101
|
Zuo Y, Wang Y, Malhotra A. Crystal structure of Escherichia coli RNase D, an exoribonuclease involved in structured RNA processing. Structure 2005; 13:973-84. [PMID: 16004870 DOI: 10.1016/j.str.2005.04.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Revised: 04/23/2005] [Accepted: 04/23/2005] [Indexed: 11/29/2022]
Abstract
RNase D (RND) is one of seven exoribonucleases identified in Escherichia coli. RNase D has homologs in many eubacteria and eukaryotes, and has been shown to contribute to the 3' maturation of several stable RNAs. Here, we report the 1.6 A resolution crystal structure of E. coli RNase D. The conserved DEDD residues of RNase D fold into an arrangement very similar to the Klenow fragment exonuclease domain. Besides the catalytic domain, RNase D also contains two structurally similar alpha-helical domains with no discernible sequence homology between them. These closely resemble the HRDC domain previously seen in RecQ-family helicases and several other proteins acting on nucleic acids. More interestingly, the DEDD catalytic domain and the two helical domains come together to form a ring-shaped structure. The ring-shaped architecture of E. coli RNase D and the HRDC domains likely play a major role in determining the substrate specificity of this exoribonuclease.
Collapse
Affiliation(s)
- Yuhong Zuo
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, PO Box 016129, Miami, FL 33101, USA
| | | | | |
Collapse
|
102
|
John M, Park AY, Pintacuda G, Dixon NE, Otting G. Weak Alignment of Paramagnetic Proteins Warrants Correction for Residual CSA Effects in Measurements of Pseudocontact Shifts. J Am Chem Soc 2005; 127:17190-1. [PMID: 16332059 DOI: 10.1021/ja0564259] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Paramagnetic metal ions can induce molecular alignment with respect to the magnetic field. This alignment generates residual anisotropic chemical shifts (RACS) due to nonisotropic averaging over the molecular orientations. Using a 30 kDa protein-protein complex, the RACS effects are shown to be significant for heteronuclear spins with large chemical shift anisotropies, lanthanide ions with large anisotropic magnetic susceptibility tensors, and measurements at high magnetic field. Therefore, RACS must be taken into account when pseudocontact shifts are measured by comparison of chemical shifts observed between complexes with paramagnetic and diamagnetic lanthanide ions. The results are of particular importance when different pseudocontact shifts measured for the 1HN, 15N, and 13C' spins of a peptide group are used to restrain its orientation with respect to the electronic magnetic susceptibility tensor in structure calculations.
Collapse
Affiliation(s)
- Michael John
- Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| | | | | | | | | |
Collapse
|
103
|
Mueller GA, Kirby TW, DeRose EF, Li D, Schaaper RM, London RE. Nuclear magnetic resonance solution structure of the Escherichia coli DNA polymerase III theta subunit. J Bacteriol 2005; 187:7081-9. [PMID: 16199579 PMCID: PMC1251603 DOI: 10.1128/jb.187.20.7081-7089.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The catalytic core of Escherichia coli DNA polymerase III holoenzyme contains three subunits: alpha, epsilon, and theta. The alpha subunit contains the polymerase, and the epsilon subunit contains the exonucleolytic proofreading function. The small (8-kDa) theta subunit binds only to epsilon. Its function is not well understood, although it was shown to exert a small stabilizing effect on the epsilon proofreading function. In order to help elucidate its function, we undertook a determination of its solution structure. In aqueous solution, theta yielded poor-quality nuclear magnetic resonance spectra, presumably due to conformational exchange and/or protein aggregation. Based on our recently determined structure of the theta homolog from bacteriophage P1, named HOT, we constructed a homology model of theta. This model suggested that the unfavorable behavior of theta might arise from exposed hydrophobic residues, particularly toward the end of alpha-helix 3. In gel filtration studies, theta elutes later than expected, indicating that aggregation is potentially responsible for these problems. To address this issue, we recorded 1H-15N heteronuclear single quantum correlation (HSQC) spectra in water-alcohol mixed solvents and observed substantially improved dispersion and uniformity of peak intensities, facilitating a structural determination under these conditions. The structure of theta in 60/40 (vol/vol) water-methanol is similar to that of HOT but differs significantly from a previously reported theta structure. The new theta structure is expected to provide additional insight into its physiological role and its effect on the epsilon proofreading subunit.
Collapse
Affiliation(s)
- Geoffrey A Mueller
- Laboratory of Structural Biology, MR-01, National Institute of Environmental Health Sciences, 111 Alexander Drive, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | |
Collapse
|
104
|
Wu M, Reuter M, Lilie H, Liu Y, Wahle E, Song H. Structural insight into poly(A) binding and catalytic mechanism of human PARN. EMBO J 2005; 24:4082-93. [PMID: 16281054 PMCID: PMC1356309 DOI: 10.1038/sj.emboj.7600869] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Accepted: 10/19/2005] [Indexed: 11/09/2022] Open
Abstract
Poly(A)-specific ribonuclease (PARN) is a processive, poly(A)-specific 3' exoribonuclease. The crystal structure of C-terminal truncated human PARN determined in two states (free and RNA-bound forms) reveals that PARNn is folded into two domains, an R3H domain and a nuclease domain similar to those of Pop2p and epsilon186. The high similarity of the active site structures of PARNn and epsilon186 suggests that they may have a similar catalytic mechanism. PARNn forms a tight homodimer, with the R3H domain of one subunit partially enclosing the active site of the other subunit and poly(A) bound in a deep cavity of its nuclease domain in a sequence-nonspecific manner. The R3H domain and, possibly, the cap-binding domain are involved in poly(A) binding but these domains alone do not appear to contribute to poly(A) specificity. Mutations disrupting dimerization abolish both the enzymatic and RNA-binding activities, suggesting that the PARN dimer is a structural and functional unit. The cap-binding domain may act in concert with the R3H domain to amplify the processivity of PARN.
Collapse
Affiliation(s)
- Mousheng Wu
- Laboratory of Macromolecular Structure, Institute of Molecular and Cell Biology, Proteos, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Michael Reuter
- Institute of Biochemistry, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Hauke Lilie
- Institute of Biotechnology, Martin-Luther-University Halle, Halle, Germany
| | - Yuying Liu
- Laboratory of Macromolecular Structure, Institute of Molecular and Cell Biology, Proteos, Singapore
| | - Elmar Wahle
- Institute of Biochemistry, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Haiwei Song
- Laboratory of Macromolecular Structure, Institute of Molecular and Cell Biology, Proteos, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
- Laboratory of Macromolecular Structure, Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore. Tel.: +65 6586 9700; Fax: +65 6779 1117; E-mail:
| |
Collapse
|
105
|
Abstract
DNA replicases are multicomponent machines that have evolved clever strategies to perform their function. Although the structure of DNA is elegant in its simplicity, the job of duplicating it is far from simple. At the heart of the replicase machinery is a heteropentameric AAA+ clamp-loading machine that couples ATP hydrolysis to load circular clamp proteins onto DNA. The clamps encircle DNA and hold polymerases to the template for processive action. Clamp-loader and sliding clamp structures have been solved in both prokaryotic and eukaryotic systems. The heteropentameric clamp loaders are circular oligomers, reflecting the circular shape of their respective clamp substrates. Clamps and clamp loaders also function in other DNA metabolic processes, including repair, checkpoint mechanisms, and cell cycle progression. Twin polymerases and clamps coordinate their actions with a clamp loader and yet other proteins to form a replisome machine that advances the replication fork.
Collapse
Affiliation(s)
- Aaron Johnson
- Howard Hughes Medical Institute, New York City, New York 10021-6399, USA.
| | | |
Collapse
|
106
|
Abstract
Replication of genomic DNA is a universal process that proceeds in distinct stages, from initiation to elongation and finally to termination. Each stage involves multiple stable or transient interactions between protein subunits with functions that are more or less conserved in all organisms. In Escherichia coli, initiation of bidirectional replication at the origin (oriC) occurs through the concerted actions of the DnaA replication initiator protein, the hexameric DnaB helicase, the DnaC?helicase loading partner and the DnaG primase, leading to establishment of two replication forks. Elongation of RNA primers at each fork proceeds simultaneously on both strands by actions of the multimeric replicase, DNA polymerase III holoenzyme. The fork that arrives first in the terminus region is halted by its encounter with a correctly-oriented complex of the Tus replication terminator protein bound at one of several Ter sites, where it is trapped until the other fork arrives. We summarize current understanding of interactions among the various proteins that act in the different stages of replication of the chromosome of E. coli, and make some comparisons with the analogous proteins in Bacillus subtilis and the coliphages T4 and T7.
Collapse
Affiliation(s)
- Patrick M Schaeffer
- Research School of Chemistry, Australian National University, Canberra, Australia
| | | | | |
Collapse
|
107
|
Chikova AK, Schaaper RM. The bacteriophage P1 hot gene product can substitute for the Escherichia coli DNA polymerase III {theta} subunit. J Bacteriol 2005; 187:5528-36. [PMID: 16077097 PMCID: PMC1196078 DOI: 10.1128/jb.187.16.5528-5536.2005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Accepted: 05/20/2005] [Indexed: 11/20/2022] Open
Abstract
The theta subunit (holE gene product) of Escherichia coli DNA polymerase (Pol) III holoenzyme is a tightly bound component of the polymerase core. Within the core (alpha-epsilon-theta), the alpha and epsilon subunits carry the DNA polymerase and 3' proofreading functions, respectively, while the precise function of theta is unclear. holE homologs are present in genomes of other enterobacteriae, suggestive of a conserved function. Putative homologs have also been found in the genomes of bacteriophage P1 and of certain conjugative plasmids. The presence of these homologs is of interest, because these genomes are fully dependent on the host replication machinery and contribute few, if any, replication factors themselves. To study the role of these theta homologs, we have constructed an E. coli strain in which holE is replaced by the P1 homolog, hot. We show that hot is capable of substituting for holE when it is assayed for its antimutagenic action on the proofreading-impaired dnaQ49 mutator, which carries a temperature-sensitive epsilon subunit. The ability of hot to substitute for holE was also observed with other, although not all, dnaQ mutator alleles tested. The data suggest that the P1 hot gene product can substitute for the theta subunit and is likely incorporated in the Pol III complex. We also show that overexpression of either theta or Hot further suppresses the dnaQ49 mutator phenotype. This suggests that the complexing of dnaQ49-epsilon with theta is rate limiting for its ability to proofread DNA replication errors. The possible role of hot for bacteriophage P1 is discussed.
Collapse
Affiliation(s)
- Anna K Chikova
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, P.O. Box 12233, Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
108
|
Derose EF, Kirby TW, Mueller GA, Chikova AK, Schaaper RM, London RE. Phage like it HOT: solution structure of the bacteriophage P1-encoded HOT protein, a homolog of the theta subunit of E. coli DNA polymerase III. Structure 2005; 12:2221-31. [PMID: 15576035 DOI: 10.1016/j.str.2004.09.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2004] [Revised: 09/08/2004] [Accepted: 09/13/2004] [Indexed: 11/29/2022]
Abstract
DNA polymerase III, the main replicative polymerase of E. coli, contains a small subunit, theta, that binds to the epsilon proofreading subunit and appears to enhance the enzyme's proofreading function--especially under extreme conditions. It was recently discovered that E. coli bacteriophage P1 encodes a theta homolog, named HOT. The (1)H-(15)N HSQC spectrum of HOT exhibits more uniform intensities and less evidence of conformational exchange than that of theta; this uniformity facilitates a determination of the HOT solution structure by NMR. The structure contains three alpha helices, as reported previously for theta; however, the folding topology of the two proteins is very different. Residual dipolar coupling measurements on labeled theta support the conclusion that it is structurally homologous with HOT. As judged by CD measurements, the melting temperature of HOT was 62 degrees C, compared to 56 degrees C for theta, consistent with other data suggesting greater thermal stability of the HOT protein.
Collapse
Affiliation(s)
- Eugene F Derose
- Laboratory of Structural Biology, NIEHS, Box 12233, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | |
Collapse
|
109
|
Horio T, Murai M, Inoue T, Hamasaki T, Tanaka T, Ohgi T. Crystal structure of human ISG20, an interferon-induced antiviral ribonuclease. FEBS Lett 2005; 577:111-6. [PMID: 15527770 DOI: 10.1016/j.febslet.2004.09.074] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Revised: 09/10/2004] [Accepted: 09/27/2004] [Indexed: 11/29/2022]
Abstract
ISG20 is an interferon-induced antiviral exoribonuclease that acts on single-stranded RNA and also has minor activity towards single-stranded DNA. It belongs to the DEDDh group of RNases of the DEDD exonuclease superfamily. We have solved the crystal structure of human ISG20 complexed with two Mn2+ ions and uridine 5'-monophosphate (UMP) at 1.9 A resolution. Its structure, including that of the active site, is very similar to those of the corresponding domains of two DEDDh-group DNases, the epsilon subunit of Escherichia coli DNA polymerase III and E. coli exonuclease I, strongly suggesting that its catalytic mechanism is identical to that of the two DNases. However, ISG20 also has distinctive residues, Met14 and Arg53, to accommodate hydrogen bonds with the 2'-OH group of the UMP ribose, and these residues may be responsible for the preference of ISG20 for RNA substrates.
Collapse
Affiliation(s)
- Tatsuya Horio
- Research Laboratories, Nippon Shinyaku Co. Ltd, 3-14-1 Sakura, Tsukuba, Ibaraki 305-0003, Japan.
| | | | | | | | | | | |
Collapse
|
110
|
Perrino FW, Harvey S, McMillin S, Hollis T. The human TREX2 3' -> 5'-exonuclease structure suggests a mechanism for efficient nonprocessive DNA catalysis. J Biol Chem 2005; 280:15212-8. [PMID: 15661738 DOI: 10.1074/jbc.m500108200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 3' --> 5'-exonucleases process DNA ends in many DNA repair pathways of human cells. Determination of the human TREX2 structure is the first of a dimeric 3'-deoxyribonuclease and indicates how this highly efficient nonprocessive enzyme removes nucleotides at DNA 3' termini. Symmetry in the TREX2 dimer positions the active sites at opposite outer edges providing open access for the DNA. Adjacent to each active site is a flexible region containing three arginines positioned appropriately to bind DNA and to control its entry into the active site. Mutation of these three arginines to alanines reduces the DNA binding capacity by approximately 100-fold with no effect on catalysis. The human TREX2 catalytic residues overlay with the bacterial DnaQ family of 3'-exonucleases confirming the structural conservation of the catalytic sites despite limited sequence identity, and mutations of these residues decrease the still measurable activity by approximately 10(5)-fold, confirming their catalytic role.
Collapse
Affiliation(s)
- Fred W Perrino
- Department of Biochemistry, Center for Structural Biology, Wake Forest University Health Sciences, Winston-Salem, North Carolina 27157, USA
| | | | | | | |
Collapse
|
111
|
Lehtinen D, Perrino F. Dysfunctional proofreading in the Escherichia coli DNA polymerase III core. Biochem J 2004; 384:337-48. [PMID: 15352874 PMCID: PMC1134117 DOI: 10.1042/bj20040660] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2004] [Revised: 08/23/2004] [Accepted: 09/07/2004] [Indexed: 11/17/2022]
Abstract
The epsilon-subunit contains the catalytic site for the 3'-->5' proofreading exonuclease that functions in the DNA pol III (DNA polymerase III) core to edit nucleotides misinserted by the alpha-subunit DNA pol. A novel mutagenesis strategy was used to identify 23 dnaQ alleles that exhibit a mutator phenotype in vivo. Fourteen of the epsilon mutants were purified, and these proteins exhibited 3'-->5' exonuclease activities that ranged from 32% to 155% of the activity exhibited by the wild-type epsilon protein, in contrast with the 2% activity exhibited by purified MutD5 protein. DNA pol III core enzymes constituted with 11 of the 14 epsilon mutants exhibited an increased error rate during in vitro DNA synthesis using a forward mutation assay. Interactions of the purified epsilon mutants with the alpha- and theta;-subunits were examined by gel filtration chromatography and exonuclease stimulation assays, and by measuring polymerase/exonuclease ratios to identify the catalytically active epsilon511 (I170T/V215A) mutant with dysfunctional proofreading in the DNA pol III core. The epsilon511 mutant associated tightly with the alpha-subunit, but the exonuclease activity of epsilon511 was not stimulated in the alpha-epsilon511 complex. Addition of the theta;-subunit to generate the alpha-epsilon511-theta; DNA pol III core partially restored stimulation of the epsilon511 exonuclease, indicating a role for the theta;-subunit in co-ordinating the alpha-epsilon polymerase-exonuclease interaction. The alpha-epsilon511-theta; DNA pol III core exhibited a 3.5-fold higher polymerase/exonuclease ratio relative to the wild-type DNA pol III core, further indicating dysfunctional proofreading in the alpha-epsilon511-theta; complex. Thus the epsilon511 mutant has wild-type 3'-->5' exonuclease activity and associates physically with the alpha- and theta;-subunits to generate a proofreading-defective DNA pol III enzyme.
Collapse
Affiliation(s)
- Duane A. Lehtinen
- Wake Forest University Health Sciences, Department of Biochemistry, Winston-Salem, NC 27157, U.S.A
| | - Fred W. Perrino
- Wake Forest University Health Sciences, Department of Biochemistry, Winston-Salem, NC 27157, U.S.A
| |
Collapse
|
112
|
Cheng Y, Patel DJ. Crystallographic structure of the nuclease domain of 3'hExo, a DEDDh family member, bound to rAMP. J Mol Biol 2004; 343:305-12. [PMID: 15451662 PMCID: PMC4692376 DOI: 10.1016/j.jmb.2004.08.055] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2004] [Accepted: 08/17/2004] [Indexed: 11/18/2022]
Abstract
A human 3'-5'-exoribonuclease (3'hExo) has recently been identified and shown to be responsible for histone mRNA degradation. Functionally, 3'hExo and a stem-loop binding protein (SLBP) target opposite faces of a unique highly conserved stem-loop RNA scaffold towards the 3' end of histone mRNA, which is composed of a 6 bp stem and a 4 nt loop, followed by an ACCCA sequence. Its Caenorhabditis elegans homologue, ERI-1, has been shown to degrade small interfering RNA in vitro and to function as a negative regulator of RNA interference in neuronal cells. We have determined the structure of the nuclease domain (Nuc) of 3'hExo complexed with rAMP in the presence of Mg2+ at 1.6 A resolution. The Nuc domain adopts an alpha/beta globular fold, with four acidic residues coordinating a binuclear metal cluster within the active site, whose topology is related to DEDDh exonuclease family members, despite a very low level of primary sequence identity. The two magnesium cations in the Nuc active site are coordinated to D134, E136, D234 and D298, and together with H293, which can potentially act as a general base, provide a platform for hydrolytic cleavage of bound RNA in the 3' --> 5' direction. The bound rAMP is positioned within a deep active-site pocket, with its purine ring close-packed with the hydrophobic F185 and L189 side-chains and its sugar 2'-OH and 3'-OH groups hydrogen bonded to backbone atoms of Nuc. There are striking similarities between the active sites of Nuc and epsilon186, an Escherichia coli DNA polymerase III proofreading domain, providing a common hydrolytic cleavage mechanism for RNA degradation and DNA editing, respectively.
Collapse
|
113
|
Gupta R, Hamdan SM, Dixon NE, Sheil MM, Beck JL. Application of electrospray ionization mass spectrometry to study the hydrophobic interaction between the epsilon and theta subunits of DNA polymerase III. Protein Sci 2004; 13:2878-87. [PMID: 15459336 PMCID: PMC2286593 DOI: 10.1110/ps.04889604] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The interactions between the N-terminal domain of the epsilon (epsilon186) and theta subunits of DNA polymerase III of Escherichia coli were investigated using electrospray ionization mass spectrometry. The epsilon186-theta complex was stable in 9 M ammonium actetate (pH 8), suggesting that hydrophobic interactions have a predominant contribution to the stability of the complex. Addition of primary alkanols to epsilon186-theta in 0.1 M ammonium acetate (pH 8), led to dissociation of the complex, as observed in the mass spectrometer. The concentrations of methanol, ethanol, and 1-propanol required to dissociate 50% of the complex were 8.9 M, 4.8 M, and 1.7 M, respectively. Closer scrutiny of the effect of alkanols on epsilon186, theta, and epsilon186-theta showed that epsilon186 formed soluble aggregates prior to precipitation, and that the association of epsilon186 with theta stabilized epsilon186. In-source collision-induced dissociation experiments and other results suggested that the epsilon186-theta complex dissociated in the mass spectrometer, and that the stability (with respect to dissociation) of the complex in vacuo was dependent on the solution from which it was sampled.
Collapse
Affiliation(s)
- Rajesh Gupta
- Department of Chemistry, University of Wollongong, NSW 2522, Australia
| | | | | | | | | |
Collapse
|
114
|
Pintacuda G, Keniry MA, Huber T, Park AY, Dixon NE, Otting G. Fast structure-based assignment of 15N HSQC spectra of selectively 15N-labeled paramagnetic proteins. J Am Chem Soc 2004; 126:2963-70. [PMID: 14995214 DOI: 10.1021/ja039339m] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel strategy for fast NMR resonance assignment of (15)N HSQC spectra of proteins is presented. It requires the structure coordinates of the protein, a paramagnetic center, and one or more residue-selectively (15)N-labeled samples. Comparison of sensitive undecoupled (15)N HSQC spectra recorded of paramagnetic and diamagnetic samples yields data for every cross-peak on pseudocontact shift, paramagnetic relaxation enhancement, cross-correlation between Curie-spin and dipole-dipole relaxation, and residual dipolar coupling. Comparison of these four different paramagnetic quantities with predictions from the three-dimensional structure simultaneously yields the resonance assignment and the anisotropy of the susceptibility tensor of the paramagnetic center. The method is demonstrated with the 30 kDa complex between the N-terminal domain of the epsilon subunit and the theta subunit of Escherichia coli DNA polymerase III. The program PLATYPUS was developed to perform the assignment, provide a measure of reliability of the assignment, and determine the susceptibility tensor anisotropy.
Collapse
Affiliation(s)
- Guido Pintacuda
- Australian National University, Research School of Chemistry, Canberra, ACT 0200, Australia
| | | | | | | | | | | |
Collapse
|
115
|
Taft-Benz SA, Schaaper RM. The theta subunit of Escherichia coli DNA polymerase III: a role in stabilizing the epsilon proofreading subunit. J Bacteriol 2004; 186:2774-80. [PMID: 15090519 PMCID: PMC387820 DOI: 10.1128/jb.186.9.2774-2780.2004] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2003] [Accepted: 01/16/2004] [Indexed: 11/20/2022] Open
Abstract
The function of the theta subunit of Escherichia coli DNA polymerase III holoenzyme is not well established. theta is a tightly bound component of the DNA polymerase III core, which contains the alpha subunit (polymerase), the epsilon subunit (3'-->5' exonuclease), and the theta subunit, in the linear order alpha-epsilon-theta. Previous studies have shown that the theta subunit is not essential, as strains carrying a deletion of the holE gene (which encodes theta) proved fully viable. No significant phenotypic effects of the holE deletion could be detected, as the strain displayed normal cell health, morphology, and mutation rates. On the other hand, in vitro experiments have indicated the efficiency of the 3'-exonuclease activity of epsilon to be modestly enhanced by the presence of theta. Here, we report a series of genetic experiments that suggest that theta has a stabilizing role for the epsilon proofreading subunit. The observations include (i) defined DeltaholE mutator effects in mismatch-repair-defective mutL backgrounds, (ii) strong DeltaholE mutator effects in certain proofreading-impaired dnaQ strains, and (iii) yeast two- and three-hybrid experiments demonstrating enhancement of alpha-epsilon interactions by the presence of theta. theta appears conserved among gram-negative organisms which have an exonuclease subunit that exists as a separate protein (i.e., not part of the polymerase polypeptide), and the presence of theta might be uniquely beneficial in those instances where the proofreading 3'-exonuclease is not part of the polymerase polypeptide.
Collapse
Affiliation(s)
- Sharon A Taft-Benz
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
116
|
Kennedy S, Wang D, Ruvkun G. A conserved siRNA-degrading RNase negatively regulates RNA interference in C. elegans. Nature 2004; 427:645-9. [PMID: 14961122 DOI: 10.1038/nature02302] [Citation(s) in RCA: 446] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2003] [Accepted: 12/19/2003] [Indexed: 11/08/2022]
Abstract
In many organisms, introducing double-stranded RNA (dsRNA) causes the degradation of messenger RNA that is homologous to the trigger dsRNA--a process known as RNA interference. The dsRNA is cleaved into short interfering RNAs (siRNAs), which hybridize to homologous mRNAs and induce their degradation. dsRNAs vary in their ability to trigger RNA interference: many mRNA-targeting dsRNAs show weak phenotypes, and nearly all mRNAs of the Caenorhabditis elegans nervous system are refractory to RNA interference. C. elegans eri-1 was identified in a genetic screen for mutants with enhanced sensitivity to dsRNAs. Here we show that eri-1 encodes an evolutionarily conserved protein with domains homologous to nucleic-acid-binding and exonuclease proteins. After exposure to dsRNA or siRNAs, animals with eri-1 mutations accumulate more siRNAs than do wild-type animals. C. elegans ERI-1 and its human orthologue degrade siRNAs in vitro. In the nematode worm, ERI-1 is predominantly cytoplasmic and is expressed most highly in the gonad and a subset of neurons, suggesting that ERI-1 siRNase activity suppresses RNA interference more intensely in these tissues. Thus, ERI-1 is a negative regulator that may normally function to limit the duration, cell-type specificity or endogenous functions of RNA interference.
Collapse
Affiliation(s)
- Scott Kennedy
- Department of Molecular Biology, Massachusetts General Hospital and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | |
Collapse
|
117
|
Shen Y, Tang XF, Yokoyama H, Matsui E, Matsui I. A 21-amino acid peptide from the cysteine cluster II of the family D DNA polymerase from Pyrococcus horikoshii stimulates its nuclease activity which is Mre11-like and prefers manganese ion as the cofactor. Nucleic Acids Res 2004; 32:158-68. [PMID: 14704353 PMCID: PMC373266 DOI: 10.1093/nar/gkh153] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Family D DNA polymerase (PolD) is a new type of DNA polymerase possessing polymerization and 3'-5' exonuclease activities. Here we report the characterization of the nuclease activity of PolD from Pyrococcus horikoshii. By site-directed mutagenesis, we verified that the putative Mre11-like nuclease domain in the small subunit (DP1), predicted according to computer analysis and structure inference reported previously, is the catalytic domain. We show that D363, H365 and H454 are the essential residues, while D407, N453, H500, H563 and H565 are critical residues for the activity. We provide experimental evidence demonstrating that manganese, rather than magnesium, is the preferable metal ion for the nuclease activity of PolD. We also show that DP1 alone is insufficient to perform full catalysis, which additionally requires the formation of the PolD complex and manganese ion. We found that a 21 amino acid, subunit-interacting peptide of the sequence from cysteine cluster II of the large subunit (DP2) stimulates the exonuclease activity of DP1 and the internal deletion mutants of PolD lacking the 21-aa sequence. This indicates that the putative zinc finger motif of the cysteine cluster II is deeply involved in the nucleolytic catalysis.
Collapse
Affiliation(s)
- Yulong Shen
- Biological Information Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305, Japan
| | | | | | | | | |
Collapse
|
118
|
Thore S, Mauxion F, Séraphin B, Suck D. X-ray structure and activity of the yeast Pop2 protein: a nuclease subunit of the mRNA deadenylase complex. EMBO Rep 2003; 4:1150-5. [PMID: 14618157 PMCID: PMC1326415 DOI: 10.1038/sj.embor.7400020] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2003] [Revised: 09/17/2003] [Accepted: 09/19/2003] [Indexed: 11/09/2022] Open
Abstract
In Saccharomyces cerevisiae, a large complex, known as the Ccr4-Not complex, containing two nucleases, is responsible for mRNA deadenylation. One of these nucleases is called Pop2 and has been identified by similarity with PARN, a human poly(A) nuclease. Here, we present the crystal structure of the nuclease domain of Pop2 at 2.3 A resolution. The domain has the fold of the DnaQ family and represents the first structure of an RNase from the DEDD superfamily. Despite the presence of two non-canonical residues in the active site, the domain displays RNase activity on a broad range of RNA substrates. Site-directed mutagenesis of active-site residues demonstrates the intrinsic ability of the Pop2 RNase D domain to digest RNA. This first structure of a nuclease involved in the 3'-5' deadenylation of mRNA in yeast provides information for the understanding of the mechanism by which the Ccr4-Not complex achieves its functions.
Collapse
Affiliation(s)
- Stéphane Thore
- European Molecular Biology Laboratory,
Heidelberg, Germany
- European Molecular Biology Laboratory,
Meyerhofstrasse 1, D-69117 Heidelberg,
Germany
| | - Fabienne Mauxion
- Equipe Labelisée La Ligue, Centre de
Génétique Moléculaire, Gif sur Yvette
Cedex, France
- Equipe Labelisée La Ligue, Centre de
Génétique Moléculaire, CNRS UPR2167, Avenue
de la Terrasse, 91198 Gif sur Yvette Cedex,
France
| | - Bertrand Séraphin
- Equipe Labelisée La Ligue, Centre de
Génétique Moléculaire, Gif sur Yvette
Cedex, France
- Equipe Labelisée La Ligue, Centre de
Génétique Moléculaire, CNRS UPR2167, Avenue
de la Terrasse, 91198 Gif sur Yvette Cedex,
France
| | - Dietrich Suck
- European Molecular Biology Laboratory,
Heidelberg, Germany
- European Molecular Biology Laboratory,
Meyerhofstrasse 1, D-69117 Heidelberg,
Germany
- Tel: +49 6221 387 307; Fax: +49 6221 387 306;
E-mail:
| |
Collapse
|
119
|
Dutta A, Rao BJ, Chary KVR. Overexpression and purification of isotopically labeled Escherichia coli MutH for NMR studies. Protein Expr Purif 2003; 29:252-8. [PMID: 12767817 DOI: 10.1016/s1046-5928(03)00056-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
MutH is one of the enzymes involved in the methyl directed -GATC-based DNA repair system. We report a significantly optimized protocol to prepare isotopically (15N and/or 13C) labeled MutH in minimal medium with high yields for NMR studies. Under the various conditions that we have standardized for the affinity purification of His(6) MutH, the yield of the purified MutH has been estimated to be 35-40 mg of protein from 1liter of M9 minimal media. The yield, thus, obtained by this method is significantly higher than those of previously reported methods. Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectroscopy analysis revealed that the protein was pure and existed essentially in a monomeric form. Uniformly 15N-labeled protein, thus, produced has been characterized by recording a sensitivity enhanced 2D [15N]-[1H] HSQC spectrum. The dispersion seen in 15N-1H cross-peaks indicates the presence of a well-ordered structure for MutH and proper folding of the purified protein. The spectrum confirms further the existence of MutH as a monomer.
Collapse
Affiliation(s)
- Arnob Dutta
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005, India
| | | | | |
Collapse
|
120
|
Nishino T, Morikawa K. Structure and function of nucleases in DNA repair: shape, grip and blade of the DNA scissors. Oncogene 2002; 21:9022-32. [PMID: 12483517 DOI: 10.1038/sj.onc.1206135] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
DNA nucleases catalyze the cleavage of phosphodiester bonds. These enzymes play crucial roles in various DNA repair processes, which involve DNA replication, base excision repair, nucleotide excision repair, mismatch repair, and double strand break repair. In recent years, new nucleases involved in various DNA repair processes have been reported, including the Mus81 : Mms4 (Eme1) complex, which functions during the meiotic phase and the Artemis : DNA-PK complex, which processes a V(D)J recombination intermediate. Defects of these nucleases cause genetic instability or severe immunodeficiency. Thus, structural biology on various nuclease actions is essential for the elucidation of the molecular mechanism of complex DNA repair machinery. Three-dimensional structural information of nucleases is also rapidly accumulating, thus providing important insights into the molecular architectures, as well as the DNA recognition and cleavage mechanisms. This review focuses on the three-dimensional structure-function relationships of nucleases crucial for DNA repair processes.
Collapse
Affiliation(s)
- Tatsuya Nishino
- Department of Structural Biology, Biomolecular Engineering Research Institute, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
| | | |
Collapse
|