101
|
Metformin use and gynecological cancers: A novel treatment option emerging from drug repositioning. Crit Rev Oncol Hematol 2016; 105:73-83. [PMID: 27378194 DOI: 10.1016/j.critrevonc.2016.06.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 04/19/2016] [Accepted: 06/14/2016] [Indexed: 12/13/2022] Open
Abstract
Metformin exerts antitumor effects mainly through AMP-activated protein kinase [AMPK] activation and phosphatidylinositol 3-kinase [PI3K]-Akt-mammalian target of rapamycin [mTOR] inhibition. This drug leads to activation of the cellular energy-sensing liver kinase B1 [LKB1]/AMPK pathway. LKB1 is implicated as a tumor suppressor gene in molecular pathogenesis of different malignancies. AMPK is a serine/threonine protein kinase that acts as an ultra-sensitive cellular energy sensor maintaining the energy balance within the cell. AMPK activation inhibits mRNA translation and proliferation in cancer cells via down-regulation of PI3K/Akt/mTOR pathway. Moreover, metformin decreases the production of insulin, insulin-like growth factor, inflammatory cytokines and vascular endothelial growth factor, and therefore it exerts anti-mitotic, anti-inflammatory and anti-angiogenetic effects. Recent in vitro and experimental data suggest that metformin electively targets cancer stem cells, and acts together with chemotherapy to block tumor growth in different cancers. Several epidemiological studies and meta-analysis have shown that metformin use is associated with decreased cancer risk and/or reduced cancer mortality for different malignancies. The present review analyzes the recent biological and clinical data suggesting a possible growth-static effect of metformin also in gynecological cancers. The large majority of available clinical data on the anti-cancer potential of metformin are based on observational studies. Therefore long-term phase II-III clinical trials are strongly warranted to further investigate metformin activity in gynecological cancers.
Collapse
|
102
|
Ma L, Wang H, Wang C, Su J, Xie Q, Xu L, Yu Y, Liu S, Li S, Xu Y, Li Z. Failure of Elevating Calcium Induces Oxidative Stress Tolerance and Imparts Cisplatin Resistance in Ovarian Cancer Cells. Aging Dis 2016; 7:254-66. [PMID: 27330840 PMCID: PMC4898922 DOI: 10.14336/ad.2016.0118] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 01/17/2016] [Indexed: 12/14/2022] Open
Abstract
Cisplatin is a commonly used chemotherapeutic drug, used for the treatment of malignant ovarian cancer, but acquired resistance limits its application. There is therefore an overwhelming need to understand the mechanism of cisplatin resistance in ovarian cancer, that is, ovarian cancer cells are insensitive to cisplatin treatment. Here, we show that failure of elevating calcium and oxidative stress tolerance play key roles in cisplatin resistance in ovarian cancer cell lines. Cisplatin induces an increase in oxidative stress and alters intracellular Ca(2+) concentration, including cytosolic and mitochondrial Ca(2+) in cisplatin-sensitive SKOV3 cells, but not in cisplatin-resistant SKOV3/DDP cells. Cisplatin induces mitochondrial damage and triggers the mitochondrial apoptotic pathway in cisplatin-sensitive SKOV3 cells, but rarely in cisplatin-resistant SKOV3/DDP cells. Inhibition of calcium signaling attenuates cisplatin-induced oxidative stress and intracellular Ca(2+) overload in cisplatin-sensitive SKOV3 cells. Moreover, in vivo xenograft models of nude mouse, cisplatin significantly reduced the growth rates of tumors originating from SKOV3 cells, but not that of SKOV3/DDP cells. Collectively, our data indicate that failure of calcium up-regulation mediates cisplatin resistance by alleviating oxidative stress in ovarian cancer cells. Our results highlight potential therapeutic strategies to improve cisplatin resistance.
Collapse
Affiliation(s)
- Liwei Ma
- 1Medical Research Laboratory, Jilin Medical University, Jilin 132013, China
| | - Hongjun Wang
- 1Medical Research Laboratory, Jilin Medical University, Jilin 132013, China; 2Department of Histology and Embryology, Jilin Medical University, Jilin 132013, China
| | - Chunyan Wang
- 1Medical Research Laboratory, Jilin Medical University, Jilin 132013, China
| | - Jing Su
- 3Department of Pathophysiology, Basic College of Medicine, Jilin University, Changchun, 130021, China
| | - Qi Xie
- 3Department of Pathophysiology, Basic College of Medicine, Jilin University, Changchun, 130021, China
| | - Lu Xu
- 1Medical Research Laboratory, Jilin Medical University, Jilin 132013, China
| | - Yang Yu
- 1Medical Research Laboratory, Jilin Medical University, Jilin 132013, China
| | - Shibing Liu
- 1Medical Research Laboratory, Jilin Medical University, Jilin 132013, China
| | - Songyan Li
- 1Medical Research Laboratory, Jilin Medical University, Jilin 132013, China
| | - Ye Xu
- 1Medical Research Laboratory, Jilin Medical University, Jilin 132013, China
| | - Zhixin Li
- 2Department of Histology and Embryology, Jilin Medical University, Jilin 132013, China
| |
Collapse
|
103
|
Liu Q, Yuan W, Tong D, Liu G, Lan W, Zhang D, Xiao H, Zhang Y, Huang Z, Yang J, Zhang J, Jiang J. Metformin represses bladder cancer progression by inhibiting stem cell repopulation via COX2/PGE2/STAT3 axis. Oncotarget 2016; 7:28235-46. [PMID: 27058422 PMCID: PMC5053723 DOI: 10.18632/oncotarget.8595] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 03/28/2016] [Indexed: 01/05/2023] Open
Abstract
Cancer stem cells (CSCs) are a sub-population of tumor cells playing essential roles in initiation, differentiation, recurrence, metastasis and development of drug resistance of various cancers, including bladder cancer. Although multiple lines of evidence suggest that metformin is capable of repressing CSC repopulation in different cancers, the effect of metformin on bladder cancer CSCs remains largely unknown. Using the N-methyl-N-nitrosourea (MNU)-induced rat orthotropic bladder cancer model, we demonstrated that metformin is capable of repressing bladder cancer progression from both mild to moderate/severe dysplasia lesions and from carcinoma in situ (CIS) to invasive lesions. Metformin also can arrest bladder cancer cells in G1/S phases, which subsequently leads to apoptosis. And also metformin represses bladder cancer CSC repopulation evidenced by reducing cytokeratin 14 (CK14+) and octamer-binding transcription factor 3/4 (OCT3/4+) cells in both animal and cellular models. More importantly, we found that metformin exerts these anticancer effects by inhibiting COX2, subsequently PGE2 as well as the activation of STAT3. In conclusion, we are the first to systemically demonstrate in both animal and cell models that metformin inhibits bladder cancer progression by inhibiting stem cell repopulation through the COX2/PGE2/STAT3 axis.
Collapse
Affiliation(s)
- Qiuli Liu
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, PR China
| | - Wenqiang Yuan
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, PR China
| | - Dali Tong
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, PR China
| | - Gaolei Liu
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, PR China
| | - Weihua Lan
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, PR China
| | - Dianzheng Zhang
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, 19131, USA
| | - Hualiang Xiao
- Department of Pathology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, PR China
| | - Yao Zhang
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, PR China
| | - Zaoming Huang
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, PR China
| | - Junjie Yang
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, PR China
| | - Jun Zhang
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, PR China
| | - Jun Jiang
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, PR China
| |
Collapse
|
104
|
Papanagnou P, Stivarou T, Tsironi M. Unexploited Antineoplastic Effects of Commercially Available Anti-Diabetic Drugs. Pharmaceuticals (Basel) 2016; 9:ph9020024. [PMID: 27164115 PMCID: PMC4932542 DOI: 10.3390/ph9020024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/23/2016] [Accepted: 04/28/2016] [Indexed: 02/07/2023] Open
Abstract
The development of efficacious antitumor compounds with minimal toxicity is a hot research topic. Numerous cancer cell targeted agents are evaluated daily in laboratories for their antitumorigenicity at the pre-clinical level, but the process of their introduction into the market is costly and time-consuming. More importantly, even if these new antitumor agents manage to gain approval, clinicians have no former experience with them. Accruing evidence supports the idea that several medications already used to treat pathologies other than cancer display pleiotropic effects, exhibiting multi-level anti-cancer activity and chemosensitizing properties. This review aims to present the anticancer properties of marketed drugs (i.e., metformin and pioglitazone) used for the management of diabetes mellitus (DM) type II. Mode of action, pre-clinical in vitro and in vivo or clinical data as well as clinical applicability are discussed here. Given the precious multi-year clinical experience with these non-antineoplastic drugs their repurposing in oncology is a challenging alternative that would aid towards the development of therapeutic schemes with less toxicity than those of conventional chemotherapeutic agents. More importantly, harnessing the antitumor function of these agents would save precious time from bench to bedside to aid the fight in the arena of cancer.
Collapse
Affiliation(s)
- Panagiota Papanagnou
- Department of Nursing, Faculty of Human Movement and Quality of Life Sciences, University of Peloponnese, Orthias Artemidos and Plateon St, Sparti GR-23100, Greece.
| | - Theodora Stivarou
- Department of Nursing, Faculty of Human Movement and Quality of Life Sciences, University of Peloponnese, Orthias Artemidos and Plateon St, Sparti GR-23100, Greece.
| | - Maria Tsironi
- Department of Nursing, Faculty of Human Movement and Quality of Life Sciences, University of Peloponnese, Orthias Artemidos and Plateon St, Sparti GR-23100, Greece.
| |
Collapse
|
105
|
Ayub TH, Keyver-Paik MD, Debald M, Rostamzadeh B, Thiesler T, Schröder L, Barchet W, Abramian A, Kaiser C, Kristiansen G, Kuhn W, Kübler K. Accumulation of ALDH1-positive cells after neoadjuvant chemotherapy predicts treatment resistance and prognosticates poor outcome in ovarian cancer. Oncotarget 2016; 6:16437-48. [PMID: 25999351 PMCID: PMC4599280 DOI: 10.18632/oncotarget.4103] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 04/08/2015] [Indexed: 01/02/2023] Open
Abstract
Although ovarian cancer is a highly chemosensitive disease, it is only infrequently cured. One of the major reasons lies in the presence of drug-resistant cancer stem-like cells, sufficient to fuel recurrence. We phenotyped cancer stem-like cells by flow cytometry and immunohistochemistry in 55 matched samples before and after taxane/platinum-based neoadjuvant chemotherapy. All used markers of stemness (ALDH1, CD24, CD117, CD133) isolated low frequencies of malignant cells. ALDH1 was the most valuable marker for tracking stemness in vivo. The enrichment of ALDH1 expression after treatment was associated with a poor response to chemotherapy, with platinum resistance and independently prognosticated unfavorable outcome. Our results suggest that increased ALDH1 expression after treatment identifies patients with aggressive tumor phenotypes.
Collapse
Affiliation(s)
- Tiyasha H Ayub
- Department of Obstetrics and Gynecology, Center for Integrated Oncology, University of Bonn, Sigmund-Freud-Strasse, Bonn, Germany
| | - Mignon-Denise Keyver-Paik
- Department of Obstetrics and Gynecology, Center for Integrated Oncology, University of Bonn, Sigmund-Freud-Strasse, Bonn, Germany
| | - Manuel Debald
- Department of Obstetrics and Gynecology, Center for Integrated Oncology, University of Bonn, Sigmund-Freud-Strasse, Bonn, Germany
| | - Babak Rostamzadeh
- Institute of Pathology, Center for Integrated Oncology, Sigmund-Freud-Strasse, Bonn, Germany
| | - Thore Thiesler
- Institute of Pathology, Center for Integrated Oncology, Sigmund-Freud-Strasse, Bonn, Germany
| | - Lars Schröder
- Department of Obstetrics and Gynecology, Center for Integrated Oncology, University of Bonn, Sigmund-Freud-Strasse, Bonn, Germany
| | - Winfried Barchet
- Institute of Clinical Chemistry and Clinical Pharmacology, Center for Integrated Oncology, Sigmund-Freud-Strasse, Bonn, Germany
| | - Alina Abramian
- Department of Obstetrics and Gynecology, Center for Integrated Oncology, University of Bonn, Sigmund-Freud-Strasse, Bonn, Germany
| | - Christina Kaiser
- Department of Obstetrics and Gynecology, Center for Integrated Oncology, University of Bonn, Sigmund-Freud-Strasse, Bonn, Germany
| | - Glen Kristiansen
- Institute of Pathology, Center for Integrated Oncology, Sigmund-Freud-Strasse, Bonn, Germany
| | - Walther Kuhn
- Department of Obstetrics and Gynecology, Center for Integrated Oncology, University of Bonn, Sigmund-Freud-Strasse, Bonn, Germany
| | - Kirsten Kübler
- Department of Obstetrics and Gynecology, Center for Integrated Oncology, University of Bonn, Sigmund-Freud-Strasse, Bonn, Germany
| |
Collapse
|
106
|
Diabetes and cancer, common threads and missing links. Cancer Lett 2016; 374:54-61. [PMID: 26879686 DOI: 10.1016/j.canlet.2016.02.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/03/2016] [Accepted: 02/03/2016] [Indexed: 02/07/2023]
Abstract
Diabetes mellitus is a serious and growing health problem worldwide and is associated with severe acute and chronic complications. Accruing epidemiological and clinical evidence have suggested that an increased cancer incidence is associated with diabetes as well as certain diabetes risk factors and diabetes medications. Several pathophysiological mechanisms for this relationship have been postulated, including insulin resistance and hyperinsulinemia, enhanced inflammation, aberrant metabolic state, endoplasmic reticulum stress, and deregulation of autophagy. In addition to these potential mechanisms, a number of common risk factors, including obesity, may be behind the association between diabetes and cancer. Furthermore, different anti-diabetic medications may modify cancer risk and mortality in patients with diabetes. This Review discusses evidence to support the relationship between diabetes and cancer development as well as the underlying mechanisms. We also discuss the relationship of current diabetes treatments and cancer risk or prognosis. Understanding the mechanisms that connect type 2 diabetes or diabetes treatments to cancer are crucial for establishing the fundamental strategies concerning about primary prevention, early detection and effective therapy against these diseases.
Collapse
|
107
|
Bost F, Decoux-Poullot AG, Tanti JF, Clavel S. Energy disruptors: rising stars in anticancer therapy? Oncogenesis 2016; 5:e188. [PMID: 26779810 PMCID: PMC4728676 DOI: 10.1038/oncsis.2015.46] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/10/2015] [Accepted: 11/16/2015] [Indexed: 02/06/2023] Open
Abstract
The metabolic features of tumor cells diverge from those of normal cells. Otto Warburg was the first to observe that cancer cells dramatically increase their glucose consumption to generate ATP. He also claimed that cancer cells do not have functional mitochondria or oxidative phosphorylation (OXPHOS) but simply rely on glycolysis to provide ATP to the cell, even in the presence of oxygen (aerobic glycolysis). Several studies have revisited this observation and demonstrated that most cancer cells contain metabolically efficient mitochondria. Indeed, to sustain high proliferation rates, cancer cells require functional mitochondria to provide ATP and intermediate metabolites, such as citrate and cofactors, for anabolic reactions. This difference in metabolism between normal and tumors cells causes the latter to be more sensitive to agents that can disrupt energy homeostasis. In this review, we focus on energy disruptors, such as biguanides, 2-deoxyglucose and 5-aminoimidazole-4-carboxamide ribonucleotide, that interfere with the main metabolic pathways of the cells, OXPHOS, glycolysis and glutamine metabolism. We discuss the preclinical data and the mechanisms of action of these disruptors at the cellular and molecular levels. Finally, we consider whether these drugs can reasonably contribute to the antitumoral therapeutic arsenal in the future.
Collapse
Affiliation(s)
- F Bost
- INSERM, C3M, U1065, Team Cellular and Molecular Physiopathology of Obesity and Diabetes, Nice, France.,Univ. Nice Sophia Antipolis, C3M, U1065, Nice, France
| | - A-G Decoux-Poullot
- INSERM, C3M, U1065, Team Cellular and Molecular Physiopathology of Obesity and Diabetes, Nice, France.,Univ. Nice Sophia Antipolis, C3M, U1065, Nice, France
| | - J F Tanti
- INSERM, C3M, U1065, Team Cellular and Molecular Physiopathology of Obesity and Diabetes, Nice, France.,Univ. Nice Sophia Antipolis, C3M, U1065, Nice, France
| | - S Clavel
- INSERM, C3M, U1065, Team Cellular and Molecular Physiopathology of Obesity and Diabetes, Nice, France.,Univ. Nice Sophia Antipolis, C3M, U1065, Nice, France
| |
Collapse
|
108
|
Inhibitory effects of metformin at low concentration on epithelial-mesenchymal transition of CD44(+)CD117(+) ovarian cancer stem cells. Stem Cell Res Ther 2015; 6:262. [PMID: 26718286 PMCID: PMC4697317 DOI: 10.1186/s13287-015-0249-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 03/21/2015] [Accepted: 11/30/2015] [Indexed: 02/06/2023] Open
Abstract
Background Although metformin, a first-line drug for treating diabetes, may play an important role in inhibition of epithelial ovarian cancer cell growth and cancer stem cells (CSCs), metformin at low dose showed less effect on the proliferation of ovarian cancer cells. In this study, we evaluated the effect of metformin at low dose on ovarian CSCs in order to understand the molecular mechanisms underlying. Methods The inhibitory effects of metformin at los dose on proliferation and population of ovarian cancer cells including SKOV3 and A2780 were assessed by cell proliferation assay and flow cytometry. Quantitative real-time PCR assay on expression of Bcl-2, Survivin and Bax was performed to determine the effect of metformin at low dose on epithelial-mesenchymal transition (EMT) of cancer cells and CSCs. Tumor sphere formation assay was also performed to evaluate the effect of metformin on spheres forming ability of CSCs. The therapeutic efficacy and the anti-CSC effects of metformin at low dose were investigated by using both SKOV3 cells and primary tumor xenografts. In addition, the CSC frequency and EMT in tumor xenograft models were also assessed by flow cytometry and quantitative real-time PCR. Results Metformin at low dose did not affect the proliferation of ovarian cancer cells. However, it inhibited population of CD44+CD117+ selectively, neither CD133+ nor ALDH+ cells. It suppressed expression of snail2, twist and vimentin significantly in cancer cells and CD44+CD117+ CSCs in vitro. Low dose of metformin reduced survivin expression in CSCs. Low concentrations of metformin inhibited the secondary and the tertiary tumor sphere formation, decreased SKOV3 and primary ovarian tumor xenograft growth, enhanced the anticancer effect of cisplatin, and lowered the proportion of CD44+CD117+ CSCs in the xenograft tissue. Metformin was also associated with a reduction of snail2, twist, and vimentin in CD44+CD117+ ovarian CSCs in vivo. Conclusions Our results implicate that metformin at low dose inhibits selectively CD44+CD117+ ovarian CSCs through inhibition of EMT and potentiates the effect of cisplatin.
Collapse
|
109
|
Metformin: A Novel Biological Modifier of Tumor Response to Radiation Therapy. Int J Radiat Oncol Biol Phys 2015; 93:454-64. [PMID: 26383681 DOI: 10.1016/j.ijrobp.2015.06.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 05/27/2015] [Accepted: 06/01/2015] [Indexed: 01/03/2023]
|
110
|
Tseng CH. Metformin reduces ovarian cancer risk in Taiwanese women with type 2 diabetes mellitus. Diabetes Metab Res Rev 2015; 31:619-626. [PMID: 25820555 DOI: 10.1002/dmrr.2649] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 01/28/2015] [Accepted: 03/11/2015] [Indexed: 01/07/2023]
Abstract
BACKGROUND Whether metformin therapy affects ovarian cancer risk in Asian patients with type 2 diabetes mellitus has not been investigated. METHODS Data analysis was performed in 2014. The reimbursement databases of Taiwanese female patients with a new diagnosis of type 2 diabetes mellitus between 1998 and 2002 (n = 479,475) were retrieved from the National Health Insurance for follow-up of ovarian cancer until the end of 2009. Metformin was treated as a time-dependent variable; and of these patients, 286,106 were never-users, and 193,369 were ever-users. A time-dependent approach was used to calculate ovarian cancer incidence and estimate hazard ratios by Cox regression for never-users (as referent group), ever-users and subgroups of metformin exposure (tertiles of cumulative duration and cumulative dose). RESULTS During follow-up, 601 metformin ever-users and 2600 never-users developed ovarian cancer, representing an incidence of 49.4 and 146.4 per 100,000 person-years, respectively. The overall fully adjusted hazard ratio (95% confidence intervals) for ever-users versus never-users was 0.658 (0.593-0.730). The fully adjusted hazard ratios for the first, second and third tertiles of cumulative duration of metformin therapy were 1.169 (1.019-1.341), 0.761 (0.644-0.898) and 0.276 (0.225-0.340), respectively (p trend < 0.01) and 1.220 (1.067-1.395), 0.610 (0.513-0.725) and 0.305 (0.248-0.374), respectively (p trend < 0.01), for a cumulative dose of metformin. In additional analyses, sulfonylureas but not the other antidiabetic drugs were associated with a reduced risk of ovarian cancer. CONCLUSIONS Metformin use is associated with a decreased risk of ovarian cancer.
Collapse
Affiliation(s)
- Chin-Hsiao Tseng
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan, Taiwan
| |
Collapse
|
111
|
An apoptosis-enhancing drug overcomes platinum resistance in a tumour-initiating subpopulation of ovarian cancer. Nat Commun 2015; 6:7956. [PMID: 26234182 PMCID: PMC4532886 DOI: 10.1038/ncomms8956] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 06/29/2015] [Indexed: 02/07/2023] Open
Abstract
High-grade serous ovarian cancers (HGSCs) are deadly malignancies that relapse despite carboplatin chemotherapy. Here we show that 16 independent primary HGSC samples contain a CA125-negative population enriched for carboplatin-resistant cancer initiating cells. Transcriptome analysis reveals upregulation of homologous recombination DNA repair and anti-apoptotic signals in this population. While treatment with carboplatin enriches for CA125-negative cells, co-treatment with carboplatin and birinapant eliminates these cells in HGSCs expressing high levels of the inhibitor of apoptosis protein cIAP in the CA125-negative population. Birinapant sensitizes CA125-negative cells to carboplatin by mediating degradation of cIAP causing cleavage of caspase 8 and restoration of apoptosis. This co-therapy significantly improves disease-free survival in vivo compared with either therapy alone in tumour-bearing mice. These findings suggest that therapeutic strategies that target CA125-negative cells may be useful in the treatment of HGSC. Despite normalization of the CA125 serum biomarker at the completion of carboplatin therapy the vast majority of patients with high grade serous ovarian cancers relapse. Here, Janzen et al., identify a sub-population of tumor cells that are CA125 negative, cancer initiating and platinum resistant but readily eliminated with the addition of apoptosis enhancing drugs to carboplatin.
Collapse
|
112
|
Metformin inhibits the proliferation, metastasis, and cancer stem-like sphere formation in osteosarcoma MG63 cells in vitro. Tumour Biol 2015; 36:9873-83. [PMID: 26164004 DOI: 10.1007/s13277-015-3751-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 07/02/2015] [Indexed: 01/08/2023] Open
Abstract
Metformin is an oral drug that has been widely used to treat type 2 diabetes mellitus. Interestingly, accumulated evidence indicate that metformin may reduce the risk of cancer in patients with type 2 diabetes and inhibit tumor cell growth and survival in numerous malignancies, including osteosarcoma (OS) cells. In the present study, we aimed to investigate the effects of metformin on the proliferation, migration, invasion, and sphere formation in OS MG63 cells in vitro. Metformin suppressed OS MG63 cell proliferation in a dose- and time-dependent manner and markedly blocked anti-metastatic potentials, migration, and invasion, by downregulating matrix metalloproteinase 2 (MMP2) and MMP9. Besides, we established OS cancer stem-like cell (CSC) model with sarcosphere formation assay and demonstrated that metformin posed damage on CSCs in OS by inhibiting sphere formation and by inducing their stemness loss. The stemness of CSCs in OS such as self-renewal and differentiation potentials was both impaired with a significant decrease of Oct-4 and Nanog activation. Consistent with this, the positive rates of CD90, CD133, and stage-specific embryonic antigen-4 (SSEA-4) were all observed with reductions in response to metformin exposure. In addition, Western blot showed that metformin activated AMPKα at Tyr172, followed by a downregulated phosphorylation of mammalian target of rapamycin (mTOR)/S6 and feedback activation of p-AKT Ser(473) in both OS MG63 cells and CSCs. This indicates that AMPK/mTOR/S6 signaling pathway might be involved in the growth inhibition of both OS MG63 cells and CSCs. These results suggest that metformin, a potential anti-neoplastic agent, might make it a novel therapeutic choice for the treatment of OS in the future.
Collapse
|
113
|
Abstract
IMPORTANCE The obese population in the United States is reaching epic proportions, and obesity is linked to an increased risk for several cancers including gynecologic cancers. Obesity is not only a risk factor but also a marker of poor prognosis. It is crucial to develop novel treatment strategies to target this population. Metformin is a biguanide drug, typically used for diabetes treatment, currently being studied to evaluate its role in the treatment and prevention of gynecologic cancers. OBJECTIVE The aim of this study was to review the underlying biologic mechanisms of metformin's antitumorigenic effects. We assessed the epidemiologic and preclinical data that support the use of metformin in patients with endometrial and ovarian cancer. Finally, we reviewed current clinical trials that incorporate metformin as a prevention or treatment strategy for gynecologic cancers. EVIDENCE ACQUISITION A thorough search of PubMed for all current literature was performed. All preclinical, clinical, and epidemiologic reviews were evaluated across all cancers, with a focus on gynecologic cancer. RESULTS The preclinical, epidemiologic, and clinical data evaluated in this review are strongly supportive of the use of metformin for the prevention and treatment of gynecologic cancer. On the basis of these data, centers are currently enrolling for clinical trials using metformin in patients diagnosed with gynecologic malignancies. CONCLUSIONS AND RELEVANCE The data supporting the use of metformin in the prevention and treatment of cancers are building, including that of endometrial and ovarian cancer. The association between obesity, insulin resistance, as well as increased risk and poor outcomes in endometrial and ovarian cancer patients makes metformin an attractive agent for the prevention and treatment of these diseases.
Collapse
|
114
|
Cioce M, Valerio M, Casadei L, Pulito C, Sacconi A, Mori F, Biagioni F, Manetti C, Muti P, Strano S, Blandino G. Metformin-induced metabolic reprogramming of chemoresistant ALDHbright breast cancer cells. Oncotarget 2015; 5:4129-43. [PMID: 24980829 PMCID: PMC4147311 DOI: 10.18632/oncotarget.1864] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Metabolic remodeling is a hallmark of cancer progression and may affect tumor chemoresistance. Here we investigated by 1H-NMR/PCA analysis the metabolic profile of chemoresistant breast cancer cell subpopulations (ALDHbright cells) and their response to metformin, a promising anticancer metabolic modulator. The purified ALDHbright cells exhibited a different metabolic profile as compared to their chemosensitive ALDHlow counterparts. Metformin treatment strongly affected the metabolism of the ALDHbright cells thereby affecting, among the others, the glutathione metabolism, whose upregulation is a feature of progenitor-like, chemoresistant cell subpopulations. Globally, metformin treatment reduced the differences between ALDHbright and ALDHlow cells, making the former more similar to the latter. Metformin broadly modulated microRNAs in the ALDHbright cells, with a large fraction of them predicted to target the same metabolic pathways experimentally identified by 1H-NMR. Additionally, metformin modulated the levels of c-MYC and IRS-2, and this correlated with changes of the microRNA-33a levels. In summary, we observed, both by 1H-NMR and microRNA expression studies, that metformin treatment reduced the differences between the chemoresistant ALDHbright cells and the chemosensitive ALDHlow cells. This works adds on the potential therapeutic relevance of metformin and shows the potential for metabolic reprogramming to modulate cancer chemoresistance.
Collapse
Affiliation(s)
- Mario Cioce
- Department of Cardiothoracic Surgery, NYU Langone Medical Center, New York, NY USA. These two authors contributed equally
| | - MariaCristina Valerio
- Department of Chemistry, University of Rome 'La Sapienza', 00185 Rome, Italy. These two authors contributed equally
| | - Luca Casadei
- Department of Chemistry, University of Rome 'La Sapienza', 00185 Rome, Italy
| | - Claudio Pulito
- Molecular Chemoprevention Group, Italian National Cancer Institute "Regina Elena", Rome, Italy
| | - Andrea Sacconi
- Translational Oncogenomic Unit, Italian National Cancer Institute "Regina Elena", Rome, Italy
| | - Federica Mori
- Molecular Chemoprevention Group, Italian National Cancer Institute "Regina Elena", Rome, Italy
| | - Francesca Biagioni
- Translational Oncogenomic Unit, Italian National Cancer Institute "Regina Elena", Rome, Italy
| | - Cesare Manetti
- Department of Chemistry, University of Rome 'La Sapienza', 00185 Rome, Italy
| | - Paola Muti
- Department of Oncology, McMaster University, Hamilton, Ontario, L8V 5C2, Canada
| | - Sabrina Strano
- Translational Oncogenomic Unit, Italian National Cancer Institute "Regina Elena", Rome, Italy
| | - Giovanni Blandino
- Molecular Chemoprevention Group, Italian National Cancer Institute "Regina Elena", Rome, Italy
| |
Collapse
|
115
|
Moon HS, Kim B, Gwak H, Suh DH, Song YS. Autophagy and protein kinase RNA-like endoplasmic reticulum kinase (PERK)/eukaryotic initiation factor 2 alpha kinase (eIF2α) pathway protect ovarian cancer cells from metformin-induced apoptosis. Mol Carcinog 2015; 55:346-56. [DOI: 10.1002/mc.22284] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 12/15/2014] [Accepted: 12/18/2014] [Indexed: 01/12/2023]
Affiliation(s)
- Hee-sun Moon
- Interdisciplinary Program in Cancer Biology; Seoul National University; College of Medicine; Seoul Korea
- Cancer Research Institute; Seoul National University; College of Medicine; Seoul Korea
| | - Boyun Kim
- Cancer Research Institute; Seoul National University; College of Medicine; Seoul Korea
- Biomodulation; Department of Agricultural Biotechnology; Seoul National University; Seoul Korea
| | - HyeRan Gwak
- Cancer Research Institute; Seoul National University; College of Medicine; Seoul Korea
- Biomodulation; Department of Agricultural Biotechnology; Seoul National University; Seoul Korea
| | - Dong Hoon Suh
- Department of Obstetrics and Gynecology; Seoul National University Bundang Hospital; Seongnam Korea
| | - Yong Sang Song
- Interdisciplinary Program in Cancer Biology; Seoul National University; College of Medicine; Seoul Korea
- Cancer Research Institute; Seoul National University; College of Medicine; Seoul Korea
- Biomodulation; Department of Agricultural Biotechnology; Seoul National University; Seoul Korea
- Department of Obstetrics and Gynecology; Seoul National University; College of Medicine; Seoul Korea
| |
Collapse
|
116
|
Abstract
Metformin, a prescribed drug for type 2 diabetes, has been reported to have anti-cancer effects; however, the underlying mechanism is poorly understood. Here we show that this mechanism may be immune-mediated. Metformin enabled normal but not T-cell-deficient SCID mice to reject solid tumors. In addition, it increased the number of CD8(+) tumor-infiltrating lymphocytes (TILs) and protected them from apoptosis and exhaustion characterized by decreased production of IL-2, TNFα, and IFNγ. CD8(+) TILs capable of producing multiple cytokines were mainly PD-1(-)Tim-3(+), an effector memory subset responsible for tumor rejection. Combined use of metformin and cancer vaccine improved CD8(+) TIL multifunctionality. The adoptive transfer of antigen-specific CD8(+) T cells treated with metformin concentrations as low as 10 μM showed efficient migration into tumors while maintaining multifunctionality in a manner sensitive to the AMP-activated protein kinase (AMPK) inhibitor compound C. Therefore, a direct effect of metformin on CD8(+) T cells is critical for protection against the inevitable functional exhaustion in the tumor microenvironment.
Collapse
|
117
|
Lim JJ, Yang K, Taylor-Harding B, Wiedemeyer WR, Buckanovich RJ. VEGFR3 inhibition chemosensitizes ovarian cancer stemlike cells through down-regulation of BRCA1 and BRCA2. Neoplasia 2015; 16:343-53.e1-2. [PMID: 24862760 DOI: 10.1016/j.neo.2014.04.003] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 04/02/2014] [Accepted: 04/03/2014] [Indexed: 11/28/2022] Open
Abstract
In ovarian cancer, loss of BRCA gene expression in tumors is associated with improved response to chemotherapy and increased survival. A means to pharmacologically downregulate BRCA gene expression could improve the outcomes of patients with BRCA wild-type tumors. We report that vascular endothelial growth factor receptor 3 (VEGFR3) inhibition in ovarian cancer cells is associated with decreased levels of both BRCA1 and BRCA2. Inhibition of VEGFR3 in ovarian tumor cells was associated with growth arrest. CD133(+) ovarian cancer stemlike cells were preferentially susceptible to VEGFR3-mediated growth inhibition. VEGFR3 inhibition-mediated down-regulation of BRCA gene expression reversed chemotherapy resistance and restored chemosensitivity in resistant cell lines in which a BRCA2 mutation had reverted to wild type. Finally, we demonstrate that tumor-associated macrophages are a primary source of VEGF-C in the tumor microenvironment. Our studies suggest that VEGFR3 inhibition may be a pharmacologic means to downregulate BRCA genes and improve the outcomes of patients with BRCA wild-type tumors.
Collapse
Affiliation(s)
- Jaeyoung J Lim
- Division of Hematology Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Kun Yang
- Division of Hematology Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Barbie Taylor-Harding
- Department of Obstetrics and Gynecology, University of California, Los Angeles, CA, USA
| | - W Ruprecht Wiedemeyer
- Department of Obstetrics and Gynecology, University of California, Los Angeles, CA, USA
| | - Ronald J Buckanovich
- Division of Hematology Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA; Division of Gynecology and Oncology, Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
118
|
The double-edged sword of AMPK signaling in cancer and its therapeutic implications. Arch Pharm Res 2015; 38:346-57. [PMID: 25575627 DOI: 10.1007/s12272-015-0549-z] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 01/05/2015] [Indexed: 12/19/2022]
Abstract
5'-AMP-activated protein kinase (AMPK) plays a pivotal role in maintaining energy and redox homeostasis under various metabolic stress conditions. Metabolic adaptation, which can be triggered by the activation of AMPK during metabolic stress, is the critical process for cell survival through the maintenance of ATP and NADPH levels. The importance of such regulation of fundamental process poses the AMPK signaling pathway in one of the most attractive therapeutic targets in many pathologies such as diabetes and cancer. In cancer, however, accumulating data suggest that the role of AMPK would not be simply defined as anti- or pro-tumorigenic, but it seems to have two faces like a double-edged sword. Importantly, recent studies showed that the anti-tumorigenic effects of many 'indirect' AMPK activators such as anti-diabetic biguanides are not dependent on AMPK; rather the activation of AMPK induces the resistance to their cytotoxic effects, emphasizing the pro-tumorigenic effect of AMPK. In this review, we summarize and discuss recent findings suggesting the two faces of AMPK in cancer, and discuss how we can exploit this unique feature of AMPK for novel therapeutic intervention.
Collapse
|
119
|
Uehara T, Mitsuhashi A, Tsuruoka N, Shozu M. Metformin potentiates the anticancer effects of cisplatin under normoxic conditions in vitro. Oncol Rep 2014; 33:744-50. [PMID: 25421433 DOI: 10.3892/or.2014.3611] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 09/19/2014] [Indexed: 11/05/2022] Open
Abstract
Metformin is a diabetes drug with anticancer properties. Several studies have investigated the effects of metformin combined with chemotherapeutic agents, with controversial results. This study evaluated the efficacy of combined metformin/cisplatin treatment in an endometrial cancer cell line. Ishikawa cells were treated with metformin, cisplatin or both types of treatment. Cell proliferation was evaluated by quantification and colorimetric and thymidine incorporation assays, cell cycle progression was assessed by flow cytometry, and apoptosis by the caspase-3 activity assay. The effects of metformin and cisplatin used in combination were assessed under normoxic (21% O2) and hypoxic (1% O2) conditions. Mitochondrial morphology was examined using the MitoTracker dye, while function was assayed by lactate production. Discrepant results were obtained from the different assays of cell proliferation, with the value obtained from the colorimetric assay being higher than that from cell counts after drug treatment. Combined treatment with metformin (≥2 mM) and cisplatin (1 µM) had additive anti-proliferative effects on cells under normoxic conditions. However, the additive effect of metformin was attenuated under hypoxia. Metformin caused morphological and functional changes in mitochondria, which appeared shortened after exposure to metformin, while the connections between individual mitochondria appeared weaker. Additionally, decreased MitoTracker staining was observed after an 8-h exposure to metformin. The colorimetric assay did not accurately determine the effects of metformin and cisplatin on cell proliferation. The additive effects of metformin on cisplatin-induced inhibition of cell proliferation were attenuated under hypoxic conditions, while metformin compromised mitochondrial structure and function. Additional studies are needed to determine the efficacy of this drug combination in vivo.
Collapse
Affiliation(s)
- Takashi Uehara
- Department of Reproductive Medicine, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | - Akira Mitsuhashi
- Department of Reproductive Medicine, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | - Nobuhide Tsuruoka
- Department of Reproductive Medicine, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | - Makio Shozu
- Department of Reproductive Medicine, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| |
Collapse
|
120
|
Febbraro T, Lengyel E, Romero IL. Old drug, new trick: repurposing metformin for gynecologic cancers? Gynecol Oncol 2014; 135:614-21. [PMID: 25455733 DOI: 10.1016/j.ygyno.2014.10.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 10/07/2014] [Accepted: 10/13/2014] [Indexed: 12/26/2022]
Abstract
OBJECTIVE There is increasing pre-clinical and clinical evidence that metformin, a commonly used diabetes medication, has a protective effect in cancer. The aim of this review is to discuss metformin's anti-cancer molecular mechanisms of action and to summarize the current literature demonstrating metformin's potential in gynecologic cancer prevention and treatment. METHODS A PubMed search was conducted combining the keywords "metformin" with "neoplasm", "uterine neoplasms", "ovarian neoplasms", and "uterine cervical neoplasms". Studies published in English between 1994 and 2014 were included. RESULTS Pre-clinical studies in endometrial, ovarian, and cervical cancer suggest that metformin inhibits the growth of cancer cells. The primary molecular mechanism mediating this effect appears to be the activation of AMP-activated protein kinase (AMPK) and the subsequent inhibition of mammalian targets of rapamycin (mTOR). The pre-clinical findings are augmented by clinical studies indicating that metformin use is associated with a reduced risk of cancer and improved survival in diabetic women with ovarian and endometrial cancers. No clinical analyses have evaluated metformin use and cervical cancer. Overall, the data showing a favorable effect of metformin is strongest for endometrial and ovarian cancer and prospective clinical testing is ongoing in these two malignancies. CONCLUSIONS Numerous clinical studies have reported an association between metformin use by diabetic patients and improved outcomes in gynecologic cancers. In addition, pre-clinical reports have identified plausible biological mechanisms to explain the molecular mechanism of action of metformin in cancer. However, the most important question remains unanswered: Will metformin be effective against cancer in patients without diabetes? Until this question is answered with prospective clinical testing, the role of metformin in the treatment or prevention of gynecologic malignancies remains theoretical and the clinical use of metformin as a cancer therapeutic is experimental.
Collapse
Affiliation(s)
- Terri Febbraro
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, USA
| | - Ernst Lengyel
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, USA
| | - Iris L Romero
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
121
|
Mimeault M, Batra SK. Altered gene products involved in the malignant reprogramming of cancer stem/progenitor cells and multitargeted therapies. Mol Aspects Med 2014; 39:3-32. [PMID: 23994756 PMCID: PMC3938987 DOI: 10.1016/j.mam.2013.08.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 08/16/2013] [Accepted: 08/21/2013] [Indexed: 12/17/2022]
Abstract
Recent studies in the field of cancer stem cells have revealed that the alterations in key gene products involved in the epithelial-mesenchymal transition (EMT) program, altered metabolic pathways such as enhanced glycolysis, lipogenesis and/or autophagy and treatment resistance may occur in cancer stem/progenitor cells and their progenies during cancer progression. Particularly, the sustained activation of diverse developmental cascades such as hedgehog, epidermal growth factor receptor (EGFR), Wnt/β-catenin, Notch, transforming growth factor-β (TGF-β)/TGF-βR receptors and/or stromal cell-derived factor-1 (SDF-1)/CXC chemokine receptor 4 (CXCR4) can play critical functions for high self-renewal potential, survival, invasion and metastases of cancer stem/progenitor cells and their progenies. It has also been observed that cancer cells may be reprogrammed to re-express different pluripotency-associated stem cell-like markers such as Myc, Oct-3/4, Nanog and Sox-2 along the EMT process and under stressful and hypoxic conditions. Moreover, the enhanced expression and/or activities of some drug resistance-associated molecules such as Bcl-2, Akt/molecular target of rapamycin (mTOR), nuclear factor-kappaB (NF-κB), hypoxia-inducible factors (HIFs), macrophage inhibitory cytokine-1 (MIC-1) and ATP-binding cassette (ABC) multidrug transporters frequently occur in cancer cells during cancer progression and metastases. These molecular events may cooperate for the survival and acquisition of a more aggressive and migratory behavior by cancer stem/progenitor cells and their progenies during cancer transition to metastatic and recurrent disease states. Of therapeutic interest, these altered gene products may also be exploited as molecular biomarkers and therapeutic targets to develop novel multitargeted strategies for improving current cancer therapies and preventing disease relapse.
Collapse
Affiliation(s)
- Murielle Mimeault
- Department of Biochemistry and Molecular Biology, College of Medicine, Fred & Pamela Buffett Cancer Center, Eppley Cancer Institute, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA.
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, College of Medicine, Fred & Pamela Buffett Cancer Center, Eppley Cancer Institute, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA.
| |
Collapse
|
122
|
Haygood CLW, Arend RC, Straughn JM, Buchsbaum DJ. Ovarian cancer stem cells: Can targeted therapy lead to improved progression-free survival? World J Stem Cells 2014; 6:441-447. [PMID: 25258665 PMCID: PMC4172672 DOI: 10.4252/wjsc.v6.i4.441] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/22/2014] [Accepted: 09/01/2014] [Indexed: 02/06/2023] Open
Abstract
Despite significant effort and research funds, epithelial ovarian cancer remains a very deadly disease. There are no effective screening methods that discover early stage disease; the majority of patients are diagnosed with advanced disease. Treatment modalities consist primarily of radical debulking surgery followed by taxane and platinum-based chemotherapy. Newer therapies including limited targeted agents and intraperitoneal delivery of chemotherapeutic drugs have improved disease-free intervals, but failed to yield long-lasting cures in most patients. Chemotherapeutic resistance, particularly in the recurrent setting, plagues the disease. Targeting the pathways and mechanisms behind the development of chemoresistance in ovarian cancer could lead to significant improvement in patient outcomes. In many malignancies, including blood and other solid tumors, there is a subgroup of tumor cells, separate from the bulk population, called cancer stem cells (CSCs). These CSCs are thought to be the cause of metastasis, recurrence and resistance. However, to date, ovarian CSCs have been difficult to identify, isolate, and target. It is felt by many investigators that finding a putative ovarian CSC and a chemotherapeutic agent to target it could be the key to a cure for this deadly disease. This review will focus on recent advances in this arena and discuss some of the controversies surrounding the concept.
Collapse
|
123
|
Xia M, Yu H, Gu S, Xu Y, Su J, Li H, Kang J, Cui M. p62/SQSTM1 is involved in cisplatin resistance in human ovarian cancer cells via the Keap1-Nrf2-ARE system. Int J Oncol 2014; 45:2341-8. [PMID: 25269472 DOI: 10.3892/ijo.2014.2669] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/07/2014] [Indexed: 11/05/2022] Open
Abstract
The mechanisms underlying cisplatin resistance in tumors are not fully understood. Previous studies have reported that cellular resistance to oxidative stress is accompanied by resistance to cisplatin. However, the relationship between the resistance to oxidative stress and cisplatin drug resistance in human ovarian cancer cells (HOCCs) is not clear. Here, we reveal a critical role for the multifunctional protein p62/SQSTM1 in cisplatin resistance in human ovarian cancer cells (HOCCs). p62/SQSTM1 (sequestosome 1) plays important roles in cell differentiation, proliferation and as an antiapoptotic molecule. We found that cisplatin-resistant SKOV3/DDP cells express much higher levels of p62 than do cisplatin-sensitive SKOV3 cells. The protein p62 can activate the Keap1-Nrf2-ARE signaling pathway and induce the expression of antioxidant genes in SKOV3/DDP cells. Knockdown of p62 resensitizes SKOV3/DDP cells to cisplatin. Collectively, our data indicate that cisplatin resistance in HOCCs is partially attributable to their high expression of p62, which plays an important role in preventing ROS stress-induced apoptosis by regulating the Keap1-Nrf2-ARE signaling pathway.
Collapse
Affiliation(s)
- Meihui Xia
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Huimei Yu
- Department of Pathophysiology, School of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Shuang Gu
- Department of Thoracic Surgery, The People's Hospital of Jilin Province, Changchun, Jilin 130021, P.R. China
| | - Ye Xu
- Medical Research Lab, Jilin Medical College, Jilin 132013, P.R. China
| | - Jing Su
- Department of Pathophysiology, School of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Hongyan Li
- Department of Pathophysiology, School of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jinsong Kang
- Department of Pathophysiology, School of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Manhua Cui
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| |
Collapse
|
124
|
Orecchioni S, Reggiani F, Talarico G, Mancuso P, Calleri A, Gregato G, Labanca V, Noonan DM, Dallaglio K, Albini A, Bertolini F. The biguanides metformin and phenformin inhibit angiogenesis, local and metastatic growth of breast cancer by targeting both neoplastic and microenvironment cells. Int J Cancer 2014; 136:E534-44. [DOI: 10.1002/ijc.29193] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 08/06/2014] [Accepted: 08/27/2014] [Indexed: 12/15/2022]
Affiliation(s)
- Stefania Orecchioni
- Laboratory of Hematology-Oncology; European Institute of Oncology; Milan Italy
| | - Francesca Reggiani
- Laboratory of Hematology-Oncology; European Institute of Oncology; Milan Italy
| | - Giovanna Talarico
- Laboratory of Hematology-Oncology; European Institute of Oncology; Milan Italy
| | - Patrizia Mancuso
- Laboratory of Hematology-Oncology; European Institute of Oncology; Milan Italy
| | - Angelica Calleri
- Laboratory of Hematology-Oncology; European Institute of Oncology; Milan Italy
| | - Giuliana Gregato
- Laboratory of Hematology-Oncology; European Institute of Oncology; Milan Italy
| | - Valentina Labanca
- Laboratory of Hematology-Oncology; European Institute of Oncology; Milan Italy
| | - Douglas M. Noonan
- Scientific and Technologic Park; IRCCS MultiMedica Italy
- Department of Biotechnology and Life Sciences; University of Insubria; Varese Italy
| | - Katiuscia Dallaglio
- Research and Statistics Department; IRCCS "Tecnologie Avanzate e Modelli Assistenziali in Oncologia" Arcispedale S. Maria Nuova; Reggio Emilia Italy
| | - Adriana Albini
- Research and Statistics Department; IRCCS "Tecnologie Avanzate e Modelli Assistenziali in Oncologia" Arcispedale S. Maria Nuova; Reggio Emilia Italy
| | - Francesco Bertolini
- Laboratory of Hematology-Oncology; European Institute of Oncology; Milan Italy
| |
Collapse
|
125
|
Anderson AS, Roberts PC, Frisard MI, Hulver MW, Schmelz EM. Ovarian tumor-initiating cells display a flexible metabolism. Exp Cell Res 2014; 328:44-57. [PMID: 25172556 DOI: 10.1016/j.yexcr.2014.08.028] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 08/14/2014] [Accepted: 08/17/2014] [Indexed: 01/06/2023]
Abstract
An altered metabolism during ovarian cancer progression allows for increased macromolecular synthesis and unrestrained growth. However, the metabolic phenotype of cancer stem or tumor-initiating cells, small tumor cell populations that are able to recapitulate the original tumor, has not been well characterized. In the present study, we compared the metabolic phenotype of the stem cell enriched cell variant, MOSE-LFFLv (TIC), derived from mouse ovarian surface epithelial (MOSE) cells, to their parental (MOSE-L) and benign precursor (MOSE-E) cells. TICs exhibit a decrease in glucose and fatty acid oxidation with a concomitant increase in lactate secretion. In contrast to MOSE-L cells, TICs can increase their rate of glycolysis to overcome the inhibition of ATP synthase by oligomycin and can increase their oxygen consumption rate to maintain proton motive force when uncoupled, similar to the benign MOSE-E cells. TICs have an increased survival rate under limiting conditions as well as an increased survival rate when treated with AICAR, but exhibit a higher sensitivity to metformin than MOSE-E and MOSE-L cells. Together, our data show that TICs have a distinct metabolic profile that may render them flexible to adapt to the specific conditions of their microenvironment. By better understanding their metabolic phenotype and external environmental conditions that support their survival, treatment interventions can be designed to extend current therapy regimens to eradicate TICs.
Collapse
Affiliation(s)
- Angela S Anderson
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA
| | - Paul C Roberts
- Biomedical Science and Pathobiology, Virginia Tech, Blacksburg, VA, USA
| | - Madlyn I Frisard
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA
| | - Matthew W Hulver
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA.
| | - Eva M Schmelz
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
126
|
Abstract
Autophagy, or 'self-eating', is an adaptive process that enables cells to cope with metabolic, toxic, and even infectious stressors. Although the adaptive capability of autophagy is generally considered beneficial, autophagy can also enhance nutrient utilization and improve growth characteristics of cancer cells. Moreover, autophagy can promote greater cellular robustness in the context of therapeutic intervention. In advanced prostate cancer, preclinical data provide evidence that autophagy facilitates both disease progression and therapeutic resistance. Notably, androgen deprivation therapy, taxane-based chemotherapy, targeted kinase inhibition, and nutrient restriction all induce significant cellular distress and, subsequently, autophagy. Understanding the context-dependent role of autophagy in cancer development and treatment resistance has the potential to improve current treatment of advanced prostate cancer. Indeed, preclinical studies have shown that the pharmacological inhibition of autophagy (with agents including chloroquine, hydroxychloroquine, metformin, and desmethylclomipramine) can enhance the cell-killing effect of cancer therapeutics, and a number of these agents are currently under investigation in clinical trials. However, many of these autophagy modulators are relatively nonspecific, and cytotoxicity in noncancerous tissues is still a concern. Moving forward, refinement of autophagy modulation is needed.
Collapse
|
127
|
Wang Y, Cardenas H, Fang F, Condello S, Taverna P, Segar M, Liu Y, Nephew KP, Matei D. Epigenetic targeting of ovarian cancer stem cells. Cancer Res 2014; 74:4922-36. [PMID: 25035395 DOI: 10.1158/0008-5472.can-14-1022] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Emerging results indicate that cancer stem-like cells contribute to chemoresistance and poor clinical outcomes in many cancers, including ovarian cancer. As epigenetic regulators play a major role in the control of normal stem cell differentiation, epigenetics may offer a useful arena to develop strategies to target cancer stem-like cells. Epigenetic aberrations, especially DNA methylation, silence tumor-suppressor and differentiation-associated genes that regulate the survival of ovarian cancer stem-like cells (OCSC). In this study, we tested the hypothesis that DNA-hypomethylating agents may be able to reset OCSC toward a differentiated phenotype by evaluating the effects of the new DNA methytransferase inhibitor SGI-110 on OCSC phenotype, as defined by expression of the cancer stem-like marker aldehyde dehydrogenase (ALDH). We demonstrated that ALDH(+) ovarian cancer cells possess multiple stem cell characteristics, were highly chemoresistant, and were enriched in xenografts residual after platinum therapy. Low-dose SGI-110 reduced the stem-like properties of ALDH(+) cells, including their tumor-initiating capacity, resensitized these OCSCs to platinum, and induced reexpression of differentiation-associated genes. Maintenance treatment with SGI-110 after carboplatin inhibited OCSC growth, causing global tumor hypomethylation and decreased tumor progression. Our work offers preclinical evidence that epigenome-targeting strategies have the potential to delay tumor progression by reprogramming residual cancer stem-like cells. Furthermore, the results suggest that SGI-110 might be administered in combination with platinum to prevent the development of recurrent and chemoresistant ovarian cancer.
Collapse
Affiliation(s)
- Yinu Wang
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana
| | - Horacio Cardenas
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Fang Fang
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana
| | - Salvatore Condello
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | | | - Matthew Segar
- Center for Computational Biology and Bioinformatics, Indianapolis, Indiana
| | - Yunlong Liu
- Center for Computational Biology and Bioinformatics, Indianapolis, Indiana. Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana. Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, Indiana
| | | | - Daniela Matei
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana. Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, Indiana. Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, Indiana. VA Roudebush Hospital, Indianapolis, Indiana.
| |
Collapse
|
128
|
Zinzi L, Contino M, Cantore M, Capparelli E, Leopoldo M, Colabufo NA. ABC transporters in CSCs membranes as a novel target for treating tumor relapse. Front Pharmacol 2014; 5:163. [PMID: 25071581 PMCID: PMC4091306 DOI: 10.3389/fphar.2014.00163] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 06/20/2014] [Indexed: 12/12/2022] Open
Abstract
CSCs are responsible for the high rate of recurrence and chemoresistance of different types of cancer. The current antineoplastic agents able to inhibit bulk replicating cancer cells and radiation treatment are not efficacious toward CSCs since this subpopulation has several intrinsic mechanisms of resistance. Among these mechanisms, the expression of ATP-Binding Cassette (ABC) transporters family and the activation of different signaling pathways (such as Wnt/β-catenin signaling, Hedgehog, Notch, Akt/PKB) are reported. Therefore, considering ABC transporters expression on CSCs membranes, compounds able to modulate MDR could induce cytotoxicity in these cells disclosing an exciting and alternative strategy for targeting CSCs in tumor therapy. The next challenge in the cure of cancer relapse may be a multimodal strategy, an approach where specific CSCs targeting drugs exert simultaneously the ability to circumvent tumor drug resistance (ABC transporters modulation) and cytotoxic activity toward CSCs and the corresponding differentiated tumor cells. The efficacy of suggested multimodal strategy could be probed by using several scaffolds active toward MDR pumps on CSCs isolated by tumor specimens.
Collapse
Affiliation(s)
- Laura Zinzi
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "A. Moro," Bari, Italy
| | - Marialessandra Contino
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "A. Moro," Bari, Italy
| | - Mariangela Cantore
- Dipartimento di Farmacia-Scienze del Farmaco, Biofordrug srl, Spin-off of University of Bari Bari, Italy
| | - Elena Capparelli
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "A. Moro," Bari, Italy
| | - Marcello Leopoldo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "A. Moro," Bari, Italy ; Dipartimento di Farmacia-Scienze del Farmaco, Biofordrug srl, Spin-off of University of Bari Bari, Italy
| | - Nicola A Colabufo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "A. Moro," Bari, Italy ; Dipartimento di Farmacia-Scienze del Farmaco, Biofordrug srl, Spin-off of University of Bari Bari, Italy
| |
Collapse
|
129
|
Zaafar DK, Zaitone SA, Moustafa YM. Role of Metformin in Suppressing 1,2-Dimethylhydrazine-Induced Colon Cancer in Diabetic and Non-Diabetic Mice: Effect on Tumor Angiogenesis and Cell Proliferation. PLoS One 2014; 9:e100562. [DOI: https:/doi.org/10.1371/journal.pone.0100562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023] Open
|
130
|
Zaafar DK, Zaitone SA, Moustafa YM. Role of metformin in suppressing 1,2-dimethylhydrazine-induced colon cancer in diabetic and non-diabetic mice: effect on tumor angiogenesis and cell proliferation. PLoS One 2014; 9:e100562. [PMID: 24971882 PMCID: PMC4074064 DOI: 10.1371/journal.pone.0100562] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 05/29/2014] [Indexed: 12/18/2022] Open
Abstract
Several studies indicated that type 2 diabetes mellitus and insulin resistance are associated with increased colon cancer risk. Recently, studies suggest that metformin can reduce cancer risk in diabetic or non-diabetic patients with unclear mechanisms. This work aimed to determine the effect of metformin on chemically-induced colon cancer in mice. Colon cancer was induced using 1,2-dimethylhydrazine (DMH, 20 mg/kg/week, s.c.) for fifteen weeks. Experiment I: healthy mice were fed with basal diet for four weeks and then allocated into seven groups, (i) saline, (ii) DMH, (iii) oxaliplatin, (iv-v): metformin (100 or 200 mg/kg) and (vi-vii): oxaliplatin+metformin (100 or 200 mg/kg), respectively. Experiment II: type 2 diabetes mellitus was induced by injection of STZ (30 mg/kg) after four weeks of high-fat feeding and then mice were allocated into seven groups similar to those reported in experiment I. Examination of the colonic tissue at the end of the experiment highlighted an increase in angiogenic markers and cell proliferation and showed a greater immunostaining for insulin growth factor I receptors and CD34 in the colon of diabetic mice compared to non-diabetics. In general, metformin downregulated tumor angiogenesis and augmented the antitumor effect of oxaliplatin. Overall, the current results showed that metformin protected against DMH-induced colon cancer in non-diabetic and diabetic mice. This therapeutic effect was, at least in part, attributed to its anti-angiogenic and anti-proliferative mechanisms.
Collapse
MESH Headings
- 1,2-Dimethylhydrazine/toxicity
- Animals
- Antigens, CD34/metabolism
- Antineoplastic Agents/therapeutic use
- Antineoplastic Agents/toxicity
- Cell Proliferation/drug effects
- Colon/drug effects
- Colon/metabolism
- Colon/pathology
- Colonic Neoplasms/chemically induced
- Colonic Neoplasms/drug therapy
- Colonic Neoplasms/mortality
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diet, High-Fat
- Drug Therapy, Combination
- Hypoglycemic Agents/pharmacology
- Hypoglycemic Agents/therapeutic use
- Insulin-Like Growth Factor I/analysis
- Male
- Metformin/pharmacology
- Metformin/therapeutic use
- Mice
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Organoplatinum Compounds/therapeutic use
- Organoplatinum Compounds/toxicity
- Oxaliplatin
- Receptor, IGF Type 1/metabolism
- Survival Rate
- Vascular Endothelial Growth Factor A/blood
Collapse
Affiliation(s)
| | - Sawsan A. Zaitone
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Yasser M. Moustafa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
131
|
Zaafar DK, Zaitone SA, Moustafa YM. Role of Metformin in Suppressing 1,2-Dimethylhydrazine-Induced Colon Cancer in Diabetic and Non-Diabetic Mice: Effect on Tumor Angiogenesis and Cell Proliferation. PLoS One 2014. [DOI: https://doi.org/10.1371/journal.pone.0100562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
132
|
Kim TH, Suh DH, Kim MK, Song YS. Metformin against cancer stem cells through the modulation of energy metabolism: special considerations on ovarian cancer. BIOMED RESEARCH INTERNATIONAL 2014; 2014:132702. [PMID: 25050322 PMCID: PMC4094711 DOI: 10.1155/2014/132702] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/29/2014] [Indexed: 12/17/2022]
Abstract
Ovarian cancer is the most lethal gynecologic malignancy among women worldwide and is presumed to result from the presence of ovarian cancer stem cells. To overcome the limitation of current anticancer agents, another anticancer strategy is necessary to effectively target cancer stem cells in ovarian cancer. In many types of malignancies, including ovarian cancer, metformin, one of the most popular antidiabetic drugs, has been demonstrated to exhibit chemopreventive and anticancer efficacy with respect to incidence and overall survival rates. Thus, the metabolic reprogramming of cancer and cancer stem cells driven by genetic alterations during carcinogenesis and cancer progression could be therapeutically targeted. In this review, the potential efficacy and anticancer mechanisms of metformin against ovarian cancer stem cells will be discussed.
Collapse
Affiliation(s)
- Tae Hun Kim
- Department of Obstetrics and Gynecology, Korean Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Republic of Korea
| | - Dong Hoon Suh
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam 463-707, Republic of Korea
| | - Mi-Kyung Kim
- Biomedical Science Project, Brain Korea 21 Program for Leading Universities & Students, Seoul National University, Seoul 110-799, Republic of Korea
| | - Yong Sang Song
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 110-744, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
- Major in Biomodulation, World Class University, Seoul National University, Seoul 151-921, Republic of Korea
| |
Collapse
|
133
|
Condello S, Morgan CA, Nagdas S, Cao L, Turek J, Hurley TD, Matei D. β-Catenin-regulated ALDH1A1 is a target in ovarian cancer spheroids. Oncogene 2014; 34:2297-308. [PMID: 24954508 PMCID: PMC4275429 DOI: 10.1038/onc.2014.178] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 05/10/2014] [Accepted: 05/12/2014] [Indexed: 01/06/2023]
Abstract
Cancer cells form three dimensional (3D) multicellular aggregates (or
spheroids) under non-adherent culture conditions. In ovarian cancer (OC),
spheroids serve as a vehicle for cancer cell dissemination in the peritoneal
cavity, protecting cells from environmental stress-induced anoikis. To identify
new targetable molecules in OC spheroids, we investigated gene expression
profiles and networks upregulated in three dimensional (3D) versus traditional
monolayer culture conditions. We identified ALDH1A1, a cancer
stem cell marker as being overexpressed in OC spheroids and directly connected
to key elements of the β-catenin pathway. B-catenin function and
ALDH1A1 expression were increased in OC spheroids vs.
monolayers and in successive spheroid generations, suggesting that 3D aggregates
are enriched in cells with stem cell characteristics. B-catenin knockdown
decreased ALDH1A1 expression levels and β-catenin
coimmunoprecipitated with the ALDH1A1 promoter, suggesting that
ALDH1A1 is a direct β-catenin target. Both siRNA
mediated β-catenin knockdown and A37, a novel ALDH1A1 small molecule
enzymatic inhibitor described here for the first time, disrupted OC spheroid
formation and cell viability (p<0.001). B-catenin knockdown blocked tumor
growth and peritoneal metastasis in an OC xenograft model. These data strongly
support the role of β-catenin regulated ALDH1A1 in the maintenance of OC
spheroids and propose new ALDH1A1 inhibitors targeting this cell population.
Collapse
Affiliation(s)
- S Condello
- Department of Medicine, Indianapolis, IN, USA
| | - C A Morgan
- Department of Biochemistry and Molecular Biology, Indianapolis, IN, USA
| | - S Nagdas
- University of Virginia Medical School, Indianapolis, IN, USA
| | - L Cao
- Department of Medicine, Indianapolis, IN, USA
| | - J Turek
- College of Veterinary Medicine Purdue University, Indianapolis, IN, USA
| | - T D Hurley
- 1] Department of Biochemistry and Molecular Biology, Indianapolis, IN, USA [2] Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN, USA
| | - D Matei
- 1] Department of Medicine, Indianapolis, IN, USA [2] Department of Biochemistry and Molecular Biology, Indianapolis, IN, USA [3] Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN, USA [4] VA Roudebush Hospital, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
134
|
Honjo S, Ajani JA, Scott AW, Chen Q, Skinner HD, Stroehlein J, Johnson RL, Song S. Metformin sensitizes chemotherapy by targeting cancer stem cells and the mTOR pathway in esophageal cancer. Int J Oncol 2014; 45:567-74. [PMID: 24859412 PMCID: PMC4091970 DOI: 10.3892/ijo.2014.2450] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 01/27/2014] [Indexed: 12/16/2022] Open
Abstract
Our clinical study indicates esophageal adenocarcinoma patients on metformin had a better treatment response than those without metformin. However, the effects of metformin and the mechanisms of its action in esophageal cancer (EC) are unclear. EC cell lines were used to assess the effects of metformin alone or in combination with 5-fluorouracil on survival and apoptosis. RPPA proteomic array and immunoblots were used to identify signaling affected by metformin. Standard descriptive statistical methods were used. Reduction in cell survival and induction of apoptosis by metformin were observed in several EC cell lines. The use of metformin in combination with 5-FU significantly sensitized EC cells to the cytotoxic effect of 5-FU. RPPA array demonstrated that metformin decreased various oncogenes including PI3K/mTORsignaling and survival/cancer stem cell-related genes in cells treated with metformin compared with its control. Immunoblots and transcriptional analyses further confirm that metformin downregulated these CSC-related genes and the components of the mTOR pathway in a dose-dependent manner. Sorted ALDH-1+ cell tumor sphere forming capacity was preferentially reduced by metformin. Finally, metformin reduced tumor growth in vivo and when combined with FU, there was synergistic reduction in tumor growth. Metformin inhibits EC cell growth and sensitizes EC cells to 5-FU cytotoxic effects by targeting CSCs and the components of mTOR. The present study supports our previous clinical observations that the use of metformin is beneficial to EC patients. Metformin can complement other therapeutic combinations to effectively treat EC patients.
Collapse
Affiliation(s)
- Soichiro Honjo
- Department of Gastrointestinal Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Jaffer A Ajani
- Department of Gastrointestinal Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Ailing W Scott
- Department of Gastrointestinal Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Qiongrong Chen
- Department of Gastrointestinal Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Heath D Skinner
- Department of Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - John Stroehlein
- Department of Gastroenterology, Hepatology and Nutrition, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Randy L Johnson
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Shumei Song
- Department of Gastrointestinal Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
135
|
Li L, Han R, Xiao H, Lin C, Wang Y, Liu H, Li K, Chen H, Sun F, Yang Z, Jiang J, He Y. Metformin sensitizes EGFR-TKI-resistant human lung cancer cells in vitro and in vivo through inhibition of IL-6 signaling and EMT reversal. Clin Cancer Res 2014; 20:2714-26. [PMID: 24644001 DOI: 10.1158/1078-0432.ccr-13-2613] [Citation(s) in RCA: 196] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The EGF receptor tyrosine kinase inhibitors (EGFR-TKI) have become a standard therapy in patients with EGFR-activating mutations. Unfortunately, acquired resistance eventually limits the clinical effects and application of EGFR-TKIs. Studies have shown that suppression of epithelial-mesenchymal transition (EMT) and the interleukin (IL)-6/STAT3 pathway may abrogate this acquired mechanism of drug resistance of TKIs. This study aims to investigate the effect of metformin on sensitizing EGFR-TKI-resistant human lung cancer cells in vitro and in vivo through inhibition of IL-6 signaling and EMT reversal. EXPERIMENTAL DESIGN The effect of metformin on reversing TKI resistance was examined in vitro and in vivo using MTT, BrdUrd incorporation assay, invasion assay, flow cytometry analysis, immunostaining, Western blot analysis, and xenograft implantation. RESULTS In this study, metformin, a widely used antidiabetic agent, effectively increased the sensitivity of TKI-resistant lung cancer cells to erlotinib or gefitinib. Metformin reversed EMT and decreased IL-6 signaling activation in TKI-resistant cells, while adding IL-6 to those cells bypassed the anti-TKI-resistance effect of metformin. Furthermore, overexpression or addition of IL-6 to TKI-sensitive cells induced TKI resistance, which could be overcome by metformin. Finally, metformin-based combinatorial therapy effectively blocked tumor growth in xenografts with TKI-resistant cancer cells, which was associated with decreased IL-6 secretion and expression, EMT reversal, and decreased IL-6-signaling activation in vivo. CONCLUSION Metformin, generally considered nontoxic and remarkably inexpensive, might be used in combination with TKIs in patients with non-small cell lung cancer, harboring EGFR mutations to overcome TKI resistance and prolong survival.
Collapse
Affiliation(s)
- Li Li
- Authors' Affiliations: Departments of Respiratory Disease, Thoracic Surgery, Pathology, and Oncology; and State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Rui Han
- Authors' Affiliations: Departments of Respiratory Disease, Thoracic Surgery, Pathology, and Oncology; and State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Third Military Medical University, Chongqing, ChinaAuthors' Affiliations: Departments of Respiratory Disease, Thoracic Surgery, Pathology, and Oncology; and State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Hualiang Xiao
- Authors' Affiliations: Departments of Respiratory Disease, Thoracic Surgery, Pathology, and Oncology; and State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Caiyu Lin
- Authors' Affiliations: Departments of Respiratory Disease, Thoracic Surgery, Pathology, and Oncology; and State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yubo Wang
- Authors' Affiliations: Departments of Respiratory Disease, Thoracic Surgery, Pathology, and Oncology; and State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Hao Liu
- Authors' Affiliations: Departments of Respiratory Disease, Thoracic Surgery, Pathology, and Oncology; and State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Kunlin Li
- Authors' Affiliations: Departments of Respiratory Disease, Thoracic Surgery, Pathology, and Oncology; and State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Hengyi Chen
- Authors' Affiliations: Departments of Respiratory Disease, Thoracic Surgery, Pathology, and Oncology; and State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Fenfen Sun
- Authors' Affiliations: Departments of Respiratory Disease, Thoracic Surgery, Pathology, and Oncology; and State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Zhenzhou Yang
- Authors' Affiliations: Departments of Respiratory Disease, Thoracic Surgery, Pathology, and Oncology; and State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Jianxin Jiang
- Authors' Affiliations: Departments of Respiratory Disease, Thoracic Surgery, Pathology, and Oncology; and State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yong He
- Authors' Affiliations: Departments of Respiratory Disease, Thoracic Surgery, Pathology, and Oncology; and State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
136
|
Tomao F, Papa A, Strudel M, Rossi L, Lo Russo G, Benedetti Panici P, Ciabatta FR, Tomao S. Investigating molecular profiles of ovarian cancer: an update on cancer stem cells. J Cancer 2014; 5:301-10. [PMID: 24723972 PMCID: PMC3982176 DOI: 10.7150/jca.8610] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 02/09/2014] [Indexed: 12/14/2022] Open
Abstract
Currently we are more and more improving our knowledge about the characteristics and the role of cancer stem cells in human cancer. Particularly we have realized that self-renewing ovarian cancer stem cells (CSCs) or ovarian cancer-initiating cells, and mesenchymal stem cells (SCs) too, are probably implicated in the etiopathogenesis of epithelial ovarian cancer (EOC). There is clear evidence that these cells are also involved in its intra- and extra-peritoneal diffusion and in the occurrence of chemo-resistance. In assessing the molecular characteristics of ovarian CSCs, we have to take note that these cellular populations are rare and the absence of specific cell surface markers represents a challenge to isolate and identify pure SC populations. In our review, we focused our attention on the molecular characteristics of epithelial ovarian CSCs and on the methods to detect them starting from their biological features. The study of ovarian CSCs is taking on an increasingly important strategic role, mostly for the potential therapeutic application in the next future.
Collapse
Affiliation(s)
- Federica Tomao
- 1. Department of Gynecology and Obstetrics, Policlinico Umberto I Hospital, University of Rome, Italy
| | - Anselmo Papa
- 2. Oncology Unit, ICOT Hospital, Policlinico Umberto I Hospital, University of Rome, Italy
| | - Martina Strudel
- 2. Oncology Unit, ICOT Hospital, Policlinico Umberto I Hospital, University of Rome, Italy
| | - Luigi Rossi
- 2. Oncology Unit, ICOT Hospital, Policlinico Umberto I Hospital, University of Rome, Italy
| | - Giuseppe Lo Russo
- 2. Oncology Unit, ICOT Hospital, Policlinico Umberto I Hospital, University of Rome, Italy
| | | | | | - Silverio Tomao
- 2. Oncology Unit, ICOT Hospital, Policlinico Umberto I Hospital, University of Rome, Italy
| |
Collapse
|
137
|
Park TS, Donnenberg VS, Donnenberg AD, Zambidis ET, Zimmerlin L. Dynamic Interactions Between Cancer Stem Cells And Their Stromal Partners. CURRENT PATHOBIOLOGY REPORTS 2014; 2:41-52. [PMID: 24660130 PMCID: PMC3956651 DOI: 10.1007/s40139-013-0036-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The cancer stem cell (CSC) paradigm presumes the existence of self-renewing cancer cells capable of regenerating all tumor compartments and exhibiting stem cell-associated phenotypes. Recent interpretations of the CSC hypothesis envision stemness as a dynamic trait of tumor-initiating cells rather than a defined and unique cell type. Bidirectional crosstalk between the tumor microenvironment and the cancer bulk is well described in the literature and the tumor-associated stroma, vasculature and immune infiltrate have all been implicated as direct contributors to tumor development. These non-neoplastic cell types have also been shown to organize specific niches within the tumor bulk where they can control the intra-tumor CSC content and alter the fate of CSCs and tumor progenitors during tumorigenesis to acquire phenotypic features for invasion, metastasis and dormancy. Despite the complexity of the tumor-stroma interactome, novel therapeutic approaches envision combining tumor-ablative treatment with manipulation of the tumor microenvironment. We will review the currently available literature that provides clues about the complex cellular network that regulate the CSC phenotype and its niches during tumor progression.
Collapse
Affiliation(s)
- Tea Soon Park
- Institute for Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, United States of America
| | - Vera S. Donnenberg
- University of Pittsburgh School of Medicine, Department of Cardiothoracic Surgery, Pittsburgh, Pennsylvania, United States of America
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, United States of America
- McGowan Institute of Regenerative Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Albert D. Donnenberg
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, United States of America
- McGowan Institute of Regenerative Medicine, Pittsburgh, Pennsylvania, United States of America
- University of Pittsburgh School of Medicine, Department of Medicine, Division of Hematology/Oncology, Pittsburgh, Pennsylvania, United States of America
| | - Elias T. Zambidis
- Institute for Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, United States of America
| | - Ludovic Zimmerlin
- Institute for Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, United States of America
| |
Collapse
|
138
|
House CD, Hernandez L, Annunziata CM. Recent technological advances in using mouse models to study ovarian cancer. Front Oncol 2014; 4:26. [PMID: 24592355 PMCID: PMC3923136 DOI: 10.3389/fonc.2014.00026] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 01/28/2014] [Indexed: 12/14/2022] Open
Abstract
Serous epithelial ovarian cancer (SEOC) is the most lethal gynecological cancer in the United States with disease recurrence being the major cause of morbidity and mortality. Despite recent advances in our understanding of the molecular mechanisms responsible for the development of SEOC, the survival rate for women with this disease has remained relatively unchanged in the last two decades. Preclinical mouse models of ovarian cancer, including xenograft, syngeneic, and genetically engineered mice, have been developed to provide a mechanism for studying the development and progression of SEOC. Such models strive to increase our understanding of the etiology and dissemination of ovarian cancer in order to overcome barriers to early detection and resistance to standard chemotherapy. Although there is not a single model that is most suitable for studying ovarian cancer, improvements have led to current models that more closely mimic human disease in their genotype and phenotype. Other advances in the field, such as live animal imaging techniques, allow effective monitoring of the microenvironment and therapeutic efficacy. New and improved preclinical mouse models, combined with technological advances to study such models, will undoubtedly render success of future human clinical trials for patients with SEOC.
Collapse
Affiliation(s)
| | - Lidia Hernandez
- Women's Malignancies Branch, National Cancer Institute , Bethesda, MD , USA
| | | |
Collapse
|
139
|
Repositioning metformin in cancer: genetics, drug targets, and new ways of delivery. Tumour Biol 2014; 35:5101-10. [PMID: 24504677 DOI: 10.1007/s13277-014-1676-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 01/22/2014] [Indexed: 02/07/2023] Open
Abstract
After sitting many years on the shelves of drug stores as a harmless antidiabetic drug, metformin comes back in the spotlight of the scientific community as a surprisingly effective antineoplastic drug. Metformin targets multiple pathways that play pivotal roles in cancer progression, impacting various cellular processes, such as proliferation, cell death, metabolism, and even the cancer stemness features. The biomolecular characteristics of tumors, such as appropriate expression of organic cation transporters or genetic alterations including p53, K-ras, LKB1, and PI3K may impact metformin's anticancer efficiency. This could indicate a need for tumor genetic profiling in order to identify patients most likely to benefit from metformin treatment. Considering that the majority of experimental models suggest that higher, supra-clinical doses of metformin should be used in order to obtain an antineoplastic effect, new ways of drug delivery could be developed, such as metformin-loaded nanoparticles or incorporation of metformin into microparticles used in transarterial chemoembolization, with the aim of obtaining higher intratumoral drug concentrations and a targeted therapy which will ultimately maximize metformin's efficacy.
Collapse
|
140
|
New molecules and old drugs as emerging approaches to selectively target human glioblastoma cancer stem cells. BIOMED RESEARCH INTERNATIONAL 2014; 2014:126586. [PMID: 24527434 PMCID: PMC3909978 DOI: 10.1155/2014/126586] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 12/04/2013] [Indexed: 02/07/2023]
Abstract
Despite relevant progress obtained by multimodal treatment, glioblastoma (GBM), the most aggressive primary brain tumor, is still incurable. The most encouraging advancement of GBM drug research derives from the identification of cancer stem cells (CSCs), since these cells appear to represent the determinants of resistance to current standard therapies. The goal of most ongoing studies is to identify drugs able to affect CSCs biology, either inducing selective toxicity or differentiating this tumor cell population into nontumorigenic cells. Moreover, the therapeutic approach for GBM could be improved interfering with chemo- or radioresistance mechanisms, microenvironment signals, and the neoangiogenic process. During the last years, molecular targeted compounds such as sorafenib and old drugs, like metformin, displayed interesting efficacy in preclinical studies towards several tumors, including GBM, preferentially affecting CSC viability. In this review, the latest experimental results, controversies, and prospective application concerning these promising anticancer drugs will be discussed.
Collapse
|
141
|
Abstract
ObjectiveThe potential therapeutic effects of metformin on several cancers were reported. However, the evidence of the effects of metformin on ovarian cancer is still limited and inconclusive. This systematic review and meta-analysis study aims to summarize the existing evidence of the therapeutic effects of metformin on ovarian cancer.MethodsWe performed systematic searches using electronic databases including PubMed and EMBASE until December 2012. Key words included “metformin” AND (“ovarian cancer” OR “ovary tumor”). All human studies assessing the effects of metformin on ovarian cancer were eligible for inclusion. All articles were reviewed independently by 2 authors with a standardized approach for the purpose of study, study design, patient characteristics, exposure, and outcomes. The data were pooled using a random-effects model.ResultsOf 190 studies retrieved, only 3 observational studies and 1 report of 2 randomized controlled trials were included. Among those studies, 2 reported the effects of metformin on survival outcomes of ovarian cancer, whereas the other 2 reported the effects of metformin on ovarian cancer prevention. The findings of studies reporting the effects on survival outcomes indicated that metformin may prolong overall, disease-specific, and progression-free survival in ovarian cancer patients. The results of studies reporting the effects of metformin on ovarian cancer prevention were meta-analyzed. It indicated that metformin tended to decrease occurrence of ovarian cancer among diabetic patients with the pooled odds ratio of 0.57 (95% confidence interval, 0.16–1.99).ConclusionsOur findings showed the potential therapeutic effects of metformin on survival outcomes of ovarian cancer and ovarian cancer prevention. However, most of the evidence was observational studies. There is a call for further well-conducted controlled clinical trials to confirm the effects of metformin on ovarian cancer survival and ovarian cancer prevention.
Collapse
|
142
|
Abstract
Cancer risk reduction using pharmacological means is an attractive modern preventive approach that supplements the classical behavioural prevention recommendations. Medications that are commonly used by large populations to treat a variety of common, non-cancer-related, medical situations are an attractive candidate pool. This Review discusses three pharmacological agents with the most evidence for their potential as cancer chemopreventive agents: anti-hypercholesterolaemia medications (statins), an antidiabetic agent (metformin) and antiosteoporosis drugs (bisphosphonates). Data are accumulating to support a significant negative association of certain statins with cancer occurrence or survival in several major tumour sites (mostly gastrointestinal tumours and breast cancer), with an augmented combined effect with aspirin or other non-steroidal anti-inflammatory drugs. Metformin, but not other hypoglycaemic drugs, also seems to have some antitumour growth activity, but the amount of evidence in human studies, mainly in breast cancer, is still limited. Experimental and observational data have identified bisphosphonates as a pharmacological group that could have significant impact on incidence and mortality of more than one subsite of malignancy. At the current level of evidence these potential chemopreventive drugs should be considered in high-risk situations or using the personalized approach of maximizing individual benefits and minimizing the potential for adverse effects with the aid of pharmacogenetic indicators.
Collapse
|
143
|
Saito T, Chiba T, Yuki K, Zen Y, Oshima M, Koide S, Motoyama T, Ogasawara S, Suzuki E, Ooka Y, Tawada A, Tada M, Kanai F, Takiguchi Y, Iwama A, Yokosuka O. Metformin, a diabetes drug, eliminates tumor-initiating hepatocellular carcinoma cells. PLoS One 2013; 8:e70010. [PMID: 23922888 PMCID: PMC3726625 DOI: 10.1371/journal.pone.0070010] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 06/13/2013] [Indexed: 12/21/2022] Open
Abstract
Metformin has been widely used as an oral drug for diabetes mellitus for approximately 60 years. Interestingly, recent reports showed that metformin exhibited an anti-tumor action in a wide range of malignancies including hepatocellular carcinoma (HCC). In the present study, we investigated its impact on tumor-initiating HCC cells. Metformin suppressed cell growth and induced apoptosis in a dose-dependent manner. Flow cytometric analysis showed that metformin treatment markedly reduced the number of tumor-initiating epithelial cell adhesion molecule (EpCAM)+ HCC cells. Non-adherent sphere formation assays of EpCAM+ cells showed that metformin impaired not only their sphere-forming ability, but also their self-renewal capability. Consistent with this, immunostaining of spheres revealed that metformin significantly decreased the number of component cells positive for hepatic stem cell markers such as EpCAM and α-fetoprotein. In a xenograft transplantation model using non-obese diabetic/severe combined immunodeficient mice, metformin and/or sorafenib treatment suppressed the growth of tumors derived from transplanted HCC cells. Notably, the administration of metformin but not sorafenib decreased the number of EpCAM+ cells and impaired their self-renewal capability. As reported, metformin activated AMP-activated protein kinase (AMPK) through phosphorylation; however its inhibitory effect on the mammalian target of rapamycin (mTOR) pathway did not necessarily correlate with its anti-tumor activity toward EpCAM+ tumor-initiating HCC cells. These results indicate that metformin is a promising therapeutic agent for the elimination of tumor-initiating HCC cells and suggest as-yet-unknown functions other than its inhibitory effect on the AMPK/mTOR pathway.
Collapse
Affiliation(s)
- Tomoko Saito
- Department of Gastroenterology and Nephrology, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tetsuhiro Chiba
- Department of Gastroenterology and Nephrology, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
- * E-mail:
| | - Kaori Yuki
- Department of Gastroenterology and Nephrology, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yoh Zen
- Institute of Liver Studies, King’s College Hospital, London, United Kingdom
| | - Motohiko Oshima
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shuhei Koide
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tenyu Motoyama
- Department of Gastroenterology and Nephrology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Sadahisa Ogasawara
- Department of Gastroenterology and Nephrology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Eiichiro Suzuki
- Department of Gastroenterology and Nephrology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yoshihiko Ooka
- Department of Gastroenterology and Nephrology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Akinobu Tawada
- Department of Gastroenterology and Nephrology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Motohisa Tada
- Department of Gastroenterology and Nephrology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Fumihiko Kanai
- Department of Gastroenterology and Nephrology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yuichi Takiguchi
- Department of Medical Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Atsushi Iwama
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Osamu Yokosuka
- Department of Gastroenterology and Nephrology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
144
|
Kapoor S. Metformin therapy and its anti-neoplastic role in systemic malignancies besides hepatocellular carcinomas. Scand J Gastroenterol 2013; 48:636-7. [PMID: 23477305 DOI: 10.3109/00365521.2013.777773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
145
|
Abstract
The growing epidemic of obesity has resulted in a large increase in multiple related diseases. Recent evidence has strengthened the proposed synergistic relationship between obesity-related insulin resistance (IR) and/or diabetes mellitus (DM) and cancer. Within the past year, many studies have examined this relationship. Although the precise mechanisms and pathways are uncertain, it is becoming clear that hyperinsulinemia and possibly sustained hyperglycemia are important regulators of not only the development of cancer but also of treatment outcome. Further, clinical decision-making regarding the treatment of choice for DM will likely be impacted as we learn more about the non-metabolic effects of the available hyperglycemic agents. In our review, we endeavored to synthesize the recent literature and provide a concise view of the journey from macro-level clinical associations to specific mechanistic relationships being elucidated in cell lines and animal models.
Collapse
Affiliation(s)
- Etan Orgel
- Jonathan Jaques Children’s Cancer Center, Keck School of Medicine, University of Southern California, Miller Children’s Hospital, 2801 Atlantic Avenue, Long Beach, CA 90806, 562-933-8600 phone
| | - Steven D. Mittelman
- Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, 4650 Sunset Blvd., MS #93, Los Angeles, CA 90027, 323-361-7653 phone
| |
Collapse
|
146
|
Kwon MJ, Shin YK. Regulation of ovarian cancer stem cells or tumor-initiating cells. Int J Mol Sci 2013; 14:6624-48. [PMID: 23528891 PMCID: PMC3645658 DOI: 10.3390/ijms14046624] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Revised: 03/08/2013] [Accepted: 03/12/2013] [Indexed: 12/18/2022] Open
Abstract
Cancer stem cells or tumor-initiating cells (CSC/TICs), which can undergo self-renewal and differentiation, are thought to play critical roles in tumorigenesis, therapy resistance, tumor recurrence and metastasis. Tumor recurrence and chemoresistance are major causes of poor survival rates of ovarian cancer patients, which may be due in part to the existence of CSC/TICs. Therefore, elucidating the molecular mechanisms responsible for the ovarian CSC/TICs is required to develop a cure for this malignancy. Recent studies have indicated that the properties of CSC/TICs can be regulated by microRNAs, genes and signaling pathways which also function in normal stem cells. Moreover, emerging evidence suggests that the tumor microenvironments surrounding CSC/TICs are crucial for the maintenance of these cells. Similarly, efforts are now being made to unravel the mechanism involved in the regulation of ovarian CSC/TICs, although much work is still needed. This review considers recent advances in identifying the genes and pathways involved in the regulation of ovarian CSC/TICs. Furthermore, current approaches targeting ovarian CSC/TICs are described. Targeting both CSC/TICs and bulk tumor cells is suggested as a more effective approach to eliminating ovarian tumors. Better understanding of the regulation of ovarian CSC/TICs might facilitate the development of improved therapeutic strategies for recurrent ovarian cancer.
Collapse
Affiliation(s)
- Mi Jeong Kwon
- College of Pharmacy, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 702-701, Korea
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 702-701, Korea
- Authors to whom correspondence should be addressed: E-Mails: (M.J.K.); (Y.K.S.); Tel.: +82-53-950-8581 (M.J.K.); +82-2-880-9126 (Y.K.S.); Fax: +82-53-950-8557 (M.J.K.); +82-2-883-9126 (Y.K.S.)
| | - Young Kee Shin
- Laboratory of Molecular Pathology and Cancer Genomics, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Korea
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Korea
- Advanced Institutes of Convergence Technology, Suwon, Gyeonggi-do 443-270, Korea
- Authors to whom correspondence should be addressed: E-Mails: (M.J.K.); (Y.K.S.); Tel.: +82-53-950-8581 (M.J.K.); +82-2-880-9126 (Y.K.S.); Fax: +82-53-950-8557 (M.J.K.); +82-2-883-9126 (Y.K.S.)
| |
Collapse
|
147
|
Role of the microenvironment in ovarian cancer stem cell maintenance. BIOMED RESEARCH INTERNATIONAL 2012; 2013:630782. [PMID: 23484135 PMCID: PMC3591167 DOI: 10.1155/2013/630782] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 11/08/2012] [Accepted: 11/08/2012] [Indexed: 12/20/2022]
Abstract
Despite recent progresses in cancer therapy and increased knowledge in cancer biology, ovarian cancer remains a challenging condition. Among the latest concepts developed in cancer biology, cancer stem cells and the role of microenvironment in tumor progression seem to be related. Indeed, cancer stem cells have been described in several solid tumors including ovarian cancers. These particular cells have the ability to self-renew and reconstitute a heterogeneous tumor. They are characterized by specific surface markers and display resistance to therapeutic regimens. During development, specific molecular cues from the tumor microenvironment can play a role in maintaining and expanding stemness of cancer cells. The tumor stroma contains several compartments: cellular component, cytokine network, and extracellular matrix. These different compartments interact to form a permissive niche for the cancer stem cells. Understanding the molecular cues underlying this crosstalk will allow the design of new therapeutic regimens targeting the niche. In this paper, we will discuss the mechanisms implicated in the interaction between ovarian cancer stem cells and their microenvironment.
Collapse
|
148
|
Foster R, Buckanovich RJ, Rueda BR. Ovarian cancer stem cells: working towards the root of stemness. Cancer Lett 2012; 338:147-57. [PMID: 23138176 DOI: 10.1016/j.canlet.2012.10.023] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 10/17/2012] [Accepted: 10/25/2012] [Indexed: 01/06/2023]
Abstract
Despite medical advances made over the past decade, ovarian cancer remains one of the more lethal gynecologic cancers in the United States. While current therapeutic strategies are relatively effective, there is a high incidence of recurrent chemoresistant disease. This has been attributed, in part, to a regenerative tumor cell sub-population that has acquired stem cell properties which allows these cells to escape standard chemotherapeutics and drive recurrent disease. To date, a number of laboratories have identified these cancer stem cell (CSC) sub-populations in ovarian cancer cell lines, tumors or ascites and the collective findings suggest ovarian CSCs are likely to be as heterogeneous as the disease itself. Moreover, the multiple ovarian histophenotypes and possible sites of disease origin together with the potential for differential hierarchal contributions of multiple CSCs populations represent significant challenges to the identification, functional characterization and therapeutic targeting of ovarian CSC. This review will highlight the markers and methodology currently used to identify and isolate these cells. We will discuss some of the underlying ovarian CSC biology, the signaling pathways implicated in their survival, replication and differentiation and potential therapeutic targeting strategies.
Collapse
Affiliation(s)
- Rosemary Foster
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, United States
| | | | | |
Collapse
|