Biol 2012; 100:171-201. [PMID: 22449844 DOI: 10.1016/b978-0-12-387786-4.00004-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The heart is a structurally complex and functionally heterogeneous organ. The repertoire of genes active in a given cardiac cell defines its shapes and function. This process of localized or heterogeneous gene expression is regulated to a large extent at the level of transcription, dictating the degree particular genes in a cell are active. Therefore, errors in the regulation of localized gene expression are at the basis of misregulation of the delicate process of heart development and function. In this review, we provide an overview of the origin of the different components of the vertebrate heart, and discuss our current understanding of the regulation of localized gene expression in the developing heart. We will also discuss where future research may lead to gain more insight into this process, which should provide much needed insight into the dysregulation of heart development and function, and the etiology of congenital defects.
Collapse
Affiliation(s)
- Phil Barnett
- Department of Anatomy, Embryology and Physiology, Heart Failure Research Center, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | |
Collapse
|
149
|
Currier DG, Polk RC, Reeves RH. A Sonic hedgehog (Shh) response deficit in trisomic cells may be a common denominator for multiple features of Down syndrome. PROGRESS IN BRAIN RESEARCH 2012; 197:223-36. [PMID: 22541295 PMCID: PMC4405118 DOI: 10.1016/b978-0-444-54299-1.00011-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The hedgehog (HH) family of growth factors is involved in many aspects of growth and development, from the establishment of left-right axes at gastrulation to the patterning and formation of multiple structures in essentially every tissue, to the maintenance and regulation of stem cell populations in adults. Sonic hedgehog (Shh) in particular acts as a mitogen, regulating proliferation of target cells, a growth factor that triggers differentiation in target populations, and a morphogen causing cells to respond differently based on their positions along a spatial and temporal concentration gradient. Given its very broad range of effects in development, it is not surprising that many of the structures affected by a disruption in Shh signaling are also affected in Down syndrome (DS). However, recent studies have shown that trisomic cerebellar granule cell precursors have a deficit, compared to their euploid counterparts, in their response to the mitogenic effects of Shh. This deficit substantially contributes to the hypocellular cerebellum in mouse models that parallels the human DS phenotype and can be corrected in early development by a single exposure to a small-molecule agonist of the Shh pathway. Here, we consider how an attenuated Shh response might affect several aspects of development to produce multiple phenotypic outcomes observed in DS.
Collapse
Affiliation(s)
- Duane G. Currier
- Department of Physiology and The McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Renita C. Polk
- Department of Physiology and The McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Roger H. Reeves
- Department of Physiology and The McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
150
|
Abstract
Ten years ago, a population of cardiac progenitor cells was identified in pharyngeal mesoderm that gives rise to a major part of the amniote heart. These multipotent progenitor cells, termed the second heart field (SHF), contribute progressively to the poles of the elongating heart tube during looping morphogenesis, giving rise to myocardium, smooth muscle, and endothelial cells. Research into the mechanisms of SHF development has contributed significantly to our understanding of the properties of cardiac progenitor cells and the origins of congenital heart defects. Here recent data concerning the regulation, clinically relevant subpopulations, evolution and lineage relationships of the SHF are reviewed. Proliferation and differentiation of SHF cells are controlled by multiple intercellular signaling pathways and a transcriptional regulatory network that is beginning to be elucidated. Perturbation of SHF development results in common forms of congenital heart defects and particular progenitor cell subpopulations are highly relevant clinically, including cells giving rise to myocardium at the base of the pulmonary trunk and the interatrial septum. A SHF has recently been identified in amphibian, fish, and agnathan embryos, highlighting the important contribution of these cells to the evolution of the vertebrate heart. Finally, SHF-derived parts of the heart share a lineage relationship with craniofacial skeletal muscles revealing that these progenitor cells belong to a broad cardiocraniofacial field of pharyngeal mesoderm. Investigation of the mechanisms underlying the dynamic process of SHF deployment is likely to yield further insights into cardiac development and pathology.
Collapse
Affiliation(s)
- Robert G Kelly
- Developmental Biology Institute of Marseilles-Luminy, Aix-Marseille Université, CNRS UMR 7288, Marseilles, France
| |
Collapse
|