101
|
Bodosi B, Gardi J, Hajdu I, Szentirmai E, Obal F, Krueger JM. Rhythms of ghrelin, leptin, and sleep in rats: effects of the normal diurnal cycle, restricted feeding, and sleep deprivation. Am J Physiol Regul Integr Comp Physiol 2004; 287:R1071-9. [PMID: 15475503 DOI: 10.1152/ajpregu.00294.2004] [Citation(s) in RCA: 212] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
To determine the relationships among plasma ghrelin and leptin concentrations and hypothalamic ghrelin contents, and sleep, cortical brain temperature (Tcrt), and feeding, we determined these parameters in rats in three experimental conditions: in free-feeding rats with normal diurnal rhythms, in rats with feeding restricted to the 12-h light period (RF), and in rats subjected to 5-h of sleep deprivation (SD) at the beginning of the light cycle. Plasma ghrelin and leptin displayed diurnal rhythms with the ghrelin peak preceding and the leptin peak following the major daily feeding peak in hour 1 after dark onset. RF reversed the diurnal rhythm of these hormones and the rhythm of rapid-eye-movement sleep (REMS) and significantly altered the rhythm of Tcrt. In contrast, the duration and intensity of non-REMS (NREMS) were hardly responsive to RF. SD failed to change leptin concentrations, but it promptly stimulated plasma ghrelin and induced eating. SD elicited biphasic variations in the hypothalamic ghrelin contents. SD increased plasma corticosterone, but corticosterone did not seem to influence either leptin or ghrelin. The results suggest a strong relationship between feeding and the diurnal rhythm of leptin and that feeding also fundamentally modulates the diurnal rhythm of ghrelin. The variations in hypothalamic ghrelin contents might be associated with sleep-wake activity in rats, but, unlike the previous observations in humans, obvious links could not be detected between sleep and the diurnal rhythms of plasma concentrations of either ghrelin or leptin in the rat.
Collapse
Affiliation(s)
- B Bodosi
- Department Physiology, University of Szeged, A. Szent-Györgyi Medical Center, Hungary
| | | | | | | | | | | |
Collapse
|
102
|
Perfetto F, Tarquini R, Cornélissen G, Mello G, Tempestini A, Gaudiano P, Mancuso F, Halberg F. Circadian phase difference of leptin in android versus gynoid obesity. Peptides 2004; 25:1297-306. [PMID: 15350697 DOI: 10.1016/j.peptides.2004.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2004] [Revised: 06/02/2004] [Accepted: 06/04/2004] [Indexed: 10/26/2022]
Abstract
A circadian rhythm in serum leptin, measured every 4 h for 24 h, characterizes normal-weight women (N = 14), and women with gynoid (N = 17) or android (N = 26) obesity, peaking around midnight (P < 0.05), but differing by about 3 h between android and gynoid women (P < 0.01). Obesity is associated with a higher MESOR (rhythm-adjusted mean; P < 0.001) and a smaller relative circadian amplitude (P < 0.05). Gynoid obesity is associated with a larger circadian amplitude of cortisol (P < 0.05), whereas android obesity is associated with a larger circadian amplitude and a higher MESOR of insulin (P < 0.05). Understanding putative mechanisms underlying different body fat distribution may lead to improved chronotherapeutic measures.
Collapse
Affiliation(s)
- Federico Perfetto
- Department of Internal Medicine, Facoltà di Medicina e Chirurgia, University of Florence, Viale Pieraccini 18, 50139 Florence, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
103
|
Kalra SP, Kalra PS. NPY and cohorts in regulating appetite, obesity and metabolic syndrome: beneficial effects of gene therapy. Neuropeptides 2004; 38:201-11. [PMID: 15337372 DOI: 10.1016/j.npep.2004.06.003] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2004] [Accepted: 06/04/2004] [Indexed: 11/16/2022]
Abstract
Neuropeptide Y is the most potent physiological appetite transducer known. The NPY network is the conductor of the hypothalamic appetite regulating orchestra in the arcuate nucleus-paraventricular nucleus (ARC-PVN) of the hypothalamus. NPY and cohorts, AgrP, GABA and adrenergic transmitters, initiate appetitive drive directly through Y1, Y5, GABAA and alpha1 receptors, co-expressed in the magnocellular PVN (mPVN) and ARC neurons and by simultaneously repressing anorexigenic melanocortin signaling in the ARC-PVN axis. The circadian and ultradian rhythmicities in NPY secretion imprint the daily circadian and episodic feeding patterns. Although a number of afferent hormonal signals from the periphery can directly modulate NPYergic signaling, the reciprocal circadian and ultradian rhythmicities of anorexigenic leptin from adipocytes and orexigenic ghrelin from stomach, encode a corresponding pattern of NPY discharge for daily meal patterning. Subtle and progressive derangements produced by environmental and genetic factors in this exquisitely intricate temporal relationship between the two opposing humoral signals and the NPY network promote hyperphagia and abnormal rate of weight gain culminating in obesity and attendant metabolic disorders. Newer insights at cellular and molecular levels demonstrate that a breakdown of the integrated circuit due both to high and low abundance of NPY at target sites, underlies hyperphagia and increased adiposity. Consequently, interruption of NPYergic signaling at a single locus with NPY receptor antagonists may not be the most efficacious therapy to suppress hyperphagia and obesity. Central leptin gene therapy in rodents has been shown to subjugate, i.e. bring under homeostatic control, NPYergic signaling and suppress the age-related and dietary obesity for extended periods and thus shows promise as a newer treatment modality to curb the pandemic of obesity and metabolic syndrome.
Collapse
Affiliation(s)
- S P Kalra
- Department of Neuroscience, University of Florida, McKnight Brain Institute, PO Box 100244, Gainesville, FL 32610, USA.
| | | |
Collapse
|
104
|
Abstract
Multidisciplinary research in recent years has delineated the hypothalamic hardcore wiring that encodes appetitive drive. The appetite regulating network (ARN) consisting of distinct orexigenic and anorexigenic circuitries operates in the arcuate nucleus-paraventricular nucleus axis of the hypothalamus to propagate and relay the appetitive drive, and is subject to modulation by excitatory and inhibitory messages from the lateral hypothalamus and ventromedial nucleus, respectively. Reciprocal afferent humoral signals, comprised of anorexigenic leptin from white adipose tissue and orexigenic ghrelin from stomach, to the ARN integrate the moment-to-moment regulation of energy homeostasis. Various loci in the ARN and afferent hormonal feedback circuitry in the rodent brain are important for food craving elicited by drugs of abuse. This convergence of neurochemical and hormonal signaling has now paved the way to address the fundamental question of whether cellular and molecular events that underlie the appetitive drive in response to diminished energy stores in the body are akin to drug craving during withdrawal in humans.
Collapse
Affiliation(s)
- Satya P Kalra
- Department of Neuroscience, University of Florida McKnight Brain Institute, PO Box 100244, Gainesville, FL 32610-0244, USA.
| | | |
Collapse
|
105
|
Beck B, Max JP, Fernette B, Richy S. Adaptation of ghrelin levels to limit body weight gain in the obese Zucker rat. Biochem Biophys Res Commun 2004; 318:846-51. [PMID: 15147948 DOI: 10.1016/j.bbrc.2004.04.106] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2004] [Indexed: 11/25/2022]
Abstract
In this study, we measured the ghrelin, leptin, and insulin variations in lean and obese Zucker fa/fa rats during the acute phase of body weight gain. At 2 months of age, plasma insulin and leptin concentrations in fa/fa rats were, respectively, 470% and 3700% higher than in lean rats (p <0.0001). Plasma ghrelin was significantly lower (-24.6%; p <0.02) than in lean rats. At 6 months of age, ghrelin increased in both genotypes but the difference was no more significant. The inverse correlations existing between ghrelin and either body weight (BW), insulin or leptin at 2 months of age were no more observable in 6-month-old rats. At 6 months of age, the lean rats had the same body weight as the 2-month-old obese rats. In these body weight-matched rats, ghrelin was not correlated with BW but it remained negatively correlated with insulin and leptin. At the same body weight, obese rats had a much lower plasma ghrelin than lean rats (717+/-42 vs. 1754+/-83 pg/ml; p <0.0001). These data indicate that body composition rather than body weight is the primary factor for the down-regulation of the ghrelin system. This down-regulation constitutes a mechanism of defense of the organism against the development of obesity at least during the first part of life.
Collapse
Affiliation(s)
- Bernard Beck
- UHP/EA 3453-IFR 111-Systèmes Neuromodulateurs des Comportements Ingestifs-38, rue Lionnois, 54000 Nancy, France.
| | | | | | | |
Collapse
|
106
|
de Graaf C, Blom WAM, Smeets PAM, Stafleu A, Hendriks HFJ. Biomarkers of satiation and satiety. Am J Clin Nutr 2004; 79:946-61. [PMID: 15159223 DOI: 10.1093/ajcn/79.6.946] [Citation(s) in RCA: 310] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This review's objective is to give a critical summary of studies that focused on physiologic measures relating to subjectively rated appetite, actual food intake, or both. Biomarkers of satiation and satiety may be used as a tool for assessing the satiating efficiency of foods and for understanding the regulation of food intake and energy balance. We made a distinction between biomarkers of satiation or meal termination and those of meal initiation related to satiety and between markers in the brain [central nervous system (CNS)] and those related to signals from the periphery to the CNS. Various studies showed that physicochemical measures related to stomach distension and blood concentrations of cholecystokinin and glucagon-like peptide 1 are peripheral biomarkers associated with meal termination. CNS biomarkers related to meal termination identified by functional magnetic resonance imaging and positron emission tomography are indicators of neural activity related to sensory-specific satiety. These measures cannot yet serve as a tool for assessing the satiating effect of foods, because they are not yet feasible. CNS biomarkers related to satiety are not yet specific enough to serve as biomarkers, although they can distinguish between extreme hunger and fullness. Three currently available biomarkers for satiety are decreases in blood glucose in the short term (<5 min), which have been shown to be involved in meal initiation; leptin changes during longer-term (>2-4 d) negative energy balance; and ghrelin concentrations, which have been implicated in both short-term and long-term energy balance. The next challenge in this research area is to identify food ingredients that have an effect on biomarkers of satiation, satiety, or both. These ingredients may help consumers to maintain their energy intake at a level consistent with a healthy body weight.
Collapse
Affiliation(s)
- Cees de Graaf
- TNO Nutrition and Food Research, Zeist, Netherlands.
| | | | | | | | | |
Collapse
|
107
|
Angeloni SV, Glynn N, Ambrosini G, Garant MJ, Higley JD, Suomi S, Hansen BC. Characterization of the rhesus monkey ghrelin gene and factors influencing ghrelin gene expression and fasting plasma levels. Endocrinology 2004; 145:2197-205. [PMID: 14736731 DOI: 10.1210/en.2003-1103] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ghrelin stimulates release of GH from the pituitary, stimulates appetite, and may influence metabolic processes in other tissues expressing the GH secretagogue receptor. Ghrelin can thus influence behaviors and endocrine pathways contributing to weight gain. In this study we characterized the ghrelin gene from the rhesus monkey and analyzed the association of plasma ghrelin levels with metabolic and endocrine markers. Rhesus ghrelin is 97, 91, and 96% homologous to the human cDNA, gene, and peptide, respectively. Ghrelin expression was highest in the stomach with lower levels found in muscle and duodenum. In these tissues, ghrelin expression in calorie-restricted and obese animals was about 40-99% lower than in lean animals. In addition, ghrelin expression in muscle was fairly high and may allow this tissue to contribute significantly to plasma levels. Fasting plasma ghrelin concentrations were also inversely correlated with body mass index and exhibited a nonlinear association with age with increased levels in younger and older monkeys and lower levels in middle-aged monkeys. Although a significant inverse correlation between fasting plasma ghrelin and fasting insulin levels were found, iv glucose and insulin administration did not significantly alter ghrelin levels. These studies demonstrate that ghrelin levels are influenced by age-related factors and adiposity in the rhesus monkey. These similarities between the rhesus monkey and human ghrelin genes and plasma ghrelin responses suggest a unique opportunity to study the mechanisms regulating ghrelin secretion and gene expression in different tissues in normal and disease states using this model system.
Collapse
Affiliation(s)
- Stephen V Angeloni
- Center for Vaccine Development, University of Maryland School of Medicine, 685 West Baltimore Street, Room 480, Baltimore, Maryland 21201-1509, USA.
| | | | | | | | | | | | | |
Collapse
|
108
|
Sánchez J, Oliver P, Picó C, Palou A. Diurnal rhythms of leptin and ghrelin in the systemic circulation and in the gastric mucosa are related to food intake in rats. Pflugers Arch 2004; 448:500-6. [PMID: 15107997 DOI: 10.1007/s00424-004-1283-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2004] [Accepted: 03/17/2004] [Indexed: 11/27/2022]
Abstract
We investigated diurnal changes in leptin and ghrelin levels in the stomach and in the systemic circulation and their relation to food intake rhythms in Wistar rats housed at 22 degrees C with a 12-h light/dark cycle and free access to food and water. Animals were sacrificed every 3 h over a 24-h period. Leptin and ghrelin levels in serum and in the gastric mucosa were analysed by immunoassay. Leptin mRNA levels were determined in the gastric mucosa by RT-PCR and in different adipose tissue depots (epididymal, retroperitoneal and mesenteric) by Northern blot. Ghrelin mRNA levels were determined by Northern blot. Gastric and serum leptin levels displayed similar diurnal rhythms, rising during the dark phase and decreasing gradually during the light phase. Leptin expression in the different adipose tissue depots correlated positively with circulating leptin levels ( P<0.05), although there were some depot-associated differences. Leptin mRNA levels in the mesenteric depot correlated positively with food intake ( P<0.05). In blood, ghrelin levels rose sharply just before the onset of the dark phase and dropped suddenly just after. In the stomach, ghrelin levels were high during the fasting period of light and low during the night, and correlated inversely with food intake, gastric contents and serum leptin levels ( P<0.05). Leptin and ghrelin in the stomach and in the systemic circulation thus show diurnal variations that are influenced by food intake rhythms. The results agree with a role for ghrelin as a stimulant of meal initiation.
Collapse
Affiliation(s)
- Juana Sánchez
- Department of Fundamental Biology and Health Sciences, University of Balearic Islands, Cra. Valldemossa, Km 7.5, 07122, Palma de Mallorca, Spain
| | | | | | | |
Collapse
|
109
|
Kalra SP, Kalra PS. NPY--an endearing journey in search of a neurochemical on/off switch for appetite, sex and reproduction. Peptides 2004; 25:465-71. [PMID: 15134867 DOI: 10.1016/j.peptides.2004.03.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Revised: 02/26/2004] [Accepted: 03/01/2004] [Indexed: 10/26/2022]
Abstract
Although a dynamic link between the two innate drives, appetite for food and the urge to reproduce, in vertebrate evolution has been known for a long time, a distinct neurochemical pathway mediating this integration has only recently been appreciated. Study of the precise anatomy of the neural track began in the early to mid 20th century after the sites of genesis of the two instincts were localized to the hypothalamus. This report narrates the birth and fruition to maturity of insights into the commonality of hypothalamic neuropeptide Y (NPY) signaling for the two instinctual drives along two distinct pathways.
Collapse
Affiliation(s)
- Satya P Kalra
- Department of Neuroscience, University of Florida McKnight Brain Institute, Gainesville, FL 32610, USA.
| | | |
Collapse
|
110
|
Kalra SP, Kalra PS. Neuropeptide Y: a physiological orexigen modulated by the feedback action of ghrelin and leptin. Endocrine 2003; 22:49-56. [PMID: 14610298 DOI: 10.1385/endo:22:1:49] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2003] [Accepted: 04/14/2003] [Indexed: 01/16/2023]
Abstract
Neuropeptide Y (NPY), a 36-amino-acid neuropeptide is the most potent physiological appetite transducer known. Episodic NPY neurosecretion in hypothalamic target sites is temporally linked with onset of the daily feeding pattern. Upregulation of NPY signaling in the arcuate nucleus-paraventricular nucleus (ARC-PVN) neural axis is responsible for the hyperphagia evoked by dieting, fasting, hormonal and genetic factors, and disruption in intrahypothalamic signaling. Clusters of NPY-producing neurons in the ARC that coexpress gamma- amino butyric acid and agouti-related peptide, and those in the brain stem (BS) that coexpress catecholamines and galanin, participate in disparate manners to regulate appetitive behavior. NPY receptors, Y1, Y2, and Y5, expressed by various components of the NPY network, mediate NPY-induced feeding. Imbalance in NPY signaling due either to high or low abundance of NPY at target sites elicits hyperphagia leading to increased fat accretion and obesity. Recent studies show that intermittent, feedback action of opposing afferent hormonal signals-leptin from adipose tissue and ghrelin from stomach-regulate the episodic secretion of orexigenic NPY in the PVN-ARC. Apparently, the hypothalamic NPY network is the primary common pathway intimately involved in genesis of appetite- stimulating impulses.
Collapse
Affiliation(s)
- Satya P Kalra
- Department of Neuroscience, McKnight Brain Institute, PO Box 100244, University of Florida, Gainesville, FL 32610-0244, USA.
| | | |
Collapse
|
111
|
Choi MY, Fuerst EJ, Rafaeli A, Jurenka R. Identification of a G protein-coupled receptor for pheromone biosynthesis activating neuropeptide from pheromone glands of the moth Helicoverpa zea. Proc Natl Acad Sci U S A 2003; 100:9721-6. [PMID: 12888624 PMCID: PMC187832 DOI: 10.1073/pnas.1632485100] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2003] [Indexed: 01/21/2023] Open
Abstract
Pheromone biosynthesis-activating neuropeptide (PBAN), a peptide produced by the subesophageal ganglion, is used by a variety of moths to regulate pheromone production. PBAN acts directly on pheromone gland cells by using calcium and cAMP as second messengers. We have identified a gene encoding a G protein-coupled receptor (GPCR) from pheromone glands of the female moth Helicoverpa zea. The gene was identified based on sequence identity to a group of GPCRs from Drosophila that are homologous to neuromedin U receptors in vertebrates. The full-length PBAN receptor was subsequently cloned, expressed in Sf9 insect cells, and shown to mobilize calcium in response to PBAN. This response was dose-dependent (EC50 = 25 nM) with a maximum response at 300 nM and a minimal observable response at 10 nM. Four additional peptides produced by the PBAN-encoding gene were also tested for activity, and it was determined that three had similar activity to PBAN and the other was slightly less active. Peptides belonging to the same family as PBAN, namely pyrokinins, as well as the vertebrate neuromedin U peptide also induced a calcium response. We have identified a GPCR for the PBAN/pyrokinin family of peptides with a known function of stimulating pheromone biosynthesis in female moths. It is related to several receptors from insects (Drosophila and Anopheles) and to neuromedin U and ghrelin receptors from vertebrates.
Collapse
Affiliation(s)
- Man-Yeon Choi
- Department of Entomology, Iowa State University, 407 Science II, Ames, IA 50011-3222, USA
| | | | | | | |
Collapse
|
112
|
|