101
|
Holland PWH. Ciona. Curr Biol 2002; 12:R609. [PMID: 12372262 DOI: 10.1016/s0960-9822(02)01129-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Peter W H Holland
- School of Animal and Microbial Sciences, The University of Reading, Whiteknights, Reading, UK.
| |
Collapse
|
102
|
Wada S, Toyoda R, Yamamoto H, Saiga H. Ascidian otx gene Hroth activates transcription of the brain-specific gene HrTRP. Dev Dyn 2002; 225:46-53. [PMID: 12203719 DOI: 10.1002/dvdy.10135] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The brain (sensory vesicle) of the ascidian larvae is thought to be homologous to the vertebrate forebrain and midbrain and, thus, is proposed as a simplified model to investigate mechanisms of brain formation in vertebrates. However, the genetic circuitry that governs formation of the sensory vesicle is largely unknown. To address this issue, we investigated the transcriptional regulation of the sensory vesicle-specific gene HrTRP by Hroth, the otx gene of the ascidian Halocynthia roretzi. A 133-bp 5'-flanking region of HrTRP, identified as a promoter that can drive expression of the reporter gene in the sensory vesicle, contains two otx binding consensus sites. When the two otx sites were deleted or mutated, the promoter activity of this region was decreased. Hroth overexpression can transactivate this promoter in an otx site-dependent manner. Transactivation of HrTRP promoter by Hroth overexpression was mimicked by overexpression of Hroth/VP16, which encodes a fusion protein of Hroth and the activator domain of VP16, and is suppressed by coexpression with Hroth/En, which encodes a fusion protein of Hroth and the Engrailed repressor domain. Finally, translational interference of Hroth by a morpholino oligonucleotide resulted in the reduction of HrTRP expression in the ascidian embryos. These results suggest that Hroth acts as a direct activator of HrTRP transcription during sensory vesicle development.
Collapse
Affiliation(s)
- Shuichi Wada
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Hachiohji, Tokyo, Japan
| | | | | | | |
Collapse
|
103
|
Keys DN, Levine M, Harland RM, Wallingford JB. Control of intercalation is cell-autonomous in the notochord of Ciona intestinalis. Dev Biol 2002; 246:329-40. [PMID: 12051819 DOI: 10.1006/dbio.2002.0656] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dishevelled signaling plays a critical role in the control of cell intercalation during convergent extension in vertebrates. This study presents evidence that Dishevelled serves a similar function in the Ciona notochord. Embryos transgenic for mutant Dishevelled fail to elongate their tails, and notochord cells fail to intercalate, though notochord cell fates are unaffected. Analysis of mosaic transgenics revealed that the effects of mutant Dishevelled on notochord intercalation are cell-autonomous in Ciona, though such defects have nonautonomous effects in Xenopus. Furthermore, our data indicate that notochord cell intercalation in Ciona does not require the progressive signals which coordinate cell intercalation in the Xenopus notochord, highlighting an important difference in how mediolateral cell intercalation is controlled in the two animals. Finally, this study establishes the Ciona embryo as an effective in vivo system for the study of the molecular control of morphogenetic cell movements in chordates.
Collapse
Affiliation(s)
- David N Keys
- Department of Molecular and Cell Biology, University of California, 401 Barker Hall, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|
104
|
Imai KS, Satou Y, Satoh N. Multiple functions of a Zic-like gene in the differentiation of notochord, central nervous system and muscle inCiona savignyiembryos. Development 2002; 129:2723-32. [PMID: 12015299 DOI: 10.1242/dev.129.11.2723] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Multiple functions of a Zic-like zinc finger transcription factor gene (Cs-ZicL) were identified in Ciona savignyi embryos. cDNA clones for Cs-ZicL, a β-catenin downstream genes, were isolated and the gene was transiently expressed in the A-line notochord/nerve cord lineage and in B-line muscle lineage from the 32-cell stage and later in a-line CNS lineage from the 110-cell stage. Suppression of Cs-ZicL function with specific morpholino oligonucleotide indicated that Cs-ZicL is essential for the formation of A-line notochord cells but not of B-line notochord cells, essential for the CNS formation and essential for the maintenance of muscle differentiation. The expression of Cs-ZicL in the A-line cells is downstream of β-catenin and a β-catenin-target gene, Cs-FoxD, which is expressed in the endoderm cells from the 16-cell stage and is essential for the differentiation of notochord. In spite of its pivotal role in muscle specification, the expression of Cs-ZicL in the muscle precursors is independent of Cs-macho1, which is another Zic-like gene encoding a Ciona maternal muscle determinant, suggesting another genetic cascade for muscle specification independent of Cs-macho1. Cs-ZicL may provide a future experimental system to explore how the gene expression in multiple embryonic regions is controlled and how the single gene can perform different functions in multiple types of embryonic cells.
Collapse
Affiliation(s)
- Kaoru S Imai
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo-ku, 606-8502, Japan
| | | | | |
Collapse
|
105
|
Abstract
Ascidians are marine protochordates at the evolutionary boundary between invertebrates and vertebrates. Ascidian larvae provide a simple system for unraveling gene regulation networks underlying the formation of the basic chordate body plan. After being used for over a century as a model for embryological studies, ascidians have become, in the past decade, an increasingly popular organism for studying gene regulation. Part of the renewed appeal of this system is the use of electroporation to introduce transgenic DNAs into developing embryos. This method is considerably more efficient than conventional microinjection assays and permits the simultaneous transformation of hundreds of embryos. Electroporation has allowed the identification and characterization of cis-regulatory DNAs that mediate gene expression in a variety of tissues, including the notochord, tail muscles, CNS, and endoderm. Electroporation has also provided a simple method for misexpressing patterning genes and producing dominant mutant phenotypes. Recent studies have used electroporation to create "knock-out" phenotypes by overexpressing dominant negative forms of particular proteins. Here we review the past and present uses of electroporation in ascidian development, and speculate on potential future uses.
Collapse
Affiliation(s)
- Anna Di Gregorio
- Department of Molecular and Cell Biology, Division of Genetics and Development, 401 Barker Hall, University of California at Berkeley, 94720-3204, USA.
| | | |
Collapse
|
106
|
Okada T, Katsuyama Y, Ono F, Okamura Y. The development of three identified motor neurons in the larva of an ascidian, Halocynthia roretzi. Dev Biol 2002; 244:278-92. [PMID: 11944937 DOI: 10.1006/dbio.2002.0585] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The generation of distinct classes of motor neurons underlies the development of complex motile behavior in all animals and is well characterized in chordates. Recent molecular studies indicate that the ascidian larval central nervous system (CNS) exhibits anteroposterior regionalization similar to that seen in the vertebrate CNS. To extend the understanding about the diversity of motor neurons in the ascidian larva, we have identified the number, position, and projection of individual motor neurons in Halocynthia roretzi, using a green fluorescent protein under the control of a neuron-specific promoter. Three pairs of motor neurons, each with a distinct shape and innervation pattern, were identified along the anteroposterior axis of the neural tube: the anterior and posterior pairs extend their axons toward dorsal muscle cells, whereas the middle pair project their axons toward ventral muscle. Overexpression of a dominant-negative form of a potassium channel in these cells resulted in paralysis on the injected side, thus these cells must constitute the major population of motor neurons responsible for swimming behavior. Lim class homeobox genes have been known as candidate genes that determine subtypes of motor neurons. Therefore, the expression pattern of Hrlim, which is a Lim class homeobox gene, was examined in the motor neuron precursors. All three motor neurons expressed Hrlim at the tailbud stage, although each down-regulated Hrlim at a different time. Misexpression of Hrlim in the epidermal lineage led to ectopic expression of TuNa2, a putative voltage-gated channel gene normally expressed predominantly in the three pairs of motor neurons. Hrlim may control membrane excitability of motor neurons by regulating ion channel gene expression.
Collapse
Affiliation(s)
- Toshiaki Okada
- Molecular Neurobiology Group, Neuroscience Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6th, Higashi 1-1-1, Ibaraki, Tsukuba, 305-8566, Japan
| | | | | | | |
Collapse
|
107
|
Katsuyama Y, Matsumoto J, Okada T, Ohtsuka Y, Chen L, Okado H, Okamura Y. Regulation of synaptotagmin gene expression during ascidian embryogenesis. Dev Biol 2002; 244:293-304. [PMID: 11944938 DOI: 10.1006/dbio.2002.0584] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ascidian embryo, a model for the primitive mode of chordate development, rapidly forms a dorsal nervous system which consists of a small number of neurons. Here, we have characterized the transcriptional regulation of an ascidian synaptotagmin (syt) gene to explore the molecular mechanisms underlying development of synaptic transmission. In situ hybridization showed that syt is expressed in all neurons described in previous studies and transiently in the embryonic epidermis. Neuronal expression of syt requires induction from the vegetal side of the embryo, whereas epidermal expression occurs autonomously in isolated ectodermal blastomeres. Introduction of green fluorescent protein reporter gene constructs into the ascidian embryos indicates that a genomic fragment of the 3.4-kb 5' upstream region contains promoter elements of syt gene. Deletion analysis of the promoter suggests that syt expression in neurons and in the embryonic epidermis depends on distinct cis-regulatory regions.
Collapse
Affiliation(s)
- You Katsuyama
- Molecular Neurobiology Group, Neuroscience Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6, Higashi 1-1-1, Tsukuba, 305-8566, Japan
| | | | | | | | | | | | | |
Collapse
|
108
|
Tanaka-Kunishima M, Takahashi K. Cleavage-arrested cell triplets from ascidian embryo differentiate into three cell types depending on cell combination and contact timing. J Physiol 2002; 540:153-76. [PMID: 11927677 PMCID: PMC2290224 DOI: 10.1113/jphysiol.2001.013293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2001] [Accepted: 01/04/2002] [Indexed: 11/08/2022] Open
Abstract
During early ascidian development, which is a prototype of early vertebrate development, anterior neuroectoderm cells (a4.2) from the eight-cell embryo are destined to become anterior neural structures including the brain vesicle, while presumptive notochordal neural cells (A4.1) become larval posterior neural structures including motoneurons. Whereas, an anterior quadrant cell (A3) of the four-cell embryo, from which both anterior neuroectoderm (a4.2) and notochordal neural cells (A4.1) are derived, has both fates. Cleavage-arrested cell triplets were prepared from the anterior quadrant cell and a pair of anterior neuroectoderm cells (A3-aa triplet) or a pair of presumptive notochordal neural cells (A3-AA triplet), and cultured in contact. Differentiation of cells in the triplet was determined electrophysiologically by observing cell type-specific currents. In the A3-aa triplet, when two neuroectoderm cells and an anterior quadrant cell were prepared from the same batch of embryos, all three cells in the triplet developed into neuronal cells in 60 % of cases, but in 40 % of cases all of them differentiated into epidermal cells. However, when the batch of embryos from which neuroectoderm cells were prepared was fertilized 3 h later than that from which the anterior quadrant cell was prepared all three cells in the triplet consistently became neuronal cells. In contrast, when the batch of embryos from which neuroectoderm cells were prepared was fertilized 3 h earlier, all three cells became epidermal. In the A3-AA triplet no switching of differentiation occurred and all three cells in the triplet differentiated into neuronal cells, although the amplitude of inward current was often small. In neuralized A3-aa triplets the spikes in the anterior quadrant cell were characteristically small in amplitude and brief in duration, suggesting the presence of A-currents, which is a characteristic feature of posterior neuronal differentiation. In contrast, the spikes in the anterior neuroectoderm cells were large in amplitude and long in duration, chracteristic to the anterior neuronal type. The majority of single isolated anterior quadrant cells became non-excitable. However, the minority was apparently autonomously neuralized to become the posterior neuronal type. In neuralized A3-AA triplets, the majority of anterior quadrant cells was induced to become the anterior neuronal type. When isolated anterior quadrant cells were neuralized with subtilisin, a protease, they also predominantly became the anterior neuronal type. While, in medium containing a fibroblast growth factor posterior neuralization of isolated anterior quadrant cells was facilitated, but the anterior neuronal type, although minor, appeared anew. These observations indicate that the multiple fates of the anterior quadrant cell expressed in vivo were effectively reproduced in this experimental condition at the single cell level. Interactive differentiation in this triplet system recapitulates not only fundamental neural induction of ascidian neuroectoderm cells, but also functional and positional specificity within the neuronal group.
Collapse
Affiliation(s)
- Motoko Tanaka-Kunishima
- Department of Medical Physiology, Meiji Pharmaceutical University, Noshio 2-522-1, Kiyose, Tokyo MZC204-8588, Japan.
| | | |
Collapse
|
109
|
Abstract
The living deuterostomes comprise six monophyletic groups: (1) echinoderms + hemichordates, (2) tunicates, (3) cephalochordates, (4) myxinoids, (5) petromyzontoids, and (6) gnathostomes. The morphotype of the craniote (myxinoids + petromyzontoids + gnathostomes) central nervous system (CNS) comprises a fixed number of histogenetic units, formed by the intersection of transversely oriented neuromeres and longitudinally arranged zones. A well-developed built-in, natural coordinate system adds the third dimension to this morphotype. The classical subdivisions of the craniote CNS: prosencephalon (P), mesencephalon (M), rhombencephalon (R), and spinal cord (S) are each composed of a number of neuromeres. Chordates (larval tunicates + cephalochordates + craniotes) share a highly characteristic axial complex, encompassing a dorsal tubular CNS, a notochord and bilateral series of segmental muscles. In all chordates the CNS can be divided into a rostral (P-like + M-like), an intermediate (R-like) and a caudal (S-like) sector, and sets of homologous developmental genes play a role in this tripartitioning. There are no indications for the presence of olfactory or other telencephalic regions in the brain of non-craniote chordates. Convincing evidence that parts of the chordate CNS are homologous to parts of the larval or adult CNS of non-chordate deuterostomes (echinoderms + hemichordates) is lacking. The dorsal tubular CNS is most probably a chordate autapomorphy.
Collapse
|
110
|
GROPPELLI SILVIA, PENNATI ROBERTA, SOTGIA CRISTINA, DE BERNARDI FIORENZA. AChE localization in adhesive papillae of ascidian larva: effects of citral, a retinoic acid synthesis inhibitor. INVERTEBR REPROD DEV 2001. [DOI: 10.1080/07924259.2001.9652709] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
111
|
Corbo JC, Di Gregorio A, Levine M. The ascidian as a model organism in developmental and evolutionary biology. Cell 2001; 106:535-8. [PMID: 11551501 DOI: 10.1016/s0092-8674(01)00481-0] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- J C Corbo
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | | | | |
Collapse
|