101
|
Essentially all excess fibroblast cholesterol moves from plasma membranes to intracellular compartments. PLoS One 2014; 9:e98482. [PMID: 25014655 PMCID: PMC4094430 DOI: 10.1371/journal.pone.0098482] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 05/02/2014] [Indexed: 11/19/2022] Open
Abstract
It has been shown that modestly increasing plasma membrane cholesterol beyond its physiological set point greatly increases the endoplasmic reticulum and mitochondrial pools, thereby eliciting manifold feedback responses that return cell cholesterol to its resting state. The question arises whether this homeostatic mechanism reflects the targeting of cell surface cholesterol to specific intracellular sites or its general equilibration among the organelles. We now show that human fibroblast cholesterol can be increased as much as two-fold from 2-hydroxypropyl-β-cyclodextrin without changing the size of the cell surface pool. Rather, essentially all of the added cholesterol disperses rapidly among cytoplasmic membranes, increasing their overall cholesterol content by as much as five-fold. We conclude that the level of plasma membrane cholesterol is normally at capacity and that even small increments above this physiological set point redistribute essentially entirely to intracellular membranes, perhaps down their chemical activity gradients.
Collapse
|
102
|
Midzak A, Papadopoulos V. Binding domain-driven intracellular trafficking of sterols for synthesis of steroid hormones, bile acids and oxysterols. Traffic 2014; 15:895-914. [PMID: 24890942 DOI: 10.1111/tra.12177] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 05/28/2014] [Accepted: 05/28/2014] [Indexed: 12/16/2022]
Abstract
Steroid hormones, bioactive oxysterols and bile acids are all derived from the biological metabolism of lipid cholesterol. The enzymatic pathways generating these compounds have been an area of intense research for almost a century, as cholesterol and its metabolites have substantial impacts on human health. Owing to its high degree of hydrophobicity and the chemical properties that it confers to biological membranes, the distribution of cholesterol in cells is tightly controlled, with subcellular organelles exhibiting highly divergent levels of cholesterol. The manners in which cells maintain such sterol distributions are of great interest in the study of steroid and bile acid synthesis, as limiting cholesterol substrate to the enzymatic pathways is the principal mechanism by which production of steroids and bile acids is regulated. The mechanisms by which cholesterol moves within cells, however, remain poorly understood. In this review, we examine the subcellular machinery involved in cholesterol metabolism to steroid hormones and bile acid, relating it to both lipid- and protein-based mechanisms facilitating intracellular and intraorganellar cholesterol movement and delivery to these pathways. In particular, we examine evidence for the involvement of specific protein domains involved in cholesterol binding, which impact cholesterol movement and metabolism in steroidogenesis and bile acid synthesis. A better understanding of the physical mechanisms by which these protein- and lipid-based systems function is of fundamental importance to understanding physiological homeostasis and its perturbation.
Collapse
Affiliation(s)
- Andrew Midzak
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
103
|
Estronca LMBB, Filipe HAL, Salvador A, Moreno MJ, Vaz WLC. Homeostasis of free cholesterol in the blood: a preliminary evaluation and modeling of its passive transport. J Lipid Res 2014; 55:1033-43. [PMID: 24711632 DOI: 10.1194/jlr.m043067] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Indexed: 01/23/2023] Open
Abstract
The rate of noncatalyzed transfer of cholesterol (Chol) among lipoproteins and cells in the blood is of fundamental importance as a baseline to assess the role of active transport mechanisms, but remains unknown. Here we address this gap by characterizing the associa-tion of the Chol analog, ergosta-5,7,9(11),22-tetraen-3β-ol (DHE), with the lipoproteins VLDL, LDL, HDL2, and HDL3 Combining these results with data for the association of DHE with liposomes, we elaborated a kinetic model for the noncatalyzed exchange of free Chol among blood compartments. The computational results are in good agreement with experimental values. The small deviations are explained by the nonequilibrium distribution of unesterified Chol in vivo, due to esterification and entry of new unesterified Chol, and eventual effects introduced by incubations at low temperatures. The kinetic profile of the homeostasis of unesterified Chol in the blood predicted by the model developed in this work is in good agreement with the observations in vivo, highlighting the importance of passive processes.
Collapse
Affiliation(s)
- Luís M B B Estronca
- Departamento de Química, Universidade de Coimbra, Coimbra, Portugal CNC - Centro de Neurociências e Biologia Celular, Universidade de Coimbra, Coimbra, Portugal
| | - Hugo A L Filipe
- Departamento de Química, Universidade de Coimbra, Coimbra, Portugal Centro de Química de Coimbra, Universidade de Coimbra, Coimbra, Portugal
| | - Armindo Salvador
- Departamento de Química, Universidade de Coimbra, Coimbra, Portugal CNC - Centro de Neurociências e Biologia Celular, Universidade de Coimbra, Coimbra, Portugal
| | - Maria João Moreno
- Departamento de Química, Universidade de Coimbra, Coimbra, Portugal Centro de Química de Coimbra, Universidade de Coimbra, Coimbra, Portugal
| | - Winchil L C Vaz
- Departamento de Química, Universidade de Coimbra, Coimbra, Portugal Centro de Química de Coimbra, Universidade de Coimbra, Coimbra, Portugal
| |
Collapse
|
104
|
Choubey A, Kalia RK, Malmstadt N, Nakano A, Vashishta P. Cholesterol translocation in a phospholipid membrane. Biophys J 2014; 104:2429-36. [PMID: 23746515 DOI: 10.1016/j.bpj.2013.04.036] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 02/03/2013] [Accepted: 04/16/2013] [Indexed: 11/18/2022] Open
Abstract
Cholesterol (CHOL) molecules play a key role in modulating the rigidity of cell membranes and controlling intracellular transport and signal transduction. Using an all-atom molecular dynamics approach, we study the process of CHOL interleaflet transport (flip-flop) in a dipalmitoylphosphatidycholine (DPPC)-CHOL bilayer over a time period of 15 μs. We investigate the effect of the flip-flop process on mechanical stress across the bilayer and the role of CHOL in inducing molecular order in bilayer leaflets. The simulations are carried out at physiologically relevant CHOL concentration (30%), temperature (323 K), and pressure (1 bar). CHOL flip-flop events are observed with a rate constant of 3 × 10⁴s⁻¹. Once a flip-flop event is triggered, a CHOL molecule takes an average of 73 nanoseconds to migrate from one bilayer leaflet to the other.
Collapse
Affiliation(s)
- Amit Choubey
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, USA
| | | | | | | | | |
Collapse
|
105
|
Li ZL, Wang JJ, Ding HM, Ma YQ. Influence of different membrane environments on the behavior of cholesterol. RSC Adv 2014. [DOI: 10.1039/c4ra08201j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Our results show the distribution of cholesterol between stress-free and stressed membranes or between the inner leaflet and the outer leaflet of curved membrane.
Collapse
Affiliation(s)
- Zhen-lu Li
- National Laboratory of Solid State Microstructures and Department of Physics
- Nanjing University
- Nanjing 210093, China
| | - Jing-jing Wang
- National Laboratory of Solid State Microstructures and Department of Physics
- Nanjing University
- Nanjing 210093, China
| | - Hong-ming Ding
- National Laboratory of Solid State Microstructures and Department of Physics
- Nanjing University
- Nanjing 210093, China
| | - Yu-qiang Ma
- National Laboratory of Solid State Microstructures and Department of Physics
- Nanjing University
- Nanjing 210093, China
- Center for Soft Condensed Matter Physics and Interdisciplinary Research
- Soochow University
| |
Collapse
|
106
|
Phan HT, Hata T, Morita M, Yoda T, Hamada T, Vestergaard MC, Takagi M. The effect of oxysterols on the interaction of Alzheimer's amyloid beta with model membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2487-95. [DOI: 10.1016/j.bbamem.2013.06.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/11/2013] [Accepted: 06/17/2013] [Indexed: 01/09/2023]
|
107
|
Budvytyte R, Mickevicius M, Vanderah DJ, Heinrich F, Valincius G. Modification of tethered bilayers by phospholipid exchange with vesicles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:4320-4327. [PMID: 23445262 DOI: 10.1021/la304613a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Phosphatidylcholine and cholesterol exchange between vesicles and planar tethered bilayer lipid membranes (tBLMs) was demonstrated from electrochemical impedance spectroscopy (EIS), fluorescence microscopy (FM), and neutron reflectometry (NR) data. Cholesterol is incorporated into the tBLMs, as determined by the functional reconstitution of the pore forming toxin α-hemolysin (EIS data), attaining cholesterol concentrations nearly equal to that in the donor vesicles. Using fluorescently labeled lipids and cholesterol, FM indicates that the vesicle-tBLM exchange is homogeneous for the lipids but not for cholesterol. NR data with perdeuterated lipids indicates lipid exchange asymmetry with two lipids exchanged in the outer leaflet for every lipid in the inner leaflet. NR and EIS data further show different exchange rates for cholesterol (t1/2 < 60 min) and phosphatidylcholine (t1/2 > 4 h). This work lays the foundation for the preparation of robust, lower defect, more biologically relevant tBLMs by essentially combining the two methods of tBLM formation-rapid solvent exchange and vesicle fusion.
Collapse
Affiliation(s)
- Rima Budvytyte
- Institute of Biochemistry, Vilnius University, Vilnius, Lithuania
| | | | | | | | | |
Collapse
|
108
|
Liu J, Brown KL, Conboy JC. The effect of cholesterol on the intrinsic rate of lipid flip–flop as measured by sum-frequency vibrational spectroscopy. Faraday Discuss 2013; 161:45-61; discussion 113-50. [DOI: 10.1039/c2fd20083j] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
109
|
Kozik P, Hodson NA, Sahlender DA, Simecek N, Soromani C, Wu J, Collinson LM, Robinson MS. A human genome-wide screen for regulators of clathrin-coated vesicle formation reveals an unexpected role for the V-ATPase. Nat Cell Biol 2013; 15:50-60. [PMID: 23263279 PMCID: PMC3588604 DOI: 10.1038/ncb2652] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 11/09/2012] [Indexed: 12/17/2022]
Abstract
Clathrin-mediated endocytosis is essential for a wide range of cellular functions. We used a multi-step siRNA-based screening strategy to identify regulators of the first step in clathrin-mediated endocytosis, formation of clathrin-coated vesicles (CCVs) at the plasma membrane. A primary genome-wide screen identified 334 hits that caused accumulation of CCV cargo on the cell surface. A secondary screen identified 92 hits that inhibited cargo uptake and/or altered the morphology of clathrin-coated structures. The hits include components of four functional complexes: coat proteins, V-ATPase subunits, spliceosome-associated proteins and acetyltransferase subunits. Electron microscopy revealed that V-ATPase depletion caused the cell to form aberrant non-constricted clathrin-coated structures at the plasma membrane. The V-ATPase-knockdown phenotype was rescued by addition of exogenous cholesterol, indicating that the knockdown blocks clathrin-mediated endocytosis by preventing cholesterol from recycling from endosomes back to the plasma membrane.
Collapse
Affiliation(s)
- Patrycja Kozik
- Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK.
| | | | | | | | | | | | | | | |
Collapse
|
110
|
Yesylevskyy SO, Demchenko AP. How cholesterol is distributed between monolayers in asymmetric lipid membranes. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2012; 41:1043-54. [DOI: 10.1007/s00249-012-0863-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 07/30/2012] [Accepted: 09/21/2012] [Indexed: 11/24/2022]
|
111
|
Parisio G, Sperotto MM, Ferrarini A. Flip-Flop of Steroids in Phospholipid Bilayers: Effects of the Chemical Structure on Transbilayer Diffusion. J Am Chem Soc 2012; 134:12198-208. [DOI: 10.1021/ja304007t] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Giulia Parisio
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova,
Italy
| | - Maria Maddalena Sperotto
- Center for Biological
Sequence
Analysis, Department of Systems Biology, Technical University of Denmark, Kemitorvet, Building 208, 2800 Kgs. Lyngby,
Denmark
| | - Alberta Ferrarini
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova,
Italy
| |
Collapse
|
112
|
Hymel D, Peterson BR. Synthetic cell surface receptors for delivery of therapeutics and probes. Adv Drug Deliv Rev 2012; 64:797-810. [PMID: 22401875 PMCID: PMC3359398 DOI: 10.1016/j.addr.2012.02.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 02/18/2012] [Accepted: 02/20/2012] [Indexed: 11/17/2022]
Abstract
Receptor-mediated endocytosis is a highly efficient mechanism for cellular uptake of membrane-impermeant ligands. Cells use this process to acquire nutrients, initiate signal transduction, promote development, regulate neurotransmission, and maintain homeostasis. Natural receptors that participate in receptor-mediated endocytosis are structurally diverse, ranging from large transmembrane proteins to small glycolipids embedded in the outer leaflet of cellular plasma membranes. Despite their vast structural differences, these receptors share common features of binding to extracellular ligands, clustering in dynamic membrane regions that pinch off to yield intracellular vesicles, and accumulation of receptor-ligand complexes in membrane-sealed endosomes. Receptors typically dissociate from ligands in endosomes and cycle back to the cell surface, whereas internalized ligands are usually delivered into lysosomes, where they are degraded, but some can escape and penetrate into the cytosol. Here, we review efforts to develop synthetic cell surface receptors, defined as nonnatural compounds, exemplified by mimics of cholesterol, that insert into plasma membranes, bind extracellular ligands including therapeutics, probes, and endogenous proteins, and engage endocytic membrane trafficking pathways. By mimicking natural mechanisms of receptor-mediated endocytosis, synthetic cell surface receptors have the potential to function as prosthetic molecules capable of seamlessly augmenting the endocytic uptake machinery of living mammalian cells.
Collapse
Affiliation(s)
- David Hymel
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, KS 66045, United States
| | - Blake R. Peterson
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, KS 66045, United States
| |
Collapse
|
113
|
The human skin barrier is organized as stacked bilayers of fully extended ceramides with cholesterol molecules associated with the ceramide sphingoid moiety. J Invest Dermatol 2012; 132:2215-25. [PMID: 22534876 DOI: 10.1038/jid.2012.43] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The skin barrier is fundamental to terrestrial life and its evolution; it upholds homeostasis and protects against the environment. Skin barrier capacity is controlled by lipids that fill the extracellular space of the skin's surface layer--the stratum corneum. Here we report on the determination of the molecular organization of the skin's lipid matrix in situ, in its near-native state, using a methodological approach combining very high magnification cryo-electron microscopy (EM) of vitreous skin section defocus series, molecular modeling, and EM simulation. The lipids are organized in an arrangement not previously described in a biological system-stacked bilayers of fully extended ceramides (CERs) with cholesterol molecules associated with the CER sphingoid moiety. This arrangement rationalizes the skin's low permeability toward water and toward hydrophilic and lipophilic substances, as well as the skin barrier's robustness toward hydration and dehydration, environmental temperature and pressure changes, stretching, compression, bending, and shearing.
Collapse
|
114
|
Jacquier N, Schneiter R. Mechanisms of sterol uptake and transport in yeast. J Steroid Biochem Mol Biol 2012; 129:70-8. [PMID: 21145395 DOI: 10.1016/j.jsbmb.2010.11.014] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 11/12/2010] [Accepted: 11/30/2010] [Indexed: 11/21/2022]
Abstract
Sterols are essential lipid components of eukaryotic membranes. Here we summarize recent advances in understanding how sterols are transported between different membranes. Baker's yeast is a particularly attractive organism to dissect this lipid transport pathway, because cells can synthesize their own major sterol, ergosterol, in the membrane of the endoplasmic reticulum from where it is then transported to the plasma membrane. However, Saccharomyces cerevisiae is also a facultative anaerobic organism, which becomes sterol auxotroph in the absence of oxygen. Under these conditions, cells take up sterol from the environment and transport the lipid back into the membrane of the endoplasmic reticulum, where the free sterol becomes esterified and is then stored in lipid droplets. Steryl ester formation is thus a reliable readout to assess the back-transport of exogenously provided sterols from the plasma membrane to the endoplasmic reticulum. Structure/function analysis has revealed that the bulk membrane function of the fungal ergosterol can be provided by structurally related sterols, including the mammalian cholesterol. Foreign sterols, however, are subject to a lipid quality control cycle in which the sterol is reversibly acetylated. Because acetylated sterols are efficiently excreted from cells, the substrate specificity of the deacetylating enzymes determines which sterols are retained. Membrane-bound acetylated sterols are excreted by the secretory pathway, more soluble acetylated sterol derivatives such as the steroid precursor pregnenolone, on the other hand, are excreted by a pathway that is independent of vesicle formation and fusion. Further analysis of this lipid quality control cycle is likely to reveal novel insight into the mechanisms that ensure sterol homeostasis in eukaryotic cells. Article from a special issue on Steroids and Microorganisms.
Collapse
Affiliation(s)
- Nicolas Jacquier
- Department of Medicine, Division of Biochemistry, University of Fribourg, Fribourg, Switzerland
| | | |
Collapse
|
115
|
Steck TL, Lange Y. How slow is the transbilayer diffusion (flip-flop) of cholesterol? Biophys J 2012; 102:945-6; author reply 947-9. [PMID: 22385866 DOI: 10.1016/j.bpj.2011.10.059] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 10/24/2011] [Indexed: 02/04/2023] Open
|
116
|
Lange Y, Ye J, Steck TL. Activation mobilizes the cholesterol in the late endosomes-lysosomes of Niemann Pick type C cells. PLoS One 2012; 7:e30051. [PMID: 22276143 PMCID: PMC3262792 DOI: 10.1371/journal.pone.0030051] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 12/12/2011] [Indexed: 11/18/2022] Open
Abstract
A variety of intercalating amphipaths increase the chemical activity of plasma membrane cholesterol. To test whether intracellular cholesterol can be similarly activated, we examined NPC1 and NPC2 fibroblasts, since they accumulate large amounts of cholesterol in their late endosomes and lysosomes (LE/L). We gauged the mobility of intracellular sterol from its appearance at the surface of the intact cells, as determined by its susceptibility to cholesterol oxidase and its isotope exchange with extracellular 2-(hydroxypropyl)-β-cyclodextrin-cholesterol. The entire cytoplasmic cholesterol pool in these cells was mobile, exchanging with the plasma membrane with an apparent half-time of ∼3–4 hours, ∼4–5 times slower than that for wild type human fibroblasts (half-time ∼0.75 hours). The mobility of the intracellular cholesterol was increased by the membrane-intercalating amphipaths chlorpromazine and 1-octanol. Chlorpromazine also promoted the net transfer of LE/L cholesterol to serum and cyclodextrin. Surprisingly, the mobility of LE/L cholesterol was greatly stimulated by treating intact NPC cells with glutaraldehyde or formaldehyde. Similar effects were seen with wild type fibroblasts in which the LE/L cholesterol pool had been expanded using U18666A. We also showed that the cholesterol in the intracellular membranes of fixed wild-type fibroblasts was mobile; it was rapidly oxidized by cholesterol oxidase and was rapidly replenished by exogenous sterol. We conclude that a) the cholesterol in NPC cells can exit the LE/L (and the extensive membranous inclusions therein) over a few hours; b) this mobility is stimulated by the activation of the cholesterol with intercalating amphipaths; c) intracellular cholesterol is even more mobile in fixed cells; and d) amphipaths that activate cholesterol might be useful in treating NPC disease.
Collapse
Affiliation(s)
- Yvonne Lange
- Department of Pathology, Rush University Medical Center, Chicago, Illinois, United States of America.
| | | | | |
Collapse
|
117
|
Bennett WFD, Tieleman DP. Molecular simulation of rapid translocation of cholesterol, diacylglycerol, and ceramide in model raft and nonraft membranes. J Lipid Res 2012; 53:421-429. [PMID: 22246847 DOI: 10.1194/jlr.m022491] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The translocation of lipids across membranes (flip-flop) is an important biological process. Slow exchange on a physiological timescale allows the creation of asymmetric distributions of lipids across cellular membranes. The location of lipids and their rate of exchange have important biological consequences, especially for lipids involved in cellular signaling. We investigated the translocation of cholesterol, ceramide, and diacylglycerol in two model bilayers using molecular dynamics simulations. We estimate half times for flip-flop for cholesterol, diacylglycerol, and ceramide of 20 μs, 30 μs, and 10 ms in a POPC bilayer, compared with approximately 30 min, 30 ms, and 30 s in a model raft bilayer (1:1:1 PSM, POPC, and cholesterol). Cholesterol has a large (54 kJ/mol) free energy of exchange between the POPC and raft bilayer, and therefore, it strongly prefers the more ordered and rigid raft bilayer over the more liquid POPC bilayer. Ceramide and diacylglycerol have relatively small free energies of exchange, suggesting nearly equal preference for both bilayers. This unexpected result may have implications for ceramide and diacylglycerol signaling and membrane localization.
Collapse
Affiliation(s)
- W F Drew Bennett
- Department of Biological Sciences and Institute for Biocomplexity and Informatics, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - D Peter Tieleman
- Department of Biological Sciences and Institute for Biocomplexity and Informatics, University of Calgary, Calgary, Alberta T2N 1N4, Canada.
| |
Collapse
|
118
|
Rojas-Aguirre Y, Hernández-Luis F, Mendoza-Martínez C, Sotomayor CP, Aguilar LF, Villena F, Castillo I, Hernández DJ, Suwalsky M. Effects of an antimalarial quinazoline derivative on human erythrocytes and on cell membrane molecular models. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:738-46. [PMID: 22155684 DOI: 10.1016/j.bbamem.2011.11.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/21/2011] [Accepted: 11/22/2011] [Indexed: 11/16/2022]
Abstract
Plasmodium, the parasite which causes malaria in humans multiplies in the liver and then infects circulating erythrocytes. Thus, the role of the erythrocyte cell membrane in antimalarial drug activity and resistance has key importance. The effects of the antiplasmodial N(6)-(4-methoxybenzyl)quinazoline-2,4,6-triamine (M4), and its inclusion complex (M4/HPβCD) with 2-hydroxypropyl-β-cyclodextrin (HPβCD) on human erythrocytes and on cell membrane molecular models are herein reported. This work evidences that M4/HPβCD interacts with red cells as follows: a) in scanning electron microscopy (SEM) studies on human erythrocytes induced shape changes at a 10μM concentration; b) in isolated unsealed human erythrocyte membranes (IUM) a concentration as low as 1μM induced sharp DPH fluorescence anisotropy decrease whereas increasing concentrations produced a monotonically decrease of DPH fluorescence lifetime at 37°C; c) X-ray diffraction studies showed that 200μM induced a complete structural perturbation of dimyristoylphosphatidylcholine (DMPC) bilayers whereas no significant effects were detected in dimyristoylphosphatidylethanolamine (DMPE) bilayers, classes of lipids present in the outer and inner monolayers of the human erythrocyte membrane, respectively; d) fluorescence spectroscopy data showed that increasing concentrations of the complex interacted with the deep hydrophobic core of DMPC large unilamellar vesicles (LUV) at 18°C. All these experiments are consistent with the insertion of M4/HPβCD in the outer monolayer of the human erythrocyte membrane; thus, it can be considered a promising and novel antimalarial agent.
Collapse
|
119
|
Kerdous R, Heuvingh J, Bonneau S. Photo-dynamic induction of oxidative stress within cholesterol-containing membranes: Shape transitions and permeabilization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2965-72. [DOI: 10.1016/j.bbamem.2011.08.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Revised: 07/15/2011] [Accepted: 08/02/2011] [Indexed: 11/16/2022]
|
120
|
Stadnick H, Stoll C, Wolkers WF, Acker JP, Holovati JL. The Effect of Liposome Treatment on the Quality of Hypothermically Stored Red Blood Cells. Biopreserv Biobank 2011; 9:335-42. [DOI: 10.1089/bio.2011.0023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Hart Stadnick
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
- Research and Development, Canadian Blood Services, Edmonton, Alberta, Canada
| | - Cristoph Stoll
- Institute of Multiphase Processes, Leibniz Universitat Hannover, D-30167 Hannover, Germany
| | - Wim F. Wolkers
- Institute of Multiphase Processes, Leibniz Universitat Hannover, D-30167 Hannover, Germany
| | - Jason Paul Acker
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
- Research and Development, Canadian Blood Services, Edmonton, Alberta, Canada
| | - Jelena Lecak Holovati
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
- Research and Development, Canadian Blood Services, Edmonton, Alberta, Canada
| |
Collapse
|
121
|
Noninvasive neutron scattering measurements reveal slower cholesterol transport in model lipid membranes. Biophys J 2011; 101:370-7. [PMID: 21767489 DOI: 10.1016/j.bpj.2011.06.014] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 05/24/2011] [Accepted: 06/02/2011] [Indexed: 01/12/2023] Open
Abstract
Proper cholesterol transport is essential to healthy cellular activity and any abnormality can lead to several fatal diseases. However, complete understandings of cholesterol homeostasis in the cell remains elusive, partly due to the wide variability in reported values for intra- and intermembrane cholesterol transport rates. Here, we used time-resolved small-angle neutron scattering to measure cholesterol intermembrane exchange and intramembrane flipping rates, in situ, without recourse to any external fields or compounds. We found significantly slower transport kinetics than reported by previous studies, particularly for intramembrane flipping where our measured rates are several orders of magnitude slower. We unambiguously demonstrate that the presence of chemical tags and extraneous compounds employed in traditional kinetic measurements dramatically affect the system thermodynamics, accelerating cholesterol transport rates by an order of magnitude. To our knowledge, this work provides new insights into cholesterol transport process disorders, and challenges many of the underlying assumptions used in most cholesterol transport studies to date.
Collapse
|
122
|
Borisova T, Kasatkina L, Ostapchenko L. The proton gradient of secretory granules and glutamate transport in blood platelets during cholesterol depletion of the plasma membrane by methyl-β-cyclodextrin. Neurochem Int 2011; 59:965-75. [DOI: 10.1016/j.neuint.2011.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 07/07/2011] [Accepted: 07/11/2011] [Indexed: 10/17/2022]
|
123
|
Georgiev AG, Sullivan DP, Kersting MC, Dittman JS, Beh CT, Menon AK. Osh proteins regulate membrane sterol organization but are not required for sterol movement between the ER and PM. Traffic 2011; 12:1341-55. [PMID: 21689253 DOI: 10.1111/j.1600-0854.2011.01234.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Sterol transport between the endoplasmic reticulum (ER) and plasma membrane (PM) occurs by an ATP-dependent, non-vesicular mechanism that is presumed to require sterol transport proteins (STPs). In Saccharomyces cerevisiae, homologs of the mammalian oxysterol-binding protein (Osh1-7) have been proposed to function as STPs. To evaluate this proposal we took two approaches. First we used dehydroergosterol (DHE) to visualize sterol movement in living cells by fluorescence microscopy. DHE was introduced into the PM under hypoxic conditions and observed to redistribute to lipid droplets on growing the cells aerobically. Redistribution required ATP and the sterol acyltransferase Are2, but did not require PM-derived transport vesicles. DHE redistribution occurred robustly in a conditional yeast mutant (oshΔ osh4-1(ts)) that lacks all functional Osh proteins at 37°C. In a second approach we used a pulse-chase protocol to analyze the movement of metabolically radiolabeled ergosterol from the ER to the PM. Arrival of radiolabeled ergosterol at the PM was assessed in isolated PM-enriched fractions as well as by extracting sterols from intact cells with methyl-β-cyclodextrin. These experiments revealed that whereas ergosterol is transported effectively from the ER to the PM in Osh-deficient cells, the rate at which it moves within the PM to equilibrate with the methyl-β-cyclodextrin extractable sterol pool is slowed. We conclude (i) that the role of Osh proteins in non-vesicular sterol transport between the PM, ER and lipid droplets is either minimal, or subsumed by other mechanisms and (ii) that Osh proteins regulate the organization of sterols at the PM.
Collapse
|
124
|
Bashkirov PV, Chekashkina KV, Akimov SA, Kuzmin PI, Frolov VA. Variation of lipid membrane composition caused by strong bending. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2011. [DOI: 10.1134/s199074781101003x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
125
|
Ríos-Marco P, Jiménez-López JM, Marco C, Segovia JL, Carrasco MP. Antitumoral alkylphospholipids induce cholesterol efflux from the plasma membrane in HepG2 cells. J Pharmacol Exp Ther 2011; 336:866-73. [PMID: 21148684 DOI: 10.1124/jpet.110.172890] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025] Open
Abstract
Alkylphospholipid (APL) analogs are promising candidates in the search for treatments of cancer. Previous studies conducted in our laboratory indicate that, after prolonged treatment, they alter cholesterol homeostasis in HepG2 cells. Here we describe the effects that different APLs exert upon this cell line after a 1-h exposure in a serum-free medium, including 1) a rapid, significant increase in cholesterol efflux into the extracellular medium, which consequently provoked a depletion of cholesterol in the plasma membrane (further assays conducted in an attempt to return to control cholesterol levels were only partially successful); 2) use of methyl-β-cyclodextrin, which indicated that APLs acted in a way similar to this agent that is used frequently to modulate membrane cholesterol levels; 3) the phosphorylation of Akt that showed that this critical regulator for cell survival was modulated by changes in cholesterol levels induced in the plasma membrane by APLs; and 4) membrane cholesterol depletion that is not related to the impairment of cholesterol traffic produced by APLs. Thus, we have found that antitumoral APLs efficiently deplete membrane cholesterol, which may be one important factor in determining the early biological actions of APLs.
Collapse
Affiliation(s)
- Pablo Ríos-Marco
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Granada, Spain
| | | | | | | | | |
Collapse
|
126
|
Eriksson ESE, Eriksson LA. The Influence of Cholesterol on the Properties and Permeability of Hypericin Derivatives in Lipid Membranes. J Chem Theory Comput 2011; 7:560-74. [DOI: 10.1021/ct100528u] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | - Leif A. Eriksson
- School of Chemistry, National University of Ireland—Galway, Galway, Ireland
| |
Collapse
|
127
|
Prinz WA. Lipid trafficking sans vesicles: where, why, how? Cell 2011; 143:870-4. [PMID: 21145454 DOI: 10.1016/j.cell.2010.11.031] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Revised: 11/17/2010] [Accepted: 11/17/2010] [Indexed: 11/28/2022]
Abstract
Eukaryotic cells possess a remarkable diversity of lipids, which distribute among cellular membranes by well-characterized vesicle trafficking pathways. However, transport of lipids by alternate, or "nonvesicular," routes is also critical for lipid synthesis, metabolism, and proper membrane partitioning. In the past few years, considerable progress has been made in characterizing the mechanisms of nonvesicular lipid transport and how it may go awry in particular diseases, but many fundamental questions remain for this rising field.
Collapse
Affiliation(s)
- William A Prinz
- Laboratory of Cell Biochemistry and Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
128
|
Thermo-TRP channels: biophysics of polymodal receptors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 704:469-90. [PMID: 21290312 DOI: 10.1007/978-94-007-0265-3_26] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this chapter we discuss the polymodal activation of thermo-TRP channels using as exemplars two of the best characterized members of this class of channels: TRPM8 and TRPV1. Since channel activation by temperature is the hallmark of thermo-TRP channels, we present a detailed discussion on the thermodynamics involved in the gating processes by temperature, voltage, and agonists. We also review recently published data in an effort to put together all the pieces available of the amazing puzzle of thermo-TRP channel activation. Special emphasis is made in the structural components that allow the channel-forming proteins to integrate such diverse stimuli, and in the coupling between the different sensors and the ion conduction pathway. We conclude that the present data is most economically explained by allosteric models in which temperature, voltage, and agonists act separately to modulate channel activity.
Collapse
|
129
|
Jo S, Rui H, Lim JB, Klauda JB, Im W. Cholesterol Flip-Flop: Insights from Free Energy Simulation Studies. J Phys Chem B 2010; 114:13342-8. [DOI: 10.1021/jp108166k] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sunhwan Jo
- Department of Molecular Biosciences and Center for Bioinformatics, The University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047, United States, and Department of Chemical and Biomolecular Engineering, The University of Maryland, College Park, Maryland 20742, United States
| | - Huan Rui
- Department of Molecular Biosciences and Center for Bioinformatics, The University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047, United States, and Department of Chemical and Biomolecular Engineering, The University of Maryland, College Park, Maryland 20742, United States
| | - Joseph B. Lim
- Department of Molecular Biosciences and Center for Bioinformatics, The University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047, United States, and Department of Chemical and Biomolecular Engineering, The University of Maryland, College Park, Maryland 20742, United States
| | - Jeffery B. Klauda
- Department of Molecular Biosciences and Center for Bioinformatics, The University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047, United States, and Department of Chemical and Biomolecular Engineering, The University of Maryland, College Park, Maryland 20742, United States
| | - Wonpil Im
- Department of Molecular Biosciences and Center for Bioinformatics, The University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047, United States, and Department of Chemical and Biomolecular Engineering, The University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
130
|
Borisova T, Sivko R, Borysov A, Krisanova N. Diverse presynaptic mechanisms underlying methyl-β-cyclodextrin-mediated changes in glutamate transport. Cell Mol Neurobiol 2010; 30:1013-23. [PMID: 20502957 PMCID: PMC11498762 DOI: 10.1007/s10571-010-9532-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Accepted: 05/13/2010] [Indexed: 02/05/2023]
Abstract
The effect of the cholesterol-depleting agent methyl-β-cyclodextrin (MβCD) on exocytotic, transporter-mediated, tonic release, the ambient level and uptake of L-[(14)C]glutamate was assessed in rat brain synaptosomes using different methodological approaches of MβCD application. The addition of 15 mM MβCD to synaptosomes (the acute treatment, AT) immediately resulted in the extraction of cholesterol and in a two times increase in the extracellular L-[(14)C]glutamate level. When 15 mM MβCD was applied to synaptosomes for 35 min followed by washing of the acceptor (the long-term pretreatment, LP), this level was only one-third higher than in the control. The opposite effects of MβCD on tonic L-[(14)C]glutamate release and glutamate transporter reversal were found in AT and LP. Tonic release was dramatically enlarged in AT, but decreased after LP. Transporter-mediated release was increased several times in AT, but attenuated in LP. Depolarization-evoked exocytotic release of L-[(14)C]glutamate was completely lost in AT, whereas after LP, it was decreased by half in comparison with the control. Na(+)-dependent L-[(14)C]glutamate uptake was decreased by ~60% in AT, whereas in LP, it was lowered by ~40% only. The presence of MβCD in the incubation media during AT caused dramatic dissipation of the proton gradient of synaptic vesicles that was shown with the pH-sensitive dye acridine orange, whereas after LP, no statistically significant changes were registered in synaptic vesicle acidification. It was concluded that the diverse changes in glutamate transport in AT and LP were associated with the difference in the functional state of synaptic vesicles.
Collapse
Affiliation(s)
- Tatiana Borisova
- Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha Street, Kiev, Ukraine.
| | | | | | | |
Collapse
|
131
|
Steck TL, Lange Y. Cell cholesterol homeostasis: mediation by active cholesterol. Trends Cell Biol 2010; 20:680-7. [PMID: 20843692 DOI: 10.1016/j.tcb.2010.08.007] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 08/03/2010] [Accepted: 08/12/2010] [Indexed: 12/15/2022]
Abstract
Recent evidence suggests that the major pathways mediating cell cholesterol homeostasis respond to a common signal: active membrane cholesterol. Active cholesterol is the fraction that exceeds the complexing capacity of the polar bilayer lipids. Increments in plasma membrane cholesterol exceeding this threshold have an elevated chemical activity (escape tendency) and redistribute via diverse transport proteins to both circulating plasma lipoproteins and intracellular organelles. Active cholesterol thereby prompts several feedback responses. It is the substrate for its own esterification and for the synthesis of regulatory side-chain oxysterols. It also stimulates manifold pathways that down-regulate the biosynthesis, curtail the ingestion and increase the export of cholesterol. Thus, the abundance of cell cholesterol is tightly coupled to that of its polar lipid partners through active cholesterol.
Collapse
Affiliation(s)
- Theodore L Steck
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA.
| | | |
Collapse
|
132
|
Erythrocyte morphological states, phases, transitions and trajectories. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:1767-78. [DOI: 10.1016/j.bbamem.2010.05.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 04/19/2010] [Accepted: 05/07/2010] [Indexed: 11/20/2022]
|
133
|
López-Montero I, Monroy F, Vélez M, Devaux PF. Ceramide: From lateral segregation to mechanical stress. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:1348-56. [DOI: 10.1016/j.bbamem.2009.12.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 11/25/2009] [Accepted: 12/09/2009] [Indexed: 12/13/2022]
|
134
|
Influence of cholesterol on catecholamine release from the fusion pore of large dense core chromaffin granules. J Neurosci 2010; 30:3904-11. [PMID: 20237261 DOI: 10.1523/jneurosci.4000-09.2010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Changes in cellular cholesterol can affect exocytosis, but the influence of cholesterol in fusion pore kinetics is unclear. Using carbon fiber amperometry, we monitored quantal catecholamine release from rat chromaffin cells. To bypass any possible effect of cholesterol perturbation on ion channels or the colocalization of voltage-gated Ca(2+) channels with sites of exocytosis, exocytosis was stimulated via uniform elevation of cytosolic [Ca(2+)] (with whole-cell dialysis of a Ca(2+)-buffered solution). Under this condition, alterations of cellular cholesterol affected neither the mean number of amperometric events triggered per cell nor their quantal size and the kinetics of their main spike (which reflects the rapid release during and after rapid fusion pore dilation). In contrast, the reduction of cellular cholesterol shortened the "prespike foot" signals (which reflect the leakage of catecholamine via a semi-stable fusion pore) and reduced the proportion of "stand-alone foot" signals (which reflect the release via a flickering fusion pore that may close before it dilates significantly), whereas an oversupply of cholesterol had opposite effects. Acute extraction of cholesterol from the cytosol (via whole-cell dialysis of a cholesterol extractor) also shortened the prespike foot signals and reduced the proportion of stand-alone foot signals, but acute extracellular application of cholesterol extractor or "soluble" cholesterol had no effect. Our data raise the possibility that cholesterol molecules, particularly those in the cytoplasmic leaflet, helps to constrain the narrow waistline of a semi-stable fusion pore while it is flickering or before it starts to dilate rapidly.
Collapse
|
135
|
Cholesterol Depletion from the Plasma Membrane Impairs Proton and Glutamate Storage in Synaptic Vesicles of Nerve Terminals. J Mol Neurosci 2010; 41:358-67. [DOI: 10.1007/s12031-010-9351-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Accepted: 03/12/2010] [Indexed: 12/14/2022]
|
136
|
Brunaldi K, Huang N, Hamilton JA. Fatty acids are rapidly delivered to and extracted from membranes by methyl-beta-cyclodextrin. J Lipid Res 2010; 51:120-31. [PMID: 19625735 DOI: 10.1194/m900200-jlr200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We performed detailed biophysical studies of transfer of long-chain fatty acids (FAs) from methyl-beta-CD (MBCD) to model membranes (egg-PC vesicles) and cells and the extraction of FA from membranes by MBCD. We used i) fluorescein phosphatidylethanolamine to detect transfer of FA anions arriving in the outer membrane leaflet; ii) entrapped pH dyes to measure pH changes after FA diffusion (flip-flop) across the lipid bilayer; and iii) soluble fluorescent-labeled FA binding protein to measure the concentration of unbound FA in water. FA dissociated from MBCD, bound to the membrane, and underwent flip-flop within milliseconds. In the presence of vesicles, MBCD maintained the aqueous concentration of unbound FA at low levels comparable to those measured with albumin. In studies with cells, addition of oleic acid (OA) complexed with MBCD yielded rapid (seconds) dose-dependent OA transport into 3T3-L1 preadipocytes and HepG2 cells. MBCD extracted OA from cells and model membranes rapidly at concentrations exceeding those required for OA delivery but much lower than concentrations commonly used for extracting cholesterol. Compared with albumin, MBCD can transfer its entire FA load and is less likely to extract cell nutrients and to introduce impurities.
Collapse
Affiliation(s)
- Kellen Brunaldi
- Department of PhysiologyBiophysics Boston University School of Medicine Boston MA 02118, USA
| | | | | |
Collapse
|
137
|
Abstract
Cholesterol is a major constituent of the plasma membrane in eukaryotic cells. It regulates the physical state of the phospholipid bilayer and is crucially involved in the formation of membrane microdomains. Cholesterol also affects the activity of several membrane proteins, and is the precursor for steroid hormones and bile acids. Here, methods are described that are used to explore the binding and/or interaction of proteins to cholesterol. For this purpose, a variety of cholesterol probes bearing radio-, spin-, photoaffinity- or fluorescent labels are currently available. Examples of proven cholesterol binding molecules are polyene compounds, cholesterol-dependent cytolysins, enzymes accepting cholesterol as substrate, and proteins with cholesterol binding motifs. Main topics of this report are the localization of candidate membrane proteins in cholesterol-rich microdomains, the issue of specificity of cholesterol- protein interactions, and applications of the various cholesterol probes for these studies.
Collapse
Affiliation(s)
- Gerald Gimpl
- Institut für Biochemie, Johannes Gutenberg-Universität, Johann-Joachim-Becherweg 30, Mainz, Germany.
| |
Collapse
|
138
|
Brunaldi K, Huang N, Hamilton JA. Fatty acids are rapidly delivered to and extracted from membranes by methyl-β-cyclodextrin. J Lipid Res 2010. [DOI: 10.1194/jlr.m900200-jlr200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
139
|
Bruckner R, Mansy S, Ricardo A, Mahadevan L, Szostak J. Flip-flop-induced relaxation of bending energy: implications for membrane remodeling. Biophys J 2009; 97:3113-22. [PMID: 20006948 PMCID: PMC2793357 DOI: 10.1016/j.bpj.2009.09.025] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 09/10/2009] [Accepted: 09/14/2009] [Indexed: 12/27/2022] Open
Abstract
Cellular and organellar membranes are dynamic materials that underlie many aspects of cell biology. Biological membranes have long been thought of as elastic materials with respect to bending deformations. A wealth of theory and experimentation on pure phospholipid membranes provides abundant support for this idea. However, biological membranes are not composed solely of phospholipids--they also incorporate a variety of amphiphilic molecules that undergo rapid transbilayer flip-flop. Here we describe several experimental systems that demonstrate deformation-induced molecular flip-flop. First we use a fluorescence assay to track osmotically controlled membrane deformation in single component fatty acid vesicles, and show that the relaxation of the induced bending stress is mediated by fatty acid flip-flop. We then look at two-component phospholipid/cholesterol composite vesicles. We use NMR to show that the steady-state rate of interleaflet diffusion of cholesterol is fast relative to biological membrane remodeling. We then use a Förster resonance energy transfer assay to detect the transbilayer movement of cholesterol upon deformation. We suggest that our results can be interpreted by modifying the area difference elasticity model to account for the time-dependent relaxation of bending energy. Our findings suggest that rapid interleaflet diffusion of cholesterol may play a role in membrane remodeling in vivo. We suggest that the molecular characteristics of sterols make them evolutionarily preferred mediators of stress relaxation, and that the universal presence of sterols in the membranes of eukaryotes, even at low concentrations, reflects the importance of membrane remodeling in eukaryotic cells.
Collapse
Affiliation(s)
- R.J. Bruckner
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts
| | - S.S. Mansy
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts
| | - A. Ricardo
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts
| | - L. Mahadevan
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
| | - J.W. Szostak
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
140
|
Morris RJ. Ionic control of the metastable inner leaflet of the plasma membrane: Fusions natural and artefactual. FEBS Lett 2009; 584:1665-9. [PMID: 19913542 DOI: 10.1016/j.febslet.2009.11.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 11/02/2009] [Accepted: 11/07/2009] [Indexed: 10/20/2022]
Abstract
The phospholipids of the inner and outer leaflets of the plasma membrane face chemically very different environments, and are specialized to serve different needs. While lipids of the outer leaflet are inherently stable in a lamellar (bilayer) phase, the main lipid of the inner layer, phosphatidylethanolamine (PE), does not form a lamellar phase unless evenly mixed with phosphatidylserine (PS(-)). This mixture can be readily perturbed by factors that include an influx of Ca(2+) that chelates the negatively charged PS(-), thereby destabilizing PE. The implications of this metastability of the inner leaflet for vesicular trafficking, and experimentally for the isolation of detergent-resistant membrane domains (DRMs) at physiological temperature, are considered.
Collapse
Affiliation(s)
- Roger J Morris
- Wolfson Centre for Age-Related Disease, Guy's Campus, King's College London, UK.
| |
Collapse
|
141
|
Lange Y, Ye J, Duban ME, Steck TL. Activation of membrane cholesterol by 63 amphipaths. Biochemistry 2009; 48:8505-15. [PMID: 19655814 DOI: 10.1021/bi900951r] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A few membrane-intercalating amphipaths have been observed to stimulate the interaction of cholesterol with cholesterol oxidase, saponin and cyclodextrin, presumably by displacing cholesterol laterally from its phospholipid complexes. We now report that this effect, referred to as cholesterol activation, occurs with dozens of other amphipaths, including alkanols, saturated and cis- and trans-unsaturated fatty acids, fatty acid methyl esters, sphingosine derivatives, terpenes, alkyl ethers, ketones, aromatics and cyclic alkyl derivatives. The apparent potency of the agents tested ranged from 3 microM to 7 mM and generally paralleled their octanol/water partition coefficients, except that relative potency declined for compounds with >10 carbons. Some small amphipaths activated cholesterol at a membrane concentration of approximately 3 mol per 100 mol of bilayer lipids, about equimolar with the cholesterol they displaced. Lysophosphatidylserine countered the effects of all these agents, consistent with its ability to reduce the pool of active membrane cholesterol. Various amphipaths stabilized red cells against the hemolysis elicited by cholesterol depletion, presumably by substituting for the extracted sterol. The number and location of cis and trans fatty acid unsaturations and the absolute stereochemistry of enantiomer pairs had only small effects on amphipath potency. Nevertheless, potency varied approximately 7-fold within a group of diverse agents with similar partition coefficients. We infer that a wide variety of amphipaths can displace membrane cholesterol by competing stoichiometrically but with only limited specificity for weak association with phospholipids. Any number of other drugs and experimental agents might do the same.
Collapse
Affiliation(s)
- Yvonne Lange
- Department of Pathology, Rush University Medical Center, Chicago, Illinois 60612, USA.
| | | | | | | |
Collapse
|
142
|
Bennett WFD, MacCallum JL, Hinner MJ, Marrink SJ, Tieleman DP. Molecular View of Cholesterol Flip-Flop and Chemical Potential in Different Membrane Environments. J Am Chem Soc 2009; 131:12714-20. [DOI: 10.1021/ja903529f] [Citation(s) in RCA: 228] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- W. F. Drew Bennett
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada, Institute of Chemical Sciences and Engineering, Laboratory of Protein Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland, and Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Justin L. MacCallum
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada, Institute of Chemical Sciences and Engineering, Laboratory of Protein Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland, and Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Marlon J. Hinner
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada, Institute of Chemical Sciences and Engineering, Laboratory of Protein Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland, and Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Siewert J. Marrink
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada, Institute of Chemical Sciences and Engineering, Laboratory of Protein Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland, and Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - D. Peter Tieleman
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada, Institute of Chemical Sciences and Engineering, Laboratory of Protein Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland, and Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
143
|
Gómez J, Sagués F, Reigada R. Nonequilibrium patterns in phase-separating ternary membranes. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 80:011920. [PMID: 19658742 DOI: 10.1103/physreve.80.011920] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 04/29/2009] [Indexed: 05/28/2023]
Abstract
We present a nonequilibrium approach for the study of a two-dimensional phase-separating ternary mixture. When the component that promotes phase separation is dynamically exchanged with the medium, the separation process is halted and actively maintained finite-size segregation domains appear in the system. In addition to this effect, already reported in our earlier work [J. Gómez, F. Sagués, and R. Reigada, Phys. Rev. E 77, 021907 (2008)], the use of a generic Ginzburg-Landau formalism and the inclusion of thermal fluctuations provide a more dynamic description of the resulting domain organization. Its size, shape, and stability properties are studied. Larger and more circular and stable domains are formed when decreasing the recycling rate, increasing the mobility of the exchanged component, and the mixture is quenched deeper. We expect this outcome to be of applicability in raft phenomenology in plasmatic cell membranes.
Collapse
Affiliation(s)
- Jordi Gómez
- Departament de Química-Física, Universitat de Barcelona, Avda. Diagonal 647, 08028 Barcelona, Spain
| | | | | |
Collapse
|
144
|
Liu J, Conboy JC. Phase Behavior of Planar Supported Lipid Membranes Composed of Cholesterol and 1,2-Distearoyl-sn-Glycerol-3-Phosphocholine Examined by Sum-Frequency Vibrational Spectroscopy. VIBRATIONAL SPECTROSCOPY 2009; 50:106-115. [PMID: 20361007 PMCID: PMC2846528 DOI: 10.1016/j.vibspec.2008.09.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The influence of cholesterol (CHO) on the phase behavior of 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) planar supported lipid bilayers (PSLBs) was investigated by sum-frequency vibrational spectroscopy (SFVS). The intrinsic symmetry constraints of SFVS were exploited to measure the asymmetric distribution of phase segregated phospholipid domains in the proximal and distal layers of DSPC + CHO binary mixtures as a function of CHO content and temperature. The SFVS results suggest that cholesterol significantly affects the phase segregation and domain distribution in PSLBs of DSPC in a concentration dependent manner, similar to that found in bulk suspensions. The SFVS spectroscopic measurements of phase segregation and structure change in the binary mixture indicate that membrane asymmetry must be present in order for the changes in SFVS signal to be observed. These results therefore provide important evidence for the delocalization and segregation of different phase domain structures in PSLBs due to the interaction of cholesterol and phospholipids.
Collapse
|
145
|
Rudenko SV. Characterization of morphological response of red cells in a sucrose solution. Blood Cells Mol Dis 2009; 42:252-61. [DOI: 10.1016/j.bcmd.2009.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 12/22/2008] [Accepted: 01/06/2009] [Indexed: 11/29/2022]
|
146
|
Intracellular sterol dynamics. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:636-45. [PMID: 19286471 DOI: 10.1016/j.bbalip.2009.03.002] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 02/27/2009] [Accepted: 03/03/2009] [Indexed: 01/17/2023]
Abstract
We review the cellular mechanisms implicated in cholesterol trafficking and distribution. Recent studies have provided new information about the distribution of sterols within cells, including analysis of its transbilayer distribution. The cholesterol interaction with other lipids and its engagement in various trafficking processes will determine its proper level in a specific membrane; making the cholesterol distribution uneven among the various intracellular organelles. The cholesterol content is important since cholesterol plays an essential role in membranes by controlling their physicochemical properties as well as key cellular events such as signal transduction and protein trafficking. Cholesterol movement between cellular organelles is highly dynamic, and can be achieved by vesicular and non-vesicular processes. Various studies have analyzed the proteins that play a significant role in these processes, giving us new information about the relative importance of these two trafficking pathways in cholesterol transport. Although still poorly characterized in many trafficking routes, several potential sterol transport proteins have been described in detail; as a result, molecular mechanisms for sterol transport among membranes start to be appreciated.
Collapse
|
147
|
Bennett WFD, MacCallum JL, Tieleman DP. Thermodynamic Analysis of the Effect of Cholesterol on Dipalmitoylphosphatidylcholine Lipid Membranes. J Am Chem Soc 2009; 131:1972-8. [DOI: 10.1021/ja808541r] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- W. F. Drew Bennett
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Justin L. MacCallum
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - D. Peter Tieleman
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
148
|
Chapter 1 Free Energies of Lipid–Lipid Interactions in Membranes. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/s1574-1400(09)00501-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
149
|
Mondal M, Mesmin B, Mukherjee S, Maxfield FR. Sterols are mainly in the cytoplasmic leaflet of the plasma membrane and the endocytic recycling compartment in CHO cells. Mol Biol Cell 2008; 20:581-8. [PMID: 19019985 DOI: 10.1091/mbc.e08-07-0785] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The transbilayer distribution of many lipids in the plasma membrane and in endocytic compartments is asymmetric, and this has important consequences for signaling and membrane physical properties. The transbilayer distribution of cholesterol in these membranes is not properly established. Using the fluorescent sterols, dehydroergosterol and cholestatrienol, and a variety of fluorescence quenchers, we studied the transbilayer distribution of sterols in the plasma membrane (PM) and the endocytic recycling compartment (ERC) of a CHO cell line. A membrane impermeant quencher, 2,4,6-trinitrobenzene sulfonic acid, or lipid-based quenchers that are restricted to the exofacial leaflet of the plasma membrane only reduce the fluorescence intensity of these sterols in the plasma membrane by 15-32%. When the same quenchers have access to both leaflets, they quench 70-80% of the sterol fluorescence. Sterol fluorescence in the ERC is also quenched efficiently in the permeabilized cells. In microinjection experiments, delivery of quenchers into the cytosol efficiently quenched the fluorescent sterols associated with the PM and with the ERC. Quantitative analysis indicates that 60-70% of the PM sterol is in the cytoplasmic leaflet. This means that cholesterol constitutes approximately 40 mol% of cytoplasmic leaflet lipids, which may have important implications for intracellular cholesterol transport and membrane domain formation.
Collapse
Affiliation(s)
- Mousumi Mondal
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | | | |
Collapse
|
150
|
The effect of cholesterol on short- and long-chain monounsaturated lipid bilayers as determined by molecular dynamics simulations and X-ray scattering. Biophys J 2008; 95:2792-805. [PMID: 18515383 DOI: 10.1529/biophysj.107.122465] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We investigate the structure of cholesterol-containing membranes composed of either short-chain (diC14:1PC) or long-chain (diC22:1PC) monounsaturated phospholipids. Bilayer structural information is derived from all-atom molecular dynamics simulations, which are validated via direct comparison to x-ray scattering experiments. We show that the addition of 40 mol % cholesterol results in a nearly identical increase in the thickness of the two different bilayers. In both cases, the chain ordering dominates over the hydrophobic matching between the length of the cholesterol molecule and the hydrocarbon thickness of the bilayer, which one would expect to cause a thinning of the diC22:1PC bilayer. For both bilayers there is substantial headgroup rearrangement for lipids directly in contact with cholesterol, supporting the so-called umbrella model. Importantly, in diC14:1PC bilayers, a dynamic network of hydrogen bonds stabilizes long-lived reorientations of some cholesterol molecules, during which they are found to lie perpendicular to the bilayer normal, deep within the bilayer's hydrophobic core. Additionally, the simulations show that the diC14:1PC bilayer is significantly more permeable to water. These differences may be correlated with faster cholesterol flip-flop between the leaflets of short-chain lipid bilayers, resulting in an asymmetric distribution of cholesterol molecules. This asymmetry was observed experimentally in a case of unilamellar vesicles (ULVs), and reproduced through a set of novel asymmetric simulations. In contrast to ULVs, experimental data for oriented multilamellar stacks does not show the asymmetry, suggesting that it results from the curvature of the ULV bilayers.
Collapse
|