101
|
Ye R, Tan C, Chen B, Li R, Mao Z. Zinc-Containing Metalloenzymes: Inhibition by Metal-Based Anticancer Agents. Front Chem 2020; 8:402. [PMID: 32509730 PMCID: PMC7248183 DOI: 10.3389/fchem.2020.00402] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 04/16/2020] [Indexed: 01/13/2023] Open
Abstract
DNA is considered to be the primary target of platinum-based anticancer drugs which have gained great success in clinics, but DNA-targeted anticancer drugs cause serious side-effects and easily acquired drug resistance. This has stimulated the search for novel therapeutic targets. In the past few years, substantial research has demonstrated that zinc-containing metalloenzymes play a vital role in the occurrence and development of cancer, and they have been identified as alternative targets for metal-based anticancer agents. Metal complexes themselves have also exhibited a lot of appealing features for enzyme inhibition, such as: (i) the facile construction of 3D structures that can increase the enzyme-binding selectivity and affinity; (ii) the intriguing photophysical and photochemical properties, and redox activities of metal complexes can offer possibilities to design enzyme inhibitors with multiple modes of action. In this review, we discuss recent examples of zinc-containing metalloenzyme inhibition of metal-based anticancer agents, especially three zinc-containing metalloenzymes overexpressed in tumors, including histone deacetylases (HDACs), carbonic anhydrases (CAs), and matrix metalloproteinases (MMPs).
Collapse
Affiliation(s)
- Ruirong Ye
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China.,MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Caiping Tan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Bichun Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Rongtao Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Zongwan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
102
|
Corinti D, Crestoni ME, Fornarini S, Dabbish E, Sicilia E, Gabano E, Perin E, Osella D. A multi-methodological inquiry of the behavior of cisplatin-based Pt(IV) derivatives in the presence of bioreductants with a focus on the isolated encounter complexes. J Biol Inorg Chem 2020; 25:655-670. [PMID: 32296997 DOI: 10.1007/s00775-020-01789-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 03/31/2020] [Indexed: 01/14/2023]
Abstract
The study of Pt(IV) antitumor prodrugs able to circumvent some drawbacks of the conventional Pt(II) chemotherapeutics is the focus of a lot of attention. This paper reports a thorough study based on experimental methods (reduction kinetics, electrochemistry, tandem mass spectrometry and IR ion spectroscopy) and quantum-mechanical DFT calculations on the reduction mechanism of cisplatin-based Pt(IV) derivatives having two hydroxido (1), one hydroxido and one acetato (2), or two acetato ligands (3) in axial position. The biological reductants glutathione and ascorbic acid were taken into consideration. The presence of a hydroxido ligand resulted to play an important role in the chemical reduction with ascorbic acid, as verified by 15N-NMR kinetic analysis using 15N-enriched complexes. The reactivity trend (1 > 2 > 3) does not reflect the respective reduction peak potentials (1 < 2 < 3), an inverse relationship already documented in similar systems. Turning to a simplified environment, the Pt(IV) complexes associated with a single reductant molecule (corresponding to the encounter complex occurring along the reaction coordinate in bimolecular reactions in solution) were characterized by IR ion spectroscopy and sampled for their reactivity under collision-induced dissociation (CID) conditions. The complexes display a comparable reduction reactivity ordering as that observed in solution. DFT calculations of the free energy pathways for the observed fragmentation reactions provide theoretical support for the CID patterns and the mechanistic hypotheses on the reduction process are corroborated by the observed reaction paths. The bulk of these data offers a clue of the intricate pathways occurring in solution.Graphic abstract.
Collapse
Affiliation(s)
- Davide Corinti
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma "La Sapienza", P.le A. Moro 5, 00185, Rome, Italy.
| | - Maria Elisa Crestoni
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma "La Sapienza", P.le A. Moro 5, 00185, Rome, Italy
| | - Simonetta Fornarini
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma "La Sapienza", P.le A. Moro 5, 00185, Rome, Italy
| | - Eslam Dabbish
- Department of Chemistry and Chemical Technologies, Università della Calabria, Ponte P. Bucci Cubo 14c, 87035, Arcavacata di Rende (CS), Italy.
| | - Emilia Sicilia
- Department of Chemistry and Chemical Technologies, Università della Calabria, Ponte P. Bucci Cubo 14c, 87035, Arcavacata di Rende (CS), Italy
| | - Elisabetta Gabano
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121, Alessandria, Italy.
| | - Elena Perin
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121, Alessandria, Italy
| | - Domenico Osella
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121, Alessandria, Italy
| |
Collapse
|
103
|
Jakubowski M, Łakomska I, Sitkowski J, Pokrywczyńska M, Dąbrowski P, Framski G, Ostrowski T. Multinuclear magnetic resonance characterization and antiproliferative studies of novel dichlorido platinum(II) complexes containing kinetin riboside and 1-β-d-ribofuranosyl-4-(2-pyridyl)-1H-1,2,3-triazole. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
104
|
Ong JX, Ang WH. Development of a Pre‐assembled Through‐Bond Energy Transfer (TBET) Fluorescent Probe for Ratiometric Sensing of Anticancer Platinum(ll) Complexes. Chem Asian J 2020; 15:1449-1455. [DOI: 10.1002/asia.202000157] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/06/2020] [Indexed: 01/28/2023]
Affiliation(s)
- Jun Xiang Ong
- Department of ChemistryNational University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Wee Han Ang
- Department of ChemistryNational University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- NUS Graduate School for Integrative Sciences and EngineeringNational University of Singapore 28 Medical Drive Singapore 117456 Singapore
| |
Collapse
|
105
|
Liu Z, Wang M, Wang H, Fang L, Gou S. Targeting RAS-RAF pathway significantly improves antitumor activity of Rigosertib-derived platinum(IV) complexes and overcomes cisplatin resistance. Eur J Med Chem 2020; 194:112269. [PMID: 32248002 DOI: 10.1016/j.ejmech.2020.112269] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/22/2020] [Accepted: 03/22/2020] [Indexed: 02/07/2023]
Abstract
RAS-RAF pathway presents a valuable target for the cancer treatment due to its important roles in the regulation of tumor proliferation, apoptosis and the obtained resistance. To explore such target a RAS/CRAF interference agent, was therefore conjugated with Pt(IV) prodrugs via ester bond, resulting in total eleven multifunctional Pt(IV) complexes. The complexes could target genomic DNA and disrupt the signaling transduction from RAS protein to CRAF so that block the mitogen-activated protein kinase (MAPK) signaling pathway. Experiments in vitro indicated that all of the Pt(IV) complexes showed potent anti-tumor activity with IC50 values ranged from 8 nM to 22.55 μM, which were significantly improved as compared with cisplatin (CDDP) whose IC50 values ranged from 5.45 μM to 9.05 μM. Among them, 26 exerted the best anti-tumor activity in vitro, which not only exhibited excellent cytotoxicity against normal tumor cells, but also against CDDP-resistance cell lines (e.g. A549/CDDP and SKOV-3/CDDP). Importantly, 26 only showed little effect on normal cell lines such as HUEVC and LO2. Besides, the following biological mechanisms studies demonstrated that 26 could efficiently enter. A549 cells, significantly arrest cell cycle at G2/M phase, disrupt the signaling pathway and trigger endogenous caspase apoptosis pathway. Furthermore, results of a xenograft subcutaneous model of A549 tumor showed that 26 could effectively decrease tumor growth rates without causing loss of bodyweight.
Collapse
Affiliation(s)
- Zhikun Liu
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China; Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Meng Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin, 541004, China
| | - Hengshan Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin, 541004, China
| | - Lei Fang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China; Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | - Shaohua Gou
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China; Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
106
|
Khoury A, Deo KM, Aldrich-Wright JR. Recent advances in platinum-based chemotherapeutics that exhibit inhibitory and targeted mechanisms of action. J Inorg Biochem 2020; 207:111070. [PMID: 32299045 DOI: 10.1016/j.jinorgbio.2020.111070] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 12/22/2022]
Abstract
Current platinum-based drugs used in chemotherapy, like cisplatin and its derivatives, are greatly limited due to side-effects and drug resistance. This has inspired the search for novel platinum-based drugs that deviate from the conventional mechanism of action seen with current chemotherapeutics. This review highlights recent advances in platinum(II) and platinum(IV)-based complexes that have been developed within the past six years. The platinum compounds explored within this review are those that display a more targeted approach by incorporating ligands that act on selected cellular targets within cancer cells. This includes mitochondria, overexpressed receptors or proteins and enzymes that contribute to cancer cell proliferation. These types of platinum compounds have shown significant improvements in anticancer activity and as such, this review highlights the importance of pursuing these new designed platinum drugs for cancer therapy, with the potential of undergoing clinical trials.
Collapse
Affiliation(s)
- Aleen Khoury
- School of Science, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Krishant M Deo
- School of Science, Western Sydney University, Campbelltown, NSW 2560, Australia
| | | |
Collapse
|
107
|
Oxaliplatin Pt(IV) prodrugs conjugated to gadolinium-texaphyrin as potential antitumor agents. Proc Natl Acad Sci U S A 2020; 117:7021-7029. [PMID: 32179677 DOI: 10.1073/pnas.1914911117] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Described here is the development of gadolinium(III) texaphyrin-platinum(IV) conjugates capable of overcoming platinum resistance by 1) localizing to solid tumors, 2) promoting enhanced cancer cell uptake, and 3) reactivating p53 in platinum-resistant models. Side by side comparative studies of these Pt(IV) conjugates to clinically approved platinum(II) agents and previously reported platinum(II)-texaphyrin conjugates demonstrate that the present Pt(IV) conjugates are more stable against hydrolysis and nucleophilic attack. Moreover, they display high potent antiproliferative activity in vitro against human and mouse cell cancer lines. Relative to the current platinum clinical standard of care (SOC), a lead Gd(III) texaphyrin-Pt(IV) prodrug conjugate emerging from this development effort was found to be more efficacious in subcutaneous (s.c.) mouse models involving both cell-derived xenografts and platinum-resistant patient-derived xenografts. Comparative pathology studies in mice treated with equimolar doses of the lead Gd texaphyrin-Pt(IV) conjugate or the US Food and Drug Administration (FDA)-approved agent oxaliplatin revealed that the conjugate was better tolerated. Specifically, the lead could be dosed at more than three times (i.e., 70 mg/kg per dose) the tolerable dose of oxaliplatin (i.e., 4 to 6 mg/kg per dose depending on the animal model) with little to no observable adverse effects. A combination of tumor localization, redox cycling, and reversible protein binding is invoked to explain the relatively increased tolerability and enhanced anticancer activity seen in vivo. On the basis of the present studies, we conclude that metallotexaphyrin-Pt conjugates may have substantial clinical potential as antitumor agents.
Collapse
|
108
|
Karges J, Yempala T, Tharaud M, Gibson D, Gasser G. A Multi-action and Multi-target Ru II -Pt IV Conjugate Combining Cancer-Activated Chemotherapy and Photodynamic Therapy to Overcome Drug Resistant Cancers. Angew Chem Int Ed Engl 2020; 59:7069-7075. [PMID: 32017379 DOI: 10.1002/anie.201916400] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/28/2020] [Indexed: 12/21/2022]
Abstract
PtII complexes are commonly used to treat cancer. To reduce their side effects and improve their pharmacological properties, PtIV complexes are being developed as prodrug candidates that are activated by reduction in cancer cells. Concomitantly, RuII polypyridine complexes have gained much attention as photosensitizers for use in photodynamic therapy due to their attractive characteristics. In this article, a novel PtIV -RuII conjugate, which combines cancer activated chemotherapy with PDT, is presented. Upon entering the cancer cell, the PtIV centre is reduced to PtII and the axial ligands including the RuII complex and phenylbutyrate are released. As each component has its individual targets, the conjugate exerts a multi-target and multi-action effect with (photo-)cytotoxicity values upon irradiation up to 595 nm in the low nanomolar range in various (drug resistant) 2D monolayer cancer cells and 3D multicellular tumour spheroids.
Collapse
Affiliation(s)
- Johannes Karges
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005, Paris, France
| | - Thirumal Yempala
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel
| | - Mickaël Tharaud
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, 75005, Paris, France
| | - Dan Gibson
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005, Paris, France
| |
Collapse
|
109
|
Karges J, Yempala T, Tharaud M, Gibson D, Gasser G. A Multi‐action and Multi‐target Ru
II
–Pt
IV
Conjugate Combining Cancer‐Activated Chemotherapy and Photodynamic Therapy to Overcome Drug Resistant Cancers. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916400] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Johannes Karges
- Chimie ParisTech PSL University CNRS Institute of Chemistry for Life and Health Sciences Laboratory for Inorganic Chemical Biology 75005 Paris France
| | - Thirumal Yempala
- Institute for Drug Research School of Pharmacy The Hebrew University of Jerusalem 91120 Jerusalem Israel
| | - Mickaël Tharaud
- Université de Paris Institut de Physique du Globe de Paris CNRS 75005 Paris France
| | - Dan Gibson
- Institute for Drug Research School of Pharmacy The Hebrew University of Jerusalem 91120 Jerusalem Israel
| | - Gilles Gasser
- Chimie ParisTech PSL University CNRS Institute of Chemistry for Life and Health Sciences Laboratory for Inorganic Chemical Biology 75005 Paris France
| |
Collapse
|
110
|
Hydrogen halide assisted formation of peptide disulfides by a platinum(IV) complex oxidation in aqueous medium, a mechanistic study. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
111
|
Shi H, Imberti C, Huang H, Hands-Portman I, Sadler PJ. Biotinylated photoactive Pt(iv) anticancer complexes. Chem Commun (Camb) 2020; 56:2320-2323. [PMID: 31990000 DOI: 10.1039/c9cc07845b] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Novel biotinylated diazido-Pt(iv) complexes exhibit high visible light photocytotoxicity while being stable in the dark. Photocytotoxicity and cellular accumulation of all-trans-[Pt(py)2(N3)2(biotin)(OH)] (2a) were enhanced significantly when bound to avidin; irradiation induced dramatic cellular morphological changes in human ovarian cancer cells treated with 2a.
Collapse
Affiliation(s)
- Huayun Shi
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| | | | | | | | | |
Collapse
|
112
|
Tan MX, Wang ZF, Qin QP, Zou BQ, Liang H. Complexes of oxoplatin with rhein and ferulic acid ligands as platinum(iv) prodrugs with high anti-tumor activity. Dalton Trans 2020; 49:1613-1619. [PMID: 31942585 DOI: 10.1039/c9dt04594e] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We herein designed two new PtIV prodrugs of oxoplatin (cis,cis,cis-[PtCl2(NH3)2(OH)2]), [PtIVCl2(NH3)2(O2C-FA)2] (Pt-2) and [PtIVCl2(NH3)2(O2C-RH)2] (Pt-3), by conjugating with ferulic acid (FA-COOH) and rhein (RH-COOH) which have well-known biological activities. Three other Pt(iv) complexes of [PtIVCl2(NH3)2(O2C-BA)2] (Pt-1), [PtIVCl2(NH3)2(O2C-CA)2] (Pt-4) and [PtIVCl2(NH3)2(O2C-TCA)2] (Pt-5) (where BA-COOH = benzoic acid, CA-COOH = crotonic acid and TCA-COOH = trans-cinnamic acid) were also prepared for the comparative study. Like most PtIV prodrug complexes, the cytotoxicity of Pt-3 containing the biologically active rhein (RH-COOH) ligand against lung carcinoma (A549 and A549/DDP) cells was higher than those of Pt-1, Pt-2, Pt-4, cisplatin and Pt-5. Moreover, the cytotoxicity of Pt-3 in HL-7702 normal cells was lower than those of PtIV derivatives bearing BA-COOH, FA-COOH, TCA-COOH and CA-COOH ligands. The highly efficacious Pt-2 and Pt-3 were found to accumulate strongly in the A549/DDP cells, with the prodrug Pt-3 showing highest levels of penetration into the mitochondria. The prodrug Pt-3 effectively entered the A549/DDP cells and caused mitochondrial damage, significantly greater than Pt-2. In addition, the prodrug Pt-3 exhibited higher antitumor efficacy (inhibition rates (IR) = 67.45%) than Pt-2 (28.12%) and cisplatin (33.05%) in the A549/DDP xenograft mouse model. Thus, the prodrug Pt-3 containing the rhein (RH-COOH) ligand is a promising candidate drug targeting the mitochondria.
Collapse
Affiliation(s)
- Ming-Xiong Tan
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Zhen-Feng Wang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Qi-Pin Qin
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China. and State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China.
| | - Bi-Qun Zou
- Department of Chemistry, Guilin Normal College, 9 Feihu Road, Gulin 541001, China.
| | - Hong Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China.
| |
Collapse
|
113
|
Phillips AM, Pombeiro AJ. Transition Metal-Based Prodrugs for Anticancer Drug Delivery. Curr Med Chem 2020; 26:7476-7519. [DOI: 10.2174/0929867326666181203141122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 11/08/2018] [Accepted: 11/12/2018] [Indexed: 12/14/2022]
Abstract
:
Transition metal complexes, of which the platinum(II) complex cisplatin is an example,
have been used in medicine to treat cancer for more than 40 years. Although many successes have
been achieved, there are problems associated with the use of these drugs, such as side effects and
drug resistance. Converting them into prodrugs, to make them more inert, so that they can travel to
the tumour site unchanged and release the drug in its active form only there, is a strategy which is
the subject of much research nowadays. The new prodrugs may be activated and release the cytotoxic
agent by differences in oxygen concentration or in pH, by the action of overexpressed enzymes,
by differences in metabolic rates, etc., which characteristically distinguish cancer cells from
normal ones, or even by the input of radiation, which can be visible light. Converting a metal complex
into a prodrug may also be used to improve its pharmacological properties. In some cases, the
metal complex is a carrier which transports the active drug as a ligand. Some platinum prodrugs
have reached clinical trials. So far platinum, ruthenium and cobalt have been the most studied metals.
This review presents the recent developments in this area, including the types of complexes
used, the mechanisms of drug action and in some cases the techniques applied to monitor drug delivery
to cells.
Collapse
Affiliation(s)
- Ana M.F. Phillips
- Centro de Química Estrutural, Complexo I, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Armando J.L. Pombeiro
- Centro de Química Estrutural, Complexo I, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
114
|
Zhang Z, Tizzard GJ, Williams JAG, Goldup SM. Rotaxane Pt II-complexes: mechanical bonding for chemically robust luminophores and stimuli responsive behaviour. Chem Sci 2020; 11:1839-1847. [PMID: 34123277 PMCID: PMC8148368 DOI: 10.1039/c9sc05507j] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We report an approach to rotaxanes in which the metal ion of a cyclometallated PtII luminophore is embedded in the space created by the mechanical bond. Our results show that the interlocked ligand environment stabilises a normally labile PtII–triazole bond against displacement by competing ligands and that the crowded environment of the mechanical bond retards oxidation of the PtII centre, without perturbing the photophysical properties of the complex. When an additional pyridyl binding site is included in the axle, the luminescence of the PtII centre is quenched, an effect that can be selectively reversed by the binding of AgI. Our results suggest that readily available interlocked metal-based phosphors can be designed to be stimuli responsive and have advantages as stabilised triplet harvesting dopants for device applications. We report an approach to interlocked PtII luminophores in which the mechanical bond stabilises the coordination environment of the embedded metal ion.![]()
Collapse
Affiliation(s)
- Zhihui Zhang
- Chemistry, University of Southampton Southampton SO51 5PG UK
| | | | | | | |
Collapse
|
115
|
Sharma KS, Dubey AK, Koijam AS, Kumar C, Ballal A, Mukherjee S, Phadnis PP, Vatsa RK. Synthesis of 2-deoxy- d-glucose coated Fe 3O 4 nanoparticles for application in targeted delivery of the Pt( iv) prodrug of cisplatin – a novel approach in chemotherapy. NEW J CHEM 2020. [DOI: 10.1039/c9nj05989j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pt(IV) prodrug of cisplatin was loaded on 2DG functionalized silica coated Fe3O4 nanoparticles. The formulation alone exhibited biocompatibility whereas Pt(IV) loaded formulation exhibited cytotoxicity comparable with cisplatin.
Collapse
Affiliation(s)
| | - Akhil K. Dubey
- Bio-Organic Division
- Bhabha Atomic Research Centre
- Mumbai-400 085
- India
| | - Arunkumar S. Koijam
- Radiopharmaceuticals Division
- Bhabha Atomic Research Centre
- Mumbai-400 085
- India
| | - Chandan Kumar
- Radiopharmaceuticals Division
- Bhabha Atomic Research Centre
- Mumbai-400 085
- India
| | - Anand Ballal
- Molecular Biology Division
- Bhabha Atomic Research Centre
- Mumbai-400 085
- India
| | - Sudip Mukherjee
- UGC-DAE Consortium for Scientific Research
- Mumbai Centre
- Mumbai-400 085
- India
| | - Prasad P. Phadnis
- Chemistry Division
- Bhabha Atomic Research Centre
- Mumbai-400 085
- India
- Homi Bhabha National Institute
| | - Rajesh K. Vatsa
- Chemistry Division
- Bhabha Atomic Research Centre
- Mumbai-400 085
- India
- Homi Bhabha National Institute
| |
Collapse
|
116
|
Zhao Y, Kang Y, Xu F, Zheng W, Luo Q, Zhang Y, Jia F, Wang F. Pharmacophore conjugation strategy for multi-targeting metal-based anticancer complexes. Med Chem 2020. [DOI: 10.1016/bs.adioch.2019.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
117
|
Chen CKJ, Gui X, Kappen P, Renfrew AK, Hambley TW. The effect of charge on the uptake and resistance to reduction of platinum(IV) complexes in human serum and whole blood models. Metallomics 2020; 12:1599-1615. [PMID: 33084707 DOI: 10.1039/d0mt00157k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
cis- and trans-Platinum(iv) complexes with diaminetetracarboxylate coordination spheres possess the highly desirable property of exhibiting unusual resistance to reduction by blood serum components and endogenous reductants such as ascorbate. At the same time they are rapidly reduced in the intracellular environment of cancer cells. Consequently, they can potentially be tuned to remain intact in vivo until arrival at the tumour target where they are rapidly reduced to yield the active platinum(ii) species. However, in order to achieve this, uptake must be largely restricted to tumour cells and therefore uptake by healthy cells including red blood cells must be prevented. In this proof of concept study, we report on the effect of net charge as a means of controlling the uptake by red blood cells. Using 1H NMR spectroscopy we found that modifying the net charge of the complex does not influence the rate of reduction of the complexes by an excess of ascorbate. Using XANES spectroscopy we found that modifying the net charge of the platinum(iv) complexes decreased the extent of reduction in whole blood, although probably not to the degree needed for the optimal delivery to tumours. Therefore, it is likely to be necessary to adopt higher charges and/or additional strategies to keep platinum(iv) prodrugs out of blood cells.
Collapse
Affiliation(s)
| | - Xiao Gui
- School of Chemistry, The University of Sydney, NSW, Australia.
| | - Peter Kappen
- Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton 3168, Victoria, Australia
| | - Anna K Renfrew
- School of Chemistry, The University of Sydney, NSW, Australia.
| | | |
Collapse
|
118
|
Karmakar S, Poetsch I, Kowol CR, Heffeter P, Gibson D. Synthesis and Cytotoxicity of Water-Soluble Dual- and Triple-Action Satraplatin Derivatives: Replacement of Equatorial Chlorides of Satraplatin by Acetates. Inorg Chem 2019; 58:16676-16688. [PMID: 31790216 DOI: 10.1021/acs.inorgchem.9b02796] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pt(II) complexes, such as cisplatin and oxaliplatin, are in widespread use as anticancer drugs. Their use is limited by the toxic side effects and the ability of tumors to develop resistance to the drugs. A popular approach to overcome these drawbacks is to use their kinetically inert octahedral Pt(IV) derivatives that act as prodrugs. The most successful Pt(IV) complex in clinical trials to date is satraplatin, cct-[Pt(NH3)(c-hexylamine)Cl2(OAc)2], that upon cellular reduction releases the cytotoxic cis-[Pt(NH3)(c-hexylamine)Cl2]. In an attempt to obtain water-soluble and more effective cytotoxic Pt(IV) complexes, we prepared a series of dual- and triple-action satraplatin analogues, where the equatorial chlorido ligands were replaced with acetates and the axial ligands include innocent and bioactive ligands. Replacement of the chlorides with acetates enhanced the water solubility of the compounds and, with one exception, all of the compounds were very stable in buffer. In general, compounds with one or two axial hydroxido ligands were reduced by ascorbate significantly more quickly than compounds with two axial carboxylates. While replacement of the chlorides with acetates in satraplatin led to a reduction in cytotoxicity, the dual- and triple-action analogues with equatorial acetates had low- to sub-micromolar IC50 values in a panel of eight cancer cells. The triple-action compound cct-[Pt(NH3)(c-hexylamine)(OAc)2(PhB)(DCA)] was active in all cell lines, causing DNA damage that induced cell cycle inhibition and apoptosis. Its good activity against CT26 cells in vitro translated into good in vivo efficacy against the CT26 allograft, an in vivo model with intrinsic satraplatin resistance. This indicates that multiaction Pt(IV) derivatives of diamine dicarboxylates are interesting anticancer drug candidates.
Collapse
Affiliation(s)
- Subhendu Karmakar
- Institute for Drug Research, School of Pharmacy , The Hebrew University , Jerusalem 91120 , Israel
| | - Isabella Poetsch
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I , Medical University of Vienna , Borschkegasse 8a , 1090 Vienna , Austria.,Institute of Inorganic Chemistry, Faculty of Chemistry , University of Vienna , Vienna , Austria
| | - Christian R Kowol
- Institute of Inorganic Chemistry, Faculty of Chemistry , University of Vienna , Vienna , Austria
| | - Petra Heffeter
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I , Medical University of Vienna , Borschkegasse 8a , 1090 Vienna , Austria
| | - Dan Gibson
- Institute for Drug Research, School of Pharmacy , The Hebrew University , Jerusalem 91120 , Israel
| |
Collapse
|
119
|
Jain A. Multifunctional, heterometallic ruthenium-platinum complexes with medicinal applications. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.213067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
120
|
Corinti D, Crestoni ME, Fornarini S, Ponte F, Russo N, Sicilia E, Gabano E, Osella D. Elusive Intermediates in the Breakdown Reactivity Patterns of Prodrug Platinum(IV) Complexes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1881-1894. [PMID: 30980381 DOI: 10.1007/s13361-019-02186-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/01/2019] [Accepted: 03/05/2019] [Indexed: 06/09/2023]
Abstract
Kinetically inert platinum(IV) complexes are receiving growing attention as promising candidates in the effort to develop safe and valid alternatives to classical square-planar Pt(II) complexes currently used in antineoplastic therapy. Their antiproliferative activity requires intracellular Pt(IV)-Pt(II) reduction (activation by reduction). In the present work, a set of five Pt(IV) complexes has been assayed using mass spectrometry-based techniques, i.e., collision-induced dissociation (CID), and IR multiple photon dissociation (IRMPD) spectroscopy, together with ab initio theoretical investigations. Breakdown and reduction mechanisms are observed that lead to Pt(II) species. Evidence is found for typically transient Pt(III) intermediates along the dissociation paths of isolated, negatively charged (electron-rich) Pt(IV) prodrug complexes.
Collapse
Affiliation(s)
- Davide Corinti
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma "La Sapienza", P.le A. Moro 5, 00185, Rome, Italy
| | - Maria Elisa Crestoni
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma "La Sapienza", P.le A. Moro 5, 00185, Rome, Italy
| | - Simonetta Fornarini
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma "La Sapienza", P.le A. Moro 5, 00185, Rome, Italy.
| | - Fortuna Ponte
- Department of Chemistry and Chemical Technologies, Università della Calabria, Ponte P. Bucci Cubo 14c, 87036, Arcavacata di Rende, Italy
| | - Nino Russo
- Department of Chemistry and Chemical Technologies, Università della Calabria, Ponte P. Bucci Cubo 14c, 87036, Arcavacata di Rende, Italy
| | - Emilia Sicilia
- Department of Chemistry and Chemical Technologies, Università della Calabria, Ponte P. Bucci Cubo 14c, 87036, Arcavacata di Rende, Italy.
| | - Elisabetta Gabano
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121, Alessandria, Italy
| | - Domenico Osella
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121, Alessandria, Italy.
| |
Collapse
|
121
|
Gurruchaga-Pereda J, Martínez Á, Terenzi A, Salassa L. Anticancer platinum agents and light. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.118981] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
122
|
Reductions of the cisplatin-based platinum(IV) prodrug cis,cis,trans-[Pt(NH3)2Cl2Br2] by predominant biological thiols: kinetic and mechanistic studies. TRANSIT METAL CHEM 2019. [DOI: 10.1007/s11243-019-00311-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
123
|
El-bendary MM, Rüffer T, Arshad MN, Asiri AM. Synthesis and structure characterization of Pt(IV) and Cd(II) 1,10-phenanthroline complexes; fluorescence, antitumor and photocatalytic property. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.04.115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
124
|
Synthesis and characterisation of platinum(IV) polypyridyl complexes with halide axial ligands. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.118964] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
125
|
Petrović B, Jovanović S, Puchta R, van Eldik R. Mechanistic insight on the chemistry of potential Pt antitumor agents as revealed by collaborative research performed in Kragujevac and Erlangen. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
126
|
Dabbish E, Imbardelli D, Russo N, Sicilia E. Theoretical exploration of the reduction reaction of monofunctional phenanthriplatin Pt(IV) prodrugs. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
127
|
Barbanente A, Gandin V, Ditaranto N, Marzano C, Hoeschele JD, Suranna GP, Papadia P, Natile G, Margiotta N. A Pt(IV) prodrug of kiteplatin with the bone-targeting pyrophosphate ligand. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
128
|
The impact of highly electron withdrawing carboxylato ligands on the stability and activity of platinum(IV) pro-drugs. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
129
|
H2O2-responsive biodegradable nanomedicine for cancer-selective dual-modal imaging guided precise photodynamic therapy. Biomaterials 2019; 207:39-48. [DOI: 10.1016/j.biomaterials.2019.03.042] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 03/14/2019] [Accepted: 03/28/2019] [Indexed: 12/17/2022]
|
130
|
Rausch M, Dyson PJ, Nowak‐Sliwinska P. Recent Considerations in the Application of RAPTA‐C for Cancer Treatment and Perspectives for Its Combination with Immunotherapies. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900042] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Magdalena Rausch
- Molecular Pharmacology GroupSchool of Pharmaceutical Sciences, Faculty of SciencesUniversity of Lausanne and University of Geneva Rue Michel‐Servet 1, 1211 Geneva 4 Switzerland
| | - Paul J. Dyson
- Institute of Chemical Sciences and EngineeringEcole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Patrycja Nowak‐Sliwinska
- Molecular Pharmacology GroupSchool of Pharmaceutical Sciences, Faculty of SciencesUniversity of Lausanne and University of Geneva Rue Michel‐Servet 1, 1211 Geneva 4 Switzerland
- Translational Research Centre in Oncohaematology Geneva, Switzerland, 1211 Geneva 4 Switzerland
| |
Collapse
|
131
|
Wang Y, Wu W, Liu J, Manghnani PN, Hu F, Ma D, Teh C, Wang B, Liu B. Cancer-Cell-Activated Photodynamic Therapy Assisted by Cu(II)-Based Metal-Organic Framework. ACS NANO 2019; 13:6879-6890. [PMID: 31194910 DOI: 10.1021/acsnano.9b01665] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Activation of photosensitizers (PSs) in targeted lesion and minimization of reactive oxygen species (ROS) depletion by endogenous antioxidants constitute promising approaches to perform highly effective image-guided photodynamic therapy (PDT) with minimal non-specific phototoxicity. Traditional strategies to fabricate controllable PS platforms rely on molecular design, which requires specific modification of each PS before PDT. Therefore, construction of a general tumor-responsive PDT platform with minimum ROS loss from endogenous antioxidant, typically glutathione (GSH), is highly desirable. Herein, MOF-199, a Cu(II) carboxylate-based metal-organic framework (MOF), is selected to serve as an inert carrier to load PSs with prohibited photosensitization during delivery. After cellular uptake, Cu (II) in the MOFs effectively scavenges endogenous GSH, concomitantly induces decomposition of MOF-199 to release the encapsulated PSs, and recovers their ROS generation. In vitro and in vivo experiments demonstrate highly effective cancer cell ablation and anticancer PDT with diminished normal cell phototoxicity. This strategy is generally applicable to PSs with both aggregation-induced emission and aggregation-caused quenching to implement activatable and enhanced image-guided PDT.
Collapse
Affiliation(s)
- Yuanbo Wang
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , Singapore 117585 , Singapore
| | - Wenbo Wu
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , Singapore 117585 , Singapore
| | - Jingjing Liu
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , Singapore 117585 , Singapore
| | - Purnima Naresh Manghnani
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , Singapore 117585 , Singapore
| | - Fang Hu
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , Singapore 117585 , Singapore
| | - Dou Ma
- School of Chemistry and Chemical Engineering , Beijing Institute of Technology , 5 South Zhongguancun Street , Beijing 100081 , P. R. China
| | - Cathleen Teh
- Institute of Molecular and Cell Biology , 61 Biopolis Drive , Singapore 138673 , Singapore
| | - Bo Wang
- School of Chemistry and Chemical Engineering , Beijing Institute of Technology , 5 South Zhongguancun Street , Beijing 100081 , P. R. China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , Singapore 117585 , Singapore
| |
Collapse
|
132
|
Canil G, Braccini S, Marzo T, Marchetti L, Pratesi A, Biver T, Funaioli T, Chiellini F, Hoeschele JD, Gabbiani C. Photocytotoxic Pt(iv) complexes as prospective anticancer agents. Dalton Trans 2019; 48:10933-10944. [PMID: 31165118 DOI: 10.1039/c9dt01645g] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The use of Pt(iv) complexes as potential anticancer drugs is attractive, because they have higher stability and less side effects than Pt(ii) compounds. Moreover, some Pt(iv) complexes can also be activated with light, opening an avenue to photochemotherapy. Our purpose is to widen the library of photoactivatable Pt(iv)-based prodrugs and here we report on the oxidation of the Pt(ii) compound [PtCl(4'-phenyl-2,2':6',2''-terpyridine)][CF3SO3] (1) with PhICl2 or H2O2. The synthetic procedure avoids the formation of multiple species: the treatment with PhICl2 produces the Pt(iv) complex with axial chlorides, [PtCl3(4'-phenyl-2,2':6',2''-terpyridine)][CF3SO3] (2), while H2O2 oxidation and post-synthesis carboxylation produce [Pt(OCOCH3)2Cl(4'-phenyl-2,2':6',2''-terpyridine)][CF3SO3] (3), bearing acetates in the axial positions. 2 and 3 are stable in physiological-like buffers and in DMSO in the dark, but undergo photoreduction to 1 upon irradiation at 365 nm. Their stability toward reduction is a fundamental parameter to consider: cyclic voltammetry experiments show that the 2 electron reduction Pt(iv) → Pt(ii) occurs at a more negative potential for 3, because of the greater stabilization provided by the acetate axial groups; noteworthily, 3 is stable for hours also in the presence of mM concentration of glutathione. The cytotoxicity of 2 and 3 toward A2780 and A2780cis cell lines reveals that 3 is the least toxic in the dark, but is able to produce cytotoxic effects far higher than cisplatin when irradiated. To shed light on the mechanistic aspects, the interaction with protein and DNA models has been explored through high-resolution mass spectrometry revealing that 2 and 3 behave as prodrugs, but are able to bind to biological targets only after irradiation.
Collapse
Affiliation(s)
- Giovanni Canil
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy.
| | - Simona Braccini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy.
| | - Tiziano Marzo
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126, Pisa, Italy.
| | - Lorella Marchetti
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy.
| | - Alessandro Pratesi
- MetMed Lab, Department of Chemistry "U. Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Tarita Biver
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy. and Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126, Pisa, Italy.
| | - Tiziana Funaioli
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy.
| | - Federica Chiellini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy.
| | - James D Hoeschele
- Department of Chemistry, Mark Jefferson Science Complex, Eastern Michigan University, Ypsilanti, Michigan 48197, USA
| | - Chiara Gabbiani
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy.
| |
Collapse
|
133
|
Ravera M, Gabano E, McGlinchey MJ, Osella D. A view on multi-action Pt(IV) antitumor prodrugs. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.04.025] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
134
|
Kastner A, Poetsch I, Mayr J, Burda JV, Roller A, Heffeter P, Keppler BK, Kowol CR. A Dogma in Doubt: Hydrolysis of Equatorial Ligands of Pt IV Complexes under Physiological Conditions. Angew Chem Int Ed Engl 2019; 58:7464-7469. [PMID: 30870571 PMCID: PMC6766845 DOI: 10.1002/anie.201900682] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/28/2019] [Indexed: 12/20/2022]
Abstract
Due to their high kinetic inertness and consequently reduced side reactions with biomolecules, PtIV complexes are considered to define the future of anticancer platinum drugs. The aqueous stability of a series of biscarboxylato PtIV complexes was studied under physiologically relevant conditions. Unexpectedly and in contrast to the current chemical understanding, especially oxaliplatin and satraplatin complexes underwent fast hydrolysis in equatorial position (even in cell culture medium and serum). Notably, the resulting hydrolysis products strongly differ in their reduction kinetics, a crucial parameter for the activation of PtIV drugs, which also changes the anticancer potential of the compounds in cell culture. The discovery that intact PtIV complexes can hydrolyze at equatorial position contradicts the dogma on the general kinetic inertness of PtIV compounds and needs to be considered in the screening and design for novel platinum-based anticancer drugs.
Collapse
Affiliation(s)
- Alexander Kastner
- University of ViennaFaculty of ChemistryInstitute of Inorganic ChemistryWaehringer Strasse 421090ViennaAustria
| | - Isabella Poetsch
- Institute of Cancer Research and Comprehensive Cancer CenterMedical University of ViennaBorschkegasse 8a1090ViennaAustria
| | - Josef Mayr
- University of ViennaFaculty of ChemistryInstitute of Inorganic ChemistryWaehringer Strasse 421090ViennaAustria
| | - Jaroslav V. Burda
- Department of Chemical Physics and OpticsFaculty of Mathematics and PhysicsCharles UniversityKe Karlovu 312116Prague 2Czech Republic
| | - Alexander Roller
- University of ViennaFaculty of ChemistryInstitute of Inorganic ChemistryWaehringer Strasse 421090ViennaAustria
| | - Petra Heffeter
- Institute of Cancer Research and Comprehensive Cancer CenterMedical University of ViennaBorschkegasse 8a1090ViennaAustria
- Research Cluster “Translational Cancer Therapy Research”ViennaAustria
| | - Bernhard K. Keppler
- University of ViennaFaculty of ChemistryInstitute of Inorganic ChemistryWaehringer Strasse 421090ViennaAustria
- Research Cluster “Translational Cancer Therapy Research”ViennaAustria
| | - Christian R. Kowol
- University of ViennaFaculty of ChemistryInstitute of Inorganic ChemistryWaehringer Strasse 421090ViennaAustria
- Research Cluster “Translational Cancer Therapy Research”ViennaAustria
| |
Collapse
|
135
|
Transporter and protease mediated delivery of platinum complexes for precision oncology. J Biol Inorg Chem 2019; 24:457-466. [DOI: 10.1007/s00775-019-01660-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/09/2019] [Indexed: 01/03/2023]
|
136
|
Kostrhunova H, Zajac J, Novohradsky V, Kasparkova J, Malina J, Aldrich-Wright JR, Petruzzella E, Sirota R, Gibson D, Brabec V. A Subset of New Platinum Antitumor Agents Kills Cells by a Multimodal Mechanism of Action Also Involving Changes in the Organization of the Microtubule Cytoskeleton. J Med Chem 2019; 62:5176-5190. [PMID: 31030506 DOI: 10.1021/acs.jmedchem.9b00489] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The substitution inert platinum agent [Pt(1 S,2 S-diaminocyclohexane)(5,6-dimethyl-1,10-phenanthroline)]2+ (56MeSS, 5) is a potent cytotoxic metallodrug. In contrast to conventional cisplatin or oxaliplatin, the mechanism of action (MoA) of 5 is fundamentally different. However, details of the mechanism by which the 5,6-dimethyl-1,10-phenanthroline ligand contributes to the cytotoxicity of 5 and its derivatives have not been sufficiently clarified so far. Here, we show that 5 and its Pt(IV) derivatives exhibit an intriguing potency in the triple-negative breast cancer cells MDA-MB-231. Moreover, we show that the Pt(IV) derivatives of 5 act by multimodal MoA resulting in the global biological effects, that is, they damage nuclear DNA, reduce the mitochondrial membrane potential, induce the epigenetic processes, and last but not least, the data provide evidence that changes in the organization of cytoskeleton networks are functionally important for 5 and its derivatives, in contrast to clinically used platinum cytostatics, to kill cancer cells.
Collapse
Affiliation(s)
- Hana Kostrhunova
- Czech Academy of Sciences , Institute of Biophysics , Kralovopolska 135 , CZ-61265 Brno , Czech Republic
| | - Juraj Zajac
- Czech Academy of Sciences , Institute of Biophysics , Kralovopolska 135 , CZ-61265 Brno , Czech Republic
| | - Vojtech Novohradsky
- Czech Academy of Sciences , Institute of Biophysics , Kralovopolska 135 , CZ-61265 Brno , Czech Republic
| | - Jana Kasparkova
- Czech Academy of Sciences , Institute of Biophysics , Kralovopolska 135 , CZ-61265 Brno , Czech Republic
| | - Jaroslav Malina
- Czech Academy of Sciences , Institute of Biophysics , Kralovopolska 135 , CZ-61265 Brno , Czech Republic
| | - Janice R Aldrich-Wright
- School of Science and Health , Western Sydney University , Penrith South DC 1797 , NSW , Australia
| | - Emanuele Petruzzella
- Institute for Drug Research, School of Pharmacy , The Hebrew University , Jerusalem 91120 , Israel
| | - Roman Sirota
- Institute for Drug Research, School of Pharmacy , The Hebrew University , Jerusalem 91120 , Israel
| | - Dan Gibson
- Institute for Drug Research, School of Pharmacy , The Hebrew University , Jerusalem 91120 , Israel
| | - Viktor Brabec
- Czech Academy of Sciences , Institute of Biophysics , Kralovopolska 135 , CZ-61265 Brno , Czech Republic
| |
Collapse
|
137
|
Höfer D, Cseh K, Hejl M, Roller A, Jakupec MA, Galanski MS, Keppler BK. Synthesis, characterization, cytotoxic activity, and 19F NMR spectroscopic investigations of (OC-6-33)-diacetato(ethane-1,2-diamine)bis(3,3,3-trifluoropropanoato)platinum(IV) and its platinum(II) counterpart. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
138
|
Kastner A, Poetsch I, Mayr J, Burda JV, Roller A, Heffeter P, Keppler BK, Kowol CR. Zweifel an einem Dogma: Hydrolyse äquatorialer Liganden von Pt
IV
‐Komplexen unter physiologischen Bedingungen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Alexander Kastner
- Universität WienFakultät für ChemieInstitut für Anorganische Chemie Währinger Strasse 42 1090 Wien Österreich
| | - Isabella Poetsch
- Institut für Krebsforschung und Comprehensive Cancer CenterMedizinische Universität Wien Borschkegasse 8a 1090 Wien Österreich
| | - Josef Mayr
- Universität WienFakultät für ChemieInstitut für Anorganische Chemie Währinger Strasse 42 1090 Wien Österreich
| | - Jaroslav V. Burda
- Department of Chemical Physics and OpticsFaculty of Mathematics and PhysicsCharles University Ke Karlovu 3 12116 Prague 2 Tschechische Republik
| | - Alexander Roller
- Universität WienFakultät für ChemieInstitut für Anorganische Chemie Währinger Strasse 42 1090 Wien Österreich
| | - Petra Heffeter
- Institut für Krebsforschung und Comprehensive Cancer CenterMedizinische Universität Wien Borschkegasse 8a 1090 Wien Österreich
- Research Cluster “Translational Cancer Therapy Research” Wien Österreich
| | - Bernhard K. Keppler
- Universität WienFakultät für ChemieInstitut für Anorganische Chemie Währinger Strasse 42 1090 Wien Österreich
- Research Cluster “Translational Cancer Therapy Research” Wien Österreich
| | - Christian R. Kowol
- Universität WienFakultät für ChemieInstitut für Anorganische Chemie Währinger Strasse 42 1090 Wien Österreich
- Research Cluster “Translational Cancer Therapy Research” Wien Österreich
| |
Collapse
|
139
|
Jin S, Guo Y, Song D, Zhu Z, Zhang Z, Sun Y, Yang T, Guo Z, Wang X. Targeting Energy Metabolism by a Platinum(IV) Prodrug as an Alternative Pathway for Cancer Suppression. Inorg Chem 2019; 58:6507-6516. [DOI: 10.1021/acs.inorgchem.9b00708] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Suxing Jin
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P.R. China
| | - Yan Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Dongfan Song
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Zhenzhu Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P.R. China
| | - Zhenqin Zhang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Yuewen Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P.R. China
| | - Tao Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P.R. China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Xiaoyong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P.R. China
| |
Collapse
|
140
|
Ghosh S. Cisplatin: The first metal based anticancer drug. Bioorg Chem 2019; 88:102925. [PMID: 31003078 DOI: 10.1016/j.bioorg.2019.102925] [Citation(s) in RCA: 1065] [Impact Index Per Article: 177.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 03/30/2019] [Accepted: 04/10/2019] [Indexed: 12/17/2022]
Abstract
Cisplatin or (SP-4-2)-diamminedichloridoplatinum(II) is one of the most potential and widely used drugs for the treatment of various solid cancers such as testicular, ovarian, head and neck, bladder, lung, cervical cancer, melanoma, lymphomas and several others. Cisplatin exerts anticancer activity via multiple mechanisms but its most acceptable mechanism involves generation of DNA lesions by interacting with purine bases on DNA followed by activation of several signal transduction pathways which finally lead to apoptosis. However, side effects and drug resistance are the two inherent challenges of cisplatin which limit its application and effectiveness. Reduction of drug accumulation inside cancer cells, inactivation of drug by reacting with glutathione and metallothioneins and faster repairing of DNA lesions are responsible for cisplatin resistance. To minimize cisplatin side effects and resistance, combination therapies are used and have proven more effective to defect cancers. This article highlights a systematic description on cisplatin which includes a brief history, synthesis, action mechanism, resistance, uses, side effects and modulation of side effects. It also briefly describes development of platinum drugs from very small cisplatin complex to very large next generation nanocarriers conjugated platinum complexes.
Collapse
Affiliation(s)
- Sumit Ghosh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India.
| |
Collapse
|
141
|
Lee VEY, Chin CF, Ang WH. Design and investigation of photoactivatable platinum(iv) prodrug complexes of cisplatin. Dalton Trans 2019; 48:7388-7393. [PMID: 30957798 DOI: 10.1039/c9dt00540d] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Platinum(iv) carboxylate scaffolds have garnered considerable research interest because they can be engineered to function as prodrugs of clinical platinum(ii) anticancer drugs. These platinum(iv) prodrug complexes are stable and tunable, and activated by reduction to release their cytotoxic platinum(ii) cargo. Here we propose new platinum(iv) prodrug complexes designed to release cisplatin via photoreduction upon UV irradiation. The central strategy is to utilise aryl carboxylate ligands on the axial positions of that platinum(iv) scaffold that confer significant UV absorption and would stabilise carboxyl radical formation, thus favouring homolytic Pt-O bond cleavage. We isolated and identified aryl carboxyl radicals via spin-trapping and showed that the photoreduced platinum species mirror cisplatin reactivity toward DNA bases, thereby validating the efficacy of this approach.
Collapse
Affiliation(s)
- Violet Eng Yee Lee
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543. and NUS Graduate School of Integrative Sciences and Engineering, National University of Singapore, 21 Lower Kent Ridge Rd, Singapore 119077
| | - Chee Fei Chin
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543.
| | - Wee Han Ang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543. and NUS Graduate School of Integrative Sciences and Engineering, National University of Singapore, 21 Lower Kent Ridge Rd, Singapore 119077
| |
Collapse
|
142
|
Kostrhunova H, Petruzzella E, Gibson D, Kasparkova J, Brabec V. An Anticancer Pt IV Prodrug That Acts by Mechanisms Involving DNA Damage and Different Epigenetic Effects. Chemistry 2019; 25:5235-5245. [PMID: 30740808 DOI: 10.1002/chem.201805626] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 02/07/2019] [Indexed: 01/25/2023]
Abstract
Dual- or multi-action PtIV prodrugs represent a new generation of platinum anticancer drugs. The important property of these PtIV prodrugs is that their antitumor action combines several different mechanisms owing to the presence of biologically active axial ligands. This work describes the synthesis and some biological properties of a "triple-action" prodrug that releases in cancer cells cisplatin and two different epigenetically acting moieties, octanoate and phenylbutyrate. It is demonstrated, with the aid of modern methods of molecular and cellular biology and pharmacology, that the presence of three different functionalities in a single molecule of the PtIV prodrug results in a selective and high potency in tumor cells including those resistant to cisplatin [the IC50 values in the screened malignant cell lines ranged from as low as 9 nm (HCT-116) to 74 nm (MDA-MB-231)]. It is also demonstrated that cellular activation of the PtIV prodrug results in covalent modification of DNA through the release of the platinum moiety accompanied by inhibition of the activity of histone deacetylases caused by phenylbutyrate and by global hypermethylation of DNA by octanoate. Thus, the PtIV prodrug introduced in this study acts as a true "multi-action" prodrug, which is over two orders of magnitude more active than clinically used cisplatin, in both 2D monolayer culture and 3D spheroid cancer cells.
Collapse
Affiliation(s)
- Hana Kostrhunova
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, CZ-61265, Brno, Czech Republic
| | - Emanuele Petruzzella
- Institute for Drug Research, School of Pharmacy, The Hebrew University, Jerusalem, 91120, Israel
| | - Dan Gibson
- Institute for Drug Research, School of Pharmacy, The Hebrew University, Jerusalem, 91120, Israel
| | - Jana Kasparkova
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, CZ-61265, Brno, Czech Republic.,Department of Biophysics, Faculty of Science, Palacky University, 17. listopadu 12, CZ-77146, Olomouc, Czech Republic
| | - Viktor Brabec
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, CZ-61265, Brno, Czech Republic
| |
Collapse
|
143
|
Bai Y, Li Z, Liu L, Sun T, Fan X, Wang T, Gou Z, Tan S. Tumor-Targeting Peptide for Redox-Responsive Pt Prodrug and Gene Codelivery and Synergistic Cancer Chemotherapy. ACS APPLIED BIO MATERIALS 2019; 2:1420-1426. [DOI: 10.1021/acsabm.9b00065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yaxuan Bai
- Department of Chemistry, College of Science, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Zeyu Li
- Department of Chemistry, College of Science, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Liping Liu
- Harbin First Specialist Hospital, 217 Hongwei Road, Harbin 150056, China
| | - Tiedong Sun
- Department of Chemistry, College of Science, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Xiaocheng Fan
- Department of Chemistry, College of Science, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Ting Wang
- Department of Chemistry, College of Science, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Zhenzhen Gou
- Department of Chemistry, College of Science, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Shengnan Tan
- Testing & Analysis Center, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| |
Collapse
|
144
|
Dabbish E, Ponte F, Russo N, Sicilia E. Antitumor Platinium(IV) Prodrugs: A Systematic Computational Exploration of Their Reduction Mechanism by l-Ascorbic Acid. Inorg Chem 2019; 58:3851-3860. [DOI: 10.1021/acs.inorgchem.8b03486] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Eslam Dabbish
- Department of Chemistry and Chemical Technologies, Università della Calabria, 87036, Arcavacata di Rende, CS, Italy
| | - Fortuna Ponte
- Department of Chemistry and Chemical Technologies, Università della Calabria, 87036, Arcavacata di Rende, CS, Italy
| | - Nino Russo
- Department of Chemistry and Chemical Technologies, Università della Calabria, 87036, Arcavacata di Rende, CS, Italy
| | - Emilia Sicilia
- Department of Chemistry and Chemical Technologies, Università della Calabria, 87036, Arcavacata di Rende, CS, Italy
| |
Collapse
|
145
|
Wang H, Yang X, Zhao C, Wang PG, Wang X. Glucose-conjugated platinum(IV) complexes as tumor-targeting agents: design, synthesis and biological evaluation. Bioorg Med Chem 2019; 27:1639-1645. [PMID: 30852077 DOI: 10.1016/j.bmc.2019.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/28/2019] [Accepted: 03/02/2019] [Indexed: 02/04/2023]
Abstract
A new series of glucose-conjugated Pt(IV) complexes that target tumor-specific glucose transporters (GLUTs) was designed, synthesized, and evaluated for their anticancer activities. All six compounds, namely, A1-A6, exhibited increased cytotoxicity that were almost six fold higher than that of oxaliplatin to MCF-7 cells. These Pt(IV) complexes can be reduced to release Pt(II) complexes and cause the death of tumor cells. Simultaneously, the glycosylated Pt(IV) complexes (30.21-91.33 μM) showed lower cytotoxicity that normal LO2 cells compared with cisplatin (5.25 μM) and oxaliplatin (8.34 μM). The intervention of phlorizin as a GLUTs inhibitor increased the IC50 value of the glycosylated Pt(IV) complexes, thereby indicating the potential GLUT transportability. The introduction of glucose moiety to Pt(IV) complexes can effectively enhance the Pt cellular uptake and DNA platination. Results suggested glucose-conjugated Pt(IV) complexes had potential for further study as new anticancer agents.
Collapse
Affiliation(s)
- Haifeng Wang
- College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, PR China
| | - Xiande Yang
- College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, PR China
| | - Caili Zhao
- College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, PR China
| | - Peng George Wang
- College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, PR China
| | - Xin Wang
- College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|
146
|
Sharma A, Arambula JF, Koo S, Kumar R, Singh H, Sessler JL, Kim JS. Hypoxia-targeted drug delivery. Chem Soc Rev 2019; 48:771-813. [PMID: 30575832 PMCID: PMC6361706 DOI: 10.1039/c8cs00304a] [Citation(s) in RCA: 350] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hypoxia is a state of low oxygen tension found in numerous solid tumours. It is typically associated with abnormal vasculature, which results in a reduced supply of oxygen and nutrients, as well as impaired delivery of drugs. The hypoxic nature of tumours often leads to the development of localized heterogeneous environments characterized by variable oxygen concentrations, relatively low pH, and increased levels of reactive oxygen species (ROS). The hypoxic heterogeneity promotes tumour invasiveness, metastasis, angiogenesis, and an increase in multidrug-resistant proteins. These factors decrease the therapeutic efficacy of anticancer drugs and can provide a barrier to advancing drug leads beyond the early stages of preclinical development. This review highlights various hypoxia-targeted and activated design strategies for the formulation of drugs or prodrugs and their mechanism of action for tumour diagnosis and treatment.
Collapse
Affiliation(s)
- Amit Sharma
- Department of Chemistry, Korea University, Seoul, 02841, Korea.
| | | | | | | | | | | | | |
Collapse
|
147
|
Crespo M, Font-Bardia M, Hamidizadeh P, Martínez M, Nabavizadeh SM. Kinetico-mechanistic study on the reduction/complexation sequence of PtIV/PtII organometallic complexes by thiol-containing biological molecules. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2018.10.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
148
|
Chen H, Wang X, Gou S. A cisplatin-based platinum(IV) prodrug containing a glutathione s-transferase inhibitor to reverse cisplatin-resistance in non-small cell lung cancer. J Inorg Biochem 2019; 193:133-142. [PMID: 30731264 DOI: 10.1016/j.jinorgbio.2019.01.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/25/2019] [Accepted: 01/27/2019] [Indexed: 12/16/2022]
Abstract
A Pt(IV) prodrug of cisplatin containing a glutathione s-transferase (GSTs) inhibitor 6-(7-nitro-2,1,3-benzoxadiazol-4-ylthio)hexanol (NBDHEX), complex 1, was designed and studied aiming to overcome cisplatin-resistance and reduce its toxicity by inhibiting GSTs overexpressed in cancer cells. The complex could be reduced to release its active Pt(II) species and axial ligand in the presence of ascorbic acid. In cytotoxicity study, complex 1 showed more potent anticancer activity than cisplatin and NBDHEX against all the tested cancer cells, especially toward cisplatin resistant A549/DDP cells with a resistance factor value of 0.37. By effectively inhibiting GSTs, complex 1 was found to be able to promote higher platinum uptake and cause more severe DNA damage in both A549 cells and A549/DDP cells as compared with cisplatin. Further mechanism study indicated that it could trigger cell death via an apoptotic pathway. In vivo tests on A549 xenograft tumor mice model showed that complex 1 presented higher tumor inhibiting rate and lower toxicity than cisplatin as well. In all, the Pt(IV) prodrug has potential to be developed as an anticancer agent.
Collapse
Affiliation(s)
- Hong Chen
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Southeast University, Nanjing 211189, China
| | - Xinyi Wang
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Southeast University, Nanjing 211189, China
| | - Shaohua Gou
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Southeast University, Nanjing 211189, China.
| |
Collapse
|
149
|
Hu W, Zhao J, Hua W, Gou S. A study on platinum(iv) species containing an estrogen receptor modulator to reverse tamoxifen resistance of breast cancer. Metallomics 2019; 10:346-359. [PMID: 29349448 DOI: 10.1039/c7mt00289k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Several dual-action Tam-Pt(iv) complexes derived from tamoxifen (Tam) and platinum(ii) drugs were designed and synthesized for targeting estrogen receptors (ERs) and DNA. These novel compounds not only exhibited potent cytotoxicity against breast cancer cells, but also reversed the tamoxifen resistance of TamR-MCF-7 cancer cells. Computational docking assays together with cellular uptake data demonstrated that the ER ligand portion of these conjugates plays a targeting role in ER-positive tumor cells and promotes the uptake of platinum via an estrogen receptor-mediated pathway. A study on the preliminary mechanism of the typical conjugate, complex 1, revealed that the Tam-Pt(iv) complex induced apoptosis via the mitochondrial-dependent apoptosis pathway mediated through the activation of caspase 3 and PARP proteins. These results suggested that the conjugation of estrogen receptor modulators with the platinum moiety could facilitate a selective enrichment of platinum in estrogen-positive tumors and possibly broaden the scope of ER ligand clinical use to resistant breast tumors.
Collapse
Affiliation(s)
- Weiwei Hu
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | | | | | | |
Collapse
|
150
|
Ruan Y, Jia X, Wang C, Zhen W, Jiang X. Methylene Blue Loaded Cu–Tryptone Complex Nanoparticles: A New Glutathione-Reduced Enhanced Photodynamic Therapy Nanoplatform. ACS Biomater Sci Eng 2019; 5:1016-1022. [DOI: 10.1021/acsbiomaterials.8b01398] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yudi Ruan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625, Renmin Street, Changchun 130022, Jilin, China
- University of the Chinese Academy of Sciences, No. 19, Yuquan Road, Beijing 100049, China
| | - Xiaodan Jia
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625, Renmin Street, Changchun 130022, Jilin, China
| | - Chao Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625, Renmin Street, Changchun 130022, Jilin, China
- University of Science and Technology of China, No. 96, Jinzhai Road, Heifei 230026, Anhui, China
| | - Wenyao Zhen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625, Renmin Street, Changchun 130022, Jilin, China
- University of Science and Technology of China, No. 96, Jinzhai Road, Heifei 230026, Anhui, China
| | - Xiue Jiang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625, Renmin Street, Changchun 130022, Jilin, China
- University of the Chinese Academy of Sciences, No. 19, Yuquan Road, Beijing 100049, China
- University of Science and Technology of China, No. 96, Jinzhai Road, Heifei 230026, Anhui, China
| |
Collapse
|