101
|
High-frequency and high-field electron paramagnetic resonance (HFEPR): a new spectroscopic tool for bioinorganic chemistry. J Biol Inorg Chem 2014; 19:297-318. [DOI: 10.1007/s00775-013-1084-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 12/27/2013] [Indexed: 12/27/2022]
|
102
|
Breuer M, Rosso KM, Blumberger J. Electron flow in multiheme bacterial cytochromes is a balancing act between heme electronic interaction and redox potentials. Proc Natl Acad Sci U S A 2014; 111:611-6. [PMID: 24385579 PMCID: PMC3896160 DOI: 10.1073/pnas.1316156111] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The naturally widespread process of electron transfer from metal reducing bacteria to extracellular solid metal oxides entails unique biomolecular machinery optimized for long-range electron transport. To perform this function efficiently, microorganisms have adapted multiheme c-type cytochromes to arrange heme cofactors into wires that cooperatively span the cellular envelope, transmitting electrons along distances greater than 100 Å. Implications and opportunities for bionanotechnological device design are self-evident. However, at the molecular level, how these proteins shuttle electrons along their heme wires, navigating intraprotein intersections and interprotein interfaces efficiently, remains a mystery thus far inaccessible to experiment. To shed light on this critical topic, we carried out extensive quantum mechanics/molecular mechanics simulations to calculate stepwise heme-to-heme electron transfer rates in the recently crystallized outer membrane deca-heme cytochrome MtrF. By solving a master equation for electron hopping, we estimate an intrinsic, maximum possible electron flux through solvated MtrF of 10(4)-10(5) s(-1), consistent with recently measured rates for the related multiheme protein complex MtrCAB. Intriguingly, our calculations show that the rapid electron transport through MtrF is the result of a clear correlation between heme redox potential and the strength of electronic coupling along the wire: thermodynamically uphill steps occur only between electronically well-connected stacked heme pairs. This observation suggests that the protein evolved to harbor low-potential hemes without slowing down electron flow. These findings are particularly profound in light of the apparently well-conserved staggered cross-heme wire structural motif in functionally related outer membrane proteins.
Collapse
Affiliation(s)
- Marian Breuer
- Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom; and
| | - Kevin M. Rosso
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352
| | - Jochen Blumberger
- Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom; and
| |
Collapse
|
103
|
Burggraf F, Koslowski T. Charge transfer through a cytochrome multiheme chain: Theory and simulation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:186-92. [DOI: 10.1016/j.bbabio.2013.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 08/22/2013] [Accepted: 09/10/2013] [Indexed: 10/26/2022]
|
104
|
Davidson VL, Wilmot CM. Posttranslational biosynthesis of the protein-derived cofactor tryptophan tryptophylquinone. Annu Rev Biochem 2013; 82:531-50. [PMID: 23746262 DOI: 10.1146/annurev-biochem-051110-133601] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Methylamine dehydrogenase (MADH) catalyzes the oxidative deamination of methylamine to formaldehyde and ammonia. Tryptophan tryptophylquinone (TTQ) is the protein-derived cofactor of MADH required for this catalytic activity. TTQ is biosynthesized through the posttranslational modification of two tryptophan residues within MADH, during which the indole rings of two tryptophan side chains are cross-linked and two oxygen atoms are inserted into one of the indole rings. MauG is a c-type diheme enzyme that catalyzes the final three reactions in TTQ formation. In total, this is a six-electron oxidation process requiring three cycles of MauG-dependent two-electron oxidation events using either H2O2 or O2. The MauG redox form responsible for the catalytic activity is an unprecedented bis-Fe(IV) species. The amino acids of MADH that are modified are ≈ 40 Å from the site where MauG binds oxygen, and the reaction proceeds by a hole hopping electron transfer mechanism. This review addresses these highly unusual aspects of the long-range catalytic reaction mediated by MauG.
Collapse
Affiliation(s)
- Victor L Davidson
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32827, USA.
| | | |
Collapse
|
105
|
Kleingardner JG, Bowman SEJ, Bren KL. The influence of heme ruffling on spin densities in ferricytochromes c probed by heme core 13C NMR. Inorg Chem 2013; 52:12933-46. [PMID: 24187968 DOI: 10.1021/ic401250d] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The heme in cytochromes c undergoes a conserved out-of-plane distortion known as ruffling. For cytochromes c from the bacteria Hydrogenobacter thermophilus and Pseudomonas aeruginosa , NMR and EPR spectra have been shown to be sensitive to the extent of heme ruffling and to provide insights into the effect of ruffling on the electronic structure. Through the use of mutants of each of these cytochromes that differ in the amount of heme ruffling, NMR characterization of the low-spin (S = ½) ferric proteins has confirmed and refined the developing understanding of how ruffling influences the spin distribution on heme. The chemical shifts of the core heme carbons were obtained through site-specific labeling of the heme via biosynthetic incorporation of (13)C-labeled 5-aminolevulinic acid derivatives. Analysis of the contact shifts of these core heme carbons allowed Fermi contact spin densities to be estimated and changes upon ruffling to be evaluated. The results allow a deconvolution of the contributions to heme hyperfine shifts and a test of the influence of heme ruffling on the electronic structure and hyperfine shifts. The data indicate that as heme ruffling increases, the spin densities on the β-pyrrole carbons decrease while the spin densities on the α-pyrrole carbons and meso carbons increase. Furthermore, increased ruffling is associated with stronger bonding to the heme axial His ligand.
Collapse
Affiliation(s)
- Jesse G Kleingardner
- Department of Chemistry, University of Rochester , Rochester, New York 14627-0216, United States
| | | | | |
Collapse
|
106
|
Wilks A, Heinzl G. Heme oxygenation and the widening paradigm of heme degradation. Arch Biochem Biophys 2013; 544:87-95. [PMID: 24161941 DOI: 10.1016/j.abb.2013.10.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 10/09/2013] [Accepted: 10/15/2013] [Indexed: 12/11/2022]
Abstract
Heme degradation through the action of heme oxygenase (HO) is unusual in that it utilizes heme as both a substrate and cofactor for its own degradation. HO catalyzes the oxygen-dependent degradation of heme to biliverdin with the release of CO and "free" iron. The characterization of HO enzymes from humans to bacteria reveals a similar overall structural fold that contributes to the unique reaction manifold. The heme oxygenases share a similar heme-dependent activation of O2 to the ferric hydroperoxide as that of the cytochrome P450s and peroxidases. However, whereas the P450s promote cleavage of the ferric hydroperoxide OO bond to the oxoferryl species the HOs stabilize the ferric hydroperoxide promoting hydroxylation at the heme edge. The alternate reaction pathway in HO is achieved through the conformational flexibility and extensive hydrogen bond network within the heme binding site priming the heme for hydroxylation. Until recently it was believed that all heme degrading enzymes converted heme to biliverdin and iron, with the release of carbon monoxide (CO). However, the recent discovery of the bacterial IsdG-like heme degrading proteins of Staphylococcus aureus, Bacillus anthracis and Mycobacterium tuberculosis has expanded the reaction manifold of heme oxidation. Characterization of the heme degradation products in the IsdG-like reaction suggests a mechanism distinct from the classical HOs. In the following review we will discuss the structure-function of the canonical HOs as it relates to the emerging alternate reaction manifold of the IsdG-like proteins.
Collapse
Affiliation(s)
- Angela Wilks
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD 21201-1180, USA.
| | - Geoffrey Heinzl
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD 21201-1180, USA
| |
Collapse
|
107
|
The Tll0287 protein is a hemoprotein associated with the PsbA2-Photosystem II complex in Thermosynechococcus elongatus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:1174-82. [DOI: 10.1016/j.bbabio.2013.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 05/27/2013] [Accepted: 06/05/2013] [Indexed: 12/14/2022]
|
108
|
Bhowmik S, Dey S, Sahoo D, Rath SP. Unusual Stabilization of an Intermediate Spin State of Iron upon the Axial Phenoxide Coordination of a Diiron(III)-Bisporphyrin: Effect of Heme-Heme Interactions. Chemistry 2013; 19:13732-44. [DOI: 10.1002/chem.201301242] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Indexed: 11/06/2022]
|
109
|
Suga M, Lai TL, Sugiura M, Shen JR, Boussac A. Crystal structure at 1.5Å resolution of the PsbV2 cytochrome from the cyanobacterium Thermosynechococcus elongatus. FEBS Lett 2013; 587:3267-72. [PMID: 23994160 DOI: 10.1016/j.febslet.2013.08.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 08/10/2013] [Accepted: 08/13/2013] [Indexed: 01/30/2023]
Abstract
PsbV2 is a c-type cytochrome present in a very low abundance in the thermophilic cyanobacterium Thermosynechococcus elongatus. We purified this cytochrome and solved its crystal structure at a resolution of 1.5Å. The protein existed as a dimer in the crystal, and has an overall structure similar to other c-type cytochromes like Cytc6 and Cytc550, for example. However, the 5th and 6th heme iron axial ligands were found to be His51 and Cys101, respectively, in contrast to the more common bis-His or His/Met ligands found in most cytochromes. Although a few other c-type cytochromes were suggested to have this axial coordination, this is the first crystal structure reported for a c-type heme with this unusual His/Cys axial coordination. Previous spectroscopic characterizations of PsbV2 are discussed in relation to its structural properties.
Collapse
Affiliation(s)
- Michihiro Suga
- Laboratory of Biomacromolecular Structure, Graduate School of Natural Science and Technology, Department of Biology, Faculty of Science, Okayama University, 1-1, Naka 3-chome, Tsushima, Kita-ku, Okayama 700-8530, Japan
| | | | | | | | | |
Collapse
|
110
|
Kaur R, Bren KL. Redox state dependence of axial ligand dynamics in Nitrosomonas europaea cytochrome c552. J Phys Chem B 2013; 117:15720-8. [PMID: 23909651 DOI: 10.1021/jp4064577] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Analysis of NMR spectra reveals that the heme axial Met ligand orientation and dynamics in Nitrosomonas europaea cytochrome c552 (Ne cyt c) are dependent on the heme redox state. In the oxidized state, the heme axial Met is fluxional, interconverting between two conformers related to each other by inversion through the Met δS atom. In the reduced state, there is no evidence of fluxionality, with the Met occupying one conformation similar to that seen in the homologous Pseudomonas aeruginosa cytochrome c551. Comparison of the observed and calculated pseudocontact shifts for oxidized Ne cyt c using the reduced protein structure as a reference structure reveals a redox-dependent change in the structure of the loop bearing the axial Met (loop 3). Analysis of nuclear Overhauser effects (NOEs) and existing structural data provides further support for the redox state dependence of the loop 3 structure. Implications for electron transfer function are discussed.
Collapse
Affiliation(s)
- Ravinder Kaur
- Center for Infectious Disease and Immunology, Research Institute, Rochester General Hospital , Rochester, New York 14621, United States
| | | |
Collapse
|
111
|
Sun Y, Karunakaran V, Champion PM. Investigations of the low-frequency spectral density of cytochrome c upon equilibrium unfolding. J Phys Chem B 2013; 117:9615-25. [PMID: 23863217 DOI: 10.1021/jp404881k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The equilibrium unfolding process of ferric horse heart cytochrome c (cyt c), induced by guanidinium hydrochloride (GdHCl), was studied using UV-vis absorption spectroscopy, resonance Raman spectroscopy, and vibrational coherence spectroscopy (VCS). The unfolding process was successfully fit using a three-state model which included the fully folded (N) and unfolded (U) states, along with an intermediate (I) assigned to a Lys bound heme. The VCS spectra revealed for the first time several low-frequency heme modes that are sensitive to cyt c unfolding: γ(a) (~50 cm(-1)), γ(b) (~80 cm(-1)), γ(c) (~100 cm(-1)), and ν(s)(His-Fe-His) at 205 cm(-1). These out-of-plane modes have potential functional relevance and are activated by protein-induced heme distortions. The free energies for the N-I and the I-U transitions at pH 7.0 and 20 °C were found to be 4.6 kcal/M and 11.6 kcal/M, respectively. Imidazole was also introduced to replace the methionine ligand so the unfolding can be modeled as a two-state system. The intensity of the mode γ(b)~80 cm(-1) remains nearly constant during the unfolding process, while the amplitudes of the other low frequency modes track with spectral changes observed at higher frequency. This confirms that the heme deformation changes are coupled to the protein tertiary structural changes that take place upon unfolding. These studies also reveal that damping of the coherent oscillations depends sensitively on the coupling between heme and the surrounding water solvent.
Collapse
Affiliation(s)
- Yuhan Sun
- Department of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, Massachusetts 02115, United States
| | | | | |
Collapse
|
112
|
Astashkin AV, Walker FA. Determination of the principal g-values of Type I or highly-anisotropic low spin (HALS) ferriheme centers in frozen solutions. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 231:15-21. [PMID: 23562666 PMCID: PMC3660502 DOI: 10.1016/j.jmr.2013.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 03/07/2013] [Accepted: 03/08/2013] [Indexed: 06/02/2023]
Abstract
Continuous wave (CW) electron paramagnetic resonance (EPR) spectroscopy of highly-anisotropic low spin (HALS) ferric heme centers in frozen solutions is not a very informative approach because usually only one feature is reliably observed in the spectra, that at the maximal principal g-value of, typically, 3.3-3.79. The other two EPR turning points are severely broadened by g-strain and are not easily observed in the first-derivative CW EPR spectra. In this work, we have explored the potential of alternative EPR techniques, the electron spin echo (ESE) field sweep and electron spin transient nutation (TN), for obtaining information about the g-tensors of such systems, using as an example a typical HALS ferric heme center, [Fe(III)((15)N-coproporphyrin)(CN)2]. The analysis of the experimental g-tensor of [Fe(III)((15)N-coproporphyrin)(CN)2](-) has shown that the widths of the underlying energy distributions for this HALS center are comparable to those found for the rhombic bis-imidazole complex. The greater effect on the g-value distributions for HALS centers is determined by near degeneracy of two of the three lower-energy d-orbitals, d(yz) and d(xz), which contain the unpaired electron.
Collapse
Affiliation(s)
- Andrei V Astashkin
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721-0041, USA.
| | | |
Collapse
|
113
|
Zhang Y, Jiang J, Hu C. Synthesis and Characterization of Iron(III) Complexes of 5-(8-Carboxy-1-naphthyl)-10, 15, 20-tritolyl Porphyrin. Z Anorg Allg Chem 2013. [DOI: 10.1002/zaac.201300136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
114
|
Complexes of ferriheme nitrophorin 4 with low-molecular weight thiol(ate)s occurring in blood plasma. J Inorg Biochem 2013; 122:38-48. [DOI: 10.1016/j.jinorgbio.2013.01.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 01/14/2013] [Accepted: 01/14/2013] [Indexed: 11/17/2022]
|
115
|
Yunta F, Di Foggia M, Bellido-Díaz V, Morales-Calderón M, Tessarin P, López-Rayo S, Tinti A, Kovács K, Klencsár Z, Fodor F, Rombolà AD. Blood meal-based compound. Good choice as iron fertilizer for organic farming. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:3995-4003. [PMID: 23565571 DOI: 10.1021/jf305563b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Prevention of iron chlorosis with Fe synthetic chelates is a widespread agronomical practice but implies high costs and environmental risks. Blood meal is one of the main fertilizers allowed to be used in organic farming. Through this work a novel blood meal fertilizer was audited. Measurements such as FTIR, Raman, electron paramagnetic resonance, and Mössbauer spectroscopy, UV-visible properties, stability against pH, and batch experiments were performed to characterize and assess the reactivity on soil constituents and agronomic soils. The spectroscopy findings give clear indications that Fe is in the ferric oxidation state, is hexacoordinated, and has a low-spin form suggesting a similar structure to hemin and hematin. A spectrophotometric method at 400 nm was validated to quantify blood meal concentration at low electrolyte concentrations. Batch experiments demonstrated high reactivity of blood meal fertilizer with soil constituents, mainly in the presence of calcium, where aggregation processes are predominant, and its ability to take Fe from synthetic Fe (hydr)oxides. The beneficial profile of blood meal by a providing nitrogen source together with the capability to keep the Fe bound to porphyrin organic compounds makes it a good candidate to be used as Fe fertilizer in organic farming.
Collapse
Affiliation(s)
- Felipe Yunta
- Department of Geology and Geochemistry, Faculty of Science, University Autonoma of Madrid , Avenida Francisco Tomás y Valiente, 7, 28049 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Synthesis of pure iron(II) mesotetraphenylchlorin complexes via a versatile general method of iron insertion into chlorins. Inorganica Chim Acta 2013. [DOI: 10.1016/j.ica.2013.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
117
|
An N-myristoylated globin with a redox-sensing function that regulates the defecation cycle in Caenorhabditis elegans. PLoS One 2012; 7:e48768. [PMID: 23251335 PMCID: PMC3520999 DOI: 10.1371/journal.pone.0048768] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 10/04/2012] [Indexed: 01/17/2023] Open
Abstract
Globins occur in all kingdoms of life where they fulfill a wide variety of functions. In the past they used to be primarily characterized as oxygen transport/storage proteins, but since the discovery of new members of the globin family like neuroglobin and cytoglobin, more diverse and complex functions have been assigned to this heterogeneous family. Here we propose a function for a membrane-bound globin of C. elegans, GLB-26. This globin was predicted to be myristoylated at its N-terminus, a post-translational modification only recently described in the globin family. In vivo, this globin is found in the membrane of the head mesodermal cell and in the tail stomato-intestinal and anal depressor muscle cells. Since GLB-26 is almost directly oxidized when exposed to oxygen, we postulate a possible function as electron transfer protein. Phenotypical studies show that GLB-26 takes part in regulating the length of the defecation cycle in C. elegans under oxidative stress conditions.
Collapse
|
118
|
da Silva GFZ, Shinkarev VP, Kamensky YA, Palmer G. Spectroscopic Evidence of the Role of an Axial Ligand Histidinate in the Mechanism of Adrenal Cytochrome b561. Biochemistry 2012; 51:8730-42. [DOI: 10.1021/bi301127k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Giordano F. Z. da Silva
- Department
of Biochemistry and Cell Biology, Rice University, Houston, Texas 77251, United States
| | - Vladimir P. Shinkarev
- Department
of Biochemistry and Cell Biology, Rice University, Houston, Texas 77251, United States
| | - Yury A. Kamensky
- Department
of Biochemistry and Cell Biology, Rice University, Houston, Texas 77251, United States
| | - Graham Palmer
- Department
of Biochemistry and Cell Biology, Rice University, Houston, Texas 77251, United States
| |
Collapse
|
119
|
Patra R, Sahoo D, Dey S, Sil D, Rath SP. Switching Orientation of Two Axial Imidazole Ligands between Parallel and Perpendicular in Low-Spin Fe(III) and Fe(II) Nonplanar Porphyrinates. Inorg Chem 2012; 51:11294-305. [DOI: 10.1021/ic300229u] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ranjan Patra
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India
| | - Dipankar Sahoo
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India
| | - Soumyajit Dey
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India
| | - Debangsu Sil
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India
| | - Sankar Prasad Rath
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India
| |
Collapse
|
120
|
Bradley JM, Marritt SJ, Kihlken MA, Haynes K, Hemmings AM, Berks BC, Cheesman MR, Butt JN. Redox and chemical activities of the hemes in the sulfur oxidation pathway enzyme SoxAX. J Biol Chem 2012; 287:40350-9. [PMID: 23060437 DOI: 10.1074/jbc.m112.396192] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND SoxAX enzymes initiate microbial oxidation of reduced inorganic sulfur compounds. Their catalytic mechanism is unknown. RESULTS Cyanide displaces the CysS(-) ligand to the active site heme following reduction by S(2)O(4)(2-) but not Eu(II). CONCLUSION An active site heme ligand becomes labile on exposure to substrate analogs. SIGNIFICANCE Elucidation of SoxAX mechanism is necessary to understand a widespread pathway for sulfur compound oxidation. SoxAX enzymes couple disulfide bond formation to the reduction of cytochrome c in the first step of the phylogenetically widespread Sox microbial sulfur oxidation pathway. Rhodovulum sulfidophilum SoxAX contains three hemes. An electrochemical cell compatible with magnetic circular dichroism at near infrared wavelengths has been developed to resolve redox and chemical properties of the SoxAX hemes. In combination with potentiometric titrations monitored by electronic absorbance and EPR, this method defines midpoint potentials (E(m)) at pH 7.0 of approximately +210, -340, and -400 mV for the His/Met, His/Cys(-), and active site His/CysS(-)-ligated heme, respectively. Exposing SoxAX to S(2)O(4)(2-), a substrate analog with E(m) ~-450 mV, but not Eu(II) complexed with diethylene triamine pentaacetic acid (E(m) ~-1140 mV), allows cyanide to displace the cysteine persulfide (CysS(-)) ligand to the active site heme. This provides the first evidence for the dissociation of CysS(-) that has been proposed as a key event in SoxAX catalysis.
Collapse
Affiliation(s)
- Justin M Bradley
- Centre for Molecular and Structural Biochemistry, School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | | | | | | | | | | | | | | |
Collapse
|
121
|
Das PK, Chatterjee S, Samanta S, Dey A. EPR, resonance Raman, and DFT calculations on thiolate- and imidazole-bound iron(III) porphyrin complexes: role of the axial ligand in tuning the electronic structure. Inorg Chem 2012; 51:10704-14. [PMID: 23013308 DOI: 10.1021/ic3016035] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Iron(III) porphyrin complexes bearing covalently attached imidazole and thiolate axial ligands are investigated using resonance Raman, electron paramagnetic resonance, and cyclic voltammetry. The thiolate ligand stabilizes a low-spin ground state in solvent-bound six-coordinate species, weakens the Fe-N(pyr) bonds, and shifts the Fe(III/II) potential more negative by ~500 mV relative to an imidazole-bound species. Density functional theory calculations reproduce the experimental observation and indicate that the covalent charge donation from thiolate to iron reduces the Z(eff) on the iron. This increases the Fe(3d) orbital energies, which changes the bonding interaction present in these complexes significantly. In particular, the increase of the Fe(3d) energies activates an iron-to-porphyrin π*-back-bonding interaction not present in the imidazole-bound complex.
Collapse
Affiliation(s)
- Pradip Kumar Das
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata, India 700032
| | | | | | | |
Collapse
|
122
|
He C, Ogata H, Knipp M. Insertion of an H-Bonding Residue into the Distal Pocket of the Ferriheme Protein Nitrophorin 4: Effect on NitriteIron Coordination and Nitrite Disproportionation. Chem Biodivers 2012; 9:1761-75. [DOI: 10.1002/cbdv.201100401] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
123
|
Van Doorslaer S, Tilleman L, Verrept B, Desmet F, Maurelli S, Trandafir F, Moens L, Dewilde S. Marked difference in the electronic structure of cyanide-ligated ferric protoglobins and myoglobin due to heme ruffling. Inorg Chem 2012; 51:8834-41. [PMID: 22877248 DOI: 10.1021/ic3007074] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Electron paramagnetic resonance experiments reveal a significant difference between the principal g values (and hence ligand-field parameters) of the ferric cyanide-ligated form of different variants of the protoglobin of Methanosarcina acetivorans (MaPgb) and of horse heart myoglobin (hhMb). The largest principal g value of the ferric cyanide-ligated MaPgb variants is found to be significantly lower than for any of the other globins reported so far. This is at least partially caused by the strong heme distortions as proven by the determination of the hyperfine interaction of the heme nitrogens and mesoprotons. Furthermore, the experiments confirm recent theoretical predictions [Forti, F.; Boechi, L., Bikiel, D., Martí, M.A.; Nardini, M.; Bolognesi, M.; Viappiani, C.; Estrin, D.; Luque, F. J. J. Phys. Chem. B 2011, 115, 13771-13780] that Phe(G8)145 plays a crucial role in the ligand modulation in MaPgb. Finally, the influence of the N-terminal 20 amino-acid chain on the heme pocket in these protoglobins is also proven.
Collapse
|
124
|
Battistuzzi G, Bortolotti CA, Bellei M, Di Rocco G, Salewski J, Hildebrandt P, Sola M. Role of Met80 and Tyr67 in the Low-pH Conformational Equilibria of Cytochrome c. Biochemistry 2012; 51:5967-78. [DOI: 10.1021/bi3007302] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gianantonio Battistuzzi
- Department
of Chemistry, University of Modena and Reggio Emilia, via Campi 183,
41100 Modena, Italy
| | - Carlo Augusto Bortolotti
- Department
of Chemistry, University of Modena and Reggio Emilia, via Campi 183,
41100 Modena, Italy
| | - Marzia Bellei
- Department
of Chemistry, University of Modena and Reggio Emilia, via Campi 183,
41100 Modena, Italy
| | - Giulia Di Rocco
- Department
of Chemistry, University of Modena and Reggio Emilia, via Campi 183,
41100 Modena, Italy
| | - Johannes Salewski
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße
des 17. Juni 135, D-10623 Berlin, Germany
| | - Peter Hildebrandt
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße
des 17. Juni 135, D-10623 Berlin, Germany
| | - Marco Sola
- Department
of Chemistry, University of Modena and Reggio Emilia, via Campi 183,
41100 Modena, Italy
| |
Collapse
|
125
|
Geng J, Dornevil K, Liu A. Chemical Rescue of the Distal Histidine Mutants of Tryptophan 2,3-Dioxygenase. J Am Chem Soc 2012; 134:12209-18. [DOI: 10.1021/ja304164b] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Jiafeng Geng
- Department of Chemistry & Center for Diagnostics and Therapeutics, Georgia State University, 161 Jesse Hill Jr. Drive, Atlanta, Georgia 30303, United States
| | - Kednerlin Dornevil
- Department of Chemistry & Center for Diagnostics and Therapeutics, Georgia State University, 161 Jesse Hill Jr. Drive, Atlanta, Georgia 30303, United States
| | - Aimin Liu
- Department of Chemistry & Center for Diagnostics and Therapeutics, Georgia State University, 161 Jesse Hill Jr. Drive, Atlanta, Georgia 30303, United States
| |
Collapse
|
126
|
Pellicer S, González A, Peleato ML, Martinez JI, Fillat MF, Bes MT. Site-directed mutagenesis and spectral studies suggest a putative role of FurA from Anabaena sp. PCC 7120 as a heme sensor protein. FEBS J 2012; 279:2231-46. [DOI: 10.1111/j.1742-4658.2012.08606.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
127
|
Chiarella GM, Cotton FA, Dalal NS, Murillo CA, Wang Z, Young MD. Direct evidence from electron paramagnetic resonance for additional configurations in uncommon paddlewheel Re2(7+) units surrounded by an unsymmetrical bicyclic guanidinate. Inorg Chem 2012; 51:5257-63. [PMID: 22506487 DOI: 10.1021/ic300169f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Three rare compounds have been synthesized and structurally characterized; these species have paddlewheel structures and Re(2)(7+) cores surrounded by four bicyclic guanidinates and two axial ligands along the Re-Re axis. Each possesses a formal bond order of 3.5 and a σ(2)π(4)δ(1) electronic configuration that entails the presence of one unpaired electron for each compound. The guanidinate ligands characterized by having CH(2) entities and a central C(N)(3) unit that joins two cyclic units--one having two fused 6-membered rings (hpp) and the other having a 5- and a 6-membered ring fused together (tbn)--allowed the isolation of [Re(2)(tbn)(4)Cl(2)]PF(6), 1, [Re(2)(tbn)(4)Cl(2)]Cl, 2, and [Re(2)(hpp)(4)(O(3)SCF(3))(2)](O(3)SCF(3)), 3. Because of the larger bite angle of the tbn relative to the hpp ligand, the Re-Re bond distances in 1 and 2 (2.2691(14) and 2.2589(14) Å, respectively) are much longer than that in 3 (2.1804(8) Å). Importantly, electron paramagnetic resonance (EPR) studies at both X-band (~9.4 GHz) and W-band (112 GHz) in the solid and in frozen solution show unusually low g-values (~1.75) and the absence of zero-field splitting, providing direct evidence for the presence of one metal-based unpaired electron for both 1 and 3. These spectroscopic data suggest that the unsymmetrical 5-/6-membered ligand leads to the formation of isomers, as shown by significantly broader EPR signals for 1 than for 3, even though both compounds possess what appears to be similar ideal crystallographic axial symmetry on the X-ray time scale.
Collapse
Affiliation(s)
- Gina M Chiarella
- Department of Chemistry, Texas A&M University, P.O. Box 3012, College Station, Texas 77842-3012, USA
| | | | | | | | | | | |
Collapse
|
128
|
Youngblut M, Judd ET, Srajer V, Sayyed B, Goelzer T, Elliott SJ, Schmidt M, Pacheco AA. Laue crystal structure of Shewanella oneidensis cytochrome c nitrite reductase from a high-yield expression system. J Biol Inorg Chem 2012; 17:647-62. [PMID: 22382353 PMCID: PMC3412176 DOI: 10.1007/s00775-012-0885-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 02/16/2012] [Indexed: 10/28/2022]
Abstract
The high-yield expression and purification of Shewanella oneidensis cytochrome c nitrite reductase (ccNiR) and its characterization by a variety of methods, notably Laue crystallography, are reported. A key component of the expression system is an artificial ccNiR gene in which the N-terminal signal peptide from the highly expressed S. oneidensis protein "small tetraheme c" replaces the wild-type signal peptide. This gene, inserted into the plasmid pHSG298 and expressed in S. oneidensis TSP-1 strain, generated approximately 20 mg crude ccNiR per liter of culture, compared with 0.5-1 mg/L for untransformed cells. Purified ccNiR has nitrite and hydroxylamine reductase activities comparable to those previously reported for Escherichia coli ccNiR, and is stable for over 2 weeks in pH 7 solution at 4 °C. UV/vis spectropotentiometric titrations and protein film voltammetry identified five independent one-electron reduction processes. Global analysis of the spectropotentiometric data also allowed determination of the extinction coefficient spectra for the five reduced ccNiR species. The characteristics of the individual extinction coefficient spectra suggest that, within each reduced species, the electrons are distributed among the various hemes, rather than being localized on specific heme centers. The purified ccNiR yielded good-quality crystals, with which the 2.59-Å-resolution structure was solved at room temperature using the Laue diffraction method. The structure is similar to that of E. coli ccNiR, except in the region where the enzyme interacts with its physiological electron donor (CymA in the case of S. oneidensis ccNiR, NrfB in the case of the E. coli protein).
Collapse
Affiliation(s)
- Matthew Youngblut
- Department of Chemistry and Biochemistry, 3210 N. Cramer St, University of Wisconsin-Milwaukee, Milwaukee, WI 53211
| | - Evan T. Judd
- Department of Chemistry, 590 Commonwealth Ave., Boston, MA 02215
| | - Vukica Srajer
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, IL 60637, USA
| | - Bilal Sayyed
- Department of Chemistry and Biochemistry, 3210 N. Cramer St, University of Wisconsin-Milwaukee, Milwaukee, WI 53211
| | - Tyler Goelzer
- Department of Chemistry and Biochemistry, 3210 N. Cramer St, University of Wisconsin-Milwaukee, Milwaukee, WI 53211
| | - Sean J. Elliott
- Department of Chemistry, 590 Commonwealth Ave., Boston, MA 02215
| | - Marius Schmidt
- Department of Physics, 1900 E. Kenwood Blvd, University of Wisconsin-Milwaukee, Milwaukee, WI 53211
| | - A. Andrew Pacheco
- Department of Chemistry and Biochemistry, 3210 N. Cramer St, University of Wisconsin-Milwaukee, Milwaukee, WI 53211
| |
Collapse
|
129
|
Hong S, Victoria D, Crofts AR. Inter-monomer electron transfer is too slow to compete with monomeric turnover in bc(1) complex. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1053-62. [PMID: 22465023 DOI: 10.1016/j.bbabio.2012.03.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Revised: 03/08/2012] [Accepted: 03/11/2012] [Indexed: 11/30/2022]
Abstract
The homodimeric bc(1) complexes are membrane proteins essential in respiration and photosynthesis. The ~11Å distance between the two b(L)-hemes of the dimer opens the possibility of electron transfer between them, but contradictory reports make such inter-monomer electron transfer controversial. We have constructed in Rhodobacter sphaeroides a heterodimeric expression system similar to those used before, in which the bc(1) complex can be mutated differentially in the two copies of cyt b to test for inter-monomer electron transfer, but found that genetic recombination by cross-over then occurs to produce wild-type homodimer. Selection pressure under photosynthetic growth always favored the homodimer over heterodimeric variants enforcing inter-monomer electron transfer, showing that the latter are not competitive. These results, together with kinetic analysis of myxothiazol titrations, demonstrate that inter-monomer electron transfer does not occur at rates competitive with monomeric turnover. We examine the results from other groups interpreted as demonstrating rapid inter-monomer electron transfer, conclude that similar mechanisms are likely to be in play, and suggest that such claims might need to be re-examined.
Collapse
Affiliation(s)
- Sangjin Hong
- Departments of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | | | | |
Collapse
|
130
|
Lehnert N. Elucidating second coordination sphere effects in heme proteins using low-temperature magnetic circular dichroism spectroscopy. J Inorg Biochem 2012; 110:83-93. [PMID: 22516139 DOI: 10.1016/j.jinorgbio.2012.02.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 02/27/2012] [Accepted: 02/28/2012] [Indexed: 11/29/2022]
Abstract
This paper reviews recent findings on how the second coordination sphere of heme proteins fine-tunes the properties of the heme active site via hydrogen bonding. This insight is obtained from low-temperature magnetic circular dichroism (MCD) spectroscopy. In the case of high-spin ferric hemes, MCD spectroscopy allows for the identification of a multitude of charge-transfer (CT) transitions. Using optically-detected magnetic saturation curves, out-of-plane polarized CT transitions between the heme and its axial ligand(s) can be identified. In the case of ferric Cytochrome P450cam, the corresponding S(σ)→Fe(III) CT transition can be used as a probe for the {Fe(III)-axial ligand} interaction, indicating that the hydrogen bonding network of the proximal Cys only plays a limited role for fine-tuning the Fe(III)-S(Cys) interaction. In the case of high-spin ferrous hemes with axial His/imidazole coordination, our MCD-spectroscopic investigations have uncovered a direct correlation between the strength of the hydrogen bond to the proximal imidazole ligand and the ground state of the complexes. With neutral imidazole coordination, the doubly occupied d-orbital of high-spin iron(II) is of d(π) character, located orthogonal to the heme plane. As the strength of the hydrogen bond increases, this orbital rotates into the heme plane, changing the ground state of the complex.
Collapse
Affiliation(s)
- Nicolai Lehnert
- Department of Chemistry, The University of Michigan, 930 North University Avenue, Ann Arbor, MI 48109-1055, USA.
| |
Collapse
|
131
|
Moeser B, Janoschka A, Wolny JA, Paulsen H, Filippov I, Berry RE, Zhang H, Chumakov AI, Walker FA, Schünemann V. Nuclear inelastic scattering and Mössbauer spectroscopy as local probes for ligand binding modes and electronic properties in proteins: vibrational behavior of a ferriheme center inside a β-barrel protein. J Am Chem Soc 2012; 134:4216-28. [PMID: 22295945 DOI: 10.1021/ja210067t] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this work, we present a study of the influence of the protein matrix on its ability to tune the binding of small ligands such as NO, cyanide (CN(-)), and histamine to the ferric heme iron center in the NO-storage and -transport protein Nitrophorin 2 (NP2) from the salivary glands of the blood-sucking insect Rhodnius prolixus. Conventional Mössbauer spectroscopy shows a diamagnetic ground state of the NP2-NO complex and Type I and II electronic ground states of the NP2-CN(-) and NP2-histamine complex, respectively. The change in the vibrational signature of the protein upon ligand binding has been monitored by Nuclear Inelastic Scattering (NIS), also called Nuclear Resonant Vibrational Spectroscopy (NRVS). The NIS data thus obtained have also been calculated by quantum mechanical (QM) density functional theory (DFT) coupled with molecular mechanics (MM) methods. The calculations presented here show that the heme ruffling in NP2 is a consequence of the interaction with the protein matrix. Structure optimizations of the heme and its ligands with DFT retain the characteristic saddling and ruffling only if the protein matrix is taken into account. Furthermore, simulations of the NIS data by QM/MM calculations suggest that the pH dependence of the binding of NO, but not of CN(-) and histamine, might be a consequence of the protonation state of the heme carboxyls.
Collapse
Affiliation(s)
- Beate Moeser
- Technische Universität Kaiserslautern, Fachbereich Physik, Erwin-Schrödinger-Str. 56, D-67663 Kaiserslautern, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Chen Y, Naik SG, Krzystek J, Shin S, Nelson WH, Xue S, Yang JJ, Davidson VL, Liu A. Role of calcium in metalloenzymes: effects of calcium removal on the axial ligation geometry and magnetic properties of the catalytic diheme center in MauG. Biochemistry 2012; 51:1586-97. [PMID: 22320333 DOI: 10.1021/bi201575f] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
MauG is a diheme enzyme possessing a five-coordinate high-spin heme with an axial His ligand and a six-coordinate low-spin heme with His-Tyr axial ligation. A Ca(2+) ion is linked to the two hemes via hydrogen bond networks, and the enzyme activity depends on its presence. Removal of Ca(2+) altered the electron paramagnetic resonance (EPR) signals of each ferric heme such that the intensity of the high-spin heme was decreased and the low-spin heme was significantly broadened. Addition of Ca(2+) back to the sample restored the original EPR signals and enzyme activity. The molecular basis for this Ca(2+)-dependent behavior was studied by magnetic resonance and Mössbauer spectroscopy. The results show that in the Ca(2+)-depleted MauG the high-spin heme was converted to a low-spin heme and the original low-spin heme exhibited a change in the relative orientations of its two axial ligands. The properties of these two hemes are each different than those of the heme in native MauG and are now similar to each other. The EPR spectrum of Ca(2+)-free MauG appears to describe one set of low-spin ferric heme signals with a large g(max) and g anisotropy and a greatly altered spin relaxation property. Both EPR and Mössbauer spectroscopic results show that the two hemes are present as unusual highly rhombic low-spin hemes in Ca(2+)-depleted MauG, with a smaller orientation angle between the two axial ligand planes. These findings provide insight into the correlation of enzyme activity with the orientation of axial heme ligands and describe a role for the calcium ion in maintaining this structural orientation that is required for activity.
Collapse
Affiliation(s)
- Yan Chen
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
133
|
He C, Fuchs MR, Ogata H, Knipp M. Guanidin-Ferrohäm-Koordination in der Proteinmutante Nitrophorin 4(L130R). Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201108691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
134
|
He C, Fuchs MR, Ogata H, Knipp M. Guanidine-ferroheme coordination in the mutant protein nitrophorin 4(L130R). Angew Chem Int Ed Engl 2012; 51:4470-3. [PMID: 22334402 DOI: 10.1002/anie.201108691] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Indexed: 11/08/2022]
Affiliation(s)
- Chunmao He
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | | | | | | |
Collapse
|
135
|
Shinde S, Cordova JM, Woodrum BW, Ghirlanda G. Modulation of function in a minimalist heme-binding membrane protein. J Biol Inorg Chem 2012; 17:557-64. [PMID: 22307279 DOI: 10.1007/s00775-012-0876-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 01/14/2012] [Indexed: 12/21/2022]
Abstract
De novo designed heme-binding proteins have been used successfully to recapitulate features of natural hemoproteins. This approach has now been extended to membrane-soluble model proteins. Our group designed a functional hemoprotein, ME1, by engineering a bishistidine binding site into a natural membrane protein, glycophorin A (Cordova et al. in J Am Chem Soc 129:512-518, 2007). ME1 binds iron(III) protoporphyrin IX with submicromolar affinity, has a redox potential of -128 mV, and displays peroxidase activity. Here, we show the effect of aromatic residues in modulating the redox potential in the context of a membrane-soluble model system. We designed aromatic interactions with the heme through a single-point mutant, G25F, in which a phenylalanine is designed to dock against the porphyrin ring. This mutation results in roughly tenfold tighter binding to iron(III) protoporphyrin IX (K(d,app) = 6.5 × 10(-8) M), and lowers the redox potential of the cofactor to -172 mV. This work demonstrates that specific design features aimed at controlling the properties of bound cofactors can be introduced in a minimalist membrane hemoprotein model. The ability to modulate the redox potential of cofactors embedded in artificial membrane proteins is crucial for the design of electron transfer chains across membranes in functional photosynthetic devices.
Collapse
Affiliation(s)
- Sandip Shinde
- Department of Chemistry and Biochemistry, ASU, Tempe, AZ 85287, USA
| | | | | | | |
Collapse
|
136
|
Roncel M, Kirilovsky D, Guerrero F, Serrano A, Ortega JM. Photosynthetic cytochrome c550. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1152-63. [PMID: 22289879 DOI: 10.1016/j.bbabio.2012.01.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 12/31/2011] [Accepted: 01/14/2012] [Indexed: 10/14/2022]
Abstract
Cytochrome c550 (cyt c550) is a membrane component of the PSII complex in cyanobacteria and some eukaryotic algae, such as red and brown algae. Cyt c550 presents a bis-histidine heme coordination which is very unusual for monoheme c-type cytochromes. In PSII, the cyt c550 with the other extrinsic proteins stabilizes the binding of Cl(-) and Ca(2+) ions to the oxygen evolving complex and protects the Mn(4)Ca cluster from attack by bulk reductants. The role (if there is one) of the heme of the cyt c550 is unknown. The low midpoint redox potential (E(m)) of the purified soluble form (from -250 to -314mV) is incompatible with a redox function in PSII. However, more positive values for the Em have been obtained for the cyt c550 bound to the PSII. A very recent work has shown an E(m) value of +200mV. These data open the possibility of a redox function for this protein in electron transfer in PSII. Despite the long distance (22Å) between cyt c550 and the nearest redox cofactor (Mn(4)Ca cluster), an electron transfer reaction between these components is possible. Some kind of protective cycle involving a soluble redox component in the lumen has also been proposed. The aim of this article is to review previous studies done on cyt c550 and to consider its function in the light of the new results obtained in recent years. The emphasis is on the physical properties of the heme and its redox properties. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.
Collapse
Affiliation(s)
- Mercedes Roncel
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Sevilla, Spain.
| | | | | | | | | |
Collapse
|
137
|
Hocking RK, Chang SLY, MacFarlane DR, Spiccia L. Preparation and Characterization of Catalysts for Clean Energy: A Challenge for X-rays and Electrons. Aust J Chem 2012. [DOI: 10.1071/ch12016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
One of the most promising approaches to addressing the challenges of securing cheap and renewable energy sources is to design catalysts from earth abundant materials capable of promoting key chemical reactions including splitting water into hydrogen and oxygen (2H2O → 2H2 + O2) as well as both the oxidation (H2 → 2H+) and reduction (2H+ → H2) of hydrogen. Key to elucidating the origin of catalytic activity and improving catalyst design is determining molecular-level structure, in both the ‘resting state’ and in the functioning ‘active state’ of the catalysts. Herein, we explore some of the analytical challenges important for designing and studying new catalytic materials for making and using hydrogen. We discuss a case study that used the combined approach of X-ray absorption spectroscopy and transmission electron microscopy to understand the fate of the molecular cluster, [Mn4O4L6]+, in Nafion.
Collapse
|
138
|
Poli AL, Moreira LM, Imasato H. Autoxidation of giant extracellular hemoglobin of Glossoscolex paulistus: molecular mechanism and oligomeric implications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2011; 82:306-315. [PMID: 21824807 DOI: 10.1016/j.saa.2011.07.053] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2011] [Revised: 07/11/2011] [Accepted: 07/15/2011] [Indexed: 05/31/2023]
Abstract
Giant extracellular hemoglobins present high redox stability due to their supramolecular architecture, high number of polypeptide chains and great compaction of protein subunits. The oligomeric assembly and the changes in the polypeptidic structure can influence the autoxidation rate of the heme proteins, being that different nucleophiles can act in this process due to pH alterations. In the present work, we have studied the autoxidation rate of whole Glossoscolex paulistus (HbGp) giant extracellular hemoglobin, as well as the autoxidation rate of the isolated d monomer of HbGp studied regarding pH variations. The kinetic decay behavior is dependent on pH, presenting mono-exponential or bi-exponential character, depending on the oligomeric state of the protein. Thus, the oligomeric dissociation in specific pH values demonstrated a bi-exponential kinetic decay. A mono-exponential kinetic behavior was verified in the pH range of 5.9-7.3, which is assigned to the native whole protein. In alkaline medium, the presence of hydroxide ions leads the autoxidation of whole hemoglobin to a complex behavior, which is described by the combination of two first-order kinetics. The slow process occurs due to the d monomer autoxidation. At pH 7.0, the kinetic is mono-exponential, indicating a highly conserved oligomeric structure. In acid medium, the proton-catalyzed autoxidation occurs both on the whole hemoglobin and in the d monomer. It has been found that proximal and distal histidines develop determinant roles regarding the autoxidation rate, being that the distal histidine controls the contact of ligands with the ferrous center through a very interesting "swinging door" mechanism. Despite the significant sensitivity of the distal histidine to the presence of protons, water molecules and anions, the influence of chemical changes around the heme, such as pH changes, is much more effective in hemoproteins without this amino acid as distal residue. This fact denotes the ability of HbGp to adapt to environmental disturbances caused by the presence of the distal histidine, which is responsible for the great redox and oligomeric stabilities encountered in HbGp.
Collapse
Affiliation(s)
- Alessandra Lima Poli
- Instituto de Química de São Carlos, Universidade de São Paulo, 13560-970, São Carlos, SP, Brazil
| | | | | |
Collapse
|
139
|
Karunakaran V, Benabbas A, Youn H, Champion PM. Vibrational coherence spectroscopy of the heme domain in the CO-sensing transcriptional activator CooA. J Am Chem Soc 2011; 133:18816-27. [PMID: 21961804 DOI: 10.1021/ja206152m] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Femtosecond vibrational coherence spectroscopy was used to investigate the low-frequency vibrational dynamics of the heme in the carbon monoxide oxidation activator protein (CooA) from the thermophilic anaerobic bacterium Carboxydothermus hydrogenoformans (Ch-CooA). Low frequency vibrational modes are important because they are excited by the ambient thermal bath (k(B)T = 200 cm(-1)) and participate in thermally activated barrier crossing events. However, such modes are nearly impossible to detect in the aqueous phase using traditional spectroscopic methods. Here, we present the low frequency coherence spectra of the ferric, ferrous, and CO-bound forms of Ch-CooA in order to compare the protein-induced heme distortions in its active and inactive states. Distortions take place predominantly along the coordinates of low-frequency modes because of their weak force constants, and such distortions are reflected in the intensity of the vibrational coherence signals. A strong mode near ~90 cm(-1) in the ferrous form of Ch-CooA is suggested to contain a large component of heme ruffling, consistent with the imidazole-bound ferrous heme crystal structure, which shows a significant protein-induced heme distortion along this coordinate. A mode observed at ~228 cm(-1) in the six-coordinate ferrous state is proposed to be the ν(Fe-His) stretching vibration. The observation of the Fe-His mode indicates that photolysis of the N-terminal α-amino axial ligand takes place. This is followed by a rapid (~8.5 ps) transient absorption recovery, analogous to methionine rebinding in photolyzed ferrous cytochrome c. We have also studied CO photolysis in CooA, which revealed very strong photoproduct state coherent oscillations. The observation of heme-CO photoproduct oscillations is unusual because most other heme systems have CO rebinding kinetics that are too slow to make the measurement possible. The low frequency coherence spectrum of the CO-bound form of Ch-CooA shows a strong vibration at ~230 cm(-1) that is broadened and up-shifted compared to the ν(Fe-His) of Rr-CooA (216 cm(-1)). We propose that the stronger Fe-His bond is related to the enhanced thermal stability of Ch-CooA and that there is a smaller (time dependent) tilt of the histidine ring with respect to the heme plane in Ch-CooA. The appearance of strong modes at ~48 cm(-1) in both the ferrous and CO-bound forms of Ch-CooA is consistent with coupling of the heme doming distortion to the photolysis reaction in both samples. Upon CO binding and protein activation, a heme mode near 112 ± 5 cm(-1) disappears, probably indicating a decreased heme saddling distortion. This reflects changes in the heme environment and geometry that must be associated with the conformational transition activating the DNA-binding domain. Protein-specific DNA binding to the CO-bound form of Ch-CooA was also investigated, and although the CO rebinding kinetics are significantly perturbed, there are negligible changes in the low-frequency vibrational spectrum of the heme.
Collapse
Affiliation(s)
- Venugopal Karunakaran
- Department of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
140
|
Electronic properties of the highly ruffled heme bound to the heme degrading enzyme IsdI. Proc Natl Acad Sci U S A 2011; 108:13071-6. [PMID: 21788475 DOI: 10.1073/pnas.1101459108] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
IsdI, a heme-degrading protein from Staphylococcus aureus, binds heme in a manner that distorts the normally planar heme prosthetic group to an extent greater than that observed so far for any other heme-binding protein. To understand better the relationship between this distinct structural characteristic and the functional properties of IsdI, spectroscopic, electrochemical, and crystallographic results are reported that provide evidence that this heme ruffling is essential to the catalytic activity of the protein and eliminates the need for the water cluster in the distal heme pocket that is essential for the activity of classical heme oxygenases. The lack of heme orientational disorder in (1)H-NMR spectra of the protein argues that the catalytic formation of β- and δ-biliverdin in nearly equal yield results from the ability of the protein to attack opposite sides of the heme ring rather than from binding of the heme substrate in two alternative orientations.
Collapse
|
141
|
Harbitz E, Andersson KK. Cytochrome c-554 from Methylosinus trichosporium OB3b; a protein that belongs to the cytochrome c2 family and exhibits a HALS-Type EPR signal. PLoS One 2011; 6:e22014. [PMID: 21789203 PMCID: PMC3138771 DOI: 10.1371/journal.pone.0022014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 06/10/2011] [Indexed: 11/19/2022] Open
Abstract
A small soluble cytochrome c-554 purified from Methylosinus trichosporium OB3b has been purified and analyzed by amino acid sequencing, mass spectrometry, visible, CD and EPR spectroscopies. It is found to be a mono heme protein with a characteristic cytochrome c fold, thus fitting into the class of cytochrome c2, which is the bacterial homologue of mitochondrial cytochrome c. The heme iron has a Histidine/Methionine axial ligation and exhibits a highly anisotropic/axial low spin (HALS) EPR signal, with a gmax at 3.40, and ligand field parameters V/ξ = 0.99, Δ/ξ = 4.57. This gives the rhombicity V/Δ = 0.22. The structural basis for this HALS EPR signal in Histidine/Methionine ligated hemes is not resolved. The ligand field parameters observed for cytochrome c-554 fits the observed pattern for other cytochromes with similar ligation and EPR behaviour.
Collapse
Affiliation(s)
- Espen Harbitz
- Department of Molecular Biosciences, University of Oslo, Oslo, Norway
| | | |
Collapse
|
142
|
Fielding AJ, Brodhun F, Koch C, Pievo R, Denysenkov V, Feussner I, Bennati M. Multifrequency electron paramagnetic resonance characterization of PpoA, a CYP450 fusion protein that catalyzes fatty acid dioxygenation. J Am Chem Soc 2011; 133:9052-62. [PMID: 21548577 DOI: 10.1021/ja202207t] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PpoA is a fungal dioxygenase that produces hydroxylated fatty acids involved in the regulation of the life cycle and secondary metabolism of Aspergillus nidulans . It was recently proposed that this novel enzyme employs two different heme domains to catalyze two separate reactions: within a heme peroxidase domain, linoleic acid is oxidized to (8R)-hydroperoxyoctadecadienoic acid [(8R)-HPODE]; in the second reaction step (8R)-HPODE is isomerized within a P450 heme thiolate domain to 5,8-dihydroxyoctadecadienoic acid. In the present study, pulsed EPR methods were applied to find spectroscopic evidence for the reaction mechanism, thought to involve paramagnetic intermediates. We observe EPR resonances of two distinct heme centers with g-values typical for Fe(III) S = (5)/(2) high-spin (HS) and Fe(III) S = (1)/(2) low-spin (LS) hemes. (14)N ENDOR spectroscopy on the S = (5)/(2) signal reveals resonances consistent with an axial histidine ligation. Reaction of PpoA with the substrate leads to the formation of an amino acid radical on the early millisecond time scale concomitant to a substantial reduction of the S = (5)/(2) heme signal. High-frequency EPR (95- and 180-GHz) unambiguously identifies the new radical as a tyrosyl, based on g-values and hyperfine couplings from spectral simulations. The radical displays enhanced T(1)-spin-lattice relaxation due to the proximity of the heme centers. Further, EPR distance measurements revealed that the radical is distributed among the monomeric subunits of the tetrameric enzyme at a distance of approximately 5 nm. The identification of three active paramagnetic centers involved in the reaction of PpoA supports the previously proposed reaction mechanism based on radical chemistry.
Collapse
|
143
|
Krzyminiewski R, Kruczyński Z, Dobosz B, Zając A, Mackiewicz A, Leporowska E, Folwaczna S. EPR Study of Iron Ion Complexes in Human Blood. APPLIED MAGNETIC RESONANCE 2011; 40:321-330. [PMID: 21654899 PMCID: PMC3082697 DOI: 10.1007/s00723-011-0219-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Revised: 02/11/2011] [Indexed: 05/27/2023]
Abstract
Electronic states of iron ion complexes in human blood from patients with melanoma have been investigated by electron paramagnetic resonance (EPR). The measurements were performed at liquid nitrogen temperature (77 K) on an X-band EPR spectrometer. Numerous types of iron paramagnetic centers have been identified. In several kinds of protein complexes exemplified by methemoglobin, transferrin or ferritin, various forms of trivalent iron have been found. Three groups of patients with typical EPR spectra have been individualized. These groups differed in types and concentration of paramagnetic centers in peripheral blood. A good correlation has been found between the EPR results, the total iron ion complexes concentration and transferrin saturation.
Collapse
Affiliation(s)
- Ryszard Krzyminiewski
- Medical Physics Division, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
| | - Zdzisław Kruczyński
- Medical Physics Division, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
| | - Bernadeta Dobosz
- Medical Physics Division, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
| | - Anna Zając
- Medical Physics Division, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
| | | | - Ewa Leporowska
- Greater Poland Cancer Centre, Garbary 15, 61-866 Poznań, Poland
| | - Sandra Folwaczna
- Medical Physics Division, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
| |
Collapse
|
144
|
Ikeue T, Handa M, Chamberlin A, Ghosh A, Ongayi O, Vicente MGH, Ikezaki A, Nakamura M. Benzoannelation Stabilizes the dxy1 State of Low-Spin Iron(III) Porphyrinates. Inorg Chem 2011; 50:3567-81. [DOI: 10.1021/ic1024873] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Takahisa Ikeue
- Department of Chemistry, Faculty of Material Science, Shimane University, 1060 Nishikawatsu-cho, Matsue-shi, Shimane 690-8504, Japan
| | - Makoto Handa
- Department of Chemistry, Faculty of Material Science, Shimane University, 1060 Nishikawatsu-cho, Matsue-shi, Shimane 690-8504, Japan
| | - Adam Chamberlin
- Department of Chemistry and the Center for Theoretical and Computational Chemistry, University of Tromso, Breivika, N-9037 Tromso, Norway
| | - Abhik Ghosh
- Department of Chemistry and the Center for Theoretical and Computational Chemistry, University of Tromso, Breivika, N-9037 Tromso, Norway
| | - Owendi Ongayi
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - M. Graça H. Vicente
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Akira Ikezaki
- Department of Chemistry, School of Medicine, Toho University, Ota-ku, Tokyo 143-8540, Japan
| | - Mikio Nakamura
- Department of Chemistry, School of Medicine, Toho University, Ota-ku, Tokyo 143-8540, Japan
- Division of Chemistry, Graduate School of Science, Toho University, Funabashi 274-8510, Japan
| |
Collapse
|
145
|
Karunakaran V, Denisov I, Sligar SG, Champion PM. Investigation of the low frequency dynamics of heme proteins: native and mutant cytochrome P450(cam) and redox partner complexes. J Phys Chem B 2011; 115:5665-77. [PMID: 21391540 DOI: 10.1021/jp112298y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Vibrational coherence spectroscopy (VCS) is used to investigate the low-frequency dynamics of camphor-free and camphor-bound cytochrome P450(cam) (CYP 101) and its L358P mutant. The low-frequency heme vibrations are found to be perturbed upon binding to the electron transfer partner putidaredoxin (Pdx). A strong correlation between the "detuned" vibrational coherence spectrum, which monitors frequencies between 100 and 400 cm(-1), and the lower frequency part of the Raman spectrum is also demonstrated. The very low frequency region ≤200 cm(-1), uniquely accessed by open-band VCS measurements, reveals a mode near 103 cm(-1) in P450(cam) when camphor is not present in the distal pocket. This reflects the presence of a specific heme distortion, such as saddling or ruffling, in the substrate-free state where water is coordinated to the low-spin iron atom. Such distortions are likely to retard the rate of electron transfer to the substrate-free protein. The presence of strong mode near ∼33 cm(-1) in the camphor-bound form suggests a significant heme-doming distortion, which is supported by analysis using normal coordinate structural decomposition. Pdx also displays a strong coherent vibration near 30 cm(-1) that in principle could be involved in vibrational resonance with its electron transfer target. A splitting of the 33 cm(-1) feature and intensification of a mode near 78 cm(-1) appear when the P450(cam)/Pdx complex is formed. These observations are consistent with vibrational mixing and heme geometric distortions upon Pdx binding that are coincident with the increased thiolate electron donation to the heme. The appearance of a mode near 65 cm(-1) in the coherence spectra of the L358P mutant is comparable to the mode at 78 cm(-1) seen in the P450(cam)/Pdx complex and is consistent with the view that the heme and its environment in the L358P mutant are similar to the Pdx-bound native protein. Resonance Raman spectra are presented for both P450(cam) and the L358P mutant and the changes are correlated with an increased amount of thiolate electron donation to the heme in the mutant sample.
Collapse
Affiliation(s)
- Venugopal Karunakaran
- Department of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, Massachusetts 02115, United States
| | | | | | | |
Collapse
|
146
|
Roquette P, Maronna A, Reinmuth M, Kaifer E, Enders M, Himmel HJ. Combining NMR of Dynamic and Paramagnetic Molecules: Fluxional High-Spin Nickel(II) Complexes Bearing Bisguanidine Ligands. Inorg Chem 2011; 50:1942-55. [DOI: 10.1021/ic102420x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Pascal Roquette
- Contribution from the Department of Inorganic Chemistry, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Astrid Maronna
- Contribution from the Department of Inorganic Chemistry, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Matthias Reinmuth
- Contribution from the Department of Inorganic Chemistry, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Elisabeth Kaifer
- Contribution from the Department of Inorganic Chemistry, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Markus Enders
- Contribution from the Department of Inorganic Chemistry, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Hans-Jörg Himmel
- Contribution from the Department of Inorganic Chemistry, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| |
Collapse
|
147
|
Maurelli S, Chiesa M, Giamello E, Di Nardo G, V. Ferrero VE, Gilardi G, Van Doorslaer S. Direct spectroscopic evidence for binding of anastrozole to the iron heme of human aromatase. Peering into the mechanism of aromatase inhibition. Chem Commun (Camb) 2011; 47:10737-9. [DOI: 10.1039/c1cc13872c] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
148
|
Schwab DE, Stamler JS, Singel DJ. EPR spectroscopy of nitrite complexes of methemoglobin. Inorg Chem 2010; 49:6330-7. [PMID: 20666390 DOI: 10.1021/ic902085s] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The chemical interplay of nitrogen oxides (NO's) with hemoglobin (Hb) has attracted considerable recent attention because of its potential significance in the mechanism of NO-related vasoactivity regulated by Hb. An important theme of this interplay-redox coupling in adducts of heme iron and NO's-has sparked renewed interest in fundamental studies of FeNO(x) coordination complexes. In this Article, we report combined UV-vis and comprehensive electron paramagnetic resonance (EPR) spectroscopic studies that address intriguing questions raised in recent studies of the structure and affinity of the nitrite ligand in complexes with Fe(III) in methemoglobin (metHb). EPR spectra of metHb/NO(2)(-) are found to exhibit a characteristic doubling in their sharper spectral features. Comparative EPR measurements at X- and S-band frequencies, and in D(2)O versus H(2)O, argue against the assignment of this splitting as hyperfine structure. Correlated changes in the EPR spectra with pH enable complete assignment of the spectrum as deriving from the overlap of two low-spin species with g values of 3.018, 2.122, 1.45 and 2.870, 2.304, 1.45 (values for samples at 20 K and pH 7.4 in phosphate-buffered saline). These g values are typical of g values found for other heme proteins with N-coordinated ligands in the binding pocket and are thus suggestive of N-nitro versus O-nitrito coordination. The positions and shapes of the spectral lines vary only slightly with temperature until motional averaging ensues at approximately 150 K. The pattern of motional averaging in the variable-temperature EPR spectra and EPR studies of Fe(III)NO(2)(-)/Fe(II)NO hybrids suggest that one of two species is present in both of the alpha and beta subunits, while the other is exclusive to the beta subunit. Our results also reconfirm that the affinity of nitrite for metHb is of millimolar magnitude, thereby making a direct role for nitrite in physiological hypoxic vasodilation difficult to justify.
Collapse
Affiliation(s)
- David E Schwab
- Department of Chemistry and Biochemistry, Montana State University, P.O. Box 173400, Bozeman, Montana 59717, USA
| | | | | |
Collapse
|
149
|
Youssef NS, El Zahany EA, Ali MM. Synthesis, Spectral, Characterization, and Anticancer Activity of Some Binary and Mixed Ligand Complexes of 4-Methyl-2-Pentanone Thiosemicarbazone and Some Amino Acids. PHOSPHORUS SULFUR 2010. [DOI: 10.1080/10426500903241739] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Nabil S. Youssef
- a Inorganic Chemistry Department , National Research Centre , Dokki , Giza , Egypt
| | - Eman A. El Zahany
- a Inorganic Chemistry Department , National Research Centre , Dokki , Giza , Egypt
| | - Mamdouh M. Ali
- b Biochemistry Department , Division of Genetic Engineering and Biotechnology, National Research Centre , Dokki , Giza , Egypt
| |
Collapse
|
150
|
Bowman SEJ, Bren KL. Variation and analysis of second-sphere interactions and axial histidinate character in c-type cytochromes. Inorg Chem 2010; 49:7890-7. [PMID: 20666367 PMCID: PMC2933145 DOI: 10.1021/ic100899k] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The electron-donating properties of the axial His ligand to heme iron in cytochromes c (cyts c) are found to be correlated with the midpoint reduction potential (E(m)) in variants of Hydrogenobacter thermophilus cytochrome c(552) (Ht cyt c(552)) in which mutations have been made in and near the Cys-X-X-Cys-His (CXXCH) heme-binding motif. To probe the strength of the His-Fe(III) interaction, we have measured (13)C nuclear magnetic resonance (NMR) chemical shifts for (13)CN(-) bound to heme iron trans to the axial His in Ht Fe(III) cyt c(552) variants. We observe a linear relationship between these (13)C chemical shifts and E(m), indicating that the His-Fe(III) bond strength correlates with E(m). To probe a conserved hydrogen bonding interaction between the axial His Hdelta1 and the backbone carbonyl of a Pro residue, we measured the pK(a) of the axial His Hdelta1 proton (pK(a(2))), which we propose to relate to the His-Fe(III) interaction, reduction potential, and local electrostatic effects. The observed linear relationship between the axial His (13)Cbeta chemical shift and E(m) is proposed to reflect histidinate (anionic) character of the ligand. A linear relationship also is seen between the average heme methyl (1)H chemical shift and E(m) which may reflect variation in axial His electron-donating properties or in the ruffling distortion of the heme plane. In summary, chemical shifts of the axial His and exogenous CN(-) bound trans to His are shown to be sensitive probes of the His-Fe(III) interaction in variants of Ht cyt c(552) and display trends that correlate with E(m).
Collapse
Affiliation(s)
- Sarah E. J. Bowman
- Department of Chemistry, University of Rochester, Rochester, New York 14627-0216
| | - Kara L. Bren
- Department of Chemistry, University of Rochester, Rochester, New York 14627-0216
| |
Collapse
|