101
|
Ni X, Ma Y, Cheng H, Jiang M, Ying K, Xie Y, Mao Y. Cloning and characterization of a novel human pantothenate kinase gene. Int J Biochem Cell Biol 2002; 34:109-15. [PMID: 11809413 DOI: 10.1016/s1357-2725(01)00114-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Pantothenate kinase (PanK) is a key regulatory enzyme in the CoA biosynthetic pathway in bacteria and mammalian cells. It catalyzes the first committed step in the universal biosynthetic pathway leading to CoA. Here we report the molecular cloning and characterization of a new human PanK gene. The gene encoded a protein of 314 amino acid residues, which share high homology to mouse pantothenate kinase (mPanK) 1 beta. Northern blot analysis revealed a transcript of the gene of 2.6 kb in human liver and kidney. The human PanK gene was located to human chromosome between 10q22.3 and 10q23.2 by bioinformatics analysis.
Collapse
Affiliation(s)
- Xiaohua Ni
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai 200433, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
102
|
Pantothenic Acid: an Organ-Specific Pro-Oxidant Vitamin¶. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002. [DOI: 10.1007/978-1-4615-0193-0_84] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
103
|
Saliba KJ, Kirk K. H+-coupled pantothenate transport in the intracellular malaria parasite. J Biol Chem 2001; 276:18115-21. [PMID: 11278793 DOI: 10.1074/jbc.m010942200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pantothenate, the precursor of coenzyme A, is an essential nutrient for the intraerythrocytic stage of the malaria parasite Plasmodium falciparum. Pantothenate enters the malaria-infected erythrocyte via new permeation pathways induced by the parasite in the host cell membrane (Saliba, K. J., Horner, H. A., and Kirk, K. (1998) J. Biol. Chem. 273, 10190-10195). We show here that pantothenate is taken up by the intracellular parasite via a novel H(+)-coupled transporter, quite different from the Na(+)-coupled transporters that mediate pantothenate uptake into mammalian cells. The plasmodial H(+):pantothenate transporter has a low affinity for pantothenate (K(m) approximately 23 mm) and a stoichiometry of 1 H(+):1 pantothenate. It is inhibited by low concentrations of the bioflavonoid phloretin and the thiol-modifying agent p-chloromercuribenzene sulfonate. On entering the parasite, pantothenate is phosphorylated (and thereby trapped) by an unusually high affinity pantothenate kinase (K(m) approximately 300 nm). The combination of H(+)-coupled transporter and kinase provides the parasite with an efficient, high affinity pantothenate uptake system, which is distinct from that of the host and is therefore an attractive target for antimalarial chemotherapy.
Collapse
Affiliation(s)
- K J Saliba
- School of Biochemistry and Molecular Biology, Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | | |
Collapse
|
104
|
Abstract
Coenzyme A (I) and enzyme-bound phosphopantetheine (II) function as acyl carriers and as carbonyl activating groups for Claisen reactions as well as for amide-, ester-, and thioester-forming reactions in the cell. In so doing, these cofactors play a key role in the biosynthesis and breakdown of fatty acids and in the biosynthesis of polyketides and nonribosomal peptides. Coenzyme A is biosynthesized in bacteria in nine steps. The biosynthesis begins with the decarboxylation of aspartate to give beta-alanine. Pantoic acid is formed by the hydroxymethylation of alpha-ketoisovalerate followed by reduction. These intermediates are then condensed to give pantothenic acid. Phosphorylation of pantothenic acid followed by condensation with cysteine and decarboxylation gives 4'-phosphopantetheine. Adenylation and phosphorylation of 4'-phosphopantetheine completes the biosynthesis of coenzyme A. This review will focus on the mechanistic enzymology of coenzyme A biosynthesis in bacteria.
Collapse
Affiliation(s)
- T P Begley
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | | | | |
Collapse
|
105
|
Roediger WE. Nitric oxide-dependent nitrosation of cellular CoA: a proposal for tissue responses. Nitric Oxide 2001; 5:83-7. [PMID: 11292357 DOI: 10.1006/niox.2001.0336] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- W E Roediger
- Cell Physiology Laboratory of the Department of Surgery, University of Adelaide, Adelaide, South Australia, 5011, Australia.
| |
Collapse
|
106
|
Moiseenok AG, Komar VI, Khomich TI, Kanunnikova NP, Slyshenkov VS. Pantothenic acid in maintaining thiol and immune homeostasis. Biofactors 2000; 11:53-5. [PMID: 10705960 DOI: 10.1002/biof.5520110115] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- A G Moiseenok
- Laboratory of Coenzymes, Institute of Biochemistry of the National Academy of Sciences, Grodno, Belarus
| | | | | | | | | |
Collapse
|
107
|
McKiernan SH, Bavister BD. Culture of one-cell hamster embryos with water soluble vitamins: pantothenate stimulates blastocyst production. Hum Reprod 2000; 15:157-64. [PMID: 10611206 DOI: 10.1093/humrep/15.1.157] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The effects of water-soluble vitamins, singly or in combinations, on development of hamster 1-cell embryos were examined in a protein-free, chemically defined culture medium, HECM-6. Pantothenate significantly stimulated blastocyst development compared to the vitamin-free control and to every other single vitamin, except thiamine. Ascorbic acid, biotin, choline, folic acid, inositol, niacinamide, pyridoxal, riboflavin and thiamine had no detectable stimulation or inhibition on cleavage stage development or morula/blastocyst formation. When combinations of vitamins were tested, embryo development was either unchanged or significantly greater than in the control, but never significantly greater than development with pantothenate alone. A dose response to pantothenate indicated that 3 micromol/l was the optimum concentration. After embryo transfer, the percentage of live fetuses recovered per 100 1-cell embryos cultured in HECM-6 plus pantothenate (now designated HECM-9) was 24%, significantly higher than the 11% recovered from 100 1-cell embryos cultured in HECM-6 alone. This is the first report to show a stimulatory effect of a single vitamin on in-vitro development of preimplantation embryos in any mammalian species.
Collapse
Affiliation(s)
- S H McKiernan
- Department of Animal Health and Biomedical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | | |
Collapse
|
108
|
Grusak MA, DellaPenna D. IMPROVING THE NUTRIENT COMPOSITION OF PLANTS TO ENHANCE HUMAN NUTRITION AND HEALTH. ACTA ACUST UNITED AC 1999; 50:133-161. [PMID: 15012206 DOI: 10.1146/annurev.arplant.50.1.133] [Citation(s) in RCA: 223] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plant foods contain almost all of the mineral and organic nutrients established as essential for human nutrition, as well as a number of unique organic phytochemicals that have been linked to the promotion of good health. Because the concentrations of many of these dietary constituents are often low in edible plant sources, research is under way to understand the physiological, biochemical, and molecular mechanisms that contribute to their transport, synthesis and accumulation in plants. This knowledge can be used to develop strategies with which to manipulate crop plants, and thereby improve their nutritional quality. Improvement strategies will differ between various nutrients, but generalizations can be made for mineral or organic nutrients. This review focuses on the plant nutritional physiology and biochemistry of two essential human nutrients, iron and vitamin E, to provide examples of the type of information that is needed, and the strategies that can be used, to improve the mineral or organic nutrient composition of plants.
Collapse
Affiliation(s)
- Michael A. Grusak
- Department of Pediatrics, Baylor College of Medicine, USDA/ARS Children's Nutrition Research Center, Houston, Texas 77030; e-mail: , Department of Biochemistry, University of Nevada, Reno, Nevada 89557; e-mail:
| | | |
Collapse
|
109
|
Saliba KJ, Horner HA, Kirk K. Transport and metabolism of the essential vitamin pantothenic acid in human erythrocytes infected with the malaria parasite Plasmodium falciparum. J Biol Chem 1998; 273:10190-5. [PMID: 9553068 DOI: 10.1074/jbc.273.17.10190] [Citation(s) in RCA: 172] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The growth of the human malaria parasite, Plasmodium falciparum, within its host erythrocyte is reliant on the uptake of a number of essential nutrients from the extracellular medium. One of these is pantothenic acid, a water-soluble vitamin that is a precursor of coenzyme A. In this study we show that normal uninfected erythrocytes are impermeable to pantothenate but that the vitamin is taken up rapidly into malaria-infected cells via a transport pathway that has the characteristics (furosemide sensitivity, nonsaturability) of previously characterized, broad specificity permeation pathways induced by the intracellular parasite in the host cell membrane. The transport of pantothenate therefore constitutes a critical physiological role for these pathways. Inside the parasitized cell pantothenate undergoes phosphorylation, the first step in its conversion to coenzyme A. Parasites within saponin-permeabilized erythrocytes were shown to take up and phosphorylate pantothenate, consistent with the intracellular parasite having both a pantothenate transporter and a pantothenate kinase. Comparisons of the rate of phosphorylation of pantothenate by lysates prepared from uninfected and infected erythrocytes revealed that the pantothenate kinase activity of the P. falciparum trophozoite is some 10-fold higher than that of its host cell and that most, if not all, of the phosphorylation of pantothenate within the malaria-infected cell occurs within the intracellular parasite. These results contrast with those of previous studies in which it was proposed that the avian malaria parasite Plasmodium lophurae lacks pantothenate kinase (as well as the other enzymes for the synthesis of coenzyme A) and is reliant upon the uptake of preformed coenzyme A from the host cell cytosol.
Collapse
Affiliation(s)
- K J Saliba
- Division of Biochemistry and Molecular Biology, Faculty of Science, Australian National University, Canberra ACT 0200, Australia
| | | | | |
Collapse
|
110
|
Affiliation(s)
- G I Stables
- Department of Dermatology, The General Infirmary at Leeds, UK
| | | |
Collapse
|
111
|
Youssef JA, Song WO, Badr MZ. Mitochondrial, but not peroxisomal, beta-oxidation of fatty acids is conserved in coenzyme A-deficient rat liver. Mol Cell Biochem 1997; 175:37-42. [PMID: 9350031 DOI: 10.1023/a:1006877021617] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hepatic coenzyme A (CoA) plays an important role in cellular lipid metabolism. Because mitochondria and peroxisomes represent the two major subcellular sites of lipid metabolism, the present study was designed to investigate the specific impact of hepatic CoA deficiency on peroxisomal as well as mitochondrial beta-oxidation of fatty acids. CoA deficiency (47% decrease in free CoA and 23% decrease in total CoA) was produced by maintaining weanling male Sprague-Dawley rats on a semipurified diet deficient in pantothenic acid (the precursor of CoA) for 5 weeks. Hepatic mitochondrial fatty acid oxidation of short-chain and long-chain fatty acids were not significantly different between control and CoA-deficient rats. Conversely, peroxisomal beta-oxidation was significantly diminished (38% inhibition) in livers of CoA-deficient rats compared to control animals. Peroxisomal beta-oxidation was restored to normal levels when hepatic CoA was replenished. It is postulated that since the role of hepatic mitochondrial beta-oxidation is energy production while peroxisomal beta-oxidation acts mainly as a detoxification system, the mitochondrial pathway of beta-oxidation is spared at the expense of the peroxisomal pathway when liver CoA plummets. The present study may offer an animal model to investigate mechanisms involved in peroxisomal diseases.
Collapse
Affiliation(s)
- J A Youssef
- Division of Pharmacology, University of Missouri-Kansas City 64108, USA
| | | | | |
Collapse
|
112
|
Missiaen L, De Smedt H, Parys JB, Sipma H, Maes K, Vanlingen S, Sienaert I, Van Driessche W, Casteels R. Synergism between hypotonically induced calcium release and fatty acyl-CoA esters induced calcium release from intracellular stores. Cell Calcium 1997; 22:151-6. [PMID: 9330785 DOI: 10.1016/s0143-4160(97)90008-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The non-mitochondrial Ca2+ stores in permeabilized A7r5 cells responded to a decrease in Mg-ATP concentration with a pronounced Ca2+ release if 20 microM CoA was present. This release was rather specific for the preincubation or removal of ATP. ATP gamma S was much less effective and AMP-PNP, GTP, ITP, CTP, UTP, ADP, AMP, adenosine and adenine had no effect. CoA activated with an EC50 of 6 microM. Dephospho-CoA was a less effective cofactor and desulfo-CoA was ineffective. The release induced by Mg-ATP removal did not occur in the presence of 2% fatty acid-free bovine serum albumin and did not develop at 4 degrees C. All these findings suggest that CoA had to be acylated by endogenous fatty-acyl-CoA synthetase to become effective. Myristoyl- and palmitoyl-CoA esters were identified as the most effective cofactors for the release. Ca2+ release induced by removing Mg-ATP did not occur if the osmolality of the medium was kept constant by addition of mannitol, sucrose, KCl, MgCl2 or Mg-GTP, indicating that the decrease in tonicity was the trigger for the release. Mg-ATP plus CoA also synergized with Ca2+ release induced by a hypotonic shock imposed by diluting the medium with H2O. Osmolality changes induced by decreasing the Mg-ATP concentration were more effective in releasing Ca2+ than equal decreases in concentration of all solutes. We conclude that fatty acyl-CoA esters sensitize the hypotonically induced Ca2+ release from the non-mitochondrial Ca2+ stores.
Collapse
Affiliation(s)
- L Missiaen
- Laboratorium voor Fysiologie, KU Leuven Campus Gasthuisberg, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Michalak A, Qureshi IA. Tissue acylcarnitine and acyl-coenzyme A profiles in chronically hyperammonemic mice treated with sodium benzoate and supplementary L-carnitine. Biomed Pharmacother 1995; 49:350-7. [PMID: 8562862 DOI: 10.1016/0753-3322(96)82664-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The aim of the present study, was to establish the hepatic profile of acyl-coenzyme A (acyl-CoA) in relation to the hepatic profile of acylcarnitines in chronically hyperammonemic spf mice (hereditary deficiency in ornithine transcarbamylase) treated with sodium benzoate alone or in combination with L-carnitine. The muscular profile of the acylcarnitines and the stability of sarcolemma were also assessed in the same mice. Following administration of sodium benzoate, we observed decreases in hepatic total and free coenzyme A and in acetyl-CoA, which was accompanied by an increase in hepatic acyl-CoA. This treatment also resulted in increased free carnitine, decreased total carnitine, and decreased short and medium chain acylcarnitines in the liver. Increases in plasma creatine kinase levels, muscular free, total, and in short and medium chain acylcarnitines were also observed in this treatment group. In mice receiving a combination of sodium benzoate and L-carnitine, increases in free and total coenzyme A, acetyl-CoA and in free, total and esterified hepatic carnitines were observed. In this treatment group, the plasma level of creatine kinase was found to be reduced, while the free muscular carnitine was increased. Our results indicate that sodium benzoate is implicated in the decrease of total hepatic coenzyme A, through either an inhibition of CoA synthesis or activation of its degradation. The distribution of hepatic coenzyme-A and of hepatic and muscular carnitine (free or esterified) is altered following administration of sodium benzoate which results in a further destabilization of the sarcolemma induced by hyperammonemia. Supplemental treatment with L-carnitine was shown to have a positive effect by increasing hepatic coenzyme A and carnitine levels and restoring the stability of the sarcolemma caused by the treatment of sodium benzoate alone.
Collapse
Affiliation(s)
- A Michalak
- Service de Génétique Médicale, Hôpital Ste-Justine, Montréal, Québec, Canada
| | | |
Collapse
|
114
|
Abstract
Coenzyme A (CoASH) has a clearly defined role as a cofactor for a number of oxidative and biosynthetic reactions in intermediary metabolism. Formation of acyl-CoA thioesters from organic carboxylic acids activates the acid for further biotransformation reactions and facilitates enzyme recognition. Xenobiotic carboxylic acids can also form CoA-thioesters, and the resulting acyl-CoA may contribute to the compound's toxicity. Generation of an unusual or poorly-metabolized acyl-CoA from a xenobiotic may lead to cellular metabolic dysfunction through several types of mechanisms including: (1) inhibition of key metabolic enzymes by the acyl-CoA; (2) sequestration of the total cellular CoA pool as the unusual acyl-CoA; (3) physical-chemical effects of the acyl-CoA; and (4) sequestration and depletion of carnitine as the acyl group is transformed from the acyl-CoA to form the corresponding acylcarnitine. Many of these toxicities are similar to sequelae observed in the inherited organic acidurias in which endogenously-generated acyl-CoAs accumulate secondary to an enzymopathy. Insights into the cellular mechanisms of xenobiotic acyl-CoA accumulation have been derived from model systems developed to understand organic acidemias, such as the methylmalonyl-CoA accumulation of the methylmalonic acidurias. The relevance of acyl-CoA accretion to human pathophysiology has now been well established, and identification of the relevant mechanism of toxicity can allow implementation of strategies to minimize the metabolic injury. Additionally, recognition of the potential for acyl-CoA mediated xenobiotic injury should result in improved rational drug design and earlier recognition of such toxicity when it develops.
Collapse
Affiliation(s)
- E P Brass
- Department of Medicine, Case Western Reserve University, Cleveland, OH 44106-4981
| |
Collapse
|