101
|
Fitzmaurice RJ, Gaggini F, Srinivasan N, Kilburn JD. Carboxylate binding in polar solvents using pyridylguanidinium salts. Org Biomol Chem 2007; 5:1706-14. [PMID: 17520138 DOI: 10.1039/b700988g] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of thiourea and guanidinium derivatives have been prepared and their ability to bind a carboxylate group has been investigated. Guanidinium 33, featuring two additional amides and a pyridine moiety, proved to be the most potent carboxylate binding site and was able to bind acetate in aqueous solvent systems (K(ass) = 480 M(-1) in 30% H(2)O-DMSO). The pyridine moiety is critical to obtaining strong binding, and comparison with the binding properties of analogous compounds in which the pyridine is replaced by a benzene ring provides a striking example of enthalpy-entropy compensation.
Collapse
|
102
|
Houtman JCD, Brown PH, Bowden B, Yamaguchi H, Appella E, Samelson LE, Schuck P. Studying multisite binary and ternary protein interactions by global analysis of isothermal titration calorimetry data in SEDPHAT: application to adaptor protein complexes in cell signaling. Protein Sci 2007; 16:30-42. [PMID: 17192587 PMCID: PMC1794685 DOI: 10.1110/ps.062558507] [Citation(s) in RCA: 273] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Revised: 10/16/2006] [Accepted: 10/16/2006] [Indexed: 10/23/2022]
Abstract
Multisite interactions and the formation of ternary or higher-order protein complexes are ubiquitous features of protein interactions. Cooperativity between different ligands is a hallmark for information transfer, and is frequently critical for the biological function. We describe a new computational platform for the global analysis of isothermal titration calorimetry (ITC) data for the study of binary and ternary multisite interactions, implemented as part of the public domain multimethod analysis software SEDPHAT. The global analysis of titrations performed in different orientations was explored, and the potential for unraveling cooperativity parameters in multisite interactions was assessed in theory and experiment. To demonstrate the practical potential and limitations of global analyses of ITC titrations for the study of cooperative multiprotein interactions, we have examined the interactions of three proteins that are critical for signal transduction after T-cell activation, LAT, Grb2, and Sos1. We have shown previously that multivalent interactions between these three molecules promote the assembly of large multiprotein complexes important for T-cell receptor activation. By global analysis of the heats of binding observed in sets of ITC injections in different orientations, which allowed us to follow the formation of binary and ternary complexes, we observed negative and positive cooperativity that may be important to control the pathway of assembly and disassembly of adaptor protein particles.
Collapse
Affiliation(s)
- Jon C D Houtman
- Department of Microbiology, University of Iowa, Iowa 52242, USA
| | | | | | | | | | | | | |
Collapse
|
103
|
Fujiwara SI, Amisaki T. Molecular dynamics study of conformational changes in human serum albumin by binding of fatty acids. Proteins 2006; 64:730-9. [PMID: 16783783 DOI: 10.1002/prot.21053] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Human serum albumin (HSA) binds with fatty acids under normal physiologic conditions. To date, there is little published information on the tertiary structure of HSA-fatty acid complex in aqueous solution. In the present study, we used molecular dynamics (MD) simulations to elucidate possible structural changes of HSA brought about by the binding of fatty acids. Both unliganded HSA and HSA-fatty acid complex models for MD calculations were constructed based on the X-ray crystal structures. Five myristates (MYRs) were bound in the HSA-fatty acid complex model. In the present MD study, the motion of domains I and III caused by the binding of MYR molecules increased the radius of gyration of HSA. Root-mean-square fluctuations from the MD simulations revealed that the atomic fluctuations of the specific amino acids at drug-binding site I that can regulate the drug-binding affinity were increased by the binding of MYR molecules. Primary internal motions, characterized by the first three principal components, were observed mainly at domains I and III in the principal component analysis for trajectory data. The directional motion projected on the first principal component of unliganded HSA was conserved in HSA-MYR complex as the third principal directional motion with higher frequency. However, the third principal directional motion in unliganded HSA turned into the first principal directional motion with lower frequency in the HSA-MYR complex. Thus, the present MD study provides insights into the possible conformational changes of HSA caused by the binding of fatty acids.
Collapse
Affiliation(s)
- Shin-Ichi Fujiwara
- Department of Biological Regulation, Faculty of Medicine, Tottori University, Yonago, Japan.
| | | |
Collapse
|
104
|
Dolenc J, Baron R, Oostenbrink C, Koller J, van Gunsteren WF. Configurational entropy change of netropsin and distamycin upon DNA minor-groove binding. Biophys J 2006; 91:1460-70. [PMID: 16731550 PMCID: PMC1518646 DOI: 10.1529/biophysj.105.074617] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Accepted: 03/31/2006] [Indexed: 11/18/2022] Open
Abstract
Binding of a small molecule to a macromolecular target reduces its conformational freedom, resulting in a negative entropy change that opposes the binding. The goal of this study is to estimate the configurational entropy change of two minor-groove-binding ligands, netropsin and distamycin, upon binding to the DNA duplex d(CGCGAAAAACGCG).d(CGCGTTTTTCGCG). Configurational entropy upper bounds based on 10-ns molecular dynamics simulations of netropsin and distamycin in solution and in complex with DNA in solution were estimated using the covariance matrix of atom-positional fluctuations. The results suggest that netropsin and distamycin lose a significant amount of configurational entropy upon binding to the DNA minor groove. The estimated changes in configurational entropy for netropsin and distamycin are -127 J K(-1) mol(-1) and -104 J K(-1) mol(-1), respectively. Estimates of the configurational entropy contributions of parts of the ligands are presented, showing that the loss of configurational entropy is comparatively more pronounced for the flexible tails than for the relatively rigid central body.
Collapse
Affiliation(s)
- Jozica Dolenc
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|
105
|
Baron R, de Vries AH, Hünenberger PH, van Gunsteren WF. Configurational Entropies of Lipids in Pure and Mixed Bilayers from Atomic-Level and Coarse-Grained Molecular Dynamics Simulations. J Phys Chem B 2006; 110:15602-14. [PMID: 16884285 DOI: 10.1021/jp061627s] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Single-chain and single-fragment configurational entropies of lipid tails in hydrated lipid bilayers are evaluated from molecular dynamics simulations using the quasi-harmonic approximation. The entropy distribution along individual acyl tails is obtained and compared to that of corresponding hydrocarbon chains in the liquid phase. We consider pure dipalmitoylphosphatidylcholine and mixed dioleoylphosphatidylcholine/dioleoylphosphatidylethanolamine bilayers. The systems are modeled at different levels of spatial resolution: In an atomic-level (AL) model all (heavy) atoms are explicitly simulated; in a coarse-grained (CG) model particles (beads) representing groups of covalently bound atoms are used, which map approximately four non-hydrogen atoms to one interaction site. Single-chain and single-fragment entropies and correlations between the motions of (single) acyl chains are compared. A good correspondence is found between the flexibility of the AL and CG models. The loss in configurational entropy due to the reduction in the number of degrees of freedom upon coarse-graining of the model is estimated. The CG model shows about 4 times faster convergence of the chain entropies than the more detailed AL model. Corrections to the quasi-harmonic entropy estimates were found to be small for the CG model. For the AL model, the correction due to mode anharmonicities is small, but the correction due to pairwise (supralinear) mode correlations is sizable.
Collapse
Affiliation(s)
- Riccardo Baron
- Laboratorium für Physikalische Chemie, Eidgenössische Technische Hochschule Zürich, CH-8093 Zürich, Switzerland
| | | | | | | |
Collapse
|
106
|
Frazier RA, Papadopoulou A, Green RJ. Isothermal titration calorimetry study of epicatechin binding to serum albumin. J Pharm Biomed Anal 2006; 41:1602-5. [PMID: 16522360 DOI: 10.1016/j.jpba.2006.02.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Revised: 01/31/2006] [Accepted: 02/01/2006] [Indexed: 11/24/2022]
Abstract
The interaction of epicatechin with bovine serum albumin (BSA) was studied by isothermal titration calorimetry. The binding constant (K) and associated thermodynamic binding parameters (n, DeltaH) were determined for the interaction at three solution concentrations of BSA using a binding model assuming independent binding sites. These data show weak non-covalent binding of epicatechin to BSA. The interaction energetics varied with BSA concentration in the calorimeter cell, suggesting that the binding of epicatechin induced BSA aggregation. The free energy (DeltaG) remained constant within a range of 2 kJ mol(-1) and negative entropy was observed, indicating an enthalpy driven exothermic interaction. It is concluded that the non-covalent epicatechin-BSA complex is formed by hydrogen bonding.
Collapse
Affiliation(s)
- Richard A Frazier
- School of Food Biosciences, The University of Reading, P.O. Box 226, Whiteknights, Reading RG6 6AP, United Kingdom.
| | | | | |
Collapse
|
107
|
Ragusa A, Rossi S, Hayes JM, Stein M, Kilburn JD. Novel enantioselective receptors for N-protected glutamate and aspartate. Chemistry 2006; 11:5674-88. [PMID: 16035004 DOI: 10.1002/chem.200500444] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A series of chiral bisthiourea macrocycles 1-4 have been prepared and their binding properties with various dicarboxylate salts have been examined by using NMR titration and isothermal calorimetry experiments. Macrocycle 1, in particular, favours the 1:1 binding of N-protected L-glutamate and aspartate, but favours 1:2 binding of the corresponding D-amino acids in polar solvents (dimethyl sulfoxide and acetonitrile). The macrocycles, however, do not bind carboxylates at all in the less competitive solvent chloroform. The binding properties of these macrocyles are sensitive to small structural changes as demonstrated by the altered binding properties of macrocycles 2-4 compared with 1.
Collapse
Affiliation(s)
- Andrea Ragusa
- School of Chemistry, University of Southampton, Southampton, SO17 1BJ, UK
| | | | | | | | | |
Collapse
|
108
|
Abstract
Whereas heat capacity changes (DeltaCPs) associated with folding transitions are commonplace in the literature of protein folding, they have long been considered a minor energetic contributor in nucleic acid folding. Recent advances in the understanding of nucleic acid folding and improved technology for measuring the energetics of folding transitions have allowed a greater experimental window for measuring these effects. We present in this review a survey of current literature that confronts the issue of DeltaCPs associated with nucleic acid folding transitions. This work helps to gather the molecular insights that can be gleaned from analysis of DeltaCPs and points toward the challenges that will need to be overcome if the energetic contribution of DeltaCP terms are to be put to use in improving free energy calculations for nucleic acid structure prediction.
Collapse
Affiliation(s)
- Peter J Mikulecky
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue Bloomington, IN 47401, USA
| | | |
Collapse
|
109
|
Roufik S, Gauthier SF, Leng X, Turgeon SL. Thermodynamics of Binding Interactions between Bovine β-Lactoglobulin A and the Antihypertensive Peptide β-Lg f142-148. Biomacromolecules 2006; 7:419-26. [PMID: 16471911 DOI: 10.1021/bm050229c] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The binding capacity of bovine beta-lactoglobulin variant A (beta-Lg A) for six peptides derived from beta-Lg was evaluated using an ultrafiltration method under the following conditions: pH 6.8, 40 degrees C, and a beta-Lg A/peptide molar ratio of 1:5. Only peptides beta-Lg f102-105, f142-148, and f69-83 bound in significant amounts to beta-Lg A corresponding to 1.5, 1.1, and 0.7 mol of peptide per mole of beta-Lg A, respectively. The interaction between beta-Lg A and the antihypertensive peptide beta-Lg f142-148 was investigated further by isothermal titration calorimetry. The binding isotherms at pH 6.8 and 25 degrees C confirmed that beta-Lg f142-148 bound to beta-Lg A and that the interaction followed a sequential three-site binding model with constants of association of 2 x 10(3), 1 x 10(3), and 0.4 x 10(3) M(-1) for the first, second, and third binding sites, respectively. The enthalpy of binding was exothermic for the first and second binding sites and endothermic for the third binding site. Binding of the peptide to all three sites was spontaneous as shown by the negative free energy values. These results show for the first time that beta-Lg A can bind bioactive peptides. This potential could be exploited to transport bioactive peptides and protect them in the gastrointestinal tract following their oral administration as nutraceuticals.
Collapse
Affiliation(s)
- Samira Roufik
- STELA Dairy Research Center, Faculté des sciences de l'agriculture et de l'alimentation, Pavillon Paul-Comtois, Université Laval, Quebec City, Quebec, Canada, G1K 7P4
| | | | | | | |
Collapse
|
110
|
Liu Y, Yang EC, Chen Y, Guo DS, Ding F. Molecular Selective Binding of Pyridinium Guest Ions by Water-Soluble Calix[4]arenes. European J Org Chem 2005. [DOI: 10.1002/ejoc.200500354] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
111
|
Boysen RI, Jong AJO, Hearn MTW. Binding behaviour and conformational properties of globular proteins in the presence of immobilised non-polar ligands used in reversed-phase liquid chromatography. J Chromatogr A 2005; 1079:173-86. [PMID: 16038303 DOI: 10.1016/j.chroma.2005.03.097] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The thermodynamic and extra-thermodynamic dependencies of five types of cytochrome c in water-acetonitrile mixtures of different composition in the presence of immobilised n-octyl ligands as a function of temperature from 278 K to 338 K have been investigated. The corresponding enthalpic, entropic and heat capacity parameters, deltaHdegrees assoc, deltaS degrees assoc and delta C degrees p, have been evaluated from the observed non-linear Van't Hoff plots of these globular proteins in these heterogeneous systems. The relationships between the free energy dependencies, various molecular parameters and extra-thermodynamic dependencies (empirical correlations) of these protein-non-polar ligand interactions have also been examined. Thus, the involvement of enthalpy-entropy compensation effects has been documented for the binding of these cytochrome cs to solvated n-octyl ligands. Moreover, the results confirm that this experimental approach permits changes in molecular surface area due to the unfolding of these proteins on association with non-polar ligands as a function of temperature to be correlated with other biophysical properties. This study thus provides a general procedure whereby the corresponding free energy dependencies of globular proteins on association with solvated non-polar ligands in heterogeneous two-phase systems can be quantitatively evaluated in terms of fundamental molecular parameters.
Collapse
Affiliation(s)
- Reinhard I Boysen
- Australian Research Council Special Research Centre for Green Chemistry, Australian Centrefor Research on Separation Science, Monash University, Clayton, Vic. 3800, Australia
| | | | | |
Collapse
|
112
|
Gorman BA, Barnett NW, Bos R. Detection of pyrrolizidine alkaloids using flow analysis with both acidic potassium permanganate and tris(2,2′-bipyridyl)ruthenium(II) chemiluminescence. Anal Chim Acta 2005. [DOI: 10.1016/j.aca.2004.11.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
113
|
Touzé T, Eswaran J, Bokma E, Koronakis E, Hughes C, Koronakis V. Interactions underlying assembly of the Escherichia coli AcrAB-TolC multidrug efflux system. Mol Microbiol 2005; 53:697-706. [PMID: 15228545 DOI: 10.1111/j.1365-2958.2004.04158.x] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The major Escherichia coli multidrug efflux pump AcrAB-TolC expels a wide range of antibacterial agents. Using in vivo cross-linking, we show for the first time that the antiporter AcrB and the adaptor AcrA, which form a translocase in the inner membrane, interact with the outer membrane TolC exit duct to form a contiguous proteinaceous complex spanning the bacterial cell envelope. Assembly of the pump appeared to be constitutive, occurring in the presence and absence of drug efflux substrate. This contrasts with substrate-induced assembly of the closely related TolC-dependent protein export machinery, possibly reflecting different assembly dynamics and degrees of substrate responsiveness in the two systems. TolC could be cross-linked independently to AcrB, showing that their large periplasmic domains are in close proximity. However, isothermal titration calorimetry detected no interaction between the purified AcrB and TolC proteins, suggesting that the adaptor protein is required for their stable association in vivo. Confirming this view, AcrA could be cross-linked independently to AcrB and TolC in vivo, and calorimetry demonstrated energetically favourable interactions of AcrA with both AcrB and TolC proteins. AcrB was bound by a polypeptide spanning the C-terminal half of AcrA, but binding to TolC required interaction of N- and C-terminal polypeptides spanning the lipoyl-like domains predicted to present the intervening coiled-coil to the periplasmic coils of TolC. These in vivo and in vitro analyses establish the central role of the AcrA adaptor in drug-independent assembly of the tripartite drug efflux pump, specifically in coupling the inner membrane transporter and the outer membrane exit duct.
Collapse
Affiliation(s)
- Thierry Touzé
- Cambridge University Department of Pathology, Tennis Court Road, Cambridge CB2 1QP, UK
| | | | | | | | | | | |
Collapse
|
114
|
Lo MC, Aulabaugh A, Jin G, Cowling R, Bard J, Malamas M, Ellestad G. Evaluation of fluorescence-based thermal shift assays for hit identification in drug discovery. Anal Biochem 2005; 332:153-9. [PMID: 15301960 DOI: 10.1016/j.ab.2004.04.031] [Citation(s) in RCA: 535] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2004] [Indexed: 11/22/2022]
Abstract
The fluorescence-based thermal shift assay is a general method for identification of inhibitors of target proteins from compound libraries. Using an environmentally sensitive fluorescent dye to monitor protein thermal unfolding, the ligand-binding affinity can be assessed from the shift of the unfolding temperature (Delta Tm) obtained in the presence of ligands relative to that obtained in the absence of ligands. In this article, we report that the thermal shift assay can be conducted in an inexpensive, commercially available device for temperature control and fluorescence detection. The binding affinities obtained from thermal shift assays are compared with the binding affinities measured by isothermal titration calorimetry and with the IC(50) values from enzymatic assays. The potential pitfalls in the data analysis of thermal shift assays are also discussed.
Collapse
Affiliation(s)
- Mei-Chu Lo
- Biophysics/Enzymology-Chemical and Screening Sciences, Wyeth Research, Pearl River, NY 10965, USA.
| | | | | | | | | | | | | |
Collapse
|
115
|
de Mol NJ, Dekker FJ, Broutin I, Fischer MJE, Liskamp RMJ. Surface Plasmon Resonance Thermodynamic and Kinetic Analysis as a Strategic Tool in Drug Design. Distinct Ways for Phosphopeptides to Plug into Src- and Grb2 SH2 Domains. J Med Chem 2005; 48:753-63. [PMID: 15689159 DOI: 10.1021/jm049359e] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Thermodynamic and kinetic studies of biomolecular interactions give insight into specificity of molecular recognition processes and advance rational drug design. Binding of phosphotyrosine (pY)-containing peptides to Src- and Grb2-SH2 domains was investigated using a surface plasmon resonance (SPR)-based method. This SPR assay yielded thermodynamic binding constants in solution, and the kinetic information contained in the SPR signal allowed kinetic analysis, which demonstrated distinct ways for pY ligands to interact with the SH2 domains. The results for binding to Src SH2 were consistent with sequestration of water molecules in the interface of the pYEEI peptide/Src SH2 complex. The results for a pYVNV peptide binding to Grb2 SH2 suggested a conformational change for Grb2 SH2 upon binding, which is not observed for Src SH2. Binding of a cyclic construct, allowing the pYVNV sequence in the bound conformation, did not have the expected entropy advantage. The results suggest an alternative binding mode for this construct, with the hydrophobic ring-closing part interacting with the protein. In all cases, except for full-length Grb2 protein, the affinity for the immobilized peptide at the SPR sensor and in solution was identical. This study demonstrates that SPR thermodynamic and kinetic analysis is a useful strategic tool in drug design.
Collapse
Affiliation(s)
- Nico J de Mol
- Department of Medicinal Chemistry, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
116
|
Ambrosi M, Cameron NR, Davis BG, Stolnik S. Investigation of the interaction between peanut agglutinin and synthetic glycopolymeric multivalent ligands. Org Biomol Chem 2005; 3:1476-80. [PMID: 15827644 DOI: 10.1039/b411555b] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The interaction between synthetic glycoplymers bearing beta-D-galactose side groups and the lectin peanut agglutinin (PNA) was investigated by UV-difference spectroscopy and isothermal titration calorimetry (ITC). UV-difference spectroscopy indicated that the polymer-lectin interaction was stronger than that between PNA and either the corresponding monomer, D-galactose or D-lactose. The thermodynamics of binding (K, DeltaG, DeltaH, DeltaS and n) were determined from ITC data by fitting with a two-site, non-cooperative binding model. It was found that the glycopolymer displayed around a 50 times greater affinity for the lectin than the parent carbohydrate, and around 10 times greater than the monomer, on a valency-corrected basis. Binding was found to be entropically driven, and was accompanied by aggregation and precipitation of protein molecules. Furthermore, interesting differences between polymers prepared either from deacetylated monomers, or by deacetylation of pre-formed polymers, were found.
Collapse
Affiliation(s)
- Moira Ambrosi
- Department of Chemistry and Interdisciplinary Research Centre in Polymer Science and Technology, University of Durham, UK
| | | | | | | |
Collapse
|
117
|
Shaikh SA, Ahmed SR, Jayaram B. A molecular thermodynamic view of DNA–drug interactions: a case study of 25 minor-groove binders. Arch Biochem Biophys 2004; 429:81-99. [PMID: 15288812 DOI: 10.1016/j.abb.2004.05.019] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2004] [Revised: 05/27/2004] [Indexed: 11/20/2022]
Abstract
Developing a molecular view of the thermodynamics of DNA recognition is essential to the design of ligands for regulating gene expression. In a first comprehensive attempt at sketching an atlas of DNA-drug energetics, we present here a detailed thermodynamic view of minor-groove recognition by small molecules via a computational study on 25 DNA-drug complexes. The studies are configured in the MMGBSA (Molecular Mechanics-Generalized Born-Solvent Accessibility) framework at the current state of the art and facilitate a structure-energy component correlation. Analyses were conducted on both energy minimized structures of DNA-drug complexes and molecular dynamics trajectories developed for the purpose of this study. While highlighting the favorable role of packing, shape complementarity, and van der Waals and hydrophobic interactions of the drugs in the minor groove in conformity with experiment, the studies reveal an interesting annihilation of favorable electrostatics by desolvation. Structural modifications attempted on the ligands point to the requisite physico-chemical factors for obtaining improved binding energies. Hydrogen bonds predicted to be important for specificity based on structural considerations do not always turn out to be significant to binding in post facto analyses of molecular dynamics trajectories, which treat thermal averaging, solvent, and counterion effects rigorously. The strength of the hydrogen bonds retained between the DNA and drug during the molecular dynamics simulations is approximately 1kcal/mol. Overall, the study reveals the compensatory nature of the diverse binding free energy components, possible threshold limits for some of these properties, and the availability of a computationally viable free energy methodology which could be of value in drug-design endeavors.
Collapse
Affiliation(s)
- Saher Afshan Shaikh
- Department of Chemistry, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India
| | | | | |
Collapse
|
118
|
Mikulecky PJ, Feig AL. Heat capacity changes in RNA folding: application of perturbation theory to hammerhead ribozyme cold denaturation. Nucleic Acids Res 2004; 32:3967-76. [PMID: 15282329 PMCID: PMC506808 DOI: 10.1093/nar/gkh723] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2004] [Revised: 07/08/2004] [Accepted: 07/08/2004] [Indexed: 11/12/2022] Open
Abstract
In proteins, empirical correlations have shown that changes in heat capacity (DeltaC(P)) scale linearly with the hydrophobic surface area buried upon folding. The influence of DeltaC(P) on RNA folding has been widely overlooked and is poorly understood. In addition to considerations of solvent reorganization, electrostatic effects might contribute to DeltaC(P)s of folding in polyanionic species such as RNAs. Here, we employ a perturbation method based on electrostatic theory to probe the hot and cold denaturation behavior of the hammerhead ribozyme. This treatment avoids much of the error associated with imposing two-state folding models on non-two-state systems. Ribozyme stability is perturbed across a matrix of solvent conditions by varying the concentration of NaCl and methanol co-solvent. Temperature-dependent unfolding is then monitored by circular dichroism spectroscopy. The resulting array of unfolding transitions can be used to calculate a DeltaC(P) of folding that accurately predicts the observed cold denaturation temperature. We confirm the accuracy of the calculated DeltaC(P) by using isothermal titration calorimetry, and also demonstrate a methanol-dependence of the DeltaC(P). We weigh the strengths and limitations of this method for determining DeltaC(P) values. Finally, we discuss the data in light of the physical origins of the DeltaC(P)s for RNA folding and consider their impact on biological function.
Collapse
Affiliation(s)
- Peter J Mikulecky
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN 47405, USA
| | | |
Collapse
|
119
|
Abstract
Enthalpy-entropy noncompensation characterizes the relative changes in the hydration thermodynamic functions upon "transforming" ethane into fluoromethane, chloromethane, bromomethane, and iodomethane. An analysis grounded on a simple statistical mechanical theory of hydration allows a plausible rationalization of such enthalpy-entropy noncompensation. It is shown that increasing the strength of solute-water attractive interactions modifying the chemical nature of a part of the solute molecule, but not its size, is a largely noncompensating process for the hydration of noncharged and nonhydrogen bonding species, and dominates the compensating contribution coming from the reorganization of water H bonds.
Collapse
Affiliation(s)
- Giuseppe Graziano
- Dipartimento di Scienze Biologiche ed Ambientali, Universita del Sannio, Via Port'Arsa, 11-82100 Benevento, Italy.
| |
Collapse
|
120
|
Turnbull WB, Daranas AH. On the value of c: can low affinity systems be studied by isothermal titration calorimetry? J Am Chem Soc 2004; 125:14859-66. [PMID: 14640663 DOI: 10.1021/ja036166s] [Citation(s) in RCA: 596] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Isothermal titration calorimetry (ITC) allows the determination of DeltaG degrees, DeltaH degrees, and DeltaS degrees from a single experiment and is thus widely used for studying binding thermodynamics in both biological and synthetic supramolecular systems. However, it is widely believed that it is not possible to derive accurate thermodynamic information from ITC experiments in which the Wiseman "c" parameter (which is the product of the receptor concentration and the binding constant, K(a)) is less than ca. 10, constraining its use to high affinity systems. Herein, experimental titrations and simulated data are used to demonstrate that this dogma is false, especially for low affinity systems, assuming that (1) a sufficient portion of the binding isotherm is used for analysis, (2) the binding stoichiometry is known, (3) the concentrations of both ligand and receptor are known with accuracy, and (4) there is an adequate level of signal-to-noise in the data. This study supports the validity of ITC for determining the value of K(a) and, hence, DeltaG degrees from experiments conducted under low c conditions but advocates greater caution in the interpretation of values for DeltaH degrees. Therefore, isothermal titration calorimetry is a valid and useful technique for studying biologically and synthetically important low affinity systems.
Collapse
Affiliation(s)
- W Bruce Turnbull
- Astbury Centre for Structural Molecular Biology, School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.
| | | |
Collapse
|
121
|
Williamson MP. Many residues in cytochromec populate alternative states under equilibrium conditions. Proteins 2003; 53:731-9. [PMID: 14579363 DOI: 10.1002/prot.10464] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A curved temperature dependence of an amide proton NMR chemical shift indicates that it explores discrete alternative conformations at least 1% of the time; that is, it accesses conformations that lie within 5 kcal/mol(-1) of the ground state. The simulations presented show how curvature varies with the nature of the alternative state, and are compared to experimental results. From studies in different denaturant concentrations, it is concluded that at least 25% of residues in reduced horse cytochrome c, covering most of the protein, with the exception of the center of the N- and C-terminal helices, visit alternative states under equilibrium conditions. The conformational ensemble of the protein therefore has high structural entropy. The density of alternative states is particularly high near the heme ligand Met80, which is of interest because both redox change and the first identified stage in unfolding are associated with change in Met80 ligation. By combining theoretical and experimental approaches, it is concluded that the alternative states each comprise approximately five residues, have in general less structure than the native state, and are accessed independently. They are therefore locally unfolded structures. The locations of the alternative states match what is known of the global unfolding pathway of cytochrome c, suggesting that they may determine the pathway.
Collapse
Affiliation(s)
- Michael P Williamson
- Krebs Institute, Dept. of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, United Kingdom.
| |
Collapse
|
122
|
Biswas KM, DeVido DR, Dorsey JG. Evaluation of methods for measuring amino acid hydrophobicities and interactions. J Chromatogr A 2003; 1000:637-55. [PMID: 12877193 DOI: 10.1016/s0021-9673(03)00182-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The concept of hydrophobicity has been addressed by researchers in all aspects of science, particularly in the fields of biology and chemistry. Over the past several decades, the study of the hydrophobicity of biomolecules, particularly amino acids has resulted in the development of a variety of hydrophobicity scales. In this review, we discuss the various methods of measuring amino acid hydrophobicity and provide explanations for the wide range of rankings that exist among these published scales. A discussion of the literature on amino acid interactions is also presented. Only a surprisingly small number of papers exist in this rather important area of research; measuring pairwise amino acid interactions will aid in understanding structural aspects of proteins.
Collapse
Affiliation(s)
- Kallol M Biswas
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
| | | | | |
Collapse
|
123
|
Dekker FJ, de Mol NJ, Bultinck P, Kemmink J, Hilbers HW, Liskamp RMJ. Role of solution conformation and flexibility of short peptide ligands that bind to the p56(lck) SH2 domain. Bioorg Med Chem 2003; 11:941-9. [PMID: 12614879 DOI: 10.1016/s0968-0896(02)00536-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A general approach in drug design is making ligands more rigid in order to avoid loss in conformational entropy (deltaS(conf)) upon receptor binding. We hypothesized that in the high affinity binding of pYEEI peptide ligands to the p56(lck) SH2 domain this loss in deltaS(conf) might be diminished due to preorganization of the fourfold negatively charged pYEEI peptide in the bound, extended, conformation. A thermodynamic analysis was performed on the peptides Ac-pYEEI-NH(2), Ac-pYAAI-NH(2) and Ac-pYGGI-NH(2) using surface plasmon resonance (SPR) competition experiments to assay affinity constants at different temperatures. To study the effect of solution conformation and flexibility a computational conformation analysis was performed from which low energy conformations in solution were calculated, and S(conf) estimated. It was found that the calculated low energy conformations for especially the pYE moiety in solution resemble that in the bound state. In the calculated minimum energy conformation in solution isoleucine is bent towards the pY aromatic ring, the occurrence of such conformation is experimentally confirmed by NMR. The estimated values for S(conf) of the EE- and AA-peptide were similar, suggesting no predominant role of preorganization of the solution conformation due to electrostatic repulsion. Apparently the thermodynamics obey the same entropy-enthalpy compensation relationship, which also was found to hold for other peptides and peptidomimetics binding to p60(src) family SH2 domains. The implications of the results for drug design are discussed.
Collapse
Affiliation(s)
- Frank J Dekker
- Department of Medicinal Chemistry, Utrecht Institute of Pharmaceutical Sciences, Faculty Pharmaceutical Sciences, Utrecht University, PO Box 80082, 3508TB Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
124
|
Abstract
Recent NMR structural characterization studies showed that a seven-residue segment (FKKGERL) from the src SH3 domain adopts the nativelike diverging type II beta-turn in aqueous solution in support of the prediction based on the I-sites library of sequence structural motifs. We study the conformational variability and folding/unfolding thermodynamics of this peptide in explicit solvent using replica-exchange molecular dynamics simulations, which greatly enhances the sampling of the conformational space. This peptide samples three main free energy basins (nativelike, intermediate, and unfolded) separated by small barriers. The nativelike basin is fractionally populated (DeltaG(300K) = 0.4 kcal/mol) with structures that satisfy a subset of the NMR-derived constraints. The intrinsic stability of the diverging turn is examined in relationship to the nature of three specific contacts: a turn-hydrogen bond, a mainchain-to-sidechain hydrogen bond, and an end-to-end hydrophobic contact. We have carried out simulations of mutants at the highly conserved GE positions in the sequence. The mutation E5D destabilizes the isolated diverging turn motif, contrary to the observation that this mutation stabilizes the fyn SH3 domain. The G4T mutation also destabilizes the isolated diverging turn; however, the extent of destabilization is smaller than that of the reverse mutation in the drk SH3.
Collapse
Affiliation(s)
- S Gnanakaran
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, New Mexico 87545, USA.
| | | |
Collapse
|
125
|
Rossi S, Kyne GM, Turner DL, Wells NJ, Kilburn JD. A Highly Enantioselective Receptor for
N
‐Protected Glutamate and Anomalous Solvent‐Dependent Binding Properties. Angew Chem Int Ed Engl 2002. [DOI: 10.1002/1521-3757(20021115)114:22<4407::aid-ange4407>3.0.co;2-#] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sara Rossi
- Department of Chemistry University of Southampton Southampton, SO17 1BJ, UK, Fax: (+44) 2380‐596‐805
| | - Graham M. Kyne
- Department of Chemistry University of Southampton Southampton, SO17 1BJ, UK, Fax: (+44) 2380‐596‐805
| | - David L. Turner
- Department of Chemistry University of Southampton Southampton, SO17 1BJ, UK, Fax: (+44) 2380‐596‐805
| | - Neil J. Wells
- Department of Chemistry University of Southampton Southampton, SO17 1BJ, UK, Fax: (+44) 2380‐596‐805
| | - Jeremy D. Kilburn
- Department of Chemistry University of Southampton Southampton, SO17 1BJ, UK, Fax: (+44) 2380‐596‐805
| |
Collapse
|
126
|
Atanasiu C, Su TJ, Sturrock SS, Dryden DTF. Interaction of the ocr gene 0.3 protein of bacteriophage T7 with EcoKI restriction/modification enzyme. Nucleic Acids Res 2002; 30:3936-44. [PMID: 12235377 PMCID: PMC137103 DOI: 10.1093/nar/gkf518] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The ocr protein, the product of gene 0.3 of bacteriophage T7, is a structural mimic of the phosphate backbone of B-form DNA. In total it mimics 22 phosphate groups over approximately 24 bp of DNA. This mimicry allows it to block DNA binding by type I DNA restriction enzymes and to inhibit these enzymes. We have determined that multiple ocr dimers can bind stoichiometrically to the archetypal type I enzyme, EcoKI. One dimer binds to the core methyltransferase and two to the complete bifunctional restriction and modification enzyme. Ocr can also bind to the component subunits of EcoKI. Binding affinity to the methyltransferase core is extremely strong with a large favourable enthalpy change and an unfavourable entropy change. This strong interaction prevents the dissociation of the methyltransferase which occurs upon dilution of the enzyme. This stabilisation arises because the interaction appears to involve virtually the entire surface area of ocr and leads to the enzyme completely wrapping around ocr.
Collapse
Affiliation(s)
- C Atanasiu
- Department of Chemistry, The King's Buildings, University of Edinburgh, Edinburgh EH9 3JJ, UK
| | | | | | | |
Collapse
|
127
|
Wang Y, Botelho AV, Martinez GV, Brown MF. Electrostatic properties of membrane lipids coupled to metarhodopsin II formation in visual transduction. J Am Chem Soc 2002; 124:7690-701. [PMID: 12083922 DOI: 10.1021/ja0200488] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Changes in lipid composition have recently been shown to exert appreciable influences on the activities of membrane-bound proteins and peptides. We tested the hypothesis that the conformational states of rhodopsin linked to visual signal transduction are related to biophysical properties of the membrane lipid bilayer. For bovine rhodopsin, the meta I-meta II conformational transition was studied in egg phosphatidylcholine (PC) recombinants versus the native rod outer segment (ROS) membranes by means of flash photolysis. Formation of metarhodopsin II was observed by the change in absorbance at 478 nm after a single actinic flash was delivered to the sample. The meta I/meta II ratio was investigated as a function of both temperature and pH. The data clearly demonstrated thermodynamic reversibility of the transition for both the egg PC recombinants and the native ROS membranes. A significant shift of the apparent pK(a) for the acid-base equilibrium to lower values was evident in the egg PC recombinant, with little meta II produced under physiological conditions. Calculations of the membrane surface pH using a Poisson-Boltzmann model suggested the free energies of the meta I and meta II states were significantly affected by electrostatic properties of the bilayer lipids. In the ROS membranes, phosphatidylserine (PS) is needed for full formation of meta II, in combination with phosphatidylethanolamine (PE) and polyunsaturated docosahexaenoic acid (DHA; 22:6omega3) chains. We propose that the PS surface potential leads to an accumulation of hydronium ions, H(3)O(+), in the electrical double layer, which drive the reaction together with the large negative spontaneous curvature (H(0)) conferred by PE plus DHA chains. The elastic stress/strain of the bilayer arises from an interplay of the approximately zero H(0) from PS and the negative H(0) due to the PE headgroups and polyunsaturated chains. The lipid influences are further explained in terms of matching of the bilayer spontaneous curvature to the curvature at the lipid/rhodopsin interface, as formulated by the Helfrich bending energy. These new findings guide current ideas as to how bilayer properties govern the conformational energetics of integral membrane proteins. Moreover, they yield knowledge of how membrane lipid-protein interactions involving acidic phospholipids such as PS and neutral polyunsaturated DHA chains are implicated in key biological functions such as vision.
Collapse
Affiliation(s)
- Yin Wang
- Department of Physics, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | |
Collapse
|
128
|
Wu P, Nakano SI, Sugimoto N. Temperature dependence of thermodynamic properties for DNA/DNA and RNA/DNA duplex formation. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:2821-30. [PMID: 12071944 DOI: 10.1046/j.1432-1033.2002.02970.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A clear difference in the enthalpy changes derived from spectroscopic and calorimetric measurements has recently been shown. The exact interpretation of this deviation varied from study to study, but it was generally attributed to the non-two-state transition and heat capacity change. Although the temperature-dependent thermodynamics of the duplex formation was often implied, systemic and extensive studies have been lacking in universally assigning the appropriate thermodynamic parameter sets. In the present study, the 24 DNA/DNA and 41 RNA/DNA oligonucleotide duplexes, designed to avoid the formation of hairpin or slipped duplex structures and to limit the base pair length less than 12 bp, were selected to evaluate the heat capacity changes and temperature-dependent thermodynamic properties of duplex formation. Direct comparison reveals that the temperature-independent thermodynamic parameters could provide a reasonable approximation only when the temperature of interest has a small deviation from the mean melting temperature over the experimental range. The heat capacity changes depend on the base composition and sequences and are generally limited in the range of -160 to approximately -40 cal.mol-1.K-1 per base pair. In contrast to the enthalpy and entropy changes, the free energy change and melting temperature are relatively insensitive to the heat capacity change. Finally, the 16 NN-model free energy parameters and one helix initiation at physiological temperature were extracted from the temperature-dependent thermodynamic data of the 41 RNA/DNA hybrids.
Collapse
Affiliation(s)
- Peng Wu
- High Technology Research Center, Faculty of Science and Engineering, Konan University, Okamoto, Higashinada-ku, Japan
| | | | | |
Collapse
|
129
|
Jung HI, Bowden SJ, Cooper A, Perham RN. Thermodynamic analysis of the binding of component enzymes in the assembly of the pyruvate dehydrogenase multienzyme complex of Bacillus stearothermophilus. Protein Sci 2002; 11:1091-100. [PMID: 11967366 PMCID: PMC2373555 DOI: 10.1110/ps.4970102] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2001] [Revised: 01/29/2002] [Accepted: 01/29/2002] [Indexed: 10/14/2022]
Abstract
The peripheral subunit-binding domain (PSBD) of the dihydrolipoyl acetyltransferase (E2, EC 2.3.1.12) binds tightly but mutually exclusively to dihydrolipoyl dehydrogenase (E3, EC 1.8.1.4) and pyruvate decarboxylase (E1, EC 1.2.4.1) in the pyruvate dehydrogenase multienzyme complex of Bacillus stearothermophilus. Isothermal titration calorimetry (ITC) experiments demonstrated that the enthalpies of binding (DeltaH degrees ) of both E3 and E1 with the PSBD varied with salt concentration, temperature, pH, and buffer composition. There is little significant difference in the free energies of binding (DeltaG degrees = -12.6 kcal/mol for E3 and = -12.9 kcal/mol for E1 at pH 7.4 and 25 degrees C). However, the association with E3 was characterized by a small, unfavorable enthalpy change (DeltaH degrees = +2.2 kcal/mol) and a large, positive entropy change (TDeltaS degrees = +14.8 kcal/mol), whereas that with E1 was accompanied by a favorable enthalpy change (DeltaH degrees = -8.4 kcal/mol) and a less positive entropy change (TDeltaS degrees = +4.5 kcal/mol). Values of DeltaC(p) of -316 cal/molK and -470 cal/molK were obtained for the binding of E3 and E1, respectively. The value for E3 was not compatible with the DeltaC(p) calculated from the nonpolar surface area buried in the crystal structure of the E3-PSBD complex. In this instance, a large negative DeltaC(p) is not indicative of a classical hydrophobic interaction. In differential scanning calorimetry experiments, the midpoint melting temperature (T(m)) of E3 increased from 91 degrees C to 97.1 degrees C when it was bound to PSBD, and that of E1 increased from 65.2 degrees C to 70.0 degrees C. These high T(m) values eliminate unfolding as a major source of the anomalous DeltaC(p) effects at the temperatures (10-37 degrees C) used for the ITC experiments.
Collapse
Affiliation(s)
- Hyo-Il Jung
- Cambridge Centre for Molecular Recognition, Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | | | | | | |
Collapse
|
130
|
Unexpected ring size effect of the annulation reaction of heterocyclic secondary enamines with dicarboxylic acid dichlorides. Tetrahedron 2002. [DOI: 10.1016/s0040-4020(02)00177-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
131
|
Schmidtchen FP. Surprises in the energetics of host-guest anion binding to calix[4]pyrrole. Org Lett 2002; 4:431-4. [PMID: 11820897 DOI: 10.1021/ol017137u] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Contrary to common expectation, calorimetric measurements do not corroborate the preference of calix[4]pyrrole for fluoride over chloride in acetonitrile solution.
Collapse
Affiliation(s)
- Franz P Schmidtchen
- Institut für Organische Chemie und Biochemie, Technische Universität München, D-85747 Garching, Germany.
| |
Collapse
|
132
|
Dam TK, Brewer CF. Thermodynamic studies of lectin-carbohydrate interactions by isothermal titration calorimetry. Chem Rev 2002; 102:387-429. [PMID: 11841248 DOI: 10.1021/cr000401x] [Citation(s) in RCA: 360] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tarun K Dam
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | | |
Collapse
|
133
|
Ward WH, Holdgate GA. Isothermal titration calorimetry in drug discovery. PROGRESS IN MEDICINAL CHEMISTRY 2002; 38:309-76. [PMID: 11774798 DOI: 10.1016/s0079-6468(08)70097-3] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Isothermal titration calorimetry (ITC) follows the heat change when a test compound binds to a target protein. It allows precise measurement of affinity. The method is direct, making interpretation facile, because there is no requirement for competing molecules. Titration in the presence of other ligands rapidly provides information on the mechanism of action of the test compound, identifying the intermolecular complexes that are relevant for structure-based design. Calorimetry allows measurement of stoichiometry and so evaluation of the proportion of the sample that is functional. ITC can characterize protein fragments and catalytically inactive mutant enzymes. It is the only technique which directly measures the enthalpy of binding (delta H degree). Interpretation of delta H degree and its temperature dependence (delta Cp) is usually qualitative, not quantitative. This is because of complicated contributions from linked equilibria and a single change in structure giving modification of several physicochemical properties. Measured delta H degree values allow characterization of proton movement linked to the association of protein and ligand, giving information on the ionization of groups involved in binding. Biochemical systems characteristically exhibit enthalpy-entropy compensation where increased bonding is offset by an entropic penalty, reducing the magnitude of change in affinity. This also causes a lack of correlation between the free energy of binding (delta G degree) and delta H degree. When characterizing structure-activity relationships (SAR), most groups involved in binding can be detected as contributing to delta H degree, but not to affinity. Large enthalpy changes may reflect a modified binding mode, or protein conformation changes. Thus, delta H degree values may highlight a potential discontinuity in SAR, so that experimental structural data are likely to be particularly valuable in molecular design.
Collapse
Affiliation(s)
- W H Ward
- AstraZeneca, R & D Mereside, Alderley Park, Macclesfield, Cheshire, SK10 4TG, UK
| | | |
Collapse
|
134
|
Haj-Zaroubi M, Mitzel NW, Schmidtchen FP. Rationales Design molekularer Wirte für Anionen durch Feinabstimmung energetischer Einflüsse. Angew Chem Int Ed Engl 2002. [DOI: 10.1002/1521-3757(20020104)114:1<111::aid-ange111>3.0.co;2-p] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
135
|
Haj-Zaroubi M, Mitzel NW, Schmidtchen FP. The rational design of anion host compounds: an exercise in subtle energetics. Angew Chem Int Ed Engl 2002; 41:104-7. [PMID: 12491452 DOI: 10.1002/1521-3773(20020104)41:1<104::aid-anie104>3.0.co;2-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Manal Haj-Zaroubi
- Institut für Organische Chemie und Biochemie, Technische Universität München, 85747 Garching, Germany
| | | | | |
Collapse
|
136
|
Natural insecticides: Structure diversity, effects and structure-activity relationships. A case study. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s1572-5995(02)80020-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
137
|
Lipschultz CA, Yee A, Mohan S, Li Y, Smith-Gill SJ. Temperature differentially affects encounter and docking thermodynamics of antibody--antigen association. J Mol Recognit 2002; 15:44-52. [PMID: 11870921 DOI: 10.1002/jmr.559] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Using BIACORE SPR, we have examined the mechanism of temperature effects on the binding kinetics of two closely related antibody Fabs (H10 and H26) which recognize coincident epitopes on hen egg-white lysozyme (HEL), and whose association and dissociation kinetics are best described by the two-step conformational change model which we interpret as molecular encounter and docking. Time-course series data obtained at a series of six temperatures (6, 10, 15, 25, 30 and 37 degrees C) showed that temperature differentially affects the rate constants of the encounter and docking steps. Docking is more temperature-sensitive than the encounter step, and energetically less favorable at higher temperatures. At elevated temperatures, the time required for docking is longer and the apparent increase in off-rate reflects the greater proportion of the molecules failing to dock and remaining in the less stable encounter state. As a consequence, distribution of free energy change between the encounter and docking steps is altered. At physiological temperature (37 degrees C) the docking step of the H26 complex is energetically unfavorable and most complexes essentially do not dock. There is a significant decrease in total free energy change of the H26 complex at higher temperatures. Elevated temperature changes the rate-limiting step of H26--HEL association from the encounter to the docking step, but not that of H10--HEL. Our results indicate that the mechanism by which elevated temperature reduces the affinities of antigen--antibody complexes is to decrease the net docking rate, and/or stability of the docked complex; at higher temperatures, a smaller proportion of the complexes actually anneal to a more stable docked state. This mechanism may have broad applicability to other receptor--ligand complexes.
Collapse
Affiliation(s)
- Claudia A Lipschultz
- Basic Research Laboratory, National Cancer Institute, Frederick, MD 21702-1201, USA
| | | | | | | | | |
Collapse
|
138
|
Cooper A, Johnson CM, Lakey JH, Nöllmann M. Heat does not come in different colours: entropy-enthalpy compensation, free energy windows, quantum confinement, pressure perturbation calorimetry, solvation and the multiple causes of heat capacity effects in biomolecular interactions. Biophys Chem 2001; 93:215-30. [PMID: 11804727 DOI: 10.1016/s0301-4622(01)00222-8] [Citation(s) in RCA: 226] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Modern techniques in microcalorimetry allow us to measure directly the heat changes and associated thermodynamics for biomolecular processes in aqueous solution at reasonable concentrations. All these processes involve changes in solvation/hydration, and it is natural to assume that the heats for these processes should reflect, in some way, such changes in solvation. However, the interpretation of data is still somewhat ambiguous, since different non-covalent interactions may have similar thermodynamic signatures, and analysis is frustrated by large entropy-enthalpy compensation effects. Changes in heat capacity (Delta C(p)) have been related to changes in hydrophobic hydration and non-polar accessible surface areas, but more recent empirical and theoretical work has shown how this need not always be the case. Entropy-enthalpy compensation is a natural consequence of finite Delta C(p) values and, more generally, can arise as a result of quantum confinement effects, multiple weak interactions, and limited free energy windows, giving rise to thermodynamic homeostasis that may be of evolutionary and functional advantage. The new technique of pressure perturbation calorimetry (PPC) has enormous potential here as a means of probing solvation-related volumetric changes in biomolecules at modest pressures, as illustrated with preliminary data for a simple protein-inhibitor complex.
Collapse
Affiliation(s)
- A Cooper
- Department of Chemistry, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, Scotland, UK.
| | | | | | | |
Collapse
|
139
|
Andricioaei I, Karplus M. On the calculation of entropy from covariance matrices of the atomic fluctuations. J Chem Phys 2001. [DOI: 10.1063/1.1401821] [Citation(s) in RCA: 421] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
140
|
Abstract
The growth of large and well ordered protein crystals remains the major obstacle in protein structure determination by means of X-ray crystallography. One of the reasons is that the physico-chemical aspect of protein crystallization process is not understood. This article reviews efforts towards formulation of models that could become theoretical frameworks for the interpretation of voluminous experimental data collected on protein crystal growth. Special attention is devoted to microscopic models that recognize the role of the shape of protein molecules in crystal formation.
Collapse
Affiliation(s)
- A M Kierzek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | | |
Collapse
|
141
|
Torrent J, Rubens P, Ribó M, Heremans K, Vilanova M. Pressure versus temperature unfolding of ribonuclease A: an FTIR spectroscopic characterization of 10 variants at the carboxy-terminal site. Protein Sci 2001; 10:725-34. [PMID: 11274463 PMCID: PMC2373970 DOI: 10.1110/ps.43001] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
FTIR spectroscopy was used to characterize and compare the temperature- and pressure-induced unfolding of ribonuclease A and a set of its variants engineered in a hydrophobic region of the C-terminal part of the molecule postulated as a CFIS. The results show for all the ribonucleases investigated, a cooperative, two-state, reversible unfolding transition using both pressure and temperature. The relative stabilities, among the different sites and different variants at the same site, monitored either through the changes in the position of the maximum of the amide I' band and the tyrosine band, or the maximum of the band assigned to the beta-sheet structure, corroborate the results of a previous study using fourth-derivative UV absorbance spectroscopy. In addition, variants at position 108 are the most critical for ribonuclease structure and stability. The V108G variant seems to present a greater conformational flexibility than the other variants. The pressure- and temperature-denaturated states of all the ribonucleases characterized retained some secondary structure. However, their spectral maxima were centered at different wavenumbers, which suggests that pressure- and temperature-denaturated states do not have the same structural characteristics. Nevertheless, there was close correlation between the pressure and temperature midpoint transition values for the whole series of protein variants, which indicated a common tendency of stability toward pressure and heat.
Collapse
Affiliation(s)
- J Torrent
- Laboratori d'Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi, E-17071 Girona, Spain
| | | | | | | | | |
Collapse
|
142
|
Liu L, Guo QX. Isokinetic relationship, isoequilibrium relationship, and enthalpy-entropy compensation. Chem Rev 2001; 101:673-95. [PMID: 11712500 DOI: 10.1021/cr990416z] [Citation(s) in RCA: 520] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- L Liu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China.
| | | |
Collapse
|
143
|
Cheng Y, Yang HB, Huang ZT, Wang MX. Annulation of heterocyclic secondary enamines with dicarboxylic acid dichlorides, an unexpected ring size effect. Tetrahedron Lett 2001. [DOI: 10.1016/s0040-4039(00)02357-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
144
|
Swaminathan CP, Gupta A, Surolia N, Surolia A. Plasticity in the primary binding site of galactose/N-acetylgalactosamine-specific lectins. Implication of the C-H...O hydrogen bond at the specificity-determining C-4 locus of the saccharide in 4-methoxygalactose recognition by jacalin and winged bean (basic) agglutinin I. J Biol Chem 2000; 275:28483-7. [PMID: 10837488 DOI: 10.1074/jbc.m004685200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It is currently believed that an unsubstituted axial hydroxyl at the specificity-determining C-4 locus of galactose is indispensable for recognition by galactose/N-acetylgalactosamine-specific lectins. Titration calorimetry demonstrates that 4-methoxygalactose retains binding allegiance to the Moraceae lectin jacalin and the Leguminosae lectin, winged bean (basic) agglutinin (WBA I). The binding reactions were driven by dominant favorable enthalpic contributions and exhibited significant enthalpy-entropy compensation. Proton NMR titration of 4-methoxygalactose with jacalin and WBA I resulted in broadening of the sugar resonances without any change in chemical shift. The alpha- and beta-anomers of 4-methoxygalactose were found to be in slow exchange with free and lectin-bound states. Both the anomers experience magnetically equivalent environments at the respective binding sites. The binding constants derived from the dependence of NMR line widths on 4-methoxygalactose concentration agreed well with those obtained from titration calorimetry. The results unequivocally demonstrate that the loci corresponding to the axially oriented C-4 hydroxyl group of galactose within the primary binding site of these lectins exhibit plasticity. These analyses suggest, for the first time, the existence of C-H.O-type hydrogen-bond(s) in protein-carbohydrate interactions in general and between the C-4 locus of galactose derivative and the lectins jacalin and WBA I in particular.
Collapse
Affiliation(s)
- C P Swaminathan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | | | | | | |
Collapse
|
145
|
Abstract
The experimental calorimetric two-state criterion requires the van't Hoff enthalpy DeltaH(vH) around the folding/unfolding transition midpoint to be equal or very close to the calorimetric enthalpy DeltaH(cal) of the entire transition. We use an analytical model with experimental parameters from chymotrypsin inhibitor 2 to elucidate the relationship among several different van't Hoff enthalpies used in calorimetric analyses. Under reasonable assumptions, the implications of these DeltaH(vH)'s being approximately equal to DeltaH(cal) are equivalent: Enthalpic variations among denatured conformations in real proteins are much narrower than some previous lattice-model estimates, suggesting that the energy landscape theory "folding to glass transition temperature ratio" T(f) /T(g) may exceed 6.0 for real calorimetrically two-state proteins. Several popular three-dimensional lattice protein models, with different numbers of residue types in their alphabets, are found to fall short of the high experimental standard for being calorimetrically two-state. Some models postulate a multiple-conformation native state with substantial pre-denaturational energetic fluctuations well below the unfolding transition temperature, or predict a significant post-denaturational continuous conformational expansion of the denatured ensemble at temperatures well above the transition point, or both. These scenarios either disagree with experiments on protein size and dynamics, or are inconsistent with conventional interpretation of calorimetric data. However, when empirical linear baseline subtractions are employed, the resulting DeltaH(vH)/DeltaH(cal)'s for some models can be increased to values closer to unity, and baseline subtractions are found to correspond roughly to an operational definition of native-state conformational diversity. These results necessitate a re-assessment of theoretical models and experimental interpretations.
Collapse
Affiliation(s)
- H Kaya
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Ontario, Canada
| | | |
Collapse
|
146
|
Mazur S, Tanious FA, Ding D, Kumar A, Boykin DW, Simpson IJ, Neidle S, Wilson WD. A thermodynamic and structural analysis of DNA minor-groove complex formation. J Mol Biol 2000; 300:321-37. [PMID: 10873468 DOI: 10.1006/jmbi.2000.3869] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
As part of an effort to develop a better understanding of the structural and thermodynamic principles of DNA minor groove recognition, we have investigated complexes of three diphenylfuran dications with the d(CGCGAATTCGCG)(2) duplex. The parent compound, furamidine (DB75), has two amidine substituents while DB244 has cyclopentyl amidine substituents and DB226 has 3-pentyl amidines. The structure for the DB244-DNA complex is reported here and is compared to the structure of the DB75 complex. Crystals were not obtained with DB226 but information from the DB75 and DB244 structures as well as previous NMR results on DB226 indicate that all three compounds bind in the minor groove at the AATT site of the duplex. DB244 and DB75 penetrate to the floor of the groove and form hydrogen bonds with T8 on one strand and T20 on the opposite strand while DB226 forms a complex with fewer interactions. Binding studies by surface plasmon resonance (SPR) yield -delta G degrees values in the order DB244>DB75>DB226 that are relatively constant with temperature. The equilibrium binding constants for DB244 are 10-20 times greater than that for DB226. Isothermal titration calorimetric (ITC) experiments indicate that, in contrast to delta G degrees, delta H degrees varies considerably with temperature to yield large negative delta Cp degrees values. The thermodynamic results, analyzed in terms of structures of the DNA complexes, provide an explanation of why DB244 binds more strongly to DNA than DB75, while DB266 binds more weakly. All three compounds have a major contribution to binding from hydrophobic interactions but the hydrophobic term is most favorable for DB244. DB244 also has strong contributions from molecular interactions in its DNA complex and all of these factors combine to give it the largest-delta G degrees for binding. Although the factors that influence the energetics of minor groove interactions are varied and complex, results from the literature coupled with those on the furan derivatives indicate that there are some common characteristics for minor groove recognition by unfused heterocyclic cations that can be used in molecular design.
Collapse
Affiliation(s)
- S Mazur
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | | | | | | | | | | | | | | |
Collapse
|
147
|
Abstract
Analysis of thermal melting curves represents one important approach for evaluating protein stability and the consequences of amino acid substitution on protein structure. By use of the van't Hoff relationship, the differential melting curve can be robustly fit to only three parameters, two of which are the underlying physical constants of melting temperature (Tm) and van't Hoff enthalpy (deltaHvH). Calculated Tm and deltaHvH values are insensitive to the choice of pre- and post-transition baselines. Consequently, the method accurately computes Tm and deltaHvH for extremely truncated data sets, in the complete absence of baseline information, and for proteins with low melting temperatures, where the traditional direct approach routinely fails. Moreover, agreement between deltaHvH values obtained using points derived from pre- vs. post-transition data provide an independent method for detecting some classes of non-two-state transitions. Finally, fitting of the differential denaturation curve should prove useful for analysis of abbreviated data sets obtained from high throughput array analysis of protein stability.
Collapse
Affiliation(s)
- D M John
- Department of Chemistry, University of North Carolina, Chapel Hill 27599-3290, USA
| | | |
Collapse
|
148
|
Cooper A. Heat capacity of hydrogen-bonded networks: an alternative view of protein folding thermodynamics. Biophys Chem 2000; 85:25-39. [PMID: 10885396 DOI: 10.1016/s0301-4622(00)00136-8] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Large changes in heat capacity (deltaCp) have long been regarded as the characteristic thermodynamic signature of hydrophobic interactions. However, similar effects arise quite generally in order-disorder transitions in homogeneous systems, particularly those comprising hydrogen-bonded networks, and this may have significance for our understanding of protein folding and other biomolecular processes. The positive deltaCp associated with unfolding of globular proteins in water, thought to be due to hydrophobic interactions, is also typical of the values found for the melting of crystalline solids, where the effect is greatest for the melting of polar compounds, including pure water. This suggests an alternative model of protein folding based on the thermodynamics of phase transitions in hydrogen-bonded networks. Folded proteins may be viewed as islands of cooperatively-ordered hydrogen-bonded structure, floating in an aqueous network of less-well-ordered H-bonds in which the degree of hydrogen bonding decreases with increasing temperature. The enthalpy of melting of the protein consequently increases with temperature. A simple algebraic model, based on the overall number of protein and solvent hydrogen bonds in folded and unfolded states, shows how deltaCp from this source could match the hydrophobic contribution. This confirms the growing view that the thermodynamics of protein folding, and other interactions in aqueous systems, are best described in terms of a mixture of polar and non-polar effects in which no one contribution is necessarily dominant.
Collapse
Affiliation(s)
- A Cooper
- Chemistry Department, Glasgow University, Scotland, UK.
| |
Collapse
|