101
|
Baumgartner K, Amrhein S, Oelmeier SA, Hubbuch J. The influence of mixed salts on the capacity of HIC adsorbers: A predictive correlation to the surface tension and the aggregation temperature. Biotechnol Prog 2016; 32:346-54. [PMID: 26358156 DOI: 10.1002/btpr.2166] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/06/2015] [Indexed: 11/07/2022]
Abstract
Hydrophobic interaction chromatography (HIC) is one of the most frequently used purification methods in downstream processing of biopharmaceuticals. During HIC, salts are the governing additives contributing to binding strength, binding capacity, and protein solubility in the liquid phase. A relatively recent approach to increase the dynamic binding capacity (DBC) of HIC adsorbers is the use of salt mixtures. By mixing chaotropic with kosmotropic salts, the DBC can strongly be influenced. For salt mixtures with a higher proportion of chaotropic than kosmotropic salt, higher DBCs were achieved compared with single salt approaches. By measuring the surface tensions of the protein salt solutions, the cavity theory-proposed by Melander and Horváth-that higher surface tensions lead to higher DBCs, was found to be invalid for salt mixtures. Aggregation temperatures of lysozyme in the salt mixtures, as a degree of hydrophobic forces, were correlated to the DBCs. Measuring the aggregation temperatures has proven to be a fast analytical methodology to estimate the hydrophobic interactions and thus can be used as a measure for an increase or decrease in the DBCs. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:346-354, 2016.
Collapse
Affiliation(s)
- Kai Baumgartner
- Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Sven Amrhein
- Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Stefan A Oelmeier
- Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Jürgen Hubbuch
- Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
102
|
Chen B, Peng Y, Valeja SG, Xiu L, Alpert AJ, Ge Y. Online Hydrophobic Interaction Chromatography-Mass Spectrometry for Top-Down Proteomics. Anal Chem 2016; 88:1885-91. [PMID: 26729044 DOI: 10.1021/acs.analchem.5b04285] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Recent progress in top-down proteomics has led to a demand for mass spectrometry (MS)-compatible chromatography techniques to separate intact proteins using volatile mobile phases. Conventional hydrophobic interaction chromatography (HIC) provides high-resolution separation of proteins under nondenaturing conditions but requires high concentrations of nonvolatile salts. Herein, we introduce a series of more-hydrophobic HIC materials that can retain proteins using MS-compatible concentrations of ammonium acetate. The new HIC materials appear to function as a hybrid form of conventional HIC and reverse phase chromatography. The function of the salt seems to be preserving protein structure rather than promoting retention. Online HIC-MS is feasible for both qualitative and quantitative analysis. This is demonstrated with standard proteins and a complex cell lysate. The mass spectra of proteins from the online HIC-MS exhibit low charge-state distributions, consistent with those commonly observed in native MS. Furthermore, HIC-MS can chromatographically separate proteoforms differing by minor modifications. Hence, this new HIC-MS combination is promising for top-down proteomics.
Collapse
Affiliation(s)
- Bifan Chen
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin, United States
| | - Ying Peng
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison , Madison, Wisconsin, United States
| | - Santosh G Valeja
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison , Madison, Wisconsin, United States
| | - Lichen Xiu
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin, United States
| | - Andrew J Alpert
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison , Madison, Wisconsin, United States.,PolyLC, Inc., 9151 Rumsey Rd., Suite 180, Columbia, Maryland, United States
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin, United States.,Department of Cell and Regenerative Biology, University of Wisconsin-Madison , Madison, Wisconsin, United States.,Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison , Madison, Wisconsin, United States
| |
Collapse
|
103
|
Pavon JA, Li X, Chico S, Kishnani U, Soundararajan S, Cheung J, Li H, Richardson D, Shameem M, Yang X. Analysis of monoclonal antibody oxidation by simple mixed mode chromatography. J Chromatogr A 2016; 1431:154-165. [DOI: 10.1016/j.chroma.2015.12.068] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 12/21/2015] [Accepted: 12/26/2015] [Indexed: 11/26/2022]
|
104
|
Practical method development for the separation of monoclonal antibodies and antibody-drug-conjugate species in hydrophobic interaction chromatography, part 1: optimization of the mobile phase. J Pharm Biomed Anal 2015; 118:393-403. [PMID: 26609679 DOI: 10.1016/j.jpba.2015.11.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/03/2015] [Accepted: 11/08/2015] [Indexed: 12/30/2022]
Abstract
The goal of this work is to provide some recommendations for method development in HIC using monoclonal antibodies (mAbs) and antibody-drug conjugates (ADCs) as model drug candidates. The effects of gradient steepness, mobile phase pH, salt concentration and type, as well as organic modifier were evaluated for tuning selectivity and retention in HIC. Except the nature of the stationary phase, which was not discussed in this study, the most important parameter for modifying selectivity was the gradient steepness. The addition of organic solvent (up to 15% isopropanol) in the mobile phase was also found to be useful for mAbs analysis, since it could provide some changes in elution order, in some cases. On the contrary, isopropanol was not beneficial with ADCs, since the most hydrophobic DAR species (DAR6 and DAR8) cannot be eluted from the stationary phase under these conditions. This study also illustrates the possibility to perform HIC method development using optimization software, such as Drylab. The optimum conditions suggested by the software were tested using therapeutic mAbs and commercial cysteine linked ADC (brentuximab-vedotin) and the average retention time errors between predicted and experimental retention times were ∼ 1%.
Collapse
|
105
|
Purification of Membrane-Bound Catechol-O-Methyltransferase by Arginine-Affinity Chromatography. Chromatographia 2015. [DOI: 10.1007/s10337-015-2970-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
106
|
Cao P, Müller TK, Ketterer B, Ewert S, Theodosiou E, Thomas OR, Franzreb M. Integrated system for temperature-controlled fast protein liquid chromatography. II. Optimized adsorbents and ‘single column continuous operation’. J Chromatogr A 2015; 1403:118-31. [DOI: 10.1016/j.chroma.2015.05.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 05/13/2015] [Accepted: 05/15/2015] [Indexed: 10/23/2022]
|
107
|
Mariño MA, Freitas S, Miranda EA. ETHANOL PRECIPITATION OF GLYCOSYL HYDROLASES PRODUCED BY Trichoderma harzianum P49P11. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2015. [DOI: 10.1590/0104-6632.20150322s00003268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- M. A. Mariño
- University of Campinas, Brazil; Brazilian Center for Research in Energy and Materials, Brazil
| | - S. Freitas
- Brazilian Center for Research in Energy and Materials, Brazil
| | - E. A. Miranda
- University of Campinas, Brazil; Brazilian Center for Research in Energy and Materials, Brazil
| |
Collapse
|
108
|
Jarasch A, Koll H, Regula JT, Bader M, Papadimitriou A, Kettenberger H. Developability Assessment During the Selection of Novel Therapeutic Antibodies. J Pharm Sci 2015; 104:1885-1898. [DOI: 10.1002/jps.24430] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 02/28/2015] [Accepted: 03/03/2015] [Indexed: 01/02/2023]
|
109
|
Dyachenko A, Wang G, Belov M, Makarov A, de Jong RN, van den Bremer ETJ, Parren PWHI, Heck AJR. Tandem Native Mass-Spectrometry on Antibody–Drug Conjugates and Submillion Da Antibody–Antigen Protein Assemblies on an Orbitrap EMR Equipped with a High-Mass Quadrupole Mass Selector. Anal Chem 2015; 87:6095-102. [DOI: 10.1021/acs.analchem.5b00788] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Andrey Dyachenko
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584
CH, Utrecht, The Netherlands
- Netherlands Proteomics Center, Padualaan
8, 3584 CH, Utrecht, The Netherlands
| | - Guanbo Wang
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584
CH, Utrecht, The Netherlands
- Netherlands Proteomics Center, Padualaan
8, 3584 CH, Utrecht, The Netherlands
| | - Mike Belov
- Thermo Fisher Scientific, Bremen, Germany
| | - Alexander Makarov
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584
CH, Utrecht, The Netherlands
- Thermo Fisher Scientific, Bremen, Germany
| | | | | | - Paul W. H. I. Parren
- Genmab, Utrecht, The Netherlands
- Department
of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Albert J. R. Heck
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584
CH, Utrecht, The Netherlands
- Netherlands Proteomics Center, Padualaan
8, 3584 CH, Utrecht, The Netherlands
| |
Collapse
|
110
|
Júnior WFDS, Cano R, Totola AH, Carvalho LMD, Cerri MO, Coimbra JSDR, Carvalho GGPD, Carvalho BMAD. Adsorption of immunoglobulin Y in supermacroporous continuous cryogel with immobilized Cu2+ ions. J Chromatogr A 2015; 1395:16-22. [DOI: 10.1016/j.chroma.2015.03.052] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 03/18/2015] [Accepted: 03/20/2015] [Indexed: 02/01/2023]
|
111
|
Baumann P, Baumgartner K, Hubbuch J. Influence of binding pH and protein solubility on the dynamic binding capacity in hydrophobic interaction chromatography. J Chromatogr A 2015; 1396:77-85. [DOI: 10.1016/j.chroma.2015.04.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/18/2015] [Accepted: 04/01/2015] [Indexed: 10/23/2022]
|
112
|
Valeja SG, Xiu L, Gregorich ZR, Guner H, Jin S, Ge Y. Three dimensional liquid chromatography coupling ion exchange chromatography/hydrophobic interaction chromatography/reverse phase chromatography for effective protein separation in top-down proteomics. Anal Chem 2015; 87:5363-5371. [PMID: 25867201 PMCID: PMC4575680 DOI: 10.1021/acs.analchem.5b00657] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
To address the complexity of the proteome in mass spectrometry (MS)-based top-down proteomics, multidimensional liquid chromatography (MDLC) strategies that can effectively separate proteins with high resolution and automation are highly desirable. Although various MDLC methods that can effectively separate peptides from protein digests exist, very few MDLC strategies, primarily consisting of 2DLC, are available for intact protein separation, which is insufficient to address the complexity of the proteome. We recently demonstrated that hydrophobic interaction chromatography (HIC) utilizing a MS-compatible salt can provide high resolution separation of intact proteins for top-down proteomics. Herein, we have developed a novel 3DLC strategy by coupling HIC with ion exchange chromatography (IEC) and reverse phase chromatography (RPC) for intact protein separation. We demonstrated that a 3D (IEC-HIC-RPC) approach greatly outperformed the conventional 2D IEC-RPC approach. For the same IEC fraction (out of 35 fractions) from a crude HEK 293 cell lysate, a total of 640 proteins were identified in the 3D approach (corresponding to 201 nonredundant proteins) as compared to 47 in the 2D approach, whereas simply prolonging the gradients in RPC in the 2D approach only led to minimal improvement in protein separation and identifications. Therefore, this novel 3DLC method has great potential for effective separation of intact proteins to achieve deep proteome coverage in top-down proteomics.
Collapse
Affiliation(s)
- Santosh G. Valeja
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lichen Xiu
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Zachery R. Gregorich
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Wisconsin, USA
| | - Huseyin Guner
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Song Jin
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ying Ge
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Wisconsin, USA
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
113
|
Rodriguez-Illera M, Ramires Ferreira Da Silva A, Boom RM, Janssen AE. Recovery of a bioactive tripeptide from a crude hydrolysate using activated carbon. FOOD AND BIOPRODUCTS PROCESSING 2015. [DOI: 10.1016/j.fbp.2014.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
114
|
Examination of salivary proteins as biomarkers of pathological conditions. Literature review. CURRENT ISSUES IN PHARMACY AND MEDICAL SCIENCES 2015. [DOI: 10.12923/j.2084-980x/26.1/a.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Saliva is universally available biofluid, easy to collect. Comprehensive analysis and identification of the proteomic content of human saliva may contribute to the understanding of oral pathophysiology and provide a foundation for the recognition of potential biomarkers of human disease. These features make it an ideal biological material for the early detection of many diseases of different origin, and enable non-invasive diagnostics. The presence of protein markers in saliva was found with usage of capillary electrophoresis and mass spectrometry.
Collapse
|
115
|
Haverick M, Mengisen S, Shameem M, Ambrogelly A. Separation of mAbs molecular variants by analytical hydrophobic interaction chromatography HPLC: overview and applications. MAbs 2015; 6:852-8. [PMID: 24751784 PMCID: PMC4171020 DOI: 10.4161/mabs.28693] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hydrophobic interaction chromatography-high performance liquid chromatography (HIC-HPLC) is a powerful analytical method used for the separation of molecular variants of therapeutic proteins. The method has been employed for monitoring various post-translational modifications, including proteolytic fragments and domain misfolding in etanercept (Enbrel®); tryptophan oxidation, aspartic acid isomerization, the formation of cyclic imide, and α amidated carboxy terminus in recombinant therapeutic monoclonal antibodies; and carboxy terminal heterogeneity and serine fucosylation in Fc and Fab fragments. HIC-HPLC is also a powerful analytical technique for the analysis of antibody-drug conjugates. Most current analytical columns, methods, and applications are described, and critical method parameters and suitability for operation in regulated environment are discussed, in this review.
Collapse
|
116
|
Feng XL, Liu ZS, Liu XL, Lu SY, Li YS, Hu P, Yan DM, Tong WH, Wang Q, Zhou Y, Jin W, Ding YX, Gai DX, Ren HL. Establishment of a three-step purification scheme for a recombinant protein rG17PE38 and its characteristics identification. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 981-982:48-56. [DOI: 10.1016/j.jchromb.2015.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 12/06/2014] [Accepted: 01/01/2015] [Indexed: 01/12/2023]
|
117
|
Correa MJ, Ferrero C. Thermal behaviour of wheat starch and flour at different water levels: Effect of pectins, modified celluloses and NaCl. STARCH-STARKE 2015. [DOI: 10.1002/star.201400116] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- María J. Correa
- CIDCA; Facultad de Ciencias Exactas; UNLP; CCT La Plata (CONICET); La Plata Argentina
| | - Cristina Ferrero
- CIDCA; Facultad de Ciencias Exactas; UNLP; CCT La Plata (CONICET); La Plata Argentina
| |
Collapse
|
118
|
Çorman ME, Armutcu C, Özkara S, Uzun L, Denizli A. Molecularly imprinted cryogel cartridges for the specific filtration and rapid separation of interferon alpha. RSC Adv 2015. [DOI: 10.1039/c5ra07307c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Molecularly imprinted cryogel-based specific filtration cartridges for highly selective, repeatable and fast interferon α-2b separation even if under competitive conditions.
Collapse
Affiliation(s)
- Mehmet Emin Çorman
- Sinop University
- Department of Bioengineering
- Sinop
- Turkey
- Hacettepe University
| | - Canan Armutcu
- Hacettepe University
- Department of Chemistry
- Biochemistry Division
- Ankara
- Turkey
| | - Serpil Özkara
- Anadolu University
- Department of Chemistry
- Biochemistry Division
- Eskişehir
- Turkey
| | - Lokman Uzun
- Hacettepe University
- Department of Chemistry
- Biochemistry Division
- Ankara
- Turkey
| | - Adil Denizli
- Hacettepe University
- Department of Chemistry
- Biochemistry Division
- Ankara
- Turkey
| |
Collapse
|
119
|
Wu Q, Wang R, Chen X, Ghosh R. Temperature-responsive membrane for hydrophobic interaction based chromatographic separation of proteins in bind-and-elute mode. J Memb Sci 2014. [DOI: 10.1016/j.memsci.2014.07.072] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
120
|
Gospodarek AM, Sun W, O’Connell JP, Fernandez EJ. Structures of multidomain proteins adsorbed on hydrophobic interaction chromatography surfaces. J Chromatogr A 2014; 1371:204-19. [DOI: 10.1016/j.chroma.2014.10.080] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 10/08/2014] [Accepted: 10/25/2014] [Indexed: 11/17/2022]
|
121
|
|
122
|
Grewal S, Bhagat M, Vakhlu J. Antimicrobial protein produced by pseudomonas aeruginosa JU-Ch 1, with a broad spectrum of antimicrobial activity. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2014. [DOI: 10.1016/j.bcab.2014.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
123
|
Üzek R, Özkara S, Güngüneş H, Uzun L, Şenel S. Magnetic Nanoparticles for Plasmid DNA Purification through Hydrophobic Interaction Chromatography. SEP SCI TECHNOL 2014. [DOI: 10.1080/01496395.2014.905958] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
124
|
Xiu L, Valeja SG, Alpert A, Jin S, Ge Y. Effective protein separation by coupling hydrophobic interaction and reverse phase chromatography for top-down proteomics. Anal Chem 2014; 86:7899-906. [PMID: 24968279 PMCID: PMC4144745 DOI: 10.1021/ac501836k] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 06/26/2014] [Indexed: 01/16/2023]
Abstract
One of the challenges in proteomics is the proteome's complexity, which necessitates the fractionation of proteins prior to the mass spectrometry (MS) analysis. Despite recent advances in top-down proteomics, separation of intact proteins remains challenging. Hydrophobic interaction chromatography (HIC) appears to be a promising method that provides high-resolution separation of intact proteins, but unfortunately the salts conventionally used for HIC are incompatible with MS. In this study, we have identified ammonium tartrate as a MS-compatible salt for HIC with comparable separation performance as the conventionally used ammonium sulfate. Furthermore, we found that the selectivity obtained with ammonium tartrate in the HIC mobile phases is orthogonal to that of reverse phase chromatography (RPC). By coupling HIC and RPC as a novel two-dimensional chromatographic method, we have achieved effective high-resolution intact protein separation as demonstrated with standard protein mixtures and a complex cell lysate. Subsequently, the separated intact proteins were identified by high-resolution top-down MS. For the first time, these results have shown the high potential of HIC as a high-resolution protein separation method for top-down proteomics.
Collapse
Affiliation(s)
- Lichen Xiu
- Department
of Chemistry, University of Wisconsin—Madison, Madison 53706, Wisconsin, United States
| | - Santosh G. Valeja
- Department of Cell and Regenerative Biology, University of Wisconsin—Madison, Madison 53706, Wisconsin, United States
| | - Andrew
J. Alpert
- Department of Cell and Regenerative Biology, University of Wisconsin—Madison, Madison 53706, Wisconsin, United States
- PolyLC Inc., Columbia 21045, Maryland, United States
| | - Song Jin
- Department
of Chemistry, University of Wisconsin—Madison, Madison 53706, Wisconsin, United States
| | - Ying Ge
- Department
of Chemistry, University of Wisconsin—Madison, Madison 53706, Wisconsin, United States
- Department of Cell and Regenerative Biology, University of Wisconsin—Madison, Madison 53706, Wisconsin, United States
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
125
|
Rodríguez-Zamora P, Barreto J, Yin F, Palmer RE. Non-covalent Immobilization of Desmoplakin Plakin Domain Molecules by Size-Selected Clusters for AFM Imaging. BIONANOSCIENCE 2014. [DOI: 10.1007/s12668-014-0126-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
126
|
Noor SSM, Tey BT, Tan WS, Ling TC, Ramanan RN, Ooi CW. PURIFICATION OF RECOMBINANT GREEN FLUORESCENT PROTEIN FROM ESCHERICHIA COLI USING HYDROPHOBIC INTERACTION CHROMATOGRAPHY. J LIQ CHROMATOGR R T 2014. [DOI: 10.1080/10826076.2013.825847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Siti Sarah Mohd. Noor
- a Institute of Bioscience , Universiti Putra Malaysia , Selangor Darul Ehsan , Malaysia
| | - Beng Ti Tey
- b Chemical Engineering Discipline, School of Engineering , Monash University Malaysia, Sunway Campus , Selangor , Malaysia
| | - Wen Siang Tan
- a Institute of Bioscience , Universiti Putra Malaysia , Selangor Darul Ehsan , Malaysia
- c Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences , Universiti Putra Malaysia , Selangor Darul Ehsan , Malaysia
| | - Tau Chuan Ling
- d Faculty of Science, Institute of Biological Sciences , University of Malaya , Kuala Lumpur , Malaysia
| | | | - Chien Wei Ooi
- b Chemical Engineering Discipline, School of Engineering , Monash University Malaysia, Sunway Campus , Selangor , Malaysia
| |
Collapse
|
127
|
Costa S, Almeida A, Castro A, Domingues L. Fusion tags for protein solubility, purification and immunogenicity in Escherichia coli: the novel Fh8 system. Front Microbiol 2014. [PMID: 24600443 DOI: 10.3389/fmicb.2014.00063.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Proteins are now widely produced in diverse microbial cell factories. The Escherichia coli is still the dominant host for recombinant protein production but, as a bacterial cell, it also has its issues: the aggregation of foreign proteins into insoluble inclusion bodies is perhaps the main limiting factor of the E. coli expression system. Conversely, E. coli benefits of cost, ease of use and scale make it essential to design new approaches directed for improved recombinant protein production in this host cell. With the aid of genetic and protein engineering novel tailored-made strategies can be designed to suit user or process requirements. Gene fusion technology has been widely used for the improvement of soluble protein production and/or purification in E. coli, and for increasing peptide's immunogenicity as well. New fusion partners are constantly emerging and complementing the traditional solutions, as for instance, the Fh8 fusion tag that has been recently studied and ranked among the best solubility enhancer partners. In this review, we provide an overview of current strategies to improve recombinant protein production in E. coli, including the key factors for successful protein production, highlighting soluble protein production, and a comprehensive summary of the latest available and traditionally used gene fusion technologies. A special emphasis is given to the recently discovered Fh8 fusion system that can be used for soluble protein production, purification, and immunogenicity in E. coli. The number of existing fusion tags will probably increase in the next few years, and efforts should be taken to better understand how fusion tags act in E. coli. This knowledge will undoubtedly drive the development of new tailored-made tools for protein production in this bacterial system.
Collapse
Affiliation(s)
- Sofia Costa
- Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho Braga, Portugal ; Instituto Nacional de Saúde Dr. Ricardo Jorge Porto, Portugal
| | - André Almeida
- Hitag Biotechnology, Lad., Biocant, Parque Technologico de Cantanhede Cantanhede, Portugal
| | - António Castro
- Instituto Nacional de Saúde Dr. Ricardo Jorge Porto, Portugal
| | - Lucília Domingues
- Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho Braga, Portugal
| |
Collapse
|
128
|
Costa S, Almeida A, Castro A, Domingues L. Fusion tags for protein solubility, purification and immunogenicity in Escherichia coli: the novel Fh8 system. Front Microbiol 2014; 5:63. [PMID: 24600443 PMCID: PMC3928792 DOI: 10.3389/fmicb.2014.00063] [Citation(s) in RCA: 265] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 01/30/2014] [Indexed: 01/19/2023] Open
Abstract
Proteins are now widely produced in diverse microbial cell factories. The Escherichia coli is still the dominant host for recombinant protein production but, as a bacterial cell, it also has its issues: the aggregation of foreign proteins into insoluble inclusion bodies is perhaps the main limiting factor of the E. coli expression system. Conversely, E. coli benefits of cost, ease of use and scale make it essential to design new approaches directed for improved recombinant protein production in this host cell. With the aid of genetic and protein engineering novel tailored-made strategies can be designed to suit user or process requirements. Gene fusion technology has been widely used for the improvement of soluble protein production and/or purification in E. coli, and for increasing peptide's immunogenicity as well. New fusion partners are constantly emerging and complementing the traditional solutions, as for instance, the Fh8 fusion tag that has been recently studied and ranked among the best solubility enhancer partners. In this review, we provide an overview of current strategies to improve recombinant protein production in E. coli, including the key factors for successful protein production, highlighting soluble protein production, and a comprehensive summary of the latest available and traditionally used gene fusion technologies. A special emphasis is given to the recently discovered Fh8 fusion system that can be used for soluble protein production, purification, and immunogenicity in E. coli. The number of existing fusion tags will probably increase in the next few years, and efforts should be taken to better understand how fusion tags act in E. coli. This knowledge will undoubtedly drive the development of new tailored-made tools for protein production in this bacterial system.
Collapse
Affiliation(s)
- Sofia Costa
- Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho Braga, Portugal ; Instituto Nacional de Saúde Dr. Ricardo Jorge Porto, Portugal
| | - André Almeida
- Hitag Biotechnology, Lad., Biocant, Parque Technologico de Cantanhede Cantanhede, Portugal
| | - António Castro
- Instituto Nacional de Saúde Dr. Ricardo Jorge Porto, Portugal
| | - Lucília Domingues
- Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho Braga, Portugal
| |
Collapse
|
129
|
Aasim M, Kakarla PB, D'Souza RN, Bibi NS, Klein TY, Treccani L, Rezwan K, Fernández-Lahore M. The role of ligands on protein retention in adsorption chromatography: a surface energetics approach. J Sep Sci 2014; 37:618-24. [PMID: 24449610 DOI: 10.1002/jssc.201301338] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 01/09/2014] [Accepted: 01/09/2014] [Indexed: 11/10/2022]
Abstract
Protein adsorption onto hydrophobic chromatographic supports has been investigated using a colloid theory surface energetics approach. The surface properties of commercially available chromatographic beads, Toyopearl Phenyl 650-C, and Toyopearl Butyl 650-C, have been experimentally determined by contact angle and zeta potential measurements. The adsorption characteristics of these beads, which bear the same backbone matrix but harbor different ligands, have been studied toward selected model proteins, in the hydrated as well as dehydrated state. There were two prominent groups of proteins observed with respect to the chromatographic supports presented in this work: loosely retained proteins, which were expected to have lower average interaction energies, and the strongly retained proteins, which were expected to have higher average interaction energies. Results were also compared and contrasted with calculations derived from adsorbent surface energies determined by inverse liquid chromatography. These results showed a good qualitative agreement, and the interaction energy minima obtained from these extended Derjaguin, Landau, Verwey and Overbeek calculations were shown to correlate well with the experimentally determined adsorption behavior of each protein.
Collapse
Affiliation(s)
- Muhammad Aasim
- Downstream Bioprocessing Laboratory, School of Engineering and Science, Jacobs University, Campus Ring 1, Bremen, Germany; Department of Biotechnology, University of Malakand, Chakdara, Dir, Khyber Pakhtunkhwa, Pakistan
| | | | | | | | | | | | | | | |
Collapse
|
130
|
Suzuki N, Ban S, Itoh E, Chen S, Imai FL, Sawano Y, Miyakawa T, Tanokura M, Yonezawa N. Calcium-dependent structural changes in human reticulocalbin-1. J Biochem 2014; 155:281-93. [PMID: 24451493 DOI: 10.1093/jb/mvu003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human reticulocalbin-1 (hRCN1) has six EF-hand motifs and binds Ca(2+). hRCN1 is a member of the CREC family localized in the secretory pathway, and its cellular function remains unclear. In this study, we established a new bacterial expression and purification procedure for hRCN1. We observed that hRCN1 binds Ca(2+) in a cooperative manner and the Ca(2+) binding caused an increase in the α-helix content of hRCN1. On the other hand, hRCN1 did not change the structure with Mg(2+) loading. hRCN1 is a monomeric protein, and its overall structure became more compact upon Ca(2+) binding, as revealed by gel-filtration column chromatography and small-angle X-ray scattering. This is the first report of conformational changes in the CREC family upon Ca(2+) binding. Our data suggest that CREC family member interactions with target proteins are regulated in the secretory pathway by conformational changes upon Ca(2+) binding.
Collapse
Affiliation(s)
- Nanao Suzuki
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba 263-8522, Japan; Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan; and Laboratory of Chemistry, College of Liberal and Sciences, Tokyo Medical and Dental University, Chiba 272-0827, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Caramelo-Nunes C, Almeida P, Marcos J, Tomaz C. Aromatic ligands for plasmid deoxyribonucleic acid chromatographic analysis and purification: An overview. J Chromatogr A 2014; 1327:1-13. [DOI: 10.1016/j.chroma.2013.12.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 12/19/2013] [Accepted: 12/20/2013] [Indexed: 12/25/2022]
|
132
|
|
133
|
Correia FF, Santos FM, Pedro AQ, Bonifácio MJ, Queiroz JA, Passarinha LA. Recovery of biological active catechol-O-methyltransferase isoforms from Q-sepharose. J Sep Sci 2013; 37:20-9. [DOI: 10.1002/jssc.201300977] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 10/22/2013] [Accepted: 10/22/2013] [Indexed: 01/01/2023]
Affiliation(s)
- F. F. Correia
- CICS-UBI-Centro de Investigação em Ciências da Saúde; Universidade da Beira Interior; Covilhã Portugal
| | - F. M. Santos
- CICS-UBI-Centro de Investigação em Ciências da Saúde; Universidade da Beira Interior; Covilhã Portugal
| | - A. Q. Pedro
- CICS-UBI-Centro de Investigação em Ciências da Saúde; Universidade da Beira Interior; Covilhã Portugal
| | - M. J. Bonifácio
- Departamento de Investigacão e Desenvolvimento; BIAL; S. Mamede do Coronado Portugal
| | - J. A. Queiroz
- CICS-UBI-Centro de Investigação em Ciências da Saúde; Universidade da Beira Interior; Covilhã Portugal
| | - L. A. Passarinha
- CICS-UBI-Centro de Investigação em Ciências da Saúde; Universidade da Beira Interior; Covilhã Portugal
| |
Collapse
|
134
|
Uygun M, Şenay RH, Avcıbaşı N, Akgöl S. Poly(HEMA-co-NBMI) Monolithic Cryogel Columns for IgG Adsorption. Appl Biochem Biotechnol 2013; 172:1574-84. [DOI: 10.1007/s12010-013-0624-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 10/30/2013] [Indexed: 10/26/2022]
|
135
|
Costa SJ, Coelho E, Franco L, Almeida A, Castro A, Domingues L. The Fh8 tag: a fusion partner for simple and cost-effective protein purification in Escherichia coli. Protein Expr Purif 2013; 92:163-70. [PMID: 24084009 DOI: 10.1016/j.pep.2013.09.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 09/09/2013] [Accepted: 09/17/2013] [Indexed: 10/26/2022]
Abstract
Downstream processing is still a major bottleneck in recombinant protein production representing most of its costs. Hence, there is a continuing demand of novel and cost-effective purification processes aiming at the recovery of pure and active target protein. In this work, a novel purification methodology is presented, using the Fh8 solubility enhancer tag as fusion handle. The binding properties of Fh8 tag to a hydrophobic matrix were first studied via hydrophobic interaction chromatography (HIC). The Fh8 tag was then evaluated as a purification handle by its fusion to green fluorescent protein and superoxide dismutase. The purification efficiency of the Fh8-HIC strategy was compared to the immobilized metal ion affinity chromatography (IMAC) using the His6 tag. Results showed that the Fh8-HIC binding mechanism is calcium-dependent in a low salt medium, making the purification process highly selective. Both target proteins were biologically active, even when fused to Fh8, and were successfully purified by HIC, achieving efficiencies identical to those of IMAC. Thus, the Fh8 acts as an effective affinity tag that, together with its previously reported solubility enhancer capability, allows for the design of inexpensive and successful recombinant protein production processes in Escherichia coli.
Collapse
Affiliation(s)
- Sofia J Costa
- IBB - Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Instituto Nacional de Saúde Dr. Ricardo Jorge (INSARJ), Porto, Portugal
| | | | | | | | | | | |
Collapse
|
136
|
Hernandez D, Rodriguez- L, Valdes R, Moran I, Tellez P, Riveron A, Ramos Y, Gomez L, Ayra-Pardo C. Bacillus thuringiensis Vip3Aa1 Expression and Purification from E.
coli to be Determined in Seeds and Leaves of Genetically-Modified Corn Plants. ACTA ACUST UNITED AC 2013. [DOI: 10.3923/ja.2013.153.167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
137
|
Special Applications. CHROMATOGRAPHY 2013. [DOI: 10.1002/9780471980582.ch15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
138
|
Mohammad AW, Johar S, Jahim JM, Hassan O. Optimization of Cutinase Purification using a Hydrophobic Interaction Membrane Chromatographic Process by Response Surface Methodology. SEP SCI TECHNOL 2013. [DOI: 10.1080/01496395.2013.788520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
139
|
Bochenek R, Marek W, Piątkowski W, Antos D. Evaluating the performance of different multicolumn setups for chromatographic separation of proteins on hydrophobic interaction chromatography media by a numerical study. J Chromatogr A 2013; 1301:60-72. [DOI: 10.1016/j.chroma.2013.05.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 05/19/2013] [Accepted: 05/22/2013] [Indexed: 11/27/2022]
|
140
|
Song C, Wang J, Zhao K, Bai Q. Preparation and characterization of a novel dual-retention mechanism mixed-mode stationary phase with PEG 400 and succinic anhydride as ligand for protein separation in WCX and HIC modes. Biomed Chromatogr 2013; 27:1741-53. [DOI: 10.1002/bmc.2988] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 05/27/2013] [Accepted: 05/28/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Chao Song
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Institute of Modern Separation Science, Key Lab of Modern Separation Science in Shaanxi Province; Northwest University; Xi'an 710069 China
| | - Jianshan Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Institute of Modern Separation Science, Key Lab of Modern Separation Science in Shaanxi Province; Northwest University; Xi'an 710069 China
| | - Kailou Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Institute of Modern Separation Science, Key Lab of Modern Separation Science in Shaanxi Province; Northwest University; Xi'an 710069 China
| | - Quan Bai
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Institute of Modern Separation Science, Key Lab of Modern Separation Science in Shaanxi Province; Northwest University; Xi'an 710069 China
| |
Collapse
|
141
|
Silva MS, Graça VC, Reis LV, Santos PF, Almeida P, Queiroz JA, Sousa F. Protein purification by aminosquarylium cyanine dye-affinity chromatography. Biomed Chromatogr 2013; 27:1671-9. [PMID: 23873377 DOI: 10.1002/bmc.2978] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 05/24/2013] [Accepted: 05/25/2013] [Indexed: 11/11/2022]
Abstract
The most selective purification method for proteins and other biomolecules is affinity chromatography. This method is based on the unique biological-based specificity of the biomolecule-ligand interaction and commonly uses biological ligands. However, these ligands may present some drawbacks, mainly because of their cost and lability. Dye-affinity chromatography overcomes the limitations of biological ligands and is widely used owing to the low cost of synthetic dyes and to their resistance to biological and chemical degradation. In this work, immobilized aminosquarylium cyanine dyes are used in order to exploit affinity interactions with standard proteins such as lysozyme, α-chymotrypsin and trypsin. These studies evaluate the affinity interactions occurring between the immobilized ligand and the different proteins, as a reflection of the sum of several molecular interactions, namely ionic, hydrophobic and van der Waals, spread throughout the structure, in a defined spatial manner. The results show the possibility of using an aminosquarylium cyanine dye bearing a N-hexyl pendant chain, with a ligand density of 1.8 × 10(-2) mmol of dye/g of chromatographic support, to isolate lysozyme, α-chymotrypsin and trypsin from a mixture. The application of a decreasing ammonium sulfate gradient resulted in the recovery of lysozyme in the flowthrough. On the other hand, α-chymotrypsin and trypsin were retained, involving different interactions with the ligand. In conclusion, this study demonstrates the potential applicability of ligands such as aminosquarylium cyanine dyes for the separation and purification of proteins by affinity chromatography.
Collapse
Affiliation(s)
- M S Silva
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6201-001, Covilhã, Portugal
| | | | | | | | | | | | | |
Collapse
|
142
|
Fernandes KF, Cortijo-Triviño D, Batista KA, Ulhoa CJ, García-Ruiz PA. Chitin hydrolysis assisted by cell wall degrading enzymes immobilized of Thichoderma asperellum on totally cinnamoylated D-sorbitol beads. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:3077-81. [DOI: 10.1016/j.msec.2013.03.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 02/12/2013] [Accepted: 03/29/2013] [Indexed: 11/30/2022]
|
143
|
Gopinath SCB, Anbu P, Lakshmipriya T, Hilda A. Strategies to characterize fungal lipases for applications in medicine and dairy industry. BIOMED RESEARCH INTERNATIONAL 2013; 2013:154549. [PMID: 23865040 PMCID: PMC3705982 DOI: 10.1155/2013/154549] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 06/06/2013] [Indexed: 11/17/2022]
Abstract
Lipases are water-soluble enzymes that act on insoluble substrates and catalyze the hydrolysis of long-chain triglycerides. Lipases play a vital role in the food, detergent, chemical, and pharmaceutical industries. In the past, fungal lipases gained significant attention in the industries due to their substrate specificity and stability under varied chemical and physical conditions. Fungal enzymes are extracellular in nature, and they can be extracted easily, which significantly reduces the cost and makes this source preferable over bacteria. Soil contaminated with spillage from the products of oil and dairy harbors fungal species, which have the potential to secrete lipases to degrade fats and oils. Herein, the strategies involved in the characterization of fungal lipases, capable of degrading fatty substances, are narrated with a focus on further applications.
Collapse
Affiliation(s)
- Subash C. B. Gopinath
- Center for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai, Tamil Nadu 600025, India
- Electronics and Photonics Research Institute, National Institute of Advanced Industrial Science and Technology, Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Periasamy Anbu
- Department of Biological Engineering, College of Engineering, Inha University, Incheon 402-751, Republic of Korea
| | - Thangavel Lakshmipriya
- Department of Mathematics, SBK College, Madurai Kamaraj University, Aruppukottai, Tamil Nadu 626101, India
| | - Azariah Hilda
- Center for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai, Tamil Nadu 600025, India
| |
Collapse
|
144
|
Emin Çorman M, Bereli N, Özkara S, Uzun L, Denizli A. Hydrophobic cryogels for DNA adsorption: Effect of embedding of monosize microbeads into cryogel network on their adsorptive performances. Biomed Chromatogr 2013; 27:1524-31. [DOI: 10.1002/bmc.2954] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 05/07/2013] [Accepted: 05/07/2013] [Indexed: 11/09/2022]
Affiliation(s)
- M. Emin Çorman
- Hacettepe University; Chemistry Department; Ankara; Turkey
| | - Nilay Bereli
- Hacettepe University; Chemistry Department; Ankara; Turkey
| | - Serpil Özkara
- Anadolu University; Chemistry Department; Eskişehir; Turkey
| | - Lokman Uzun
- Hacettepe University; Chemistry Department; Ankara; Turkey
| | - Adil Denizli
- Hacettepe University; Chemistry Department; Ankara; Turkey
| |
Collapse
|
145
|
Santos FM, Pedro AQ, Soares RF, Martins R, Bonifácio MJ, Queiroz JA, Passarinha LA. Performance of hydrophobic interaction ligands for human membrane-bound catechol-O
-methyltransferase purification. J Sep Sci 2013; 36:1693-702. [DOI: 10.1002/jssc.201300010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 02/21/2013] [Accepted: 02/28/2013] [Indexed: 12/17/2022]
Affiliation(s)
- Fátima Milhano Santos
- CICS-UBI- Centro de Investigação em Ciências da Saúde; Universidade da Beira Interior; Covilhã Portugal
| | - Augusto Quaresma Pedro
- CICS-UBI- Centro de Investigação em Ciências da Saúde; Universidade da Beira Interior; Covilhã Portugal
| | - Rui Filipe Soares
- CICS-UBI- Centro de Investigação em Ciências da Saúde; Universidade da Beira Interior; Covilhã Portugal
| | - Rita Martins
- CICS-UBI- Centro de Investigação em Ciências da Saúde; Universidade da Beira Interior; Covilhã Portugal
| | - Maria João Bonifácio
- Departamento de Investigação e Desenvolvimento; BIAL; S. Mamede do Coronado Portugal
| | - João António Queiroz
- CICS-UBI- Centro de Investigação em Ciências da Saúde; Universidade da Beira Interior; Covilhã Portugal
| | - Luís António Passarinha
- CICS-UBI- Centro de Investigação em Ciências da Saúde; Universidade da Beira Interior; Covilhã Portugal
| |
Collapse
|
146
|
Ras M, Lefebvre D, Derlon N, Hamelin J, Bernet N, Paul E, Girbal-Neuhauser E. Distribution and hydrophobic properties of Extracellular Polymeric Substances in biofilms in relation towards cohesion. J Biotechnol 2013; 165:85-92. [DOI: 10.1016/j.jbiotec.2013.03.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 02/28/2013] [Accepted: 03/03/2013] [Indexed: 11/25/2022]
|
147
|
Resolution enhancement in hydrophobic interaction chromatography via electrostatic interactions. CHINESE CHEM LETT 2013. [DOI: 10.1016/j.cclet.2013.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
148
|
Gericke M, Trygg J, Fardim P. Functional Cellulose Beads: Preparation, Characterization, and Applications. Chem Rev 2013; 113:4812-36. [DOI: 10.1021/cr300242j] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Martin Gericke
- Laboratory of Fibre and Cellulose Technology, Åbo Akademi, Porthansgatan 3, FI-20500 Turku,
Finland, Members of the European Polysaccharide Network of Excellence
(EPNOE)
| | - Jani Trygg
- Laboratory of Fibre and Cellulose Technology, Åbo Akademi, Porthansgatan 3, FI-20500 Turku,
Finland, Members of the European Polysaccharide Network of Excellence
(EPNOE)
| | - Pedro Fardim
- Laboratory of Fibre and Cellulose Technology, Åbo Akademi, Porthansgatan 3, FI-20500 Turku,
Finland, Members of the European Polysaccharide Network of Excellence
(EPNOE)
| |
Collapse
|
149
|
Karan R, Capes MD, DasSarma P, DasSarma S. Cloning, overexpression, purification, and characterization of a polyextremophilic β-galactosidase from the Antarctic haloarchaeon Halorubrum lacusprofundi. BMC Biotechnol 2013; 13:3. [PMID: 23320757 PMCID: PMC3556326 DOI: 10.1186/1472-6750-13-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 01/14/2013] [Indexed: 01/18/2023] Open
Abstract
Background Halorubrum lacusprofundi is a cold-adapted halophilic archaeon isolated from Deep Lake, a perennially cold and hypersaline lake in Antarctica. Its genome sequencing project was recently completed, providing access to many genes predicted to encode polyextremophilic enzymes active in both extremely high salinity and cold temperatures. Results Analysis of the genome sequence of H. lacusprofundi showed a gene cluster for carbohydrate utilization containing a glycoside hydrolase family 42 β-galactosidase gene, named bga. In order to study the biochemical properties of the β-galactosidase enzyme, the bga gene was PCR amplified, cloned, and expressed in the genetically tractable haloarchaeon Halobacterium sp. NRC-1 under the control of a cold shock protein (cspD2) gene promoter. The recombinant β-galactosidase protein was produced at 20-fold higher levels compared to H. lacusprofundi, purified using gel filtration and hydrophobic interaction chromatography, and identified by SDS-PAGE, LC-MS/MS, and ONPG hydrolysis activity. The purified enzyme was found to be active over a wide temperature range (−5 to 60°C) with an optimum of 50°C, and 10% of its maximum activity at 4°C. The enzyme also exhibited extremely halophilic character, with maximal activity in either 4 M NaCl or KCl. The polyextremophilic β-galactosidase was also stable and active in 10–20% alcohol-aqueous solutions, containing methanol, ethanol, n-butanol, or isoamyl alcohol. Conclusion The H. lacusprofundi β-galactosidase is a polyextremophilic enzyme active in high salt concentrations and low and high temperature. The enzyme is also active in aqueous-organic mixed solvents, with potential applications in synthetic chemistry. H. lacuprofundi proteins represent a significant biotechnology resource and for developing insights into enzyme catalysis under water limiting conditions. This study provides a system for better understanding how H. lacusprofundi is successful in a perennially cold, hypersaline environment, with relevance to astrobiology.
Collapse
Affiliation(s)
- Ram Karan
- Department of Microbiology and Immunology, University of Maryland School of Medicine, and Institute of Marine and Environmental Technology, University System of Maryland, 701 E Pratt Street, Baltimore, MD 21202, USA
| | | | | | | |
Collapse
|
150
|
Abstract
Hydrophobic interaction chromatography (HIC) is one of many separation techniques that can be used to analyze proteins. The separation mechanism is based on the adsorption of the hydrophobic region of the protein to the hydrophobic ligands attached to the column in the presence of high salt. The proteins are then eluted by descending salt concentration. Here we describe the use of this HIC technique to evaluate the hydrophobicity of different monoclonal antibodies (mAbs) and to separate different heterogeneities that occur in mAb.
Collapse
Affiliation(s)
- Richard R Rustandi
- Vaccine Analytical Development, Merck Research Laboratories, West point, PA, USA
| |
Collapse
|