101
|
Ramond JB, Welz PJ, Le Roes-Hill M, Tuffin MI, Burton SG, Cowan DA. Selection ofClostridiumspp. in biological sand filters neutralizing synthetic acid mine drainage. FEMS Microbiol Ecol 2013; 87:678-90. [DOI: 10.1111/1574-6941.12255] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 11/11/2013] [Accepted: 11/12/2013] [Indexed: 11/29/2022] Open
Affiliation(s)
- Jean-Baptiste Ramond
- Institute for Microbial Biotechnology and Metagenomics (IMBM); University of the Western Cape; Bellville South Africa
- Centre for Microbial Ecology and Genomics (CMEG); Department of Genetics; University of Pretoria; Pretoria South Africa
| | - Pamela J. Welz
- Biocatalysis and Technical Biology (BTB) Research group; Cape Peninsula University of Technology; Bellville South Africa
| | - Marilize Le Roes-Hill
- Biocatalysis and Technical Biology (BTB) Research group; Cape Peninsula University of Technology; Bellville South Africa
| | - Marla I. Tuffin
- Institute for Microbial Biotechnology and Metagenomics (IMBM); University of the Western Cape; Bellville South Africa
| | - Stephanie G. Burton
- Biocatalysis and Technical Biology (BTB) Research group; Cape Peninsula University of Technology; Bellville South Africa
- University of Pretoria; Pretoria South Africa
| | - Don A. Cowan
- Centre for Microbial Ecology and Genomics (CMEG); Department of Genetics; University of Pretoria; Pretoria South Africa
| |
Collapse
|
102
|
Pich OQ, Merrell DS. The ferric uptake regulator of Helicobacter pylori: a critical player in the battle for iron and colonization of the stomach. Future Microbiol 2013; 8:725-38. [PMID: 23701330 DOI: 10.2217/fmb.13.43] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Helicobacter pylori is arguably one of the most successful pathogens; it colonizes the stomachs of more than half of the human population. Colonization and persistence in such an inhospitable niche requires the presence of exquisite adaptive mechanisms. One of the proteins that contributes significantly to the remarkable adaptability of H. pylori is the ferric uptake regulator (Fur), which functions as a master regulator of gene expression. In addition to genes directly related to iron homeostasis, Fur controls expression of several enzymes that play a central role in metabolism and energy production. The absence of Fur leads to severe H. pylori colonization defects and, accordingly, several Fur-regulated genes have been shown to be essential for colonization. Moreover, proteins encoded by Fur-regulated genes have a strong impact on redox homeostasis in the stomach and are major determinants of inflammation. In this review, we discuss the main roles of Fur in the biology of H. pylori and highlight the importance of this regulatory protein in the infectious process.
Collapse
Affiliation(s)
- Oscar Q Pich
- Department of Microbiology & Immunology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | | |
Collapse
|
103
|
Wang L, Wang F, Li P, Zhang L. Ferrous–tetrapolyphosphate complex induced dioxygen activation for toxic organic pollutants degradation. Sep Purif Technol 2013. [DOI: 10.1016/j.seppur.2013.10.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
104
|
Yang XW, He Y, Xu J, Xiao X, Wang FP. The regulatory role of ferric uptake regulator (Fur) during anaerobic respiration of Shewanella piezotolerans WP3. PLoS One 2013; 8:e75588. [PMID: 24124499 PMCID: PMC3790847 DOI: 10.1371/journal.pone.0075588] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 08/16/2013] [Indexed: 12/02/2022] Open
Abstract
Ferric uptake regulator (Fur) is a global regulator that controls bacterial iron homeostasis. In this study, a fur deletion mutant of the deep-sea bacterium Shewanella piezotolerans WP3 was constructed. Physiological studies revealed that the growth rate of this mutant under aerobic conditions was only slightly lower than that of wild type (WT), but severe growth defects were observed under anaerobic conditions when different electron acceptors (EAs) were provided. Comparative transcriptomic analysis demonstrated that Fur is involved not only in classical iron homeostasis but also in anaerobic respiration. Fur exerted pleiotropic effects on the regulation of anaerobic respiration by controlling anaerobic electron transport, the heme biosynthesis system, and the cytochrome c maturation system. Biochemical assays demonstrated that levels of c-type cytochromes were lower in the fur mutant, consistent with the transcriptional profiling. Transcriptomic analysis and electrophoretic mobility shift assays revealed a primary regulation network for Fur in WP3. These results suggest that Fur may act as a sensor for anoxic conditions to trigger and influence the anaerobic respiratory system.
Collapse
Affiliation(s)
- Xin-Wei Yang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai, PR China
| | - Ying He
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai, PR China
| | - Jun Xu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai, PR China
| | - Xiang Xiao
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai, PR China
| | - Feng-Ping Wang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai, PR China
- Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai Jiao Tong University, Shanghai, PR China
- * E-mail:
| |
Collapse
|
105
|
Expression, purification and characterization of flavin reductase from Citrobacter freundii A1. ANN MICROBIOL 2013. [DOI: 10.1007/s13213-012-0480-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
106
|
Miethke M. Molecular strategies of microbial iron assimilation: from high-affinity complexes to cofactor assembly systems. Metallomics 2013. [DOI: 10.1039/c2mt20193c] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
107
|
Formation of Fe(0)-Nanoparticles via Reduction of Fe(II) Compounds by Amino Acids and Their Subsequent Oxidation to Iron Oxides. J CHEM-NY 2013. [DOI: 10.1155/2013/961629] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Iron nanoparticles were prepared by the reduction of central Fe(II) ion in the coordination compounds with amino acid ligands. The anion of the amino acid used as a ligand acted as the reducing agent. Conditions for the reduction were very mild; the temperature did not exceed 52°C, and the optimum pH was between 9.5 and 9.7. The metal iron precipitated as a mirror on the flask or as a colloid in water. Identification of the product was carried out by measuring UV/VIS spectra of the iron nanoparticles in water. The iron nanoparticles were oxidized by oxygen yielding a mixture of iron oxides. Oxidation of Fe(0) to Fe(II) took several seconds under air. The size and properties of iron oxide nanoparticles were studied by UV/VIS, TEM investigation, RTG diffractometry, Mössbauer spectroscopy, magnetometry, thermogravimetry, and GC/MS.
Collapse
|
108
|
Two bifunctional enzymes with ferric reduction ability play complementary roles during magnetosome synthesis in Magnetospirillum gryphiswaldense MSR-1. J Bacteriol 2012; 195:876-85. [PMID: 23243303 DOI: 10.1128/jb.01750-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The bacterial strain Magnetospirillum gryphiswaldense MSR-1 does not produce siderophores, but it absorbs a large amount of ferric iron and synthesizes magnetosomes. We demonstrated previously the presence of six types of ferric reductase isozymes (termed FeR1 through FeR6) in MSR-1. Of these isozymes, FeR5 was the most abundant and FeR6 showed the highest ferric reductase activity. In the present study, we cloned the fer5 and fer6 genes from MSR-1 and expressed them separately in Escherichia coli. FeR5 and FeR6 were shown to be bifunctional enzymes through analysis of amino acid sequence homologies, structural predictions (using data from GenBank), and detection of enzyme activities. FeR5 is a thioredoxin reductase and FeR6 is a flavin reductase, in addition to being ferric reductases. To elucidate the functions of the enzymes, we constructed two single-gene-deletion mutant strains (Δfer5 and Δfer6 mutants) and a double-gene-deletion mutant strain (Δfer5 Δfer6 [Δfer5+6] mutant) along with its complemented strains (C5 and C6). An evaluation of phenotypic and physiological properties did not reveal significant differences between the wild-type and single-gene-deletion strains, whereas the double-gene-deletion strain showed reduced iron absorption and no magnetosome synthesis. Complementation of the double-gene-deletion strain using either fer5 or fer6 resulted in the partial recovery of magnetosome synthesis. Quantitative real-time PCR analysis of fer5 and fer6 transcriptional levels in the wild-type and complemented strains demonstrated consistent transcription of the two genes and confirmed that FeR5 and FeR6 are bifunctional enzymes that play complementary roles during the process of magnetosome synthesis in MSR-1.
Collapse
|
109
|
Justice NB, Pan C, Mueller R, Spaulding SE, Shah V, Sun CL, Yelton AP, Miller CS, Thomas BC, Shah M, VerBerkmoes N, Hettich R, Banfield JF. Heterotrophic archaea contribute to carbon cycling in low-pH, suboxic biofilm communities. Appl Environ Microbiol 2012; 78:8321-30. [PMID: 23001646 PMCID: PMC3497393 DOI: 10.1128/aem.01938-12] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 09/13/2012] [Indexed: 11/20/2022] Open
Abstract
Archaea are widely distributed and yet are most often not the most abundant members of microbial communities. Here, we document a transition from Bacteria- to Archaea-dominated communities in microbial biofilms sampled from the Richmond Mine acid mine drainage (AMD) system (∼pH 1.0, ∼38°C) and in laboratory-cultivated biofilms. This transition occurs when chemoautotrophic microbial communities that develop at the air-solution interface sink to the sediment-solution interface and degrade under microaerobic and anaerobic conditions. The archaea identified in these sunken biofilms are from the class Thermoplasmata, and in some cases, the highly divergent ARMAN nanoarchaeal lineage. In several of the sunken biofilms, nanoarchaea comprise 10 to 25% of the community, based on fluorescent in situ hybridization and metagenomic analyses. Comparative community proteomic analyses show a persistence of bacterial proteins in sunken biofilms, but there is clear evidence for amino acid modifications due to acid hydrolysis. Given the low representation of bacterial cells in sunken biofilms based on microscopy, we infer that hydrolysis reflects proteins derived from lysed cells. For archaea, we detected ∼2,400 distinct proteins, including a subset involved in proteolysis and peptide uptake. Laboratory cultivation experiments using complex carbon substrates demonstrated anaerobic enrichment of Ferroplasma and Aplasma coupled to the reduction of ferric iron. These findings indicate dominance of acidophilic archaea in degrading biofilms and suggest that they play roles in anaerobic nutrient cycling at low pH.
Collapse
Affiliation(s)
| | - Chongle Pan
- Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Ryan Mueller
- University of California–Berkeley, Berkeley, California, USA
| | | | - Vega Shah
- University of California–Berkeley, Berkeley, California, USA
| | | | | | | | - Brian C. Thomas
- University of California–Berkeley, Berkeley, California, USA
| | - Manesh Shah
- Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | | | - Robert Hettich
- Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | | |
Collapse
|
110
|
Gallo G, Baldi F, Renzone G, Gallo M, Cordaro A, Scaloni A, Puglia AM. Adaptative biochemical pathways and regulatory networks in Klebsiella oxytoca BAS-10 producing a biotechnologically relevant exopolysaccharide during Fe(III)-citrate fermentation. Microb Cell Fact 2012; 11:152. [PMID: 23176641 PMCID: PMC3539929 DOI: 10.1186/1475-2859-11-152] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 11/06/2012] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND A bacterial strain previously isolated from pyrite mine drainage and named BAS-10 was tentatively identified as Klebsiella oxytoca. Unlikely other enterobacteria, BAS-10 is able to grow on Fe(III)-citrate as sole carbon and energy source, yielding acetic acid and CO2 coupled with Fe(III) reduction to Fe(II) and showing unusual physiological characteristics. In fact, under this growth condition, BAS-10 produces an exopolysaccharide (EPS) having a high rhamnose content and metal-binding properties, whose biotechnological applications were proven as very relevant. RESULTS Further phylogenetic analysis, based on 16S rDNA sequence, definitively confirmed that BAS-10 belongs to K. oxytoca species. In order to rationalize the biochemical peculiarities of this unusual enterobacteriun, combined 2D-Differential Gel Electrophoresis (2D-DIGE) analysis and mass spectrometry procedures were used to investigate its proteomic changes: i) under aerobic or anaerobic cultivation with Fe(III)-citrate as sole carbon source; ii) under anaerobic cultivations using Na(I)-citrate or Fe(III)-citrate as sole carbon source. Combining data from these differential studies peculiar levels of outer membrane proteins, key regulatory factors of carbon and nitrogen metabolism and enzymes involved in TCA cycle and sugar biosynthesis or required for citrate fermentation and stress response during anaerobic growth on Fe(III)-citrate were revealed. The protein differential regulation seems to ensure efficient cell growth coupled with EPS production by adapting metabolic and biochemical processes in order to face iron toxicity and to optimize energy production. CONCLUSION Differential proteomics provided insights on the molecular mechanisms necessary for anaeorobic utilization of Fe(III)-citrate in a biotechnologically promising enterobacteriun, also revealing genes that can be targeted for the rational design of high-yielding EPS producer strains.
Collapse
Affiliation(s)
- Giuseppe Gallo
- Dipartimento di Scienze e Tecnologie Molecolari e Biomolecolari (STEMBIO), Università di Palermo Viale delle Scienze, ed, 16, Parco d'Orleans II, Palermo, 90128, Italy.
| | | | | | | | | | | | | |
Collapse
|
111
|
Desai DK, Desai FD, Laroche J. Factors influencing the diversity of iron uptake systems in aquatic microorganisms. Front Microbiol 2012; 3:362. [PMID: 23087680 PMCID: PMC3475125 DOI: 10.3389/fmicb.2012.00362] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 09/24/2012] [Indexed: 11/13/2022] Open
Abstract
Iron (Fe) is an essential micronutrient for many processes in all living cells. Dissolved Fe (dFe) concentrations in the ocean are of the order of a few nM, and Fe is often a factor limiting primary production. Bioavailability of Fe in aquatic environments is believed to be primarily controlled through chelation by Fe-binding ligands. Marine microbes have evolved different mechanisms to cope with the scarcity of bioavailable dFe. Gradients in dFe concentrations and diversity of the Fe-ligand pool from coastal to open ocean waters have presumably imposed selection pressures that should be reflected in the genomes of microbial communities inhabiting the pelagic realm. We applied a hidden Markov model (HMM)-based search for proteins related to cellular iron metabolism, and in particular those involved in Fe uptake mechanisms in 164 microbial genomes belonging to diverse taxa and occupying different aquatic niches. A multivariate statistical approach demonstrated that in phototrophic organisms, there is a clear influence of the ecological niche on the diversity of Fe uptake systems. Extending the analyses to the metagenome database from the Global Ocean Sampling expedition, we demonstrated that the Fe uptake and homeostasis mechanisms differed significantly across marine niches defined by temperatures and dFe concentrations, and that this difference was linked to the distribution of microbial taxa in these niches. Using the dN/dS ratios (which signify the rate of non-synonymous mutations) of the nucleotide sequences, we identified that genes encoding for TonB, Ferritin, Ferric reductase, IdiA, ZupT, and Fe2+ transport proteins FeoA and FeoB were evolving at a faster rate (positive selection pressure) while genes encoding ferrisiderophore, heme and Vitamin B12 uptake systems, siderophore biosynthesis, and IsiA and IsiB were under purifying selection pressure (evolving slowly).
Collapse
Affiliation(s)
- Dhwani K Desai
- Biological Oceanography Division, Helmholtz-Zentrum für Ozeanforschung Kiel (GEOMAR) Kiel, Germany
| | | | | |
Collapse
|
112
|
Spang A, Poehlein A, Offre P, Zumbrägel S, Haider S, Rychlik N, Nowka B, Schmeisser C, Lebedeva EV, Rattei T, Böhm C, Schmid M, Galushko A, Hatzenpichler R, Weinmaier T, Daniel R, Schleper C, Spieck E, Streit W, Wagner M. The genome of the ammonia-oxidizing Candidatus Nitrososphaera gargensis: insights into metabolic versatility and environmental adaptations. Environ Microbiol 2012; 14:3122-45. [PMID: 23057602 DOI: 10.1111/j.1462-2920.2012.02893.x] [Citation(s) in RCA: 224] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 09/01/2012] [Indexed: 01/21/2023]
Abstract
The cohort of the ammonia-oxidizing archaea (AOA) of the phylum Thaumarchaeota is a diverse, widespread and functionally important group of microorganisms in many ecosystems. However, our understanding of their biology is still very rudimentary in part because all available genome sequences of this phylum are from members of the Nitrosopumilus cluster. Here we report on the complete genome sequence of Candidatus Nitrososphaera gargensis obtained from an enrichment culture, representing a different evolutionary lineage of AOA frequently found in high numbers in many terrestrial environments. With its 2.83 Mb the genome is much larger than that of other AOA. The presence of a high number of (active) IS elements/transposases, genomic islands, gene duplications and a complete CRISPR/Cas defence system testifies to its dynamic evolution consistent with low degree of synteny with other thaumarchaeal genomes. As expected, the repertoire of conserved enzymes proposed to be required for archaeal ammonia oxidation is encoded by N. gargensis, but it can also use urea and possibly cyanate as alternative ammonia sources. Furthermore, its carbon metabolism is more flexible at the central pyruvate switch point, encompasses the ability to take up small organic compounds and might even include an oxidative pentose phosphate pathway. Furthermore, we show that thaumarchaeota produce cofactor F420 as well as polyhydroxyalkanoates. Lateral gene transfer from bacteria and euryarchaeota has contributed to the metabolic versatility of N. gargensis. This organisms is well adapted to its niche in a heavy metal-containing thermal spring by encoding a multitude of heavy metal resistance genes, chaperones and mannosylglycerate as compatible solute and has the genetic ability to respond to environmental changes by signal transduction via a large number of two-component systems, by chemotaxis and flagella-mediated motility and possibly even by gas vacuole formation. These findings extend our understanding of thaumarchaeal evolution and physiology and offer many testable hypotheses for future experimental research on these nitrifiers.
Collapse
Affiliation(s)
- Anja Spang
- Department of Genetics in Ecology, University of Vienna, Althanstr. 14, 1090, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Brickman TJ, Armstrong SK. Iron and pH-responsive FtrABCD ferrous iron utilization system of Bordetella species. Mol Microbiol 2012; 86:580-93. [PMID: 22924881 DOI: 10.1111/mmi.12003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2012] [Indexed: 12/30/2022]
Abstract
A putative operon encoding an uncharacterized ferrous iron transport (FtrABCD) system was previously identified in cDNA microarray studies. In growth studies using buffered medium at pH values ranging from pH 6.0 to 7.6, Bordetella pertussis and Bordetella bronchiseptica FtrABCD system mutants showed dramatic reductions in growth yields under iron-restricted conditions at pH 6.0, but had no growth defects at pH 7.6. Supplementation of culture medium with 2 mM ascorbate reductant was inhibitory to alcaligin siderophore-dependent growth at pH 7.6, but had a neglible effect on FtrABCD system-dependent iron assimilation at pH 6.0 consistent with its predicted specificity for ferrous iron. Unlike Bordetella siderophore-dependent and haem iron transport systems, and in agreement with its hypothesized role in transport of inorganic iron from periplasm to cytoplasm, FtrABCD system function did not require the TonB energy transduction complex. Gene fusion analysis revealed that ftrABCD promoter activity was maximal under iron-restricted growth conditions at acidic pH. The pH of human airway surface fluids ranges from pH 5.5 to 7.9, and the FtrABCD system may supply ferrous iron necessary for Bordetella growth in acidic host microenvironments in which siderophores are ineffective for iron retrieval.
Collapse
Affiliation(s)
- Timothy J Brickman
- Department of Microbiology, University of Minnesota Medical School, 925 Mayo Memorial Building, 420 Delaware Street, S.E., Minneapolis, MN 55455-0312, USA.
| | | |
Collapse
|
114
|
Blaby-Haas CE, Merchant SS. The ins and outs of algal metal transport. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1823:1531-52. [PMID: 22569643 PMCID: PMC3408858 DOI: 10.1016/j.bbamcr.2012.04.010] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 04/20/2012] [Accepted: 04/23/2012] [Indexed: 10/28/2022]
Abstract
Metal transporters are a central component in the interaction of algae with their environment. They represent the first line of defense to cellular perturbations in metal concentration, and by analyzing algal metal transporter repertoires, we gain insight into a fundamental aspect of algal biology. The ability of individual algae to thrive in environments with unique geochemistry, compared to non-algal species commonly used as reference organisms for metal homeostasis, provides an opportunity to broaden our understanding of biological metal requirements, preferences and trafficking. Chlamydomonas reinhardtii is the best developed reference organism for the study of algal biology, especially with respect to metal metabolism; however, the diversity of algal niches necessitates a comparative genomic analysis of all sequenced algal genomes. A comparison between known and putative proteins in animals, plants, fungi and algae using protein similarity networks has revealed the presence of novel metal metabolism components in Chlamydomonas including new iron and copper transporters. This analysis also supports the concept that, in terms of metal metabolism, algae from similar niches are more related to one another than to algae from the same phylogenetic clade. This article is part of a Special Issue entitled: Cell Biology of Metals.
Collapse
|
115
|
Vasileva D, Janssen H, Hönicke D, Ehrenreich A, Bahl H. Effect of iron limitation and fur gene inactivation on the transcriptional profile of the strict anaerobe Clostridium acetobutylicum. Microbiology (Reading) 2012; 158:1918-1929. [DOI: 10.1099/mic.0.056978-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Delyana Vasileva
- Abteilung Mikrobiologie, Institut für Biowissenschaften, Universität Rostock, Albert-Einstein-Str. 3, D-18051 Rostock, Germany
| | - Holger Janssen
- Abteilung Mikrobiologie, Institut für Biowissenschaften, Universität Rostock, Albert-Einstein-Str. 3, D-18051 Rostock, Germany
| | - Daniel Hönicke
- Lehrstuhl für Mikrobiologie, Technische Universität München, Emil-Ramann-Str. 4, D-85350, Freising, Germany
| | - Armin Ehrenreich
- Lehrstuhl für Mikrobiologie, Technische Universität München, Emil-Ramann-Str. 4, D-85350, Freising, Germany
| | - Hubert Bahl
- Abteilung Mikrobiologie, Institut für Biowissenschaften, Universität Rostock, Albert-Einstein-Str. 3, D-18051 Rostock, Germany
| |
Collapse
|
116
|
Lim CK, Hassan KA, Tetu SG, Loper JE, Paulsen IT. The effect of iron limitation on the transcriptome and proteome of Pseudomonas fluorescens Pf-5. PLoS One 2012; 7:e39139. [PMID: 22723948 PMCID: PMC3377617 DOI: 10.1371/journal.pone.0039139] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 05/18/2012] [Indexed: 11/18/2022] Open
Abstract
One of the most important micronutrients for bacterial growth is iron, whose bioavailability in soil is limited. Consequently, rhizospheric bacteria such as Pseudomonas fluorescens employ a range of mechanisms to acquire or compete for iron. We investigated the transcriptomic and proteomic effects of iron limitation on P. fluorescens Pf-5 by employing microarray and iTRAQ techniques, respectively. Analysis of this data revealed that genes encoding functions related to iron homeostasis, including pyoverdine and enantio-pyochelin biosynthesis, a number of TonB-dependent receptor systems, as well as some inner-membrane transporters, were significantly up-regulated in response to iron limitation. Transcription of a ribosomal protein L36-encoding gene was also highly up-regulated during iron limitation. Certain genes or proteins involved in biosynthesis of secondary metabolites such as 2,4-diacetylphloroglucinol (DAPG), orfamide A and pyrrolnitrin, as well as a chitinase, were over-expressed under iron-limited conditions. In contrast, we observed that expression of genes involved in hydrogen cyanide production and flagellar biosynthesis were down-regulated in an iron-depleted culture medium. Phenotypic tests revealed that Pf-5 had reduced swarming motility on semi-solid agar in response to iron limitation. Comparison of the transcriptomic data with the proteomic data suggested that iron acquisition is regulated at both the transcriptional and post-transcriptional levels.
Collapse
Affiliation(s)
- Chee Kent Lim
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia
| | - Karl A. Hassan
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia
| | - Sasha G. Tetu
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia
| | - Joyce E. Loper
- USDA-ARS Horticultural Crops Research Laboratory and Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Ian T. Paulsen
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia
- * E-mail:
| |
Collapse
|
117
|
Jiang HB, Lou WJ, Du HY, Price NM, Qiu BS. Sll1263, a Unique Cation Diffusion Facilitator Protein that Promotes Iron Uptake in the Cyanobacterium Synechocystis sp. Strain PCC 6803. ACTA ACUST UNITED AC 2012; 53:1404-17. [DOI: 10.1093/pcp/pcs086] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
118
|
FeoB2 Functions in magnetosome formation and oxidative stress protection in Magnetospirillum gryphiswaldense strain MSR-1. J Bacteriol 2012; 194:3972-6. [PMID: 22636767 DOI: 10.1128/jb.00382-12] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Magnetotactic bacteria (MTB) synthesize unique organelles, the magnetosomes, which are intracellular nanometer-sized, membrane-enveloped magnetite. The biomineralization of magnetosomes involves the uptake of large amounts of iron. However, the iron metabolism of MTB is not well understood. The genome of the magnetotactic bacterium Magnetospirillum gryphiswaldense strain MSR-1 contains two ferrous iron transport genes, feoB1 and feoB2. The FeoB1 protein was reported to be responsible mainly for the transport of ferrous iron and to play an accessory role in magnetosome formation. To determine the role of feoB2, we constructed an feoB2 deletion mutant (MSR-1 ΔfeoB2) and an feoB1 feoB2 double deletion mutant (MSR-1 NfeoB). The single feoB2 mutation did not affect magnetite crystal biomineralization. MSR-1 NfeoB had a significantly lower average magnetosome number per cell (∼65%) than MSR-1 ΔfeoB1, indicating that FeoB2 plays a role in magnetosome formation when the feoB1 gene is deleted. Our findings showed that FeoB1 has a greater ferrous iron transport ability than FeoB2 and revealed the differential roles of FeoB1 and FeoB2 in MSR-1 iron metabolism. Interestingly, compared to the wild type, the feoB mutants showed increased sensitivity to oxidative stress and lower activities of the enzymes superoxide dismutase and catalase, indicating that the FeoB proteins help protect bacterial cells from oxidative stress.
Collapse
|
119
|
Rose AL. The influence of extracellular superoxide on iron redox chemistry and bioavailability to aquatic microorganisms. Front Microbiol 2012; 3:124. [PMID: 22514548 PMCID: PMC3323869 DOI: 10.3389/fmicb.2012.00124] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 03/15/2012] [Indexed: 11/17/2022] Open
Abstract
Superoxide, the one-electron reduced form of dioxygen, is produced in the extracellular milieu of aquatic microbes through a range of abiotic chemical processes and also by microbes themselves. Due to its ability to promote both oxidative and reductive reactions, superoxide may have a profound impact on the redox state of iron, potentially influencing iron solubility, complex speciation, and bioavailability. The interplay between iron, superoxide, and oxygen may also produce a cascade of other highly reactive transients in oxygenated natural waters. For microbes, the overall effect of reactions between superoxide and iron may be deleterious or beneficial, depending on the organism and its chemical environment. Here I critically discuss recent advances in understanding: (i) sources of extracellular superoxide in natural waters, with a particular emphasis on microbial generation; (ii) the chemistry of reactions between superoxide and iron; and (iii) the influence of these processes on iron bioavailability and microbial iron nutrition.
Collapse
Affiliation(s)
- Andrew L. Rose
- Southern Cross GeoScience, Southern Cross UniversityLismore, NSW, Australia
| |
Collapse
|
120
|
Kreutzer MF, Kage H, Nett M. Structure and Biosynthetic Assembly of Cupriachelin, a Photoreactive Siderophore from the Bioplastic Producer Cupriavidus necator H16. J Am Chem Soc 2012; 134:5415-22. [DOI: 10.1021/ja300620z] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Martin F. Kreutzer
- Junior Research Group “Secondary Metabolism
of Predatory Bacteria”, Leibniz Institute for Natural Product
Research and Infection Biology e.V., Hans-Knöll-Institute, Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Hirokazu Kage
- Junior Research Group “Secondary Metabolism
of Predatory Bacteria”, Leibniz Institute for Natural Product
Research and Infection Biology e.V., Hans-Knöll-Institute, Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Markus Nett
- Junior Research Group “Secondary Metabolism
of Predatory Bacteria”, Leibniz Institute for Natural Product
Research and Infection Biology e.V., Hans-Knöll-Institute, Beutenbergstrasse 11a, 07745 Jena, Germany
| |
Collapse
|
121
|
Roe KL, Barbeau K, Mann EL, Haygood MG. Acquisition of iron by Trichodesmium and associated bacteria in culture. Environ Microbiol 2011; 14:1681-95. [DOI: 10.1111/j.1462-2920.2011.02653.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
122
|
Miethke M, Hou J, Marahiel MA. The siderophore-interacting protein YqjH acts as a ferric reductase in different iron assimilation pathways of Escherichia coli. Biochemistry 2011; 50:10951-64. [PMID: 22098718 DOI: 10.1021/bi201517h] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Siderophore-interacting proteins (SIPs), such as YqjH from Escherichia coli, are widespread among bacteria and commonly associated with iron-dependent induction and siderophore utilization. In this study, we show by detailed biochemical and genetic analyses the reaction mechanism by which the YqjH protein is able to catalyze the release of iron from a variety of iron chelators, including ferric triscatecholates and ferric dicitrate, displaying the highest efficiency for the hydrolyzed ferric enterobactin complex ferric (2,3-dihydroxybenzoylserine)(3). Site-directed mutagenesis revealed that residues K55 and R130 of YqjH are crucial for both substrate binding and reductase activity. The NADPH-dependent iron reduction was found to proceed via single-electron transfer in a double-displacement-type reaction through formation of a transient flavosemiquinone. The capacity to reduce substrates with extremely negative redox potentials, though at low catalytic rates, was studied by displacing the native FAD cofactor with 5-deaza-5-carba-FAD, which is restricted to a two-electron transfer. In the presence of the reconstituted noncatalytic protein, the ferric enterobactin midpoint potential increased remarkably and partially overlapped with the effective E(1) redox range. Concurrently, the observed molar ratios of generated Fe(II) versus NADPH were found to be ~1.5-fold higher for hydrolyzed ferric triscatecholates and ferric dicitrate than for ferric enterobactin. Further, combination of a chromosomal yqjH deletion with entC single- and entC fes double-deletion backgrounds showed the impact of yqjH on growth during supplementation with ferric siderophore substrates. Thus, YqjH enhances siderophore utilization in different iron acquisition pathways, including assimilation of low-potential ferric substrates that are not reduced by common cellular cofactors.
Collapse
Affiliation(s)
- Marcus Miethke
- Department of Chemistry/Biochemistry, Philipps University Marburg, Hans Meerwein Strasse, D-35032 Marburg, Germany.
| | | | | |
Collapse
|
123
|
Abstract
Submarine hydrothermal vents above serpentinite produce chemical potential gradients of aqueous and ionic hydrogen, thus providing a very attractive venue for the origin of life. This environment was most favourable before Earth's massive CO(2) atmosphere was subducted into the mantle, which occurred tens to approximately 100 Myr after the moon-forming impact; thermophile to clement conditions persisted for several million years while atmospheric pCO(2) dropped from approximately 25 bar to below 1 bar. The ocean was weakly acid (pH ∼ 6), and a large pH gradient existed for nascent life with pH 9-11 fluids venting from serpentinite on the seafloor. Total CO(2) in water was significant so the vent environment was not carbon limited. Biologically important phosphate and Fe(II) were somewhat soluble during this period, which occurred well before the earliest record of preserved surface rocks approximately 3.8 billion years ago (Ga) when photosynthetic life teemed on the Earth and the oceanic pH was the modern value of approximately 8. Serpentinite existed by 3.9 Ga, but older rocks that might retain evidence of its presence have not been found. Earth's sequesters extensive evidence of Archaean and younger subducted biological material, but has yet to be exploited for the Hadean record.
Collapse
Affiliation(s)
- Norman H Sleep
- Department of Geophysics, Stanford University, Stanford, CA 94305, USA.
| | | | | |
Collapse
|
124
|
Santhanagopalan SM, Rodriguez GM. Examining the role of Rv2895c (ViuB) in iron acquisition in Mycobacterium tuberculosis. Tuberculosis (Edinb) 2011; 92:60-2. [PMID: 22015175 DOI: 10.1016/j.tube.2011.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 09/07/2011] [Accepted: 09/21/2011] [Indexed: 11/15/2022]
Abstract
Iron acquisition is essential for Mycobacterium tuberculosis (Mtb) virulence. Understanding the molecular mechanisms used by Mtb to scavenge iron during infection might reveal new targets for antimicrobial development. Rv2895c, a homolog of ViuB from Vibrio cholerae has been postulated to be involved in iron-siderophore uptake and utilization in Mtb. This study examines the requirement of Rv2895c for adaptation of Mtb to iron limitation. We show that Rv2895c is dispensable for normal replication of Mtb in iron deficient conditions and in human macrophages. Thus, contrary to the predictions of sequence analysis and in-vitro studies the genetic evidence indicates that in normal conditions Rv2895c is not required for iron acquisition in Mtb.
Collapse
Affiliation(s)
- Sujatha M Santhanagopalan
- Public Health Research Institute, New Jersey Medical School, 225 Warren Street, Newark, NJ 07103, USA
| | | |
Collapse
|
125
|
Biological and chemical interaction of oxygen on the reduction of Fe(III)EDTA in a chemical absorption–biological reduction integrated NO x removal system. Appl Microbiol Biotechnol 2011; 93:2653-9. [DOI: 10.1007/s00253-011-3573-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 08/15/2011] [Accepted: 09/08/2011] [Indexed: 10/17/2022]
|
126
|
Kranzler C, Lis H, Shaked Y, Keren N. The role of reduction in iron uptake processes in a unicellular, planktonic cyanobacterium. Environ Microbiol 2011; 13:2990-9. [DOI: 10.1111/j.1462-2920.2011.02572.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
127
|
Evidence for direct electron transfer by a gram-positive bacterium isolated from a microbial fuel cell. Appl Environ Microbiol 2011; 77:7633-9. [PMID: 21908627 DOI: 10.1128/aem.05365-11] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite their importance in iron redox cycles and bioenergy production, the underlying physiological, genetic, and biochemical mechanisms of extracellular electron transfer by Gram-positive bacteria remain insufficiently understood. In this work, we investigated respiration by Thermincola potens strain JR, a Gram-positive isolate obtained from the anode surface of a microbial fuel cell, using insoluble electron acceptors. We found no evidence that soluble redox-active components were secreted into the surrounding medium on the basis of physiological experiments and cyclic voltammetry measurements. Confocal microscopy revealed highly stratified biofilms in which cells contacting the electrode surface were disproportionately viable relative to the rest of the biofilm. Furthermore, there was no correlation between biofilm thickness and power production, suggesting that cells in contact with the electrode were primarily responsible for current generation. These data, along with cryo-electron microscopy experiments, support contact-dependent electron transfer by T. potens strain JR from the cell membrane across the 37-nm cell envelope to the cell surface. Furthermore, we present physiological and genomic evidence that c-type cytochromes play a role in charge transfer across the Gram-positive bacterial cell envelope during metal reduction.
Collapse
|
128
|
Hopkinson BM, Barbeau KA. Iron transporters in marine prokaryotic genomes and metagenomes. Environ Microbiol 2011; 14:114-28. [DOI: 10.1111/j.1462-2920.2011.02539.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
129
|
Abstract
Iron utilization by bacteria in aerobic environments involves uptake as a ferric chelate from the environment, followed by reduction to the ferrous form. Ferric iron reduction is poorly understood in most bacterial species. Here, we identified Bradyrhizobium japonicum frcB (bll3557) as a gene adjacent to, and coregulated with, the pyoR gene (blr3555) encoding the outer membrane receptor for transport of a ferric pyoverdine. FrcB is a membrane-bound, diheme protein, characteristic of eukaryotic ferric reductases. Heme was essential for FrcB stability, as were conserved histidine residues in the protein that likely coordinate the heme moieties. Expression of the frcB gene in Escherichia coli conferred ferric reductase activity on those cells. Furthermore, reduced heme in purified FrcB was oxidized by ferric iron in vitro. B. japonicum cells showed inducible ferric reductase activity in iron-limited cells that was diminished in an frcB mutant. Steady-state levels of frcB mRNA were strongly induced under iron-limiting conditions, but transcript levels were low and unresponsive to iron in an irr mutant lacking the global iron response transcriptional regulator Irr. Thus, Irr positively controls the frcB gene. FrcB belongs to a family of previously uncharacterized proteins found in many proteobacteria and some cyanobacteria. This suggests that membrane-bound, heme-containing ferric reductase proteins are not confined to eukaryotes but may be common in bacteria.
Collapse
|
130
|
Ito H, Fujii M, Masago Y, Yoshimura C, Waite TD, Omura T. Mechanism and Kinetics of Ligand Exchange between Ferric Citrate and Desferrioxamine B. J Phys Chem A 2011; 115:5371-9. [DOI: 10.1021/jp202440e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hiroaki Ito
- Department of Civil and Environmental Engineering, Tohoku University, Aoba 6-6-06 Aobaku, Sendai 980-8579, Japan
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2032, Australia
| | - Manabu Fujii
- Department of Civil Engineering, Tokyo Institute of Technology, 2-12-1-M1-4 Ookayama, Tokyo 152-8552, Japan
| | - Yoshifumi Masago
- Department of Civil and Environmental Engineering, Tohoku University, Aoba 6-6-06 Aobaku, Sendai 980-8579, Japan
| | - Chihiro Yoshimura
- Department of Civil Engineering, Tokyo Institute of Technology, 2-12-1-M1-4 Ookayama, Tokyo 152-8552, Japan
| | - T. David Waite
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2032, Australia
| | - Tatsuo Omura
- Department of Civil and Environmental Engineering, Tohoku University, Aoba 6-6-06 Aobaku, Sendai 980-8579, Japan
| |
Collapse
|
131
|
Synechocystis ferredoxin-NADP+ oxidoreductase is capable of functioning as ferric reductase and of driving the Fenton reaction in the absence or presence of free flavin. Biometals 2011; 24:311-21. [DOI: 10.1007/s10534-010-9397-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 12/08/2010] [Indexed: 11/25/2022]
|
132
|
Involvement of the Shewanella oneidensis decaheme cytochrome MtrA in the periplasmic stability of the beta-barrel protein MtrB. Appl Environ Microbiol 2010; 77:1520-3. [PMID: 21169449 DOI: 10.1128/aem.01201-10] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Shewanella oneidensis outer membrane β-barrel protein MtrB is part of a membrane-spanning protein complex (MtrABC) which is necessary for dissimilatory iron reduction. Quantitative PCR, heterologous gene expression, and mutant studies indicated that MtrA is required for periplasmic stability of MtrB. DegP depletion compensated for this MtrA dependence.
Collapse
|
133
|
Fur and the novel regulator YqjI control transcription of the ferric reductase gene yqjH in Escherichia coli. J Bacteriol 2010; 193:563-74. [PMID: 21097627 DOI: 10.1128/jb.01062-10] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Iron acquisition in aerobic habitats is complicated by the low solubility of ferric hydroxides. Siderophores that bind ferric iron with high affinity are used to mobilize iron. The reduction of ferric iron to the ferrous form can be coupled to the release of iron from siderophores. Iron is also stored intracellularly as a ferric mineral in proteins, such as ferritin, and must be reduced during release. In Escherichia coli, the yqjH gene encodes a putative ferric siderophore reductase that is also part of the Fur regulon. Here we show that YqjH has ferric reductase activity and is required for iron homeostasis in E. coli. Divergently transcribed from yqjH is the yqjI gene, which encodes a novel member of the winged-helix family of transcriptional regulators and also contains an N-terminal extension similar to the Ni(2+)-binding C-terminal tail of SlyD. Deletion of yqjI leads to constitutive high-level activity of the yqjH and yqjI promoters. Purified YqjI binds inverted repeat target sequences within the yqjH and yqjI promoters. We also observed that YqjI-dependent transcriptional repression is reduced when cells are exposed to elevated nickel levels, resulting in increased expression of yqjH and yqjI. YqjI binding to nickel or iron reduces YqjI DNA-binding activity in vitro. Furthermore, we found that elevated nickel stress levels disrupt iron homeostasis in E. coli and that deletion of yqjH increases nickel toxicity. Our results suggest that the YqjI protein controls expression of yqjH to help maintain iron homeostasis under conditions (such as elevated cellular nickel levels) that disrupt iron metabolism.
Collapse
|
134
|
Glanfield A, McManus DP, Smyth DJ, Lovas EM, Loukas A, Gobert GN, Jones MK. A cytochrome b561 with ferric reductase activity from the parasitic blood fluke, Schistosoma japonicum. PLoS Negl Trop Dis 2010; 4:e884. [PMID: 21103361 PMCID: PMC2982821 DOI: 10.1371/journal.pntd.0000884] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 10/18/2010] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Iron has an integral role in numerous cellular reactions and is required by virtually all organisms. In physiological conditions, iron is abundant in a largely insoluble ferric state. Ferric reductases are an essential component of iron uptake by cells, reducing iron to the soluble ferrous form. Cytochromes b561 (cyts-b561) are a family of ascorbate reducing transmembrane proteins found in most eukaryotic cells. The identification of the ferric reductase duodenal cytochrome b (dcytb) and recent observations that other cyts-b561 may be involved in iron metabolism have opened novel perspectives for elucidating their physiological function. METHODOLOGY/PRINCIPAL FINDINGS Here we have identified a new member of the cytochrome b561 (Sjcytb561) family in the pathogenic blood fluke Schistosoma japonicum that localises to the outer surface of this parasitic trematode. Heterologous expression of recombinant Sjcyt-b561 in a Saccharomyces cerevisiae mutant strain that lacks plasma membrane ferrireductase activity demonstrated that the molecule could rescue ferric reductase activity in the yeast. SIGNIFICANCE/CONCLUSIONS This finding of a new member of the cytochrome b561 family further supports the notion that a ferric reductase function is likely for other members of this protein family. Additionally, the localisation of Sjcytb561 in the surface epithelium of these blood-dwelling schistosomes contributes further to our knowledge concerning nutrient acquisition in these parasites and may provide novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- Amber Glanfield
- Queensland Institute of Medical Research, Herston, Queensland, Australia
| | | | | | | | | | | | | |
Collapse
|
135
|
Miethke M, Pierik AJ, Peuckert F, Seubert A, Marahiel MA. Identification and characterization of a novel-type ferric siderophore reductase from a gram-positive extremophile. J Biol Chem 2010; 286:2245-60. [PMID: 21051545 DOI: 10.1074/jbc.m110.192468] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Iron limitation is one major constraint of microbial life, and a plethora of microbes use siderophores for high affinity iron acquisition. Because specific enzymes for reductive iron release in gram-positives are not known, we searched Firmicute genomes and found a novel association pattern of putative ferric siderophore reductases and uptake genes. The reductase from the schizokinen-producing alkaliphile Bacillus halodurans was found to cluster with a ferric citrate-hydroxamate uptake system and to catalyze iron release efficiently from Fe[III]-dicitrate, Fe[III]-schizokinen, Fe[III]-aerobactin, and ferrichrome. The gene was hence named fchR for ferric citrate and hydroxamate reductase. The tightly bound [2Fe-2S] cofactor of FchR was identified by UV-visible, EPR, CD spectroscopy, and mass spectrometry. Iron release kinetics were determined with several substrates by using ferredoxin as electron donor. Catalytic efficiencies were strongly enhanced in the presence of an iron-sulfur scaffold protein scavenging the released ferrous iron. Competitive inhibition of FchR was observed with Ga(III)-charged siderophores with K(i) values in the micromolar range. The principal catalytic mechanism was found to couple increasing K(m) and K(D) values of substrate binding with increasing k(cat) values, resulting in high catalytic efficiencies over a wide redox range. Physiologically, a chromosomal fchR deletion led to strongly impaired growth during iron limitation even in the presence of ferric siderophores. Inductively coupled plasma-MS analysis of ΔfchR revealed intracellular iron accumulation, indicating that the ferric substrates were not efficiently metabolized. We further show that FchR can be efficiently inhibited by redox-inert siderophore mimics in vivo, suggesting that substrate-specific ferric siderophore reductases may present future targets for microbial pathogen control.
Collapse
Affiliation(s)
- Marcus Miethke
- Fachbereich Chemie/Biochemie, Philipps Universität Marburg, Hans-Meerwein-Strasse, D-35032 Marburg, Germany.
| | | | | | | | | |
Collapse
|
136
|
Abstract
Many bacteria rely on siderophores to extract iron from the environment. However, acquisition of iron-loaded siderophores is dependent on high-affinity uptake systems that are not produced under high-iron conditions. The fact that bacteria are able to maintain iron homeostasis in the absence of siderophores indicates that alternative iron acquisition systems exist. It has been speculated that such low-affinity uptake of iron in Gram-negative bacteria includes diffusion of iron ions or chelates across the outer membrane through porins. The outer membrane of the saprophytic Mycobacterium smegmatis contains the Msp family of porins, which enable the diffusion of small and hydrophilic solutes, such as monosaccharides, amino acids, and phosphate. However, it is unknown how cations cross the outer membrane of mycobacteria. Here, we show that the Msp porins of M. smegmatis are involved in the acquisition of soluble iron under high-iron conditions. Uptake of ferric ions by a triple porin mutant was reduced compared to wild-type (wt) M. smegmatis. An intracellular iron reporter indicated that derepression of iron-responsive genes occurs at higher iron concentrations in the porin mutant. This was consistent with the finding that the porin mutant produced more siderophores under low-iron conditions than wt M. smegmatis. In contrast, uptake of the exochelin MS, the main siderophore of M. smegmatis, was not affected by the lack of porins, indicating that a specific outer membrane siderophore receptor exists. These results provide, to our knowledge, the first experimental evidence that general porins are indeed the outer membrane conduit of low-affinity iron acquisition systems in bacteria.
Collapse
|
137
|
Johs A, Shi L, Droubay T, Ankner J, Liang L. Characterization of the decaheme c-type cytochrome OmcA in solution and on hematite surfaces by small angle x-ray scattering and neutron reflectometry. Biophys J 2010; 98:3035-43. [PMID: 20550916 PMCID: PMC2884263 DOI: 10.1016/j.bpj.2010.03.049] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 03/09/2010] [Accepted: 03/16/2010] [Indexed: 11/25/2022] Open
Abstract
The outer membrane protein OmcA is an 85 kDa decaheme c-type cytochrome located on the surface of the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1. It is assumed to mediate shuttling of electrons to extracellular acceptors that include solid metal oxides such as hematite (alpha-Fe(2)O(3)). No information is yet available concerning OmcA structure in physiologically relevant conditions such as aqueous environments. We purified OmcA and characterized its solution structure by small angle x-ray scattering (SAXS), and its interaction at the hematite-water interface by neutron reflectometry. SAXS showed that OmcA is a monomer that adopts a flat ellipsoidal shape with an overall dimension of 34 x 90 x 65 A(3). To our knowledge, we obtained the first direct evidence that OmcA undergoes a redox state-dependent conformational change in solution whereby reduction decreases the overall length of OmcA by approximately 7 A (the maximum dimension was 96 A for oxidized OmcA, and 89 A for NADH and dithionite-reduced OmcA). OmcA was also found to physically interact with electron shuttle molecules such as flavin mononucleotide, resulting in the formation of high-molecular-weight assemblies. Neutron reflectometry showed that OmcA forms a well-defined monomolecular layer on hematite surfaces, where it assumes an orientation that maximizes its contact area with the mineral surface. These novel insights into the molecular structure of OmcA in solution, and its interaction with insoluble hematite and small organic ligands, demonstrate the fundamental structural bases underlying OmcA's role in mediating redox processes.
Collapse
Affiliation(s)
- A. Johs
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - L. Shi
- Pacific Northwest National Laboratory, Richland, Washington
| | - T. Droubay
- Pacific Northwest National Laboratory, Richland, Washington
| | - J.F. Ankner
- Neutron Scattering Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - L. Liang
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| |
Collapse
|
138
|
Zola TA, Strange HR, Dominguez NM, Dillard JP, Cornelissen CN. Type IV secretion machinery promotes ton-independent intracellular survival of Neisseria gonorrhoeae within cervical epithelial cells. Infect Immun 2010; 78:2429-37. [PMID: 20308306 PMCID: PMC2876539 DOI: 10.1128/iai.00228-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 02/22/2010] [Accepted: 03/09/2010] [Indexed: 01/18/2023] Open
Abstract
Survival of Neisseria gonorrhoeae within host epithelial cells is expected to be important in the pathogenesis of gonococcal disease. We previously demonstrated that strain FA1090 derives iron from a host cell in a process that requires the Ton complex and a putative TonB-dependent transporter, TdfF. FA1090, however, lacks the gonococcal genetic island (GGI) that is present in the majority of strains. The GGI in strain MS11 has been partially characterized, and it encodes a type IV secretion system (T4SS) involved in DNA release. In this study we investigated the role of iron acquisition and GGI-encoded gene products in gonococcal survival within cervical epithelial cells. We demonstrated that intracellular survival of MS11 was dependent on acquisition of iron from the host cell, but unlike the findings for FA1090, expression of the Ton complex was not required. Survival was not dependent on a putative TonB-like protein encoded in the GGI but instead was directly linked to T4SS structural components in a manner independent of the ability to release or internalize DNA. These data suggest that expression of selected GGI-encoded open reading frames confers an advantage during cervical cell infection. This study provides the first link between expression of the T4SS apparatus and intracellular survival of gonococci.
Collapse
Affiliation(s)
- Tracey A. Zola
- Department of Microbiology and Immunology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia 23298, Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706
| | - Heather R. Strange
- Department of Microbiology and Immunology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia 23298, Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706
| | - Nadia M. Dominguez
- Department of Microbiology and Immunology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia 23298, Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706
| | - Joseph P. Dillard
- Department of Microbiology and Immunology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia 23298, Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706
| | - Cynthia N. Cornelissen
- Department of Microbiology and Immunology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia 23298, Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706
| |
Collapse
|
139
|
Effects of Iron Chelators, Iron Salts, and Iron Oxide Nanoparticles on the Proliferation and the Iron Content of Oligodendroglial OLN-93 Cells. Neurochem Res 2010; 35:1259-68. [DOI: 10.1007/s11064-010-0184-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2010] [Indexed: 12/19/2022]
|
140
|
Abstract
A sparse geological record combined with physics and molecular phylogeny constrains the environmental conditions on the early Earth. The Earth began hot after the moon-forming impact and cooled to the point where liquid water was present in approximately 10 million years. Subsequently, a few asteroid impacts may have briefly heated surface environments, leaving only thermophile survivors in kilometer-deep rocks. A warm 500 K, 100 bar CO(2) greenhouse persisted until subducted oceanic crust sequestered CO(2) into the mantle. It is not known whether the Earth's surface lingered in a approximately 70 degrees C thermophile environment well into the Archaean or cooled to clement or freezing conditions in the Hadean. Recently discovered approximately 4.3 Ga rocks near Hudson Bay may have formed during the warm greenhouse. Alkalic rocks in India indicate carbonate subduction by 4.26 Ga. The presence of 3.8 Ga black shales in Greenland indicates that S-based photosynthesis had evolved in the oceans and likely Fe-based photosynthesis and efficient chemical weathering on land. Overall, mantle derived rocks, especially kimberlites and similar CO(2)-rich magmas, preserve evidence of subducted upper oceanic crust, ancient surface environments, and biosignatures of photosynthesis.
Collapse
Affiliation(s)
- Norman H Sleep
- Department of Geophysics, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
141
|
Tulpule K, Robinson SR, Bishop GM, Dringen R. Uptake of ferrous iron by cultured rat astrocytes. J Neurosci Res 2010; 88:563-71. [PMID: 19746426 DOI: 10.1002/jnr.22217] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Astrocytes are considered to play an important role in iron homeostasis of the brain, yet the mechanisms involved in the uptake of iron into astrocytes remain elusive. To investigate the uptake of iron into astrocytes, we have applied ferric ammonium citrate (FAC) to rat astrocyte-rich primary cultures. These cultures express the mRNAs of two membrane-bound ferric reductases, Dcytb and SDR2, and reduce extracellular ferric iron (100 muM) with a rate of 3.2 +/- 0.4 nmol/(hr x mg). This reduction rate is substantially lower than the rate of cellular iron accumulation from 100 muM FAC [24.7 +/- 8.9 nmol/(hr x mg)], which suggests that iron accumulation from FAC does at best partially depend on extracellular ferric reduction. Nonetheless, when the iron in FAC was almost completely reduced by an excess of exogenous ascorbate, astrocytes accumulated iron in a time- and concentration-dependent manner with specific iron accumulation rates that increased linearly for concentrations of up to 100 muM ferrous iron. This accumulation was attenuated by lowering the incubation temperature, by the presence of ferrous iron chelators, or by lowering the pH from 7.4 to 6.8. These data indicate that, in addition to the DMT1-mediated uptake of ferrous iron, astrocytes can accumulate ferric and ferrous iron by mechanisms that are independent of DMT1 or transferrin.
Collapse
Affiliation(s)
- Ketki Tulpule
- Center for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
| | | | | | | |
Collapse
|
142
|
Gadd GM. Metals, minerals and microbes: geomicrobiology and bioremediation. MICROBIOLOGY-SGM 2009; 156:609-643. [PMID: 20019082 DOI: 10.1099/mic.0.037143-0] [Citation(s) in RCA: 821] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Microbes play key geoactive roles in the biosphere, particularly in the areas of element biotransformations and biogeochemical cycling, metal and mineral transformations, decomposition, bioweathering, and soil and sediment formation. All kinds of microbes, including prokaryotes and eukaryotes and their symbiotic associations with each other and 'higher organisms', can contribute actively to geological phenomena, and central to many such geomicrobial processes are transformations of metals and minerals. Microbes have a variety of properties that can effect changes in metal speciation, toxicity and mobility, as well as mineral formation or mineral dissolution or deterioration. Such mechanisms are important components of natural biogeochemical cycles for metals as well as associated elements in biomass, soil, rocks and minerals, e.g. sulfur and phosphorus, and metalloids, actinides and metal radionuclides. Apart from being important in natural biosphere processes, metal and mineral transformations can have beneficial or detrimental consequences in a human context. Bioremediation is the application of biological systems to the clean-up of organic and inorganic pollution, with bacteria and fungi being the most important organisms for reclamation, immobilization or detoxification of metallic and radionuclide pollutants. Some biominerals or metallic elements deposited by microbes have catalytic and other properties in nanoparticle, crystalline or colloidal forms, and these are relevant to the development of novel biomaterials for technological and antimicrobial purposes. On the negative side, metal and mineral transformations by microbes may result in spoilage and destruction of natural and synthetic materials, rock and mineral-based building materials (e.g. concrete), acid mine drainage and associated metal pollution, biocorrosion of metals, alloys and related substances, and adverse effects on radionuclide speciation, mobility and containment, all with immense social and economic consequences. The ubiquity and importance of microbes in biosphere processes make geomicrobiology one of the most important concepts within microbiology, and one requiring an interdisciplinary approach to define environmental and applied significance and underpin exploitation in biotechnology.
Collapse
Affiliation(s)
- Geoffrey Michael Gadd
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
143
|
The Mycobacterium tuberculosis high-affinity iron importer, IrtA, contains an FAD-binding domain. J Bacteriol 2009; 192:861-9. [PMID: 19948799 DOI: 10.1128/jb.00223-09] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Iron is an essential nutrient not freely available to microorganisms infecting mammals. To overcome iron deficiency, bacteria have evolved various strategies including the synthesis and secretion of high-affinity iron chelators known as siderophores. The siderophores produced and secreted by Mycobacterium tuberculosis, exomycobactins, compete for iron with host iron-binding proteins and, together with the iron-regulated ABC transporter IrtAB, are required for the survival of M. tuberculosis in iron deficient conditions and for normal replication in macrophages and in mice. This study further characterizes the role of IrtAB in M. tuberculosis iron acquisition. Our results demonstrate a role for IrtAB in iron import and show that the amino terminus domain of IrtA is a flavin-adenine dinucleotide-binding domain essential for iron acquisition. These results suggest a model in which the amino terminus of IrtA functions to couple iron transport and assimilation.
Collapse
|
144
|
Abstract
Both Ras and Nox represent ancient gene families which control a broad range of cellular responses. Both families mediate signals governing motility, differentiation, and proliferation, and both inhabit overlapping subcellular microdomains. Yet little is known of the precise functional relationship between these two ubiquitous families. In this review, we examine the interface where these two large fields meet.
Collapse
Affiliation(s)
- Ru Feng Wu
- From The Division of Pulmonary and Critical Care, University of Texas Southwestern Medical Center, Dallas TX, 5323 Harry Hines Blvd., Dallas, TX 75390
| | - Lance S. Terada
- From The Division of Pulmonary and Critical Care, University of Texas Southwestern Medical Center, Dallas TX, 5323 Harry Hines Blvd., Dallas, TX 75390
| |
Collapse
|
145
|
Affiliation(s)
- Moriah Sandy
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106-9510, USA
| | | |
Collapse
|
146
|
Oves-Costales D, Kadi N, Challis GL. The long-overlooked enzymology of a nonribosomal peptide synthetase-independent pathway for virulence-conferring siderophore biosynthesis. Chem Commun (Camb) 2009:6530-41. [PMID: 19865642 DOI: 10.1039/b913092f] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Siderophores are high-affinity ferric iron chelators biosynthesised and excreted by most microorganisms that play an important role in iron acquisition. Siderophore-mediated scavenging of ferric iron from hosts contributes significantly to the virulence of pathogenic microbes. As a consequence siderophore biosynthesis is an attractive target for chemotherapeutic intervention. Two main pathways for siderophore biosynthesis exist in microbes. One pathway involves nonribosomal peptide synthetase (NRPS) multienzymes while the other is NRPS-independent. The enzymology of NRPS-mediated siderophore biosynthesis has been extensively studied for more than a decade. In contrast, the enzymology of NRPS-independent siderophore (NIS) biosynthesis was overlooked for almost thirty years since the first genetic characterisation of the NIS biosynthetic pathway to aerobactin. However, the past three years have witnessed an explosion of interest in the enzymology of NIS synthetases, the key enzymes in the assembly of siderophores via the NIS pathway. The biochemical characterisation of ten purified recombinant synthetases has been reported since 2007, along with the first structural characterisation of a synthetase by X-ray crystallography in 2009. In this feature article we summarise the recent progress that has been made in understanding the long-overlooked enzymology of NRPS-independent siderophore biosynthesis, highlight important remaining questions, and suggest likely directions for future research.
Collapse
|
147
|
Duhme‐Klair A. From Siderophores and Self‐Assembly to Luminescent Sensors: The Binding of Molybdenum by Catecholamides. Eur J Inorg Chem 2009. [DOI: 10.1002/ejic.200900416] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
148
|
Shi L, Richardson DJ, Wang Z, Kerisit SN, Rosso KM, Zachara JM, Fredrickson JK. The roles of outer membrane cytochromes of Shewanella and Geobacter in extracellular electron transfer. ENVIRONMENTAL MICROBIOLOGY REPORTS 2009; 1:220-7. [PMID: 23765850 DOI: 10.1111/j.1758-2229.2009.00035.x] [Citation(s) in RCA: 217] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
As key components of the electron transfer (ET) pathways used for dissimilatory reduction of solid iron [Fe(III)] (hydr)oxides, outer membrane multihaem c-type cytochromes MtrC and OmcA of Shewanella oneidensis MR-1 and OmcE and OmcS of Geobacter sulfurreducens mediate ET reactions extracellularly. Both MtrC and OmcA are at least partially exposed to the extracellular side of the outer membrane and their translocation across the outer membrane is mediated by bacterial type II secretion system. Purified MtrC and OmcA can bind Fe(III) oxides, such as haematite (α-Fe2 O3 ), and directly transfer electrons to the haematite surface. Bindings of MtrC and OmcA to haematite are probably facilitated by their putative haematite-binding motifs whose conserved sequence is Thr-Pro-Ser/Thr. Purified MtrC and OmcA also exhibit broad operating potential ranges that make it thermodynamically feasible to transfer electrons directly not only to Fe(III) oxides but also to other extracellular substrates with different redox potentials. OmcE and OmcS are proposed to be located on the Geobacter cell surface where they are believed to function as intermediates to relay electrons to type IV pili, which are hypothesized to transfer electrons directly to the metal oxides. Cell surface-localized cytochromes thus are key components mediating extracellular ET reactions in both Shewanella and Geobacter for extracellular reduction of Fe(III) oxides.
Collapse
Affiliation(s)
- Liang Shi
- Pacific Northwest National Laboratory, Richland, WA 99354, USA. Schools of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | | | | | | | | | | | | |
Collapse
|
149
|
Frederick RE, Mayfield JA, DuBois JL. Iron trafficking as an antimicrobial target. Biometals 2009; 22:583-93. [PMID: 19350396 PMCID: PMC3742301 DOI: 10.1007/s10534-009-9236-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Accepted: 03/23/2009] [Indexed: 10/20/2022]
Abstract
Iron is essential for the survival of most organisms. Microbial iron acquisition depends on multiple, sometimes complex steps, many of which are not shared by higher eukaryotes. Depriving pathogenic microbes of iron is therefore a potential antimicrobial strategy. The following minireview briefly describes general elements in microbial iron uptake pathways and summarizes some of the current work aiming at their medicinal inhibition.
Collapse
Affiliation(s)
- Rosanne E Frederick
- Department of Chemistry and Biochemistry, University of Notre Dame, IN 46556, USA
| | | | | |
Collapse
|
150
|
Sedláček V, van Spanning RJM, Kučera I. Ferric reductase A is essential for effective iron acquisition in Paracoccus denitrificans. MICROBIOLOGY-SGM 2009; 155:1294-1301. [PMID: 19332830 DOI: 10.1099/mic.0.022715-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Based on N-terminal sequences obtained from the purified cytoplasmic ferric reductases FerA and FerB, their corresponding genes were identified in the published genome sequence of Paracoccus denitrificans Pd1222. The ferA and ferB genes were cloned and individually inactivated by insertion of a kanamycin resistance marker, and then returned to P. denitrificans for exchange with their wild-type copies. The resulting ferA and ferB mutant strains showed normal growth in brain heart infusion broth. Unlike the ferB mutant, the strain lacking FerA did not grow on succinate minimal medium with ferric 2,3-dihydroxybenzoate as the iron source, and grew only poorly in the presence of ferric sulfate, chloride, citrate, NTA, EDTA and EGTA. Moreover, the ferA mutant strain was unable to produce catechols, which are normally detectable in supernatants from iron-limited wild-type cultures. Complementation of the ferA mutation using a derivative of the conjugative broad-host-range plasmid pEG400 that contained the whole ferA gene and its putative promoter region largely restored the wild-type phenotype. Partial, though significant, restoration could also be achieved with 1 mM chorismate added to the growth medium. The purified FerA protein acted as an NADH : FMN oxidoreductase and catalysed the FMN-mediated reductive release of iron from the ferric complex of parabactin, the major catecholate siderophore of P. denitrificans. The deduced amino acid sequence of the FerA protein has closest similarity to flavin reductases that form part of the flavin-dependent two-component monooxygenases. Taken together, our results demonstrate an essential role of reduced flavins in the utilization of exogenous ferric iron. These flavins not only provide the electrons for Fe(III) reduction but most probably also affect the rate of siderophore production.
Collapse
Affiliation(s)
- Vojtěch Sedláček
- Department of Biochemistry, Faculty of Science, Masaryk University, Czech Republic, CZ-611 37 Brno, Czech Republic
| | - Rob J M van Spanning
- Department of Molecular Cell Physiology, Faculty of Earth and Life Science, VU University Amsterdam, NL-1081 HV Amsterdam, The Netherlands
| | - Igor Kučera
- Department of Biochemistry, Faculty of Science, Masaryk University, Czech Republic, CZ-611 37 Brno, Czech Republic
| |
Collapse
|