101
|
Levade T, Andrieu-Abadie N, Ségui B, Augé N, Chatelut M, Jaffrézou JP, Salvayre R. Sphingomyelin-degrading pathways in human cells role in cell signalling. Chem Phys Lipids 1999; 102:167-78. [PMID: 11001571 DOI: 10.1016/s0009-3084(99)00085-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The ubiquitous sphingophospholipid sphingomyelin (SM) can be hydrolysed in human cells to ceramide by different sphingomyelinases (SMases). These enzymes exert a dual role, enabling not only the turnover of membrane SM and the degradation of exogenous (lipoprotein) SM, but also the signal-induced generation of the lipid second messenger ceramide. This review focuses on the function(s) of the different SMases in living cells. While both lysosomal and non-lysosomal pathways that ensure SM hydrolysis in intact cells can be distinguished, the precise contribution of each of these SM-cleaving enzymes to the production of ceramide as a signalling molecule remains to be clarified.
Collapse
Affiliation(s)
- T Levade
- INSERM U. 466, Laboratoire de Biochimie, Maladies Métaboliques, Institut Louis Bugnard, CHU Rangueil, Toulouse, France.
| | | | | | | | | | | | | |
Collapse
|
102
|
Kalhorn T, Zager RA. Renal cortical ceramide patterns during ischemic and toxic injury: assessments by HPLC-mass spectrometry. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:F723-33. [PMID: 10564235 DOI: 10.1152/ajprenal.1999.277.5.f723] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ceramides are a class of signaling molecules that can acutely accumulate in tissues as part of a "stress response." They are classically measured by the diacylglycerol kinase assay, which, in general, measures total ceramide rather than individual moieties within the diverse ceramide family. The present study was undertaken to 1) adapt current HPLC-mass spectrometry technology for measuring individual renal ceramides, and 2) use this technique to more fully characterize the nature of the renal ceramide "stress" reaction. Renal cortical tissues were obtained from CD-1 mice under control conditions and 2 or 18 h after renal injury (ischemia-reperfusion and glycerol-mediated myohemoglobinuria). C24, C22, and C16 ceramides were identified in normal renal cortex, constituting 70, 10, and 20% of the total ceramide pool, respectively. Within each of these families, heterogeneity was apparent because of differing degrees of unsaturation (0-3 double bonds) in the constituent fatty acid of ceramide. Renal injury dramatically changed ceramide profiles: 1) total ceramide increased by approximately 300%; 2) although all ceramides participated in this reaction, they did so to differing degrees; 3) this caused pronounced changes in ceramide distribution patterns; 4) injury induced a striking shift toward unsaturated (vs. saturated) fatty acids within the C22 and C24 (but not the C16) ceramide pools; and 5) the extent of these qualitative changes differed according to the etiology of the initiating renal damage. Thus we conclude that ceramide stress response involves major qualitative (and not simply quantitative) changes in ceramide expression that are partially disease dependent. These findings underscore the fact that simply measuring total renal ceramide content (e.g., by diacylglycerol kinase assay) substantially oversimplifies the nature and, hence, the potential implications of the ceramide stress reaction.
Collapse
Affiliation(s)
- T Kalhorn
- Fred Hutchinson Cancer Research Center, University of Washington, Seattle, Washington 98109, USA
| | | |
Collapse
|
103
|
Abstract
Cholesterol and sphingomyelin are both important plasma membrane constituents in cells. It is now becoming evident that these two lipid classes affect each other's metabolism in the cell to an extent that was not previously appreciated. It is the aim of this review to present recent data in the literature concerning both molecular and membrane properties of the two lipid classes, how they interact in membranes (both biological and model), and the consequences their mutual interaction have on different functional and metabolic processes in cells and lipoproteins.
Collapse
Affiliation(s)
- J P Slotte
- Department of Biochemistry and Pharmacy, Abo Akademi University, Turku, Finland.
| |
Collapse
|
104
|
Abstract
Galactocerebroside and sulfatide, major galactosphingolipid components of oligodendrocyte plasma membranes and myelin, are first expressed at a critical point, when progenitors cease to proliferate and commence terminal differentiation. We showed previously that an antibody to galactocerebroside/sulfatide arrested terminal differentiation, suggesting a role for these galactolipids in oligodendrocyte differentiation. We have now investigated the differentiation of oligodendrocytes (1) in response to other anti-galactolipid antibodies, showing that anti-sulfatide O4 but not anti-galactocerebroside O1 blocks terminal differentiation, perhaps by mimicking an endogenous ligand, and (2) in a transgenic mouse unable to synthesize these lipids because of mutation of the gene for ceramide galactosyltransferase, a key enzyme for galactosphingolipid synthesis. We find that galactosyltransferase mRNA expression begins at the late progenitor [pro-oligodendroblast (Pro-OL)] stage of the lineage and that the late progenitor marker pro-oligodendroblast antigen is not synthesized in the absence of galactosyltransferase. The principal outcome of the elimination of these galactolipids is a two- to threefold enhancement in the number of terminally differentiated oligodendrocytes both in culture and in vivo. Because the general pattern of differentiation and the level of progenitor proliferation and survival appear to be unaltered in the mutant cultures, we conclude that the increased number of oligodendrocytes is caused by an increased rate and probability of differentiation. In agreement with these two experimental approaches, we present a model in which galactosphingolipids (in particular galactocerebroside and/or sulfatide) act as sensors and/or transmitters of environmental information, interacting with endogenous ligands to function as negative regulators of oligodendrocyte differentiation, monitoring the timely progress of Pro-OLs into terminally differentiating, myelin-producing oligodendrocytes.
Collapse
|
105
|
Sortino MA, Condorelli F, Vancheri C, Canonico PL. Tumor necrosis factor-alpha induces apoptosis in immortalized hypothalamic neurons: involvement of ceramide-generating pathways. Endocrinology 1999; 140:4841-9. [PMID: 10499544 DOI: 10.1210/endo.140.10.7062] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To investigate possible effects that may contribute, together with a direct action on neurohormone secretion, to the impairment of gonadal axis function during inflammation, we evaluated the effect of TNF alpha on the growth and viability of GT1-7 hypothalamic neurons and the intracellular transduction pathways involved in these effects. TNF alpha caused a reduction of cell number and an induction of apoptotic death. These effects were mimicked by cell-permeable analogs of ceramide and by neutral or acidic sphingomyelinase. Exposure to acidic sphingomyelinase induced a persistent (up to 48 h) reduction of cell growth and apoptosis, whereas the effect of neutral sphingomyelinase was time limited. The involvement of acidic sphingomyelinase in TNF alpha action was demonstrated by the partial prevention of ceramide generation, apoptosis, and reduced cell growth by the inhibitor of the acidic sphingomyelinase-generating pathway, D609, whereas the involvement of ceramide was proved by complete prevention of TNF alpha-induced effects by treatment with okadaic acid at concentrations inhibiting ceramide-dependent protein phosphatase. The present data indicate that TNF alpha, through activation of ceramide-generating pathways, is able to affect GT1-7 cell viability, suggesting an additional effect that may contribute to the global action of this cytokine on neuroendocrine activities.
Collapse
Affiliation(s)
- M A Sortino
- Institute of Pharmacology, University of Catania School of Medicine, Italy.
| | | | | | | |
Collapse
|
106
|
Hwang D, Rhee SH. Receptor-mediated signaling pathways: potential targets of modulation by dietary fatty acids. Am J Clin Nutr 1999; 70:545-56. [PMID: 10500025 DOI: 10.1093/ajcn/70.4.545] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Extracellular signals are transmitted to intracellular targets through many signal-transduction pathways. Each signaling pathway is composed of a network of interacting signaling molecules that regulate diverse cellular responses. A modulation of the functional activities of these signaling molecules as a result of altered nutritional status could lead to qualitative and quantitative changes in cellular responses to extracellular signals. Growing evidence now suggests that fatty acids can directly and indirectly modulate signaling pathways at multiple levels. Elucidating the mechanism of this modulation could help us to understand how different types of dietary fat modify the risks of many chronic diseases.
Collapse
Affiliation(s)
- D Hwang
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge 70808, USA.
| | | |
Collapse
|
107
|
Kristal BS, Brown AM. Apoptogenic ganglioside GD3 directly induces the mitochondrial permeability transition. J Biol Chem 1999; 274:23169-75. [PMID: 10438487 DOI: 10.1074/jbc.274.33.23169] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Early events in apoptotic cascades initiated by ceramides or by activation of the surface receptor CD95 (Fas/APO-1) include the formation of ganglioside GD3. GD3 appears to be both necessary and sufficient to propagate this lipid-mediated apoptotic pathway. Later events common to many apoptotic pathways include induction of the mitochondrial permeability transition (PT) and cytochrome c release, which in turn triggers downstream caspases and cell death. The links between GD3 formation and downstream stages of apoptosis are unknown. We report that ganglioside GD3 directly induces the PT in isolated rat liver mitochondria at 30-100 microM in the presence of exogenous substrate (succinate) and at approximately 3 microM in the absence of exogenous substrate. In contrast, other gangliosides tested (e.g. GM1) have only weak stimulatory effects in the presence of succinate and protect against PT induction in the absence of respiratory substrates. GD3-mediated induction of PT was antagonized by known PT inhibitors, namely cyclosporin A, ADP, trifluoperazine, and Mg(2+). GD3 induced PT even in the presence of submicromolar Ca(2+); GD3 is therefore the first biological PT inducer identified that does not require elevated Ca(2+). Exposure to GD3 also led to mitochondrial cytochrome c release. In contrast, C(2)-ceramide, which can initiate the lipid-mediated apoptotic cascade in susceptible cells, failed to either induce PT or release cytochrome c. These observations suggest that GD3 propagates apoptosis by inducing the PT and cytochrome c release. This model provides a mechanistic link between the earlier and later stages of CD95-induced/ceramide-mediated apoptosis.
Collapse
Affiliation(s)
- B S Kristal
- Dementia Research Service, Burke Medical Research Institute, White Plains, New York 10605, USA
| | | |
Collapse
|
108
|
Zager RA, Sacks BM, Burkhart KM, Williams AC. Plasma membrane phospholipid integrity and orientation during hypoxic and toxic proximal tubular attack. Kidney Int 1999; 56:104-17. [PMID: 10411684 DOI: 10.1046/j.1523-1755.1999.00533.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Acute cell injury can activate intracellular phospholipase A2 (PLA2) and can inhibit plasma membrane aminophospholipid translocase(s). The latter maintains inner/outer plasma membrane phospholipid (PL) asymmetry. The mechanistic importance of PLA2-mediated PL breakdown and possible PL redistribution ("flip flop") to lethal tubule injury has not been well defined. This study was performed to help clarify these issues. METHODS Proximal tubule segments (PTS) from normal CD-1 mice were subjected to either 30 minutes of hypoxia, Ca2+ ionophore (50 microM A23187), or oxidant attack (50 microM Fe). Lethal cell injury [the percentage of lactate dehydrogenase (LDH) release], plasma membrane PL expression [two-dimensional thin layer chromatography (TLC)], and free fatty acid (FFA) levels were then assessed. "Flip flop" was gauged by preferential decrements in phosphatidylserine (PS) versus phosphatidylcholine (PC; PS/PC ratios) in response to extracellular (Naja) PLA2 exposure. RESULTS Hypoxia induced approximately 60% LDH release, but no PL losses were observed. FFA increments suggested, at most 3% or less PL hydrolysis. Naja PLA2 reduced PLs in hypoxic tubules, but paradoxically, mild cytoprotection resulted. In contrast to hypoxia, Ca2+ ionophore and Fe each induced significant PL losses (6 to 15%) despite minimal FFA accumulation or cell death (26 to 27% LDH release). Arachidonic acid markedly inhibited PLA2 activity, potentially explaining an inverse correlation (r = -0.91) between tubule FFA accumulation and PL decrements. No evidence for plasma membrane "flip flop" was observed. In vivo ischemia reperfusion and oxidant injury (myohemoglobinuria) induced 0 and 24% cortical PL depletion, respectively, validating these in vitro data. CONCLUSIONS (a) Plasma membrane PLs are well preserved during acute hypoxic/ischemic injury, possibly because FFA accumulation (caused by mitochondrial inhibition) creates a negative feedback loop, inhibiting intracellular PLA2. (b) Exogenous PLA2 induces PL losses during hypoxia, but decreased cell injury can result. Together these findings suggest that PL loss may not be essential to hypoxic cell death. (c) Oxidant/Ca2+ overload injury induces early PL losses, perhaps facilitated by ongoing mitochondrial FFA metabolism, and (d) membrane "flip flop" does not appear to be an immediate mediator of acute necrotic tubular cell death.
Collapse
Affiliation(s)
- R A Zager
- The Fred Hutchinson Cancer Research Center, University of Washington, Seattle 98109, USA.
| | | | | | | |
Collapse
|
109
|
Tsugane K, Tamiya-Koizumi K, Nagino M, Nimura Y, Yoshida S. A possible role of nuclear ceramide and sphingosine in hepatocyte apoptosis in rat liver. J Hepatol 1999; 31:8-17. [PMID: 10424278 DOI: 10.1016/s0168-8278(99)80158-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
BACKGROUND/AIMS Portal vein branch ligation induces apoptosis of hepatocytes in the ligated lobes in rat liver. Sphingomyelin degradation was studied during the process to evaluate its possible involvement in apoptosis in vivo. METHODS DNA scissions were detected by the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) and an agarose gel electrophoresis of DNA. Using both ligated and non-ligated lobes, we measured activities of sphingomyelin degradation enzymes and contents of their products in purified nuclei and plasma membrane. RESULTS DNA fragmentation was detectable in the ligated lobes at 90 min after the portal vein branch ligation by gel electrophoresis. At 15 h after the ligation, 27% of hepatocytes became TUNEL-positive. Prior to the onset of apoptosis, the activity of neutral sphingomyelinase increased in the nuclei of hepatocytes in ligated lobes (30 min after the ligation). The increase in sphingomyelinase paralleled its reaction product, ceramide. This was followed by the elevation of ceramidase activity in nuclei (60 min after the ligation) in association with an increase of its reaction product, sphingosine. Activities of these two enzymes and their products increased for at least 90 min. These changes were not observed in nuclei of the non-ligated lobes, or in the plasma membranes from either ligated or non-ligated lobes. CONCLUSIONS These results, specific to the liver where apoptosis is being generated, suggest that nuclear sphingomyelin breakdown with an accumulation of ceramide and/or sphingosine in nuclei may induce the apoptosis of hepatocytes in vivo.
Collapse
Affiliation(s)
- K Tsugane
- First Department of Surgery, Research Institute for Disease Mechanism and Control, Nagoya University School of Medicine, Japan
| | | | | | | | | |
Collapse
|
110
|
Larochette N, Decaudin D, Jacotot E, Brenner C, Marzo I, Susin SA, Zamzami N, Xie Z, Reed J, Kroemer G. Arsenite induces apoptosis via a direct effect on the mitochondrial permeability transition pore. Exp Cell Res 1999; 249:413-21. [PMID: 10366441 DOI: 10.1006/excr.1999.4519] [Citation(s) in RCA: 220] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The molecular mode of action of arsenic, a therapeutic agent employed in the treatment of acute promyelocytic leukemia, has been elusive. Here we provide evidence that arsenic compounds may act on mitochondria to induce apoptosis. Arsenite induces apoptosis accompanied by a loss of the mitochondrial transmembrane potential (Delta Psim). Inhibition of caspases prevents the arsenite-induced nuclear DNA loss, but has no effect on the Delta Psim dissipation and cytolysis induced by arsenite. In contrast, Bcl-2 expression induced by gene transfer prevents all hallmarks of arsenite-induced cell death, including the Delta Psim collapse. PK11195, a ligand of the mitochondrial benzodiazepine receptor, neutralizes this Bcl-2 effect. Mitochondria are required in a cell-free system to mediate arsenite-induced nuclear apoptosis. Arsenite causes the release of an apoptosis-inducing factor (AIF) from the mitochondrial intermembrane space. This effect is prevented by the permeability transition (PT) pore inhibitor cyclosporin A, as well as by Bcl-2, which is known to function as an endogenous PT pore antagonist. Arsenite also opens the purified, reconstituted PT pore in vitro in a cyclosporin A- and Bcl-2-inhibitible fashion. Altogether these data suggest that arsenite can induce apoptosis via a direct effect on the mitochondrial PT pore.
Collapse
Affiliation(s)
- N Larochette
- Centre National de la Recherche Scientifique, Unité Propre de Recherche 420, 19 rue Guy Môquet, Villejuif, F-94801, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Ko YG, Lee JS, Kang YS, Ahn JH, Seo JS. TNF-α-Mediated Apoptosis Is Initiated in Caveolae-Like Domains. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.12.7217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
Caveolae-like domains (CLDs) have been hypothesized to mediate apoptosis, since they contain sphingomyelin and initiate the conversion of sphingomyelin to ceramide. To address whether CLDs are directly involved in apoptosis, CLDs from U937 cells were isolated, taking advantage of their detergent insolubility and low density. The CLDs contained alkaline phosphatase as well as many signaling molecules, including Fyn, protein kinase Cα, Raf-1, phospholipase Cγ1, and tyrosine phosphoproteins. Immunoblotting and immunofluorescent data showed that TNF receptor 1 colocalized with CD36 in CLDs, suggesting that TNF-α-initiated apoptosis occurs in CLDs. When cells were incubated with lipoprotein-deficient medium, the cholesterol concentration was greatly decreased in CLDs but not in other fractions, implying that the CLDs were selectively disrupted. In the CLD-disrupted cells, the surface expression of TNF receptor 1 and CD36 was significantly reduced. Analysis of cellular morphology, percent DNA fragmentation, DNA laddering, and caspase-3 activity showed that TNF-α-mediated apoptosis was blocked in CLD-disrupted cells, whereas anti-Fas-mediated apoptosis was not. Since Fas was not found in CLDs of Jurkat cells, apoptosis by Fas ligation might not require CLDs. Taken together, these data strongly imply that TNF-α-mediated apoptosis is initiated in CLDs.
Collapse
Affiliation(s)
- Young-Gyu Ko
- Ilchun Molecular Medicine Institute Medical Research Center, Cancer Research Center, and Department of Biochemistry, Seoul National University College of Medicine, Seoul, Korea
| | - Jae-Seon Lee
- Ilchun Molecular Medicine Institute Medical Research Center, Cancer Research Center, and Department of Biochemistry, Seoul National University College of Medicine, Seoul, Korea
| | - Young-Sun Kang
- Ilchun Molecular Medicine Institute Medical Research Center, Cancer Research Center, and Department of Biochemistry, Seoul National University College of Medicine, Seoul, Korea
| | - Jung-Hyuck Ahn
- Ilchun Molecular Medicine Institute Medical Research Center, Cancer Research Center, and Department of Biochemistry, Seoul National University College of Medicine, Seoul, Korea
| | - Jeong-Sun Seo
- Ilchun Molecular Medicine Institute Medical Research Center, Cancer Research Center, and Department of Biochemistry, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
112
|
Abstract
Ceramides play an important role mediating different cell responses such as proliferation, differentiation, growth arrest and apoptosis. They are released upon sphingomyelin hydrolysis which occurs after triggering of a number of cell surface receptors including CD95. Ceramide generation also regulates glycosphingolipid and ganglioside metabolism. In particular, ganglioside GD3 biosynthesis represents an important event for the progression of apoptotic signals generated by CD95 and mediated by ceramide in hematopoietic cells.
Collapse
Affiliation(s)
- F Malisan
- Department of Experimental Medicine and Biochemical Sciences, University of Rome Tor Vergata, Italy
| | | |
Collapse
|
113
|
|
114
|
Myrick D, Blackinton D, Klostergaard J, Kouttab N, Maizel A, Wanebo H, Mehta S. Paclitaxel-induced apoptosis in Jurkat, a leukemic T cell line, is enhanced by ceramide. Leuk Res 1999; 23:569-78. [PMID: 10374850 DOI: 10.1016/s0145-2126(99)00048-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We hypothesized that the lipid second messenger, ceramide, and microtubule-directed chemotherapeutic agents might engage converging pathways in inducing apoptosis. Our studies demonstrated that simultaneous treatment of Jurkat cells with paclitaxel and ceramide enhanced paclitaxel-induced cell growth inhibition. Cell cycle analysis indicated a significant increase in the hypodiploid population over that observed with paclitaxel treatment alone. Morphologic evaluation and a TUNEL assay confirmed a dramatic increase in apoptosis in Jurkat cells treated with the combination of these two agents. This is the first demonstration that paclitaxel and ceramide interact in a supra-additive manner to decrease leukemic T-cell growth, suggesting a possible application of paclitaxel and ceramide in combination therapy.
Collapse
Affiliation(s)
- D Myrick
- Department of Pathobiology, Brown University, Providence, RI, USA
| | | | | | | | | | | | | |
Collapse
|
115
|
Dallaporta B, Marchetti P, de Pablo MA, Maisse C, Duc HT, Métivier D, Zamzami N, Geuskens M, Kroemer G. Plasma Membrane Potential in Thymocyte Apoptosis. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.11.6534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Apoptosis is accompanied by major changes in ion compartmentalization and transmembrane potentials. Thymocyte apoptosis is characterized by an early dissipation of the mitochondrial transmembrane potential, with transient mitochondrial swelling and a subsequent loss of plasma membrane potential (ΔΨp) related to the loss of cytosolic K+, cellular shrinkage, and DNA fragmentation. Thus, a gross perturbation of ΔΨp occurs at the postmitochondrial stage of apoptosis. Unexpectedly, we found that blockade of plasma membrane K+ channels by tetrapentylammonium (TPA), which leads to a ΔΨp collapse, can prevent the thymocyte apoptosis induced by exposure to the glucocorticoid receptor agonist dexamethasone, the topoisomerase inhibitor etoposide, γ-irradiation, or ceramide. The TPA-mediated protective effect extends to all features of apoptosis, including dissipation of the mitochondrial transmembrane potential, loss of cytosolic K+, phosphatidylserine exposure on the cell surface, chromatin condensation, as well as caspase and endonuclease activation. In strict contrast, TPA is an ineffective inhibitor when cell death is induced by the potassium ionophore valinomycin, the specific mitochondrial benzodiazepine ligand PK11195, or by primary caspase activation by Fas/CD95 cross-linking. These results underline the importance of K+ channels for the regulation of some but not all pathways leading to thymocyte apoptosis.
Collapse
Affiliation(s)
- Bruno Dallaporta
- *Centre National de Recherche Scientifique, Unité Propre de Recherche 420, Villejuif, France
| | - Philippe Marchetti
- *Centre National de Recherche Scientifique, Unité Propre de Recherche 420, Villejuif, France
- †Institut National de la Santé et de la Recherche Médicale, Unit 459, Lille, France
| | - Manuel A. de Pablo
- *Centre National de Recherche Scientifique, Unité Propre de Recherche 420, Villejuif, France
| | - Carine Maisse
- *Centre National de Recherche Scientifique, Unité Propre de Recherche 420, Villejuif, France
| | - Huynh-Thien Duc
- ‡Centre Hépatobiliaire de l’Hôpital Paul Brousse, Villejuif, France; and
| | - Didier Métivier
- *Centre National de Recherche Scientifique, Unité Propre de Recherche 420, Villejuif, France
| | - Naoufal Zamzami
- *Centre National de Recherche Scientifique, Unité Propre de Recherche 420, Villejuif, France
| | - Maurice Geuskens
- §Department of Molecular Biology, Université Libre de Bruxelles, Rhode-Saint-Genèse, Belgium
| | - Guido Kroemer
- *Centre National de Recherche Scientifique, Unité Propre de Recherche 420, Villejuif, France
| |
Collapse
|
116
|
Condorelli F, Canonico PL, Sortino MA. Distinct effects of ceramide-generating pathways in prostate adenocarcinoma cells. Br J Pharmacol 1999; 127:75-84. [PMID: 10369458 PMCID: PMC1565994 DOI: 10.1038/sj.bjp.0702507] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Ceramide, generated by the hydrolysis of sphingomyelin, mediates the actions of several cytokines such as tumour necrosis factor-alpha (TNF-alpha) interferon-gamma and interleukin-1beta (IL-1beta), including their inhibitory effect on tumour proliferation. We have evaluated the role of ceramide in the proliferation of prostate cancer by using the human prostate adenocarcinoma LNCaP cell line. Treatment of LNCaP cells with neutral or acidic sphingomyelinase or addition of C8- or C2-ceramide, two cell permeable analogues of endogenous ceramide, induced a profound inhibition of cell proliferation. This effect appeared after 24 h, was still present after 72 h of exposure to the drugs and exhibited concentration-dependency (10-200 and 5-200 mU ml(-1) for neutral and acidic sphingomyelinase, respectively, and 1-25 microM for C8-ceramide). The inhibitory effect on cell growth caused by neutral sphingomyelinase and ceramides was rapidly reversible as LNCaP cells rapidly regained their previous proliferation rate following withdrawal of the treatment. IL-1beta produced profound inhibition of LNCaP cell proliferation and caused enhanced ceramide formation. No clear features of apoptotic cell death were detectable by either oligonucleosome formation, cytofluorimetric analysis or nuclear staining following exposure of LNCaP cells to neutral sphingomyelinase, ceramide or IL-1beta. However, clear changes in LNCaP cell cycle distribution were detectable following these treatments. In contrast, treatment with acidic sphingomyelinase or TNF-alpha induced apoptotic death detectable by flow cytometric analysis and bisbenzimide staining. In conclusion, our data demonstrate that preferential activation of distinct enzymatic pathways by cytokines may lead to different outcomes in the viability of LNCaP cells.
Collapse
Affiliation(s)
- Fabrizio Condorelli
- Institute of Pharmacology, University of Catania School of Medicine, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Pier Luigi Canonico
- Department of Internal Medicine, Section of Pharmacology, University of Pavia, Italy
| | - Maria Angela Sortino
- Institute of Pharmacology, University of Catania School of Medicine, Viale Andrea Doria 6, 95125 Catania, Italy
- Author for correspondence:
| |
Collapse
|
117
|
Galetic I, Andjelkovic M, Meier R, Brodbeck D, Park J, Hemmings BA. Mechanism of protein kinase B activation by insulin/insulin-like growth factor-1 revealed by specific inhibitors of phosphoinositide 3-kinase--significance for diabetes and cancer. Pharmacol Ther 1999; 82:409-25. [PMID: 10454216 DOI: 10.1016/s0163-7258(98)00071-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Protein kinase B (PKB) is a member of the second messenger subfamily of protein kinases. The three isoforms of PKB identified have an amino-terminal pleckstrin homology domain, a central kinase domain, and a carboxy-terminal regulatory domain. PKB is the major downstream target of receptor tyrosine kinases that signal via the phosphoinositide (PI) 3-kinase. The crucial role of lipid second messengers in PKB activation has been dissected through the use of the PI 3-kinase-specific inhibitors wortmannin and LY294002. Receptor-activated PI 3-kinase synthesises the lipid second messenger PI-3,4,5-trisphosphate, leading to the recruitment of PKB to the membrane. Membrane attachment of PKB is mediated by its pleckstrin homology domain binding to PI-3,4,5-trisphosphate or PI-3,4-bisphosphate with high affinity. Activation of PKB alpha and beta is then achieved at the plasma membrane by phosphorylation of Thr308/309 in the A-loop of the kinase domain and Ser473/474 in the carboxy-terminal regulatory region, respectively. The upstream kinase that phosphorylates PKB on Thr308, termed PI-dependent protein kinase-1, has been identified and extensively characterised. A candidate for the Ser473/474 kinase, termed the integrin-linked kinase, has been identified recently. Activated PKB is implicated in glucose metabolism, transcriptional control, and in the regulation of apoptosis in many different cell types. Stimulation of PKB activity protects cells from apoptosis by phosphorylation and inactivation of the pro-apoptotic protein BAD. These results could explain why PKB is overexpressed in some ovarian, breast, and pancreatic carcinomas.
Collapse
Affiliation(s)
- I Galetic
- Friedrich Miescher Institute, Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
118
|
Budnik LT, Jähner D, Mukhopadhyay AK. Inhibitory effects of TNF alpha on mouse tumor Leydig cells: possible role of ceramide in the mechanism of action. Mol Cell Endocrinol 1999; 150:39-46. [PMID: 10411298 DOI: 10.1016/s0303-7207(99)00029-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
TNF alpha is reported to inhibit steroidogenesis in mouse Leydig cells. In primary cells this inhibition resulted mainly from a reduced expression of Cyp-17 gene. Mouse tumor Leydig cells, MA-10, being free of macrophages and lacking Cyp-17, appear to be an excellent model to investigate those effects of TNF alpha which are independent of either macrophages or Cyp-17. We report here that TNF alpha receptors are expressed in this cell line. Treatment of the cells with TNF alpha had no effect on basal progesterone production. In contrast, LH-, 8Br-cAMP and forskolin-stimulated progesterone production was inhibited by TNF alpha. Neither enzymes involved in the conversion of cholesterol to pregnenolone nor hormone-induced hydrolysis of [14C] cholesterol-ester were affected by TNF alpha. The hormone-induced expression of StAR protein was diminished in mitochondrial fractions from TNF alpha-treated cells. Also cell permeable ceramides markedly inhibited StAR protein levels. We show further that TNF alpha was able to induce [14C]-ceramide accumulation in MA-10 cells and suggest that this sphingolipid may be considered as a transmitter of TNF alpha signals to the StAR protein.
Collapse
Affiliation(s)
- L T Budnik
- Institute for Hormone and Fertility Research, University of Hamburg, Germany.
| | | | | |
Collapse
|
119
|
Ravagnan L, Marzo I, Costantini P, Susin SA, Zamzami N, Petit PX, Hirsch F, Goulbern M, Poupon MF, Miccoli L, Xie Z, Reed JC, Kroemer G. Lonidamine triggers apoptosis via a direct, Bcl-2-inhibited effect on the mitochondrial permeability transition pore. Oncogene 1999; 18:2537-46. [PMID: 10353597 DOI: 10.1038/sj.onc.1202625] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The molecular mode of action of lonidamine, a therapeutic agent employed in cancer chemotherapy, has been elusive. Here we provide evidence that lonidamine (LND) acts on mitochondria to induce apoptosis. LND provokes a disruption of the mitochondrial transmembrane potential which precedes signs of nuclear apoptosis and cytolysis. The mitochondrial and cytocidal effects of LND are not prevented by inhibitors of caspases or of mRNA or protein synthesis. However, they are prevented by transfection-enforced overexpression of Bcl-2, an oncoprotein which inhibits apoptosis by stabilizing the mitochondrial membrane barrier function. Accordingly, the cell death-inducing effect of LND is amplified by simultaneous addition of PK11195, an isoquinoline ligand of the peripheral benzodiazepine receptor which antagonizes the cytoprotective effect of Bcl-2. When added to isolated nuclei, LND fails to provoke DNA degradation unless mitochondria are added simultaneously. In isolated mitochondria, LND causes the dissipation of the mitochondrial inner transmembrane potential and the release of apoptogenic factors capable of inducing nuclear apoptosis in vitro. Thus the mitochondrion is the subcellular target of LND. All effects of LND on isolated mitochondria are counteracted by cyclosporin A, an inhibitor of the mitochondrial PT pore. We therefore tested the effect of LND on the purified PT pore reconstituted into liposomes. LND permeabilizes liposomal membranes containing the PT pore. This effect is prevented by addition of recombinant Bcl-2 protein but not by a mutant Bcl-2 protein that has lost its apoptosis-inhibitory function. Altogether these data indicate that LND represents a novel type of anti-cancer agent which induces apoptosis via a direct effect on the mitochondrial PT pore.
Collapse
Affiliation(s)
- L Ravagnan
- Centre National de la Recherche Scientifique, Unité Propre de Recherche 420, Villejuif, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Levade T, Jaffrézou JP. Signalling sphingomyelinases: which, where, how and why? BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1438:1-17. [PMID: 10216276 DOI: 10.1016/s1388-1981(99)00038-4] [Citation(s) in RCA: 249] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A major lipid signalling pathway in mammalian cells implicates the activation of sphingomyelinase (SMase), which upon cell stimulation hydrolyses the ubiquitous sphingophospholipid sphingomyelin to ceramide. This review summarizes our current knowledge on the nature and regulation of signalling SMase(s). Because of the controversy on the identity of this(these) phospholipase(s), the roles of various SMases in cell signalling are discussed. Special attention is also given to the subcellular site of action of signalling SMases and to the cellular factors that positively or negatively control their activity. These regulating agents include lipids (arachidonic acid, diacylglycerol and ceramide), kinases, proteases, glutathione and other proteins.
Collapse
Affiliation(s)
- T Levade
- INSERM Unit 466, Laboratoire de Biochimie, Maladies Métaboliques, Institut Louis Bugnard, Bât. L3, C.H.U. Rangueil, 1 Avenue Jean Poulhès, E 9910, Toulouse Cedex 4, France.
| | | |
Collapse
|
121
|
Törnquist K, Malm AM, Pasternack M, Kronqvist R, Björklund S, Tuominen R, Slotte JP. Tumor necrosis factor-alpha, sphingomyelinase, and ceramide inhibit store-operated calcium entry in thyroid FRTL-5 cells. J Biol Chem 1999; 274:9370-7. [PMID: 10092616 DOI: 10.1074/jbc.274.14.9370] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tumor necrosis factor alpha (TNF-alpha) is a potent inhibitor of proliferation in several cell types, including thyroid FRTL-5 cells. As intracellular free calcium ([Ca2+]i) is a major signal in activating proliferation, we investigated the effect of TNF-alpha on calcium fluxes in FRTL-5 cells. TNF-alpha per se did not modulate resting [Ca2+]i. However, preincubation (10 min) of the cells with 1-100 ng/ml TNF-alpha decreased the thapsigargin (Tg)-evoked store-operated calcium entry in a concentration-dependent manner. TNF-alpha did not inhibit the mobilization of sequestered calcium. To investigate whether the effect of TNF-alpha on calcium entry was mediated via the sphingomyelinase pathway, the cells were pretreated with sphingomyelinase (SMase) prior to stimulation with Tg. SMase inhibited the Tg-evoked calcium entry in a concentration-dependent manner. Furthermore, an inhibition of calcium entry was obtained after preincubation of the cells with the membrane-permeable C2-ceramide and C6-ceramide analogues. The inactive ceramides dihydro-C2 and dihydro-C6 showed only marginal effects. Neither SMase, C2-ceramide, nor C6-ceramide affected the release of sequestered calcium. C2- and C6-ceramide also decreased the ATP-evoked calcium entry, without affecting the release of sequestered calcium. The effect of TNF-alpha and SMase was inhibited by the kinase inhibitor staurosporin and by the protein kinase C (PKC) inhibitor calphostin C but not by down-regulation of PKC. However, we were unable to measure a significant activation of PKC using TNF-alpha or C6-ceramide. The effect of TNF-alpha was not mediated via activation of either c-Jun N-terminal kinase or p38 kinase. We were unable to detect an increase in the ceramide (or sphingosine) content of the cells after stimulation with TNF-alpha for up to 30 min. Thus, one mechanism of action of TNF-alpha, SMase, and ceramide on thyroid FRTL-5 cells is to inhibit calcium entry.
Collapse
Affiliation(s)
- K Törnquist
- Department of Biology, Abo Akademi University, BioCity, 20520 Turku, Finland.
| | | | | | | | | | | | | |
Collapse
|
122
|
Malisan F, Rippo MR, De Maria R, Testi R. Lipid and glycolipid mediators in CD95-induced apoptotic signaling. Results Probl Cell Differ 1999; 23:65-76. [PMID: 9950029 DOI: 10.1007/978-3-540-69184-6_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- F Malisan
- Department of Experimental Medicine and Biochemical Sciences, University of Rome Tor Vergata, Italy
| | | | | | | |
Collapse
|
123
|
Pajari AM, Häkkänen P, Duan RD, Mutanen M. Role of red meat and arachidonic acid in protein kinase C activation in rat colonic mucosa. Nutr Cancer 1999; 32:86-94. [PMID: 9919617 DOI: 10.1080/01635589809514724] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Two studies were conducted to investigate the role of meat and arachidonic acid in colonic signal transduction, particularly protein kinase C (PKC) activation. In Study 1, 26 male Wistar rats were fed a casein- or a beef-based diet for four weeks. PKC activity was measured from the proximal and distal colonic mucosa and diacylglycerol concentration from fecal samples. The beef diet significantly increased membrane PKC activity in the proximal and distal colon and cytosolic PKC in the distal colon. No differences were found in fecal diacylglycerol concentration for the rats maintained on the two diets. In Study 2, 57 male Wistar rats were divided into three dietary treatment groups: a control group, a group supplemented with arachidonic acid at 8 mg/day (an amount equivalent to that available from the beef diet in Study 1), and a group supplemented with fish oil at 166 mg/day. After a four-week supplementation period, 6 rats per group were used for colonic phospholipid fatty acid analysis and 13 rats per group were used for analysis of colonic prostaglandin E2 concentration, sphingomyelinase, and PKC activities. Supplementation of dietary arachidonic acid resulted in incorporation of arachidonic acid into colonic phosphatidylcholine, which was associated with an increase in mucosal prostaglandin E2 concentration compared with the fish oil group. However, arachidonate supplementation had no effect on sphingomyelinase or PKC activities. These data indicate that meat significantly increases colonic PKC activity, but this effect is probably not due to the arachidonic acid content of meat.
Collapse
Affiliation(s)
- A M Pajari
- Department of Applied Chemistry and Microbiology (Nutrition), University of Helsinki, Finland.
| | | | | | | |
Collapse
|
124
|
Liu YY, Han TY, Giuliano AE, Cabot MC. Expression of glucosylceramide synthase, converting ceramide to glucosylceramide, confers adriamycin resistance in human breast cancer cells. J Biol Chem 1999; 274:1140-6. [PMID: 9873062 DOI: 10.1074/jbc.274.2.1140] [Citation(s) in RCA: 210] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Multidrug-resistant cancer cells display elevated levels of glucosylceramide (Lavie, Y., Cao, H. T., Volner, A., Lucci, A., Han, T. Y., Geffen, V., Giuliano, A. E., and Cabot, M. C. (1997) J. Biol. Chem. 272, 1682-1687). In this study, we have introduced glucosylceramide synthase (GCS) into wild type MCF-7 breast cancer cells using a retroviral tetracycline-on expression system, and we developed a cell line, MCF-7/GCS. MCF-7/GCS cells expressed an 11-fold higher level of GCS activity compared with the parental cell line. Interestingly, the transfected cells demonstrated strong resistance to adriamycin and to ceramide, whereas both agents were highly cytotoxic to MCF-7 cells. The EC50 values of adriamycin and ceramide were 11-fold (p < 0.0005) and 5-fold (p < 0.005) higher, respectively, in MCF-7/GCS cells compared with MCF-7 cells. Ceramide resistance displayed by MCF-7/GCS cells closely paralleled the activity of expressed GCS with a correlation coefficient of 0.99. In turn, cellular resistance and GCS activity were dependent upon the concentration of the expression mediator doxycycline. Adriamycin resistance in MCF-7/GCS cells was related to the hyperglycosylation of ceramide and was not related to shifts in the levels of either P-glycoprotein or Bcl-2. This work demonstrates that overexpression of GCS, which catalyzes ceramide glycosylation, induces resistance to adriamycin and ceramide in MCF-7 breast cancer cells.
Collapse
Affiliation(s)
- Y Y Liu
- John Wayne Cancer Institute at Saint John's Health Center, Santa Monica, California 90404, USA
| | | | | | | |
Collapse
|
125
|
Abstract
Apoptosis is an area of intense scientific interest, which encompasses the study of and triggers mechanisms involved in mediating the cell biology of programmed cell death. A number of low molecular weight compounds have been used to inhibit or enhance this fundamental cellular process and so apoptosis has now become amenable to pharmacological manipulation. In this review Ross Kinloch, Mark Treherne, Mike Furness and Iradj Hajimohamadreza will focus on the current literature describing the pharmacology of apoptosis, with particular reference to the therapeutic potential that could arise from the development of pro- and anti-apoptotic drugs. The pivotal role of apoptosis in such diverse pathological processes as tumour growth, the immune response and neurodegeneration suggests that an understanding of how apoptosis can be regulated by drugs will become increasingly important to the pharmaceutical industry.
Collapse
Affiliation(s)
- R A Kinloch
- Department of Discovery Biology, Pfizer Central Research, Sandwich, UK
| | | | | | | |
Collapse
|
126
|
Escargueil-Blanc I, Andrieu-Abadie N, Caspar-Bauguil S, Brossmer R, Levade T, Nègre-Salvayre A, Salvayre R. Apoptosis and activation of the sphingomyelin-ceramide pathway induced by oxidized low density lipoproteins are not causally related in ECV-304 endothelial cells. J Biol Chem 1998; 273:27389-95. [PMID: 9765267 DOI: 10.1074/jbc.273.42.27389] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Oxidized low density lipoproteins (oxLDL) are thought to play a central role in the development of atherosclerosis. Toxic concentrations of mildly oxidized LDL elicit massive apoptosis of endothelial cells (Escargueil-Blanc, I., Meilhac, O., Pieraggi, M. T. , Arnal J. F., Salvayre, R., Nègre-Salvayre, A. (1997) Arterioscler. Thromb. Vasc. Biol. 17, 331-339). Since the lipid mediator ceramide emerged as a potent inducer of apoptosis, we aimed at investigating the occurrence of ceramide formation and its potential role in oxLDL-induced apoptosis. In ECV-304 endothelial cells, toxic concentrations of oxLDL triggered an early activation of the sphingomyelin-ceramide pathway, as shown by both sphingomyelin hydrolysis and ceramide formation. N-Tosyl-L-phenylalanyl chloromethyl ketone (TPCK) and dichloroisocoumarin (DCIC), two serine-protease inhibitors (serpins), blocked the oxLDL-induced ceramide generation but, unexpectedly, did not inhibit the oxLDL-induced apoptosis. Conversely, treatment of endothelial cells by bacterial sphingomyelinase, under conditions effectively generating ceramide, did not induce apoptosis. In contrast, short-chain permeant C2- and C6-ceramides elicited apoptosis of ECV-304. However, the mechanisms of apoptosis triggered by C2-ceramide and by oxLDL were (at least in part) different, because C2-ceramide-induced apoptosis was calcium-independent, whereas oxLDL-induced apoptosis was calcium-dependent. In conclusion, it is suggested that oxLDL-induced apoptosis is calcium-dependent but independent of the activation of the sphingomyelin-ceramide pathway and that the toxic effect of short chain permeant ceramides is calcium-independent and does not mimic the effect of natural ceramides induced by oxLDL.
Collapse
Affiliation(s)
- I Escargueil-Blanc
- INSERM U-466 and the Biochemistry Department, Institut Louis Bugnard, CHU Rangueil, 31054 Toulouse Cedex, France
| | | | | | | | | | | | | |
Collapse
|
127
|
Modha J, Redman CA, Thornhill JA, Kusel JR. Schistosomes: Unanswered Questions on the Basic Biology of the Host–Parasite Relationship. ACTA ACUST UNITED AC 1998; 14:396-401. [PMID: 17040829 DOI: 10.1016/s0169-4758(98)01321-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
As is the case in many parasite infections, research into schistosomiasis has not yet yielded a vaccine and, although chemotherapy with praziquantel is very effective, the mechanism of action of this drug is unknown. John Kusel and colleagues here suggest that an understanding of basic biological phenomena, such as the role of Ca(2+) in skin penetration and the function of the adult excretory system, might lead to important breakthroughs. Other crucial questions are also addressed, with the hope of stimulating debate. They invite suggestions and correspondence from others working in related fields.
Collapse
Affiliation(s)
- J Modha
- Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, the Davidson Building, University of Glasgow, Glasgow, UK G12 8QQ
| | | | | | | |
Collapse
|
128
|
Abstract
Sphingolipids and their metabolic products are now known to have second-messenger functions in a variety of cellular signaling pathways. Lactosylceramide (LacCer), a glycosphingolipid (GSL) present in vascular cells such as endothelial cells, smooth muscle cells, macrophages, neutrophils, platelets, and monocytes, contributes to atherosclerosis. Large amounts of LacCer accumulate in fatty streaks, intimal plaque, and calcified intimal plaque, along with oxidized low density lipoproteins (Ox-LDLs), growth factors, and proinflammatory cytokines. A possible role for LacCer in vascular cell biology was suggested when this GSL was found to stimulate the proliferation in vitro of aortic smooth muscle cells (ASMCs). A further link of LacCer in atherosclerosis was uncovered by the finding that Ox-LDLs stimulated specifically the biosynthesis of LacCer. Ox-LDL-stimulated endogenous synthesis of LacCer by activation of UDP-Gal:GlcCer,beta1-4galtransferase (GalT-2) is an early step in this signaling pathway. In turn, LacCer serves as a lipid second messenger that orchestrates a signal transduction pathway, ultimately leading to cell proliferation. This signaling pathway includes LacCer-mediated activation of NADPH oxidase that produces superoxide. Such superoxide molecules stimulate the GTP loading of p21(ras). Subsequently, the kinase cascade (Raf-1, Mek2, and p44MAPK [mitogen-activated protein kinase]) is activated. The phosphorylated form of p44MAPK translocates from the cytoplasm to the nucleus and engages in c-fos expression, proliferating cell nuclear antigen (PCNA) such as cyclin activation, and cell proliferation takes place. Interestingly, D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (D-PDMP), an inhibitor of GalT-2, can abrogate the Ox-LDL-mediated activation of GalT-2, the signal kinase cascade noted above, as well as cell proliferation. Additional studies have revealed that LacCer mediates the tumor necrosis factor-alpha (TNF-alpha)-induced nuclear factor-kappaB expression and intercellular adhesion molecule (ICAM-1) expression in vascular endothelial cells via the redox-dependent transcriptional pathway. LacCer also stimulates the expression of CD11/CD8, or Mac-1, on the surface of human neutrophils. Collectively, this phenomenon may contribute to the adhesion of neutrophils or monocytes to the endothelial cell surface and thus initiate the process of atherosclerosis. In addition, the LacCer-mediated proliferation of ASMCs may contribute to the progression of atherosclerosis. On the other hand, programmed cell death (apoptosis) by proinflammatory cytokines such as TNF-alpha, interleukin-1, and high concentrations of Ox-LDL occur via activation of a cell membrane-associated neutral sphingomyelinase (N-SMase). N-SMase hydrolyzes sphingomyelin into ceramide and phosphocholine. In turn, ceramide or a homologue serves as an important stress-signaling molecule. Interestingly, an antibody against N-SMase can abrogate Ox-LDL- and TNF-alpha-induced apoptosis and therefore may be useful for in vivo studies of apoptosis in experimental animals. Because plaque stability is an integral aspect of atherosclerosis management, activation of N-SMase and subsequent apoptosis may be vital events in the onset of plaque rupture, stroke, or heart failure. Interestingly, in human liver cells, N-SMase action mediates the TNF-alpha-induced maturation of the sterol regulatory-element binding protein. Moreover, a cell-permeable ceramide can reconstitute the phenomenon above in a sterol-independent fashion. Such findings may provide new avenues for therapy for patients with atherosclerosis. The findings described here indicate an important role for sphingolipids in vascular biology and provide an exciting opportunity for further research in vascular disease and atherosclerosis.
Collapse
Affiliation(s)
- S Chatterjee
- Lipid Research Atherosclerosis Division, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287-3654, USA.
| |
Collapse
|
129
|
De Luca A, Pierno S, Liantonio A, Camerino C, Conte Camerino D. Phosphorylation and IGF-1-mediated dephosphorylation pathways control the activity and the pharmacological properties of skeletal muscle chloride channels. Br J Pharmacol 1998; 125:477-82. [PMID: 9806330 PMCID: PMC1565652 DOI: 10.1038/sj.bjp.0702107] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. In the present study we tested the hypothesis that insulin-like growth factor-1 (IGF-1) modulates resting chloride conductance (G(Cl)) of rat skeletal muscle by activating a phosphatase and that the chloride channel, based on the activity of phosphorylating-dephosphorylating pathways, has different sensitivity to specific ligands, such as the enantiomers of 2-(p-chlorophenoxy) propionic acid (CPP). 2. For this purpose G(Cl) in EDL muscle isolated from adult rat was first lowered by treatment with 5 nM 4-beta-phorbol 12,13 dibutyrate (4-beta-PDB), presumably activating protein kinase C (PKC). The effects of IGF-1 and of the enantiomers of CPP on G(Cl) were then tested. 3. IGF-1 (3.3 nM) had no effect of G(Cl) on EDL muscle fibres in normal physiological solution, whereas it completely counteracted the 30% decrease of G(Cl) induced by 4-beta-PDB. No effects of IGF-1 were observed on G(Cl) lowered by the phosphatase inhibitor okadaic acid (0.25 microM). 4. Ceramide, reported to activate on okadaic acid-sensitive phosphatase, mimicked the effects of IGF-1. In fact, N-acetyl-sphingosine (2.5-5 microM), not very effective in control conditions, increased the G(Cl) lowered by the phorbol ester, but not the G(Cl) lowered by okadaic acid. 5. In the presence of 4-beta-PDB, G(Cl) was differently affected by the enantiomers of CPP. The S(-)-CPP was remarkably less potent in producing the concentration-dependent reduction of G(Cl), whereas the R(+)-CPP caused an increase of G(Cl) at all the concentrations tested. 6. In conclusion, the PKC-induced lowering of G(Cl) is counteracted by IGF-1 through an okadaic acid sensitive phosphatase, and this effect can have therapeutic relevance in situations characterized by excessive channel phosphorylation. In turn the phosphorylation state of the channel can modulate the effects and the therapeutic potential of direct channel ligands.
Collapse
Affiliation(s)
- A De Luca
- Dipartimento Farmacobiologico, Facoltà di Farmacia, Università di Bari, Italy
| | | | | | | | | |
Collapse
|
130
|
Abstract
During recent years, ceramide has received a lot of attention as a possible mediator of the cellular responses to a variety of apoptotic stimuli. In a manner analogous to generation of its sibling diacylglycerol, ceramide is generated by a phospholipase-C-type reaction from its lipid precursor sphingomyelin. Two observations led to the proposal that ceramide plays a role in apoptosis: (1) treatment of cells with tumor necrosis factor or other inducers of apoptosis leads to activation of sphingomyelinases and to an increase in cellular ceramide levels; (2) ectopic generation or administration of ceramide can mimic apoptotic cell death. Recently, several observations have challenged the notion that ceramide is an important cell-death mediator and have prompted a re-evaluation of previously published results.
Collapse
Affiliation(s)
- K Hofmann
- MEMOREC Stoffel GmbH, Köln, Germany.
| | | |
Collapse
|
131
|
Gamen S, Hanson DA, Kaspar A, Naval J, Krensky AM, Anel A. Granulysin-Induced Apoptosis. I. Involvement of at Least Two Distinct Pathways. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.4.1758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Granulysin is a newly described cytolytic molecule released by CTL and NK cells via granule-mediated exocytosis. It shares homology with saposin-like proteins, including NK-lysin and amoebapores, and has been implicated in the lysis of tumor cells and microbes. In the present study we show that recombinant granulysin alone induces apoptosis of Jurkat cells. This apoptosis is associated with a sixfold increase in the ceramide/sphingomyelin ratio, implicating the activation of sphingomyelinases. Granulysin- and ceramide-induced apoptosis are similar in that they both are only minimally inhibited by the more selective cysteine protease p32 (caspase 3)-like caspase inhibitor N-acetyl-Asp-Glu-Val-Asp aldehyde, while they are significantly inhibited by the more general caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (Z-VAD-fmk). Nevertheless, while Z-VAD-fmk almost completely inhibits ceramide-induced apoptosis, a Z-VAD-fmk-resistant component was observed using granulysin. Granulysin also causes apoptosis in cells depleted of sphingomyelin by prolonged treatment with the ceramide synthase inhibitor fumonisin B1. These data indicate that granulysin induces target cell death by both ceramide- and caspase-dependent and -independent pathways.
Collapse
Affiliation(s)
- Susana Gamen
- *Departamento de Bioquimica y Biologia Molecular y Cellular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain; and
| | - Dennis A. Hanson
- †Division of Immunology and Transplantation Biology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305
| | - Allan Kaspar
- †Division of Immunology and Transplantation Biology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305
| | - Javier Naval
- *Departamento de Bioquimica y Biologia Molecular y Cellular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain; and
| | - Alan M. Krensky
- †Division of Immunology and Transplantation Biology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305
| | - Alberto Anel
- *Departamento de Bioquimica y Biologia Molecular y Cellular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain; and
| |
Collapse
|
132
|
Susin SA, Zamzami N, Kroemer G. Mitochondria as regulators of apoptosis: doubt no more. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1366:151-65. [PMID: 9714783 DOI: 10.1016/s0005-2728(98)00110-8] [Citation(s) in RCA: 557] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Scientific revolution [1] implies a transformation of the world view in which a dominant paradigm is substituted by a new one, one which furnishes an ameliorated comprehension of facts, as well as an advantage for the design of informative experiments. Apoptosis research has recently experienced a change from a paradigm in which the nucleus determined the apoptotic process to a paradigm in which mitochondria constitute the center of death control. Several pieces of evidence imply mitochondria in the process of apoptosis. Kinetic data indicate that mitochondria undergo major changes in membrane integrity before classical signs of apoptosis become manifest. These changes concern both the inner and the outer mitochondrial membranes, leading to a disruption of the inner transmembrane potential (DeltaPsim) and the release of intermembrane proteins through the outer membrane. Cell-free systems of apoptosis demonstrate that mitochondrial products are rate limiting for the activation of caspases and endonucleases in cell extracts. Functional studies indicate that drug-enforced opening or closing of the mitochondrial megachannel (also called permeability transition pore) can induce or prevent apoptosis. The anti-apoptotic oncoprotein Bcl-2 acts on mitochondria to stabilize membrane integrity and to prevent opening of the megachannel. These observations are compatible with a three-step model of apoptosis: a premitochondrial phase during which signal transduction cascades or damage pathways are activated; a mitochondrial phase, during which mitochondrial membrane function is lost; and a post-mitochondrial phase, during which proteins released from mitochondria cause the activation of catabolic proteases and nucleases. The implication of mitochondria in apoptosis has important consequences for the understanding of the normal physiology of apoptosis, its deregulation in cancer and degenerative diseases, and the development of novel cytotoxic and cytoprotective drugs.
Collapse
Affiliation(s)
- S A Susin
- Centre National de la Recherche Scientifique, Unité Propre de Recherche 420, 19 rue Guy Môquet, F-94801 Villejuif, France
| | | | | |
Collapse
|
133
|
Lochhead KM, Zager RA. Fluorinated anesthetic exposure "activates" the renal cortical sphingomyelinase cascade. Kidney Int 1998; 54:373-81. [PMID: 9690203 DOI: 10.1046/j.1523-1755.1998.00022.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Previous studies indicate that fluorinated anesthetics can enhance sphingomyelin (SM) hydrolysis in in vitro neuronal extracts. Renal cortex has substantial SM content. Hence, this study assessed whether in vivo fluorinated anesthetic use stimulates renal SM hydrolysis, causing accumulation of ceramide, an important signaling molecule. METHODS Mice were anesthetized with isoflurane or desflurane (fluorinated anesthetics). Pentobarbital anesthetized mice served as controls. After six hours, kidney cortex was assayed for ceramide. In selected experiments, renal cortical sphingosine and sphingomyelinase (SMase) levels were also determined. Isoflurane's effects on ceramide levels in cultured human proximal tubule (HK-2) cells/isolated mouse proximal tubule segments (PTS), and on in vitro 14C-SM hydrolysis were also assessed. RESULTS Isoflurane and desflurane, but not pentobarbital, increased renal cortical ceramide levels (such as, 65% with isoflurane, P < 0.003). Isoflurane also raised PTS/HK-2 ceramide levels (by 25 to 35%). Ceramidase inhibition (fumonisin B1) did not block this ceramide accumulation in HK-2 cells. Isoflurane did not increase renal cortical/PTS SMase levels. However, it directly enhanced the ability of (acidic) SMase to effect in vitro 14C-SM hydrolysis. Isoflurane raised renal cortical sphingosine (and not just ceramide) levels, implying ongoing ceramidase activity. CONCLUSIONS Fluorinated anesthetics can stimulate renal cortical/tubule ceramide expression, presumably by stimulating SMase-mediated SM hydrolysis. Since ceramide is a potential mediator of tubule apoptosis/necrosis, these findings have potential relevance for the development of intra/post-operative acute renal failure.
Collapse
Affiliation(s)
- K M Lochhead
- Department of Medicine, University of Washington, Seattle, USA
| | | |
Collapse
|
134
|
Andrieu-Abadie N, Carpentier S, Salvayre R, Levade T. The tumour necrosis factor-sensitive pool of sphingomyelin is resynthesized in a distinct compartment of the plasma membrane. Biochem J 1998; 333 ( Pt 1):91-7. [PMID: 9639567 PMCID: PMC1219560 DOI: 10.1042/bj3330091] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sphingomyelin (SM) biosynthesis is believed to occur in the early Golgi apparatus, plasma membrane and recycling endosomes. In the present study, the localization of the SM synthesis that follows its hydrolysis upon activation of the SM signal-transduction pathway was investigated in human skin fibroblasts treated with tumour necrosis factor (TNF) alpha. After TNFalpha-induced degradation, the intracellular SM levels returned to baseline levels within 30-60 min in cells treated at 37 degrees C. Pretreatment or co-incubation of cells with bacterial sphingomyelinase or phospholipase C, decreasing the SM and phosphatidylcholine content in the external leaflet of the plasma membrane respectively, did not inhibit SM resynthesis. However, SM resynthesis was not observed when TNFalpha-treated cells were continuously exposed to exogenous sphingomyelinase, suggesting that under these particular conditions the resynthesized SM becomes accessible to the enzyme. Furthermore, whereas inhibition of vesicular traffic/endocytosis at 4 degrees C blocked exoplasmic SM resynthesis, it did not alter SM resynthesis in TNFalpha-treated fibroblasts, negating the role of endosomes and the Golgi apparatus. This was further evidenced by the finding that after SM resynthesis, TNFalpha was again able to promote SM turnover, even at 4 degrees C. In addition, when the exoplasmic leaflet SM was hydrolysed by treating fibroblasts with bacterial sphingomyelinase, resynthesis of SM occurred at 37 degrees C much more slowly than after TNFalpha treatment. These findings support strongly the conclusion that the SM, which is resynthesized after TNFalpha-induced hydrolysis, resides in the cytosolic leaflet of the plasma membrane, and that the process involved in this resynthesis displays characteristics different from those of the previously described SM synthases.
Collapse
Affiliation(s)
- N Andrieu-Abadie
- INSERM U. 466, Laboratoire de Biochimie, 'Maladies Métaboliques', Institut Louis Bugnard, Bât. L3, C.H.U. Rangueil, 1 Avenue Jean Poulhès, F-31403 Toulouse Cedex 4, France
| | | | | | | |
Collapse
|
135
|
Separovic D, Mann KJ, Oleinick NL. Association of Ceramide Accumulation with Photodynamic Treatment-Induced Cell Death. Photochem Photobiol 1998. [DOI: 10.1111/j.1751-1097.1998.tb03259.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
136
|
Zhou H, Summers SA, Birnbaum MJ, Pittman RN. Inhibition of Akt kinase by cell-permeable ceramide and its implications for ceramide-induced apoptosis. J Biol Chem 1998; 273:16568-75. [PMID: 9632728 DOI: 10.1074/jbc.273.26.16568] [Citation(s) in RCA: 281] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Ceramide is an important lipid messenger involved in mediating a variety of cell functions including apoptosis. However, mechanisms responsible for ceramide-induced apoptosis remain unclear. We investigated the possibility that ceramide may decrease antiapoptotic signaling in cells by inhibiting Akt kinase activity. Our data show that C2-ceramide induces apoptosis in HMN1 motor neuron cells and decreases both basal and insulin- or serum-stimulated Akt kinase activity 65-70%. These results are consistent with decreased Akt kinase activity being involved in the apoptotic effects of ceramide. This possibility is further supported by studies showing that constitutively active Akt kinase decreases C2-ceramide-induced death of HMN1 cells as well as COS-7 cells. Decreased Akt activity is not due to ceramide activating the ceramide-activated protein phosphatase or to a direct inhibition of Akt kinase by ceramide, suggesting that ceramide acts upstream of Akt kinase to decrease its activity. Treating cells with C2-ceramide does not affect phosphorylation of insulin receptor substrate-1, interactions between insulin receptor substrate-1 and p85, or insulin-stimulated phosphatidylinositol 3-kinase activity, suggesting that the effects of C2-ceramide on Akt kinase are not mediated through modulating phosphatidylinositol 3-kinase. In sum, our results suggest that inhibition of the key antiapoptotic kinase, Akt, may play an important role in ceramide-induced apoptosis.
Collapse
Affiliation(s)
- H Zhou
- Department of Pharmacology, and Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
137
|
Affiliation(s)
- A Haunstetter
- Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, Mass 02115, USA
| | | |
Collapse
|
138
|
Lin X, Hengartner MO, Kolesnick R. Caenorhabditis elegans contains two distinct acid sphingomyelinases. J Biol Chem 1998; 273:14374-9. [PMID: 9603947 DOI: 10.1074/jbc.273.23.14374] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Mounting evidence supports a role for acid sphingomyelinase (ASM) in cellular stress signaling. Only murine and human sphingomyelinases have been defined at the molecular level. These enzymes are the products of a conserved gene and at the amino acid level share 82% identity. In this study, we show that the nematode Caenorhabditis elegans possesses two ASMs, termed ASM-1 and ASM-2 encoded by two distinct genes, but lacks detectable neutral sphingomyelinase activity. The C. elegans ASMs are about 30% identical with each other and with the human and murine enzymes. The conserved regions include a saposin-like domain, proline-rich domain, and a putative signal peptide. In addition, 16 cysteines distributed throughout the molecules, and selected glycosylation sites, are conserved. The expression of these genes in C. elegans is regulated during development. Asm-1 is preferentially expressed in the embryo, whereas asm-2 is predominantly expressed in postembryonic stages. When transfected as Flag-tagged proteins into COS-7 cells, ASM-1 is found almost entirely in a secreted form whereas only 20% of ASM-2 is secreted. Only the secreted forms display enzymatic activity. Furthermore, ASM-2 requires addition of Zn2+ to be fully active, whereas ASM-1 is active in the absence of cation. C. elegans is the first organism to display two ASMs. This finding suggests the existence of an ASM gene family.
Collapse
Affiliation(s)
- X Lin
- Laboratory of Signal Transduction, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | |
Collapse
|
139
|
Chatelut M, Leruth M, Harzer K, Dagan A, Marchesini S, Gatt S, Salvayre R, Courtoy P, Levade T. Natural ceramide is unable to escape the lysosome, in contrast to a fluorescent analogue. FEBS Lett 1998; 426:102-6. [PMID: 9598987 DOI: 10.1016/s0014-5793(98)00325-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Since the generation upon cell stimulation of the second messenger ceramide has been reported to occur in an endosomal/lysosomal compartment, we investigated whether ceramide formed in the lysosomes can escape this compartment. The metabolic fate of radiolabelled ceramide produced by intralysosomal hydrolysis of LDL-associated [ceramide-3H]sphingomyelin or [stearoyl-1-(14)C]sulfatide was examined in fibroblasts from control individuals and a patient with inborn lysosomal ceramidase deficiency (Farber disease). The behavior of this radioactive ceramide was compared to that of a fluorescent (lissamine-rhodaminyl) ceramide analogue deriving from sulfatide degradation. While in Farber cells the natural, radiolabelled ceramide remained completely undegraded and accumulated in the lysosomes, the fluorescent derivative was rapidly converted to sphingomyelin. These findings strongly suggest that, in contrast to fluorescent derivatives, endogenous long-chain ceramide is unable to exit from lysosomes, therefore making the lysosomal ceramide unlikely to be a biomodulatory molecule.
Collapse
Affiliation(s)
- M Chatelut
- INSERM Unit 466, Laboratoire de Biochimie, Maladies Métaboliques, Institut Louis Bugnard, C.H.U. Rangueil, Toulouse, France
| | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Schäfer R, Karbach D, Hoppe J. Multiple intracellular pathways interfere with the activation of a CPP32-like protease induced by serum deprivation of AKR-2B cells. Exp Cell Res 1998; 240:28-39. [PMID: 9570918 DOI: 10.1006/excr.1997.3928] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
As previously described, confluent AKR-2B fibroblasts rapidly disintegrate upon removal of serum. Platelet-derived growth factor isoforms AB or BB (PDGF-AB, -BB) added immediately after serum deprivation caused complete survival of the cells without initiating proliferation (Simm et al., 1994, J. Cell. Physiol. 160, 295). Here the role of cAMP as a protective agent was investigated by using forskolin or 8-Br-cAMP. Both reagents afforded high cellular protection. The phorbolester TPA, an activator of protein kinase C isoforms, also exerted a high protection against cell death (ED50 = 7 nM). Unexpectedly colchicine (ED50 = 1.5 microM) an inhibitor of tubulin polymerization also protected cells from death. The protective effects of PDGF-BB and TPA were dependent on protein synthesis as indicated by their complete suppression by cycloheximide (CHx). Surprisingly, forskolin and 8-Br-cAMP remained effective even in the presence of CHx. Detailed studies of several signalling pathways were performed. These investigations showed no interference between PDGF-BB and cAMP-dependent pathways at the early stage of signal transduction. As previously described, the ICE-like protease inhibitor tyr-val-ala-asp-chloromethylketone (YVAD-cmk) protected cells from death (Simm et al., 1997, J. Cell Sci. 110, 819-828). As shown here, a substantial protection was also achieved by the addition of two other caspase inhibitors: asp-glu-val-asp-aldehyde (DEVD-cho; ED50 = 100 microM) and benzoylcarbonyl-asp-glu-val-asp-chloromethylketone (Z-DEVD-cmk; ED50 = 100 microM). The activity of caspases was studied using either tyr-val-ala-asp-aminomethylcoumarine (YVAD-amc) or asp-glu-val-asp-aminomethylcoumarine (DEVD-amc) as substrates. There was no activation of a YVADase, whereas as pronounced increase in DEVDase activity was found with a maximum 3 h after serum removal. Cross competition experiments in vitro showed that the latter activity is inhibited also by low concentrations of YVAD-cmk (300-600 nM), suggesting that both inhibitors inactivated the same target protease. Remarkably all tested protective reagents lead to an inhibition of the DEVDase activity in intact cells. Since these reagents act via distinct intracellular pathways, the existence of a regulatory element upstream of the DEVDase is proposed which integrates signals from a variety of pathways.
Collapse
Affiliation(s)
- R Schäfer
- Theodor-Boveri-Institut, Department of Physiological Chemistry II, Würzburg, Germany
| | | | | |
Collapse
|
141
|
|
142
|
De Maria R, Rippo MR, Schuchman EH, Testi R. Acidic sphingomyelinase (ASM) is necessary for fas-induced GD3 ganglioside accumulation and efficient apoptosis of lymphoid cells. J Exp Med 1998; 187:897-902. [PMID: 9500792 PMCID: PMC2212183 DOI: 10.1084/jem.187.6.897] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/1997] [Revised: 01/13/1998] [Indexed: 11/24/2022] Open
Abstract
Ceramides deriving from sphingomyelin hydrolysis are important mediators of apoptotic signals originating from Fas (APO-1/CD95). However, definitive evidence for the role played by individual sphingomyelinases is still lacking. We have analyzed lymphoblastoid cell lines derived from patients affected by Niemann Pick disease (NPD), an autosomal recessive disorder caused by loss-of-function mutations within the acidic sphingomyelinase (ASM) gene. NPD lymphoblasts, which display normal neutral sphingomyelinase activity, fail to activate ASM in response to Fas cross-linking, unlike normal lymphoblasts. NPD lymphoblasts also fail to accumulate GD3 ganglioside, a downstream mediator of ceramide-induced cell death (De Maria, R., L. Lenti, F. Malisan, F. D'Agostino, B. Tomassini, A. Zeuner, M.R. Rippo, R. Testi. 1997. Science. 277:1652-1655), and display a substantially inefficient apoptosis after Fas cross-linking. Inefficient apoptosis is due to lack of ASM activity, because proximal signaling from Fas in NPD lymphoblasts is not impaired and apoptosis can be efficiently triggered by passing the ASM defect with exogenous ceramides. Moreover, mannose receptor-mediated transfer of ASM into NPD lymphoblasts rescues their ability to transiently activate ASM, accumulate GD3, and rapidly undergo apoptosis after Fas cross-linking. These results provide definitive genetic evidence for the role of ASM in the progression of apoptotic signals originating from Fas.
Collapse
Affiliation(s)
- R De Maria
- Department of Experimental Medicine and Biochemical Sciences, University of Rome "Tor Vergata," 00133 Rome, Italy
| | | | | | | |
Collapse
|
143
|
Zager RA, Conrad S, Lochhead K, Sweeney EA, Igarashi Y, Burkhart KM. Altered sphingomyelinase and ceramide expression in the setting of ischemic and nephrotoxic acute renal failure. Kidney Int 1998; 53:573-82. [PMID: 9507201 DOI: 10.1046/j.1523-1755.1998.00772.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Diverse physical and chemical stimuli can activate sphingomyelinases (SMases), resulting in sphingomyelin (SM) hydrolysis with ceramide release. Since ceramide can profoundly impact a host of homeostatic mechanisms, the concept of a "SM (or SMase) signaling pathway" has emerged. We recently documented that ceramide levels fall abruptly during renal ischemia, and then rebound to twice normal values during early reperfusion (30 to 90 min) Therefore, the present study assessed whether these ceramide changes are paralleled, and hence potentially mediated, by comparable changes in SMase activity. Mice were subjected to 45 minutes of renal ischemia +/- 30 minutes, 90 minutes, or 24 hours of reperfusion. Renal cortices (or isolated proximal tubules) were then assayed for SMase activity (acidic, neutral forms). To characterize whether early post-ischemic ceramide increments are a relatively persistent event, ceramide was assayed following a 24-hour reperfusion period. Finally, to assess whether the observed perturbations were unique to post-ischemic injury, SMase and ceramide were quantified in the setting of glycerol-induced myohemoglobinuria and anti-glomerular basement membrane (alpha GBM) antibody-induced acute renal failure (ARF). Ischemia induced abrupt declines (approximately 50%) in both acidic and neutral SMase activities, and these persisted in an unremitting fashion throughout 24 hours of reperfusion. Nevertheless, increased ceramide expression (2x normal) resulted. Myohemoglobinuria also suppressed acidic/neutral SMases, and again, "paradoxical" ceramide increments were observed. Finally, alpha GBM nephritis increased ceramide levels, but in this instance, a correlate was increased SMase activity. These results suggest that: (1) ceramide is an acute renal "stress rectant" increasing in response to diverse renal insults; (2) this response may occur independently of the classic SM pathway, since the ceramide increments can seemingly be dissociated from increased SMase activity; and (3) given the well documented impact of ceramide and the SM(ase) pathway on apoptosis, cell proliferation, differentiation, and tissue inflammation, the present results have potentially broad ranging implications for the induction and evolution of diverse forms of ARF.
Collapse
Affiliation(s)
- R A Zager
- Department of Medicine, University of Washington, Seattle, USA.
| | | | | | | | | | | |
Collapse
|
144
|
Frago LM, León Y, de la Rosa EJ, Gómez-Muñoz A, Varela-Nieto I. Nerve growth factor and ceramides modulate cell death in the early developing inner ear. J Cell Sci 1998; 111 ( Pt 5):549-56. [PMID: 9454729 DOI: 10.1242/jcs.111.5.549] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Regulation of normal development involves a dynamic balance of the mechanisms regulating cell division, differentiation and death. We have investigated the signalling mechanisms involved in regulation of the balance between cell proliferation and apoptotic cell death in the otic vesicle. The sphingomyelin pathway signals apoptosis for nerve growth factor upon binding to p75 receptors. It is initiated by sphingomyelin hydrolysis to generate the second messenger ceramide. In the present study, we show that nerve growth factor stimulates sphingomyelin hydrolysis and the concomitant ceramide release in organotypic cultures of otic vesicles. Both nerve growth factor and ceramide induce apoptotic responses to a different extent. Ceramide-induced apoptosis was suppressed by insulin-like growth factor-I which is a strong promoter of cell growth and morphogenesis for the developing inner ear. In contrast, ceramide-1-phosphate protected the explants from apoptosis induced by serum withdrawal but did not antagonise ceramide-induced cell death. This study suggests that sphingomyelin-derived second messengers might be key modulators of programmed cell death during development.
Collapse
Affiliation(s)
- L M Frago
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Cientificas, Madrid, Spain
| | | | | | | | | |
Collapse
|
145
|
Matesic DF, Erwin JA, Kaneshiro ES. Incorporation In Vivo and In Vitro of Radiolabeled Sphingolipid Precursors into Paramecium tetraurelia Lipids. J Eukaryot Microbiol 1998. [DOI: 10.1111/j.1550-7408.1998.tb05084.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
146
|
Fernández-Checa JC, García-Ruiz C, Colell A, Morales A, Marí M, Miranda M, Ardite E. Oxidative stress: role of mitochondria and protection by glutathione. Biofactors 1998; 8:7-11. [PMID: 9699001 DOI: 10.1002/biof.5520080102] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Increasing evidence has unraveled a dual functional role of mitochondria as suppliers of the energy required for cell viability, and critical players in the pathway leading to cell death. Consequence of their physiological role in the oxidative phosphorylation is the generation of reactive oxygen species (ROS) as byproducts of the consumption of molecular oxygen in the electron transport chain. Superoxide anion and hydrogen peroxide produced during aerobic respiration are precursors of hydroxyl radical by the participation of transition metals. Glutathione (GSH) in mitochondria is the only defense available to metabolize hydrogen peroxide. A small fraction of the total cellular pool of GSH is sequestered in mitochondria by the action of a carrier that transports GSH from cytosol to the mitochondrial matrix. Recent evidence position mitochondria as subcellular targets of cytokines leading to overproduction of ROS induced by ceramide, a lipid intermediate of cytokine action. Chronic ethanol-fed cells are selectively depleted of GSH in mitochondria due to a defective operation of the carrier responsible for the transport of GSH from cytosol into the mitochondrial matrix. Its limitation sensitizes alcohol hepatocytes to the prooxidant effects of cytokines and prooxidants generated by the oxidative metabolism of ethanol. One of the mechanisms leading to the onset of selective defect in the mitochondrial transport of GSH induced by chronic ethanol exposure is mediated by decreased fluidity of the mitochondrial inner membrane. Its fluidization by SAM treatment normalizes the steady state levels of GSH in mitochondria contributing to withstand the oxidative stress derived by the oxidative metabolism of ethanol.
Collapse
Affiliation(s)
- J C Fernández-Checa
- Instituto Investigaciones Biomédicas, Consejo Superior Investigaciones Científicas (CSIC), Hospital Clinic i Provincial, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
147
|
Häusler P, Papoff G, Eramo A, Reif K, Cantrell DA, Ruberti G. Protection of CD95-mediated apoptosis by activation of phosphatidylinositide 3-kinase and protein kinase B. Eur J Immunol 1998; 28:57-69. [PMID: 9485186 DOI: 10.1002/(sici)1521-4141(199801)28:01<57::aid-immu57>3.0.co;2-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Apoptosis may be triggered, in a variety of tissues, by interaction of the cell surface molecule CD95 with its specific ligand, CD95L. CD95 plays a physiological role in the regulation of the immune response; furthermore, alterations in CD95/CD95L function may contribute to the pathogenesis of a number of human diseases, including cancer, autoimmune diseases and viral infections. Many cells that express CD95, however, are not susceptible to CD95-mediated apoptosis. It is therefore important to identify the mechanisms that counteract the CD95 apoptotic process that are still poorly understood. Growth factors and lymphokines such as interleukin (IL)-4 that counteract CD95-mediated apoptosis may activate phosphatidylinositide 3-kinase (PI 3-kinase). We therefore used two different approaches to investigate the role of PI 3-kinase on CD95-mediated apoptosis. First we tested the effect of two pharmacological PI 3-kinase inhibitors, wortmannin and LY294002, on CD95 agonistic antibody-induced apoptosis in three different cell lines. Second, we co-expressed in COS7 cells CD95 with constitutively active PI 3-kinase. Results of both approaches indicate that active PI 3-kinase effectively protects against CD95-mediated apoptosis. Furthermore we extended our studies on the CD95 downstream mediator, FADD, and on the PI 3-kinase downstream mediator, the serine/threonine protein kinase PKB, using the co-expression approach in COS7 cells. We provide evidence that apoptosis induced by triggering the CD95 cell death receptor is counteracted by PI 3-kinase activation; moreover, PKB but not p70S6K represents the relevant downstream target of PI 3-kinase signaling.
Collapse
Affiliation(s)
- P Häusler
- Department of Immunobiology, Institute of Cell Biology, National Research Council, Rome, Italy
| | | | | | | | | | | |
Collapse
|
148
|
Abstract
Glycosphingolipids are ubiquitous membrane components of eukaryotic cells. They participate in various cell recognition events and can regulate enzymes and receptors within the plasma membrane. Sphingolipidoses are due to an impaired lysosomal digestion of these substances. Glycosphingolipids are degraded by the action of exohydrolases, which are supported, in the case of glycosphingolipids with short oligosaccharide chains, by sphingolipid activator proteins. Five sphingolipid activator proteins are known so far, the GM2-activator and the SAPs, SAP-A to D (also called saposins). Degradation of glycosphingolipids requires endocytic membrane flow of plasma membrane derived glycosphingolipids into the lysosomes. Recent research focused on the topology of this process and on the mechanism and physiological function of sphingolipid activator proteins. Limited knowledge is available about enzymology and topology of glycosphingolipid biosynthesis. Recently, intermediates of this metabolic pathway have been identified as novel signalling molecules. Inhibition of glycosphingolipid biosynthesis has been shown to be beneficial in the animal model of Tay-Sachs disease. Mice with disrupted genes for lysosomal hydrolases and activator proteins are useful models for known human diseases and are valuable tools for the study of glycosphingolipid metabolism, the pathogenesis of sphingolipidoses and novel therapeutic approaches.
Collapse
Affiliation(s)
- Thomas Kolter
- KekuléInstitut für Organische Chemie und Biochemie der Universität, Bonn, Germany
| | - Konrad Sandhoff
- KekuléInstitut für Organische Chemie und Biochemie der Universität, Bonn, Germany
| |
Collapse
|
149
|
Redman CA, Kennington S, Spathopoulou T, Kusel JR. Interconversion of sphingomyelin and ceramide in adult Schistosoma mansoni. Mol Biochem Parasitol 1997; 90:145-53. [PMID: 9497039 DOI: 10.1016/s0166-6851(97)00151-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fluorescent lipid analogues of the lipids ceramide and sphingomyelin, namely BODIPY FL C5-ceramide ((N-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-sindacene-3-pentanoyl) sphingosine) and BODIPY C5-sphingomyelin ((N-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-pentanoyl) sphingosyl phosphocholine), respectively, were used to investigate the presence of a sphingomyelin cycle in Schistosoma mansoni adult males. The parasites were able to convert BODIPY FL C5-ceramide into a fluorescent sphingomyelin analogue, and traffic it to the outer monolayer where it was lost to the medium. The vesicular trafficking inhibitors Brefeldin A and monensin were found, however, to have no effect on either the rate of sphingomyelin synthesis or its trafficking to the surface. Parasites were also shown to break BODIPY FL sphingomyelin down, forming a fluorescent ceramide analogue. Inhibitors of lysosomal function, NH4Cl, desipramine and perhexiline, did not inhibit this breakdown, suggesting that endocytosis and trafficking to lysosomes was not involved. In addition, assays carried out on parasite homogenates for sphingomyelinase activity were unable to detect sphingomyelin breakdown at acidic pH, but did detect activity at pH 7.4. This activity was stimulated by arachidonic acid and MgCl2. The results are discussed with respect to tegument synthesis and turnover, and cellular signalling.
Collapse
Affiliation(s)
- C A Redman
- Division of Biochemistry and Molecular Biology, IBLS, University of Glasgow, UK.
| | | | | | | |
Collapse
|
150
|
Galve-Roperh I, Haro A, Díaz-Laviada I. Induction of nerve growth factor synthesis by sphingomyelinase and ceramide in primary astrocyte cultures. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1997; 52:90-7. [PMID: 9450681 DOI: 10.1016/s0169-328x(97)00230-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Astrocytes synthesize nerve growth factor (NGF) in response to pro-inflammatory cytokines. To further study the signaling mechanism involved in this induction of NGF production, the sphingomyelin (SM) pathway was studied. Addition of exogenous neutral SMase (Staphylococcus aureus) or C2-ceramide to primary cultures of newborn rat cortical astrocytes elicited a dose-response increase of NGF synthesis, with maximal effect at 1 U/ml and 25 microM, respectively. Induction of NGF synthesis by SMase and ceramide was shown to be independent of classical PKC activity. Intracellular cAMP-raising agents, such as forskolin and 3-isobutyl-1-methylxanthine, partially prevented the SMase- and C2-ceramide-induced secretion of NGF to the cell supernatant. PD098059 and apigenin, inhibitors of the mitogen-activated protein (MAP) kinase pathway, produced a dose-response inhibition of the SMase- and C2-cer-induced release of NGF. This observation points to the possibility that regulation of NGF synthesis and secretion by the SMase pathway may be mediated downstream by the MAP kinase cascade. As a matter of fact, pre-treatment of astrocytes with SMase or C8-ceramide led to an increased phosphorylation of raf-1. Moreover, MAP kinase activity was enhanced in astrocytes treated with SMase or both ceramides. In conclusion, results suggest that the SMase pathway may control NGF synthesis in the central nervous system, and raise the possibility of an involvement of the MAP kinase cascade in this process.
Collapse
Affiliation(s)
- I Galve-Roperh
- Dpto. Bioquímica y Biología Molecular I, Facultad de Biología, Universidad Complutense, Madrid, Spain
| | | | | |
Collapse
|