101
|
Ordan E, Brankatschk M, Dickson B, Schnorrer F, Volk T. Slit cleavage is essential for producing an active, stable, non-diffusible short-range signal that guides muscle migration. Development 2015; 142:1431-6. [PMID: 25813540 DOI: 10.1242/dev.119131] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Accepted: 03/03/2015] [Indexed: 11/20/2022]
Abstract
During organogenesis, secreted signaling proteins direct cell migration towards their target tissue. In Drosophila embryos, developing muscles are guided by signals produced by tendons to promote the proper attachment of muscles to tendons, essential for proper locomotion. Previously, the repulsive protein Slit, secreted by tendon cells, has been proposed to be an attractant for muscle migration. However, our findings demonstrate that through tight control of its distribution, Slit repulsion is used for both directing and arresting muscle migration. We show that Slit cleavage restricts its distribution to tendon cells, allowing it to function as a short-range repellent that directs muscle migration and patterning, and promotes their halt upon reaching the target site. Mechanistically, we show that Slit processing produces a rapidly degraded C-terminal fragment and an active, stable N-terminal polypeptide that is tethered to the tendon cell membrane, which further protects it from degradation. Consistently, the requirement for Slit processing can be bypassed by providing an uncleavable, membrane-bound form of Slit that is stable and is retained on expressing tendon cells. Moreover, muscle elongation appears to be extremely sensitive to Slit levels, as replacing the entire full-length Slit with the stable Slit-N-polypeptide results in excessive repulsion, which leads to a defective muscle pattern. These findings reveal a novel cleavage-dependent regulatory mechanism controlling Slit spatial distribution, which may operate in other Slit-dependent processes.
Collapse
Affiliation(s)
- Elly Ordan
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | - Barry Dickson
- Institute of Molecular Pathology (IMP), Vienna A-1030, Austria
| | - Frank Schnorrer
- Institute of Molecular Pathology (IMP), Vienna A-1030, Austria
| | - Talila Volk
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
102
|
Lin TJ, Lu KW, Chen WH, Cheng CM, Lin YW. Roles of syndecan-4 and relative kinases in dorsal root ganglion neuron adhesion and mechanotransduction. Neurosci Lett 2015; 592:88-93. [PMID: 25757361 DOI: 10.1016/j.neulet.2015.02.058] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 02/23/2015] [Accepted: 02/25/2015] [Indexed: 10/23/2022]
Abstract
Mechanical stimuli elicit a biological response and initiate complex physiological processes, including neural feedback schemes associated with senses such as pain, vibration, touch, and hearing. The syndecans (SDCs), a group of adhesion receptors, can modulate adhesion and organize the extracellular matrix (ECM). In this study, we cultured dorsal root ganglia (DRG) on controlled polydimethylsiloxane (PDMS) substrates coated with poly-l-lysine (poly) or fibronectin (FN) to investigate cell adhesion and mechanotransduction mechanisms by mechanical stretching on PDMS using DRG neurons. Our results demonstrated that neuronal density, neurite length, and neurite branching were lower in the PDMS group and could be further reversed through activating SDC-4 by FN. The expression of the SDC-4 pathway decreased but with increased pPKCα in the PDMS-poly group. After mechanical stretching, pPKCα-FAKpTyr397-pERK1/2 expression was increased in both poly- and FN-coated PDMS. These results indicate that SDC4-pPKCα-FAKpTyr397-pERK1/2 may play a crucial role in DRG adhesion and mechanotransduction.
Collapse
Affiliation(s)
- Tzu-Jou Lin
- College of Medicine, Graduate Institute of Basic Medical Science, China Medical University, Taichung 404, Taiwan
| | - Kung-Wen Lu
- College of Chinese Medicine, School of Post-Baccalaureate Chinese Medicine, China Medical University, Taichung 404, Taiwan
| | - Wei-Hsin Chen
- College of Agriculture and Natural Resources, Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
| | - Chao-Min Cheng
- College of Biotechnology, Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Yi-Wen Lin
- College of Chinese Medicine, Graduate Institute of Acupuncture Science, China Medical University, Taichung 404, Taiwan; Research Center for Chinese Medicine & Acupuncture, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
103
|
Abstract
The mammalian kidney forms via cell-cell interactions between an epithelial outgrowth of the nephric duct and the surrounding nephrogenic mesenchyme. Initial morphogenetic events include ureteric bud branching to form the collecting duct (CD) tree and mesenchymal-to-epithelial transitions to form the nephrons, requiring reciprocal induction between adjacent mesenchyme and epithelial cells. Within the tips of the branching ureteric epithelium, cells respond to mesenchyme-derived trophic factors by proliferation, migration, and mitosis-associated cell dispersal. Self-inhibition signals from one tip to another play a role in branch patterning. The position, survival, and fate of the nephrogenic mesenchyme are regulated by ECM and secreted signals from adjacent tip and stroma. Signals from the ureteric tip promote mesenchyme self-renewal and trigger nephron formation. Subsequent fusion to the CDs, nephron segmentation and maturation, and formation of a patent glomerular basement membrane also require specialized cell-cell interactions. Differential cadherin, laminin, nectin, and integrin expression, as well as intracellular kinesin and actin-mediated regulation of cell shape and adhesion, underlies these cell-cell interactions. Indeed, the capacity for the kidney to form via self-organization has now been established both via the recapitulation of expected morphogenetic interactions after complete dissociation and reassociation of cellular components during development as well as the in vitro formation of 3D kidney organoids from human pluripotent stem cells. As we understand more about how the many cell-cell interactions required for kidney formation operate, this enables the prospect of bioengineering replacement structures based on these self-organizing properties.
Collapse
|
104
|
Maartens AP, Brown NH. Anchors and signals: the diverse roles of integrins in development. Curr Top Dev Biol 2015; 112:233-72. [PMID: 25733142 DOI: 10.1016/bs.ctdb.2014.11.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Integrins mediate cell adhesion by providing a link between the actin cytoskeleton and the extracellular matrix. As well as acting to anchor cells, integrin adhesions provide sensory input via mechanotransduction and synergism with signaling pathways, and provide the cell with the conditions necessary for differentiation in a permissive manner. In this review, we explore how integrins contribute to development, and what this tells us about how they work. From a signaling perspective, the influence of integrins on cell viability and fate is muted in a developmental context as compared to cell culture. Integrin phenotypes tend to arise from a failure of normally specified cells to create tissues properly, due to defective adhesion. The diversity of integrin functions in development shows how cell adhesion is continuously adjusted, both within and between animals, to fit developmental purpose.
Collapse
Affiliation(s)
- Aidan P Maartens
- Department of Physiology, Development and Neuroscience, The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | - Nicholas H Brown
- Department of Physiology, Development and Neuroscience, The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
105
|
Meighan CM, Kelly VE, Krahe EC, Gaeta AJ. α integrin cytoplasmic tails can rescue the loss of Rho-family GTPase signaling in the C. elegans somatic gonad. Mech Dev 2015; 136:111-22. [PMID: 25576691 DOI: 10.1016/j.mod.2014.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 12/02/2014] [Accepted: 12/30/2014] [Indexed: 10/24/2022]
Abstract
Integrin signaling relies on multiple, distinct pathways to impact a diverse set of cell behaviors. The Rho family of GTPases are well-established downstream signaling partners of integrins that regulate cell shape, polarity, and migration. The nematode C. elegans provides a simple in vivo system for studying both integrins and the Rho family. Our previous work showed that the C. elegans α integrin cytoplasmic tails have tissue-specific functions during development. Here, we use chimeric α integrins to show that the cytoplasmic tails can rescue the loss of the Rho family of GTPases in three cell types in the somatic gonad. Knockdown of rho-1 by RNAi causes defects in sheath cell actin organization, ovulation, and vulva morphology. Chimeric α integrin ina-1 with the pat-2 cytoplasmic tail can rescue both actin organization and ovulation after rho-1 RNAi, yet cannot restore vulva morphology. Knockdown of cdc-42 by RNAi causes defects in sheath cell actin organization, ovulation, vulva morphology, and distal tip cell migration. Chimeric α integrin pat-2 with the ina-1 cytoplasmic tail can rescue vulva morphology defects and distal tip cell migration after cdc-42 RNAi, yet cannot restore sheath cell actin organization or ovulation. Disruption of Rac yields the same phenotype in distal tip cells regardless of α integrin cytoplasmic tail composition. Taken together, the cytoplasmic tails of α integrins can bypass signaling from members of the Rho family of GTPases during development.
Collapse
Affiliation(s)
| | - Victoria E Kelly
- Christopher Newport University, Newport News, VA 23606, United States
| | - Elena C Krahe
- Christopher Newport University, Newport News, VA 23606, United States
| | - Adriel J Gaeta
- Christopher Newport University, Newport News, VA 23606, United States
| |
Collapse
|
106
|
Song X, Zhong H, Zhou J, Hu X, Zhou Y, Ye Y, Lu X, Wang J, Ying B, Wang L. Association between polymorphisms of microRNA-binding sites in integrin genes and gastric cancer in Chinese Han population. Tumour Biol 2014; 36:2785-92. [PMID: 25472585 DOI: 10.1007/s13277-014-2903-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Accepted: 11/26/2014] [Indexed: 02/06/2023] Open
Abstract
Highly elevated expression of integrin has been observed in a variety of malignant tumors. Single nucleotide polymorphisms (SNPs) in the microRNA-binding sites in the 3' UTR region of target genes may result in the level change of target gene expression and subsequently susceptible to diseases, including cancer. In this study, we aimed to investigate the association between polymorphisms of microRNA-binding sites of integrin genes and gastric cancer (GC) in Chinese Han population. Five SNPs of the microRNA-binding sites in the 3' UTR region of integrin genes (rs1062484 C/T in ITGA3, rs17664 A/G in ITGA6, rs3809865 A/T in ITGB3, rs743554 C/T in ITGB4, and rs2675 A/C in ITGB5) were studied using high resolution melting (HRM) analysis in 1000 GC patients and 1000 unrelated controls. The polymorphism of SNP rs2675 was associated with susceptibility of GC [odds ratio (OR) = 0.52, 95% confidence interval (CI) = 0.28-0.97, P = 0.028]. In addition, genotype AA of rs2675 and genotype GG of rs17664 were associated with a lower chance of GC at stage 1b [OR = 0.39 (0.18-0.85), P = 0.009; and OR = 0.37 (0.17-0.78), P = 0.004, respectively]; also, the frequency of allele G of rs17664 was associated with a lower chance of stage 1b tumor [OR = 0.50 (0.26-0.95), P = 0.021]. Furthermore, the frequency of genotype AA and allele A of rs3809865 were associated with a higher risk of stage 4 GC [OR = 1.85 (1.11-3.09), P = 0.012; and OR = 1.52 (0.99-2.33), P = 0.043, respectively]. For rs17664, GG genotype and allele G appeared to be associated with a higher risk with GC with lymphatic metastasis 3b [OR = 1.76 (1.00-3.11), P = 0.036; and OR = 1.64 (0.98-2.75), P = 0.048, respectively]. Our data suggest that polymorphisms of the microRNA-binding sites in the 3' UTR region of integrin are associated with GC susceptibility (rs2675), tumor stage (rs2675, rs17664, and rs3809865), and lymphatic metastasis (rs17664) in Chinese Han population.
Collapse
Affiliation(s)
- Xingbo Song
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China, 610041
| | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Ellis SJ, Lostchuck E, Goult BT, Bouaouina M, Fairchild MJ, López-Ceballos P, Calderwood DA, Tanentzapf G. The talin head domain reinforces integrin-mediated adhesion by promoting adhesion complex stability and clustering. PLoS Genet 2014; 10:e1004756. [PMID: 25393120 PMCID: PMC4230843 DOI: 10.1371/journal.pgen.1004756] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 09/15/2014] [Indexed: 11/18/2022] Open
Abstract
Talin serves an essential function during integrin-mediated adhesion in linking integrins to actin via the intracellular adhesion complex. In addition, the N-terminal head domain of talin regulates the affinity of integrins for their ECM-ligands, a process known as inside-out activation. We previously showed that in Drosophila, mutating the integrin binding site in the talin head domain resulted in weakened adhesion to the ECM. Intriguingly, subsequent studies showed that canonical inside-out activation of integrin might not take place in flies. Consistent with this, a mutation in talin that specifically blocks its ability to activate mammalian integrins does not significantly impinge on talin function during fly development. Here, we describe results suggesting that the talin head domain reinforces and stabilizes the integrin adhesion complex by promoting integrin clustering distinct from its ability to support inside-out activation. Specifically, we show that an allele of talin containing a mutation that disrupts intramolecular interactions within the talin head attenuates the assembly and reinforcement of the integrin adhesion complex. Importantly, we provide evidence that this mutation blocks integrin clustering in vivo. We propose that the talin head domain is essential for regulating integrin avidity in Drosophila and that this is crucial for integrin-mediated adhesion during animal development. Cells are the building blocks of our bodies. How do cells rearrange to form three-dimensional body plans and maintain specific tissue structures? Specialized adhesion molecules on the cell surface mediate attachment between cells and their surrounding environment to hold tissues together. Our work uses the developing fruit fly embryo to demonstrate how such connections are regulated during tissue growth. Since the genes and molecules involved in this process are highly similar between flies and humans, we can also apply our findings to our understanding of how human tissues form and are maintained. We observe that, in late developing muscles, clusters of cell adhesion molecules concentrate together to create stronger attachments between muscle cells and tendon cells. This strengthening mechanism allows the fruit fly to accommodate increasing amounts of force imposed by larger, more active muscles. We identify specific genetic mutations that disrupt these strengthening mechanisms and lead to severe developmental defects during fly development. Our results illustrate how subtle fine-tuning of the connections between cells and their surrounding environment is important to form and maintain normal tissue structure across the animal kingdom.
Collapse
Affiliation(s)
- Stephanie J. Ellis
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Emily Lostchuck
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Benjamin T. Goult
- School of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
| | - Mohamed Bouaouina
- Department of Pharmacology, Yale University, New Haven, Connecticut, United States of America
- Carnegie Mellon University Qatar, Education City, Doha, Qatar
| | - Michael J. Fairchild
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Pablo López-Ceballos
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - David A. Calderwood
- Department of Pharmacology, Yale University, New Haven, Connecticut, United States of America
| | - Guy Tanentzapf
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
- * E-mail:
| |
Collapse
|
108
|
Kim SN, Jeibmann A, Halama K, Witte HT, Wälte M, Matzat T, Schillers H, Faber C, Senner V, Paulus W, Klämbt C. ECM stiffness regulates glial migration in Drosophila and mammalian glioma models. Development 2014; 141:3233-42. [DOI: 10.1242/dev.106039] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cell migration is an important feature of glial cells. Here, we used the Drosophila eye disc to decipher the molecular network controlling glial migration. We stimulated glial motility by pan-glial PDGF receptor (PVR) activation and identified several genes acting downstream of PVR. Drosophila lox is a non-essential gene encoding a secreted protein that stiffens the extracellular matrix (ECM). Glial-specific knockdown of Integrin results in ECM softening. Moreover, we show that lox expression is regulated by Integrin signaling and vice versa, suggesting that a positive-feedback loop ensures a rigid ECM in the vicinity of migrating cells. The general implication of this model was tested in a mammalian glioma model, where a Lox-specific inhibitor unraveled a clear impact of ECM rigidity in glioma cell migration.
Collapse
Affiliation(s)
- Su Na Kim
- Institute of Neurobiology, University of Münster, Münster 48149, Germany
| | - Astrid Jeibmann
- Institute of Neuropathology, University Hospital Münster, Münster 48149, Germany
| | - Kathrin Halama
- Institute of Neuropathology, University Hospital Münster, Münster 48149, Germany
| | - Hanna Teresa Witte
- Institute of Neurobiology, University of Münster, Münster 48149, Germany
- Institute of Neuropathology, University Hospital Münster, Münster 48149, Germany
| | - Mike Wälte
- Institute of Physiology II, University Hospital Münster, Münster 48149, Germany
| | - Till Matzat
- Institute of Neurobiology, University of Münster, Münster 48149, Germany
| | - Hermann Schillers
- Institute of Physiology II, University Hospital Münster, Münster 48149, Germany
| | - Cornelius Faber
- Department of Clinical Radiology, University Hospital Münster, Münster 48149, Germany
| | - Volker Senner
- Institute of Neuropathology, University Hospital Münster, Münster 48149, Germany
| | - Werner Paulus
- Institute of Neuropathology, University Hospital Münster, Münster 48149, Germany
| | - Christian Klämbt
- Institute of Neurobiology, University of Münster, Münster 48149, Germany
| |
Collapse
|
109
|
Inoue T, Hashimoto R, Matsumoto A, Jahan E, Rafiq AM, Udagawa J, Hatta T, Otani H. In vivo analysis of Arg-Gly-Asp sequence/integrin α5β1-mediated signal involvement in embryonic enchondral ossification by exo utero development system. J Bone Miner Res 2014; 29:1554-63. [PMID: 24375788 DOI: 10.1002/jbmr.2166] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 12/02/2013] [Accepted: 12/11/2013] [Indexed: 01/01/2023]
Abstract
Enchondral ossification is a fundamental mechanism for longitudinal bone growth during vertebrate development. In vitro studies suggested that functional blockade with RGD peptides or with an antibody that interferes with integrin α5β1-ligand interactions inhibited pre-hypertrophic chondrocyte differentiation. The purpose of this study is to elucidate in vivo the roles of the integrin α5β1-mediated signal through the Arg-Gly-Asp (RGD) sequence in the cell-extracellular matrix (ECM) interaction in embryonic enchondral ossification by an exo utero development system. We injected Arg-Gly-Asp-Ser (RGDS) peptides and anti-integrin α5β1 antibody (α5β1 ab) in the upper limbs of mouse embryos at embryonic day (E) 15.5 (RGDS-injected limbs, α5β1 ab-injected limbs), and compared the effects on enchondral ossification with those found in the control limbs (Arg-Gly-Glu-Ser peptide-, mouse IgG-, or vehicle-injected, and no surgery) at E16.5. In the RGDS-injected limbs, the humeri were shorter and there were fewer BrdU-positive cells than in the control limbs. The ratios of cartilage length and area to those of the humerus were higher in the RGDS-injected limbs. The ratios of type X collagen to type 2 collagen mRNA and protein (Coll X/Coll 2) were significantly lower in the RGDS-injected limbs. In those limbs, TUNEL-positive cells were hardly observed, and the ratios of fractin to the Coll X/Coll 2 ratio were lower than in the control limbs. Furthermore, the α5β1 ab-injected limbs showed results similar to those of RGDS-injected limbs. The present in vivo study by exo utero development system showed that RGDS and α5β1 ab injection decreased chondrocyte proliferation, differentiation, and apoptosis in enchondral ossification, and suggested that the integrin α5β1-mediated ECM signal through the RGD sequence is involved in embryonic enchondral ossification.
Collapse
Affiliation(s)
- Takayuki Inoue
- Department of Developmental Biology, Faculty of Medicine, Shimane University, Shimane, Japan
| | | | | | | | | | | | | | | |
Collapse
|
110
|
Bilousov O, Koval A, Keshelava A, Katanaev VL. Identification of novel elements of the Drosophila blisterome sheds light on potential pathological mechanisms of several human diseases. PLoS One 2014; 9:e101133. [PMID: 24968325 PMCID: PMC4072764 DOI: 10.1371/journal.pone.0101133] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 06/03/2014] [Indexed: 12/16/2022] Open
Abstract
Main developmental programs are highly conserved among species of the animal kingdom. Improper execution of these programs often leads to progression of various diseases and disorders. Here we focused on Drosophila wing tissue morphogenesis, a fairly complex developmental program, one of the steps of which – apposition of the dorsal and ventral wing sheets during metamorphosis – is mediated by integrins. Disruption of this apposition leads to wing blistering which serves as an easily screenable phenotype for components regulating this process. By means of RNAi-silencing technique and the blister phenotype as readout, we identify numerous novel proteins potentially involved in wing sheet adhesion. Remarkably, our results reveal not only participants of the integrin-mediated machinery, but also components of other cellular processes, e.g. cell cycle, RNA splicing, and vesicular trafficking. With the use of bioinformatics tools, these data are assembled into a large blisterome network. Analysis of human orthologues of the Drosophila blisterome components shows that many disease-related genes may contribute to cell adhesion implementation, providing hints on possible mechanisms of these human pathologies.
Collapse
Affiliation(s)
- Oleksii Bilousov
- Department of Pharmacology and Toxicology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Alexey Koval
- Department of Pharmacology and Toxicology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Amiran Keshelava
- Department of Pharmacology and Toxicology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Vladimir L. Katanaev
- Department of Pharmacology and Toxicology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
111
|
Matus DQ, Chang E, Makohon-Moore SC, Hagedorn MA, Chi Q, Sherwood DR. Cell division and targeted cell cycle arrest opens and stabilizes basement membrane gaps. Nat Commun 2014; 5:4184. [PMID: 24924309 PMCID: PMC4138880 DOI: 10.1038/ncomms5184] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 05/21/2014] [Indexed: 12/13/2022] Open
Abstract
Large gaps in basement membrane (BM) occur during organ remodelling and cancer cell invasion. Whether dividing cells, which temporarily reduce their attachment to BM, influence these breaches is unknown. Here we analyse uterine-vulval attachment during development across 21 species of rhabditid nematodes and find that the BM gap that forms between these organs is always bounded by a non-dividing vulval cell. Through cell cycle manipulation and live cell imaging in Caenorhabditis elegans, we show that actively dividing vulval cells facilitate enlargement of this breach by promoting BM movement. In contrast, targeted cell cycle arrest halts BM movement and limits gap opening. Further, we demonstrate that the BM component laminin accumulates at the BM gap edge and promotes increased integrin levels in non-dividing vulval cells, stabilizing gap position. Together, these studies reveal that cell division can be used as a mechanism to regulate BM breaches, thus controlling the exchange of cells between tissues.
Collapse
Affiliation(s)
- David Q Matus
- 1] Department of Biology, Duke University, Durham, North Carolina 27705, USA [2]
| | - Emily Chang
- 1] Department of Biology, Duke University, Durham, North Carolina 27705, USA [2]
| | | | - Mary A Hagedorn
- Department of Biology, Duke University, Durham, North Carolina 27705, USA
| | - Qiuyi Chi
- Department of Biology, Duke University, Durham, North Carolina 27705, USA
| | - David R Sherwood
- Department of Biology, Duke University, Durham, North Carolina 27705, USA
| |
Collapse
|
112
|
Meyer S, Schmidt I, Klämbt C. Glia ECM interactions are required to shape the Drosophila nervous system. Mech Dev 2014; 133:105-16. [PMID: 24859129 DOI: 10.1016/j.mod.2014.05.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 05/10/2014] [Accepted: 05/14/2014] [Indexed: 10/25/2022]
Abstract
Organs are characterized by a specific shape that is often remodeled during development. The dynamics of organ shape is in particular evident during the formation of the Drosophila nervous system. During embryonic stages the central nervous system compacts, whereas selective growth occurs during larval stages. The nervous system is covered by a layer of surface glial cells that form the blood brain barrier and a thick extracellular matrix called neural lamella. The size of the neural lamella is dynamically adjusted to the growing nervous system and we show here that perineurial glial cells secrete proteases to remodel this matrix. Moreover, an imbalance in proteolytic activity results in an abnormal shape of the nervous system. To identify further components controlling nervous system shape we performed an RNAi based screen and identified the gene nolo, which encodes an ADAMTS-like protein. We generated loss of function alleles and demonstrate a requirement in glial cells. Mutant nolo larvae, however, do not show an abnormal nervous system shape. The only predicted off-target of the nolo(dsRNA) is Oatp30B, which encodes an organic anion transporting protein characterized by an extracellular protease inhibitor domain. Loss of function mutants were generated and double mutant analyses demonstrate a genetic interaction between nolo and Oatp30B which prevented the generation of maternal zygotic mutant larvae.
Collapse
Affiliation(s)
- Silke Meyer
- Institute of Neurobiology, University of Münster, 48149 Münster, Germany
| | - Imke Schmidt
- Institute of Neurobiology, University of Münster, 48149 Münster, Germany
| | - Christian Klämbt
- Institute of Neurobiology, University of Münster, 48149 Münster, Germany.
| |
Collapse
|
113
|
Biologically-active laminin-111 fragment that modulates the epithelial-to-mesenchymal transition in embryonic stem cells. Proc Natl Acad Sci U S A 2014; 111:5908-13. [PMID: 24706882 DOI: 10.1073/pnas.1403139111] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The dynamic interplay between the extracellular matrix and embryonic stem cells (ESCs) constitutes one of the key steps in understanding stem cell differentiation in vitro. Here we report a biologically-active laminin-111 fragment generated by matrix metalloproteinase 2 (MMP2) processing, which is highly up-regulated during differentiation. We show that the β1-chain-derived fragment interacts via α3β1-integrins, thereby triggering the down-regulation of MMP2 in mouse and human ESCs. Additionally, the expression of MMP9 and E-cadherin is up-regulated in mouse ESCs--key players in the epithelial-to-mesenchymal transition. We also demonstrate that the fragment acts through the α3β1-integrin/extracellular matrix metalloproteinase inducer complex. This study reveals a previously unidentified role of laminin-111 in early stem cell differentiation that goes far beyond basement membrane assembly and a mechanism by which an MMP2-cleaved laminin fragment regulates the expression of E-cadherin, MMP2, and MMP9.
Collapse
|
114
|
Weitkunat M, Kaya-Çopur A, Grill SW, Schnorrer F. Tension and force-resistant attachment are essential for myofibrillogenesis in Drosophila flight muscle. Curr Biol 2014; 24:705-16. [PMID: 24631244 DOI: 10.1016/j.cub.2014.02.032] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 02/12/2014] [Accepted: 02/13/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Higher animals generate an elaborate muscle-tendon network to perform their movements. To build a functional network, developing muscles must establish stable connections with tendons and assemble their contractile apparatuses. Current myofibril assembly models do not consider the impact of muscle-tendon attachment on myofibrillogenesis. However, if attachment and myofibrillogenesis are not properly coordinated, premature muscle contractions can destroy an unstable myotendinous system, leading to severe myopathies. RESULTS Here, we use Drosophila indirect flight muscles to investigate how muscle-tendon attachment and myofibrillogenesis are coordinated. We find that flight muscles first stably attach to tendons and then assemble their myofibrils. Interestingly, this myofibril assembly is triggered simultaneously throughout the entire muscle, suggesting a self-assembly mechanism. By applying laser-cutting experiments, we show that muscle attachment coincides with an increase in mechanical tension before periodic myofibrils can be detected. We manipulated tension buildup within the myotendinous system either by genetically compromising attachment initiation and integrin recruitment to the myotendinous junction or by optically severing tendons from muscle. Both treatments cause strong myofibrillogenesis defects. We find that myosin motor activity is required for both tension formation and myofibril assembly, suggesting that myofibril assembly itself contributes to tension buildup. CONCLUSIONS Our results demonstrate that force-resistant attachment enables a stark tension increase in the myotendinous system. Subsequently, this tension increase triggers simultaneous myofibril self-assembly throughout the entire muscle fiber. As myofibril and sarcomeric architecture as well as their molecular components are evolutionarily conserved, we propose a similar tension-based mechanism to regulate myofibrillogenesis in vertebrates.
Collapse
Affiliation(s)
- Manuela Weitkunat
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Aynur Kaya-Çopur
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Stephan W Grill
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany; Max Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Frank Schnorrer
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| |
Collapse
|
115
|
Weitkunat M, Schnorrer F. A guide to study Drosophila muscle biology. Methods 2014; 68:2-14. [PMID: 24625467 DOI: 10.1016/j.ymeth.2014.02.037] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 02/25/2014] [Accepted: 02/28/2014] [Indexed: 10/25/2022] Open
Abstract
The development and molecular composition of muscle tissue is evolutionarily conserved. Drosophila is a powerful in vivo model system to investigate muscle morphogenesis and function. Here, we provide a short and comprehensive overview of the important developmental steps to build Drosophila body muscle in embryos, larvae and pupae. We describe key methods, including muscle histology, live imaging and genetics, to study these steps at various developmental stages and include simple behavioural assays to assess muscle function in larvae and adults. We list valuable antibodies and fly strains that can be used for these different methods. This overview should guide the reader to choose the best marker or the appropriate method to obtain high quality muscle morphogenesis data in Drosophila.
Collapse
Affiliation(s)
- Manuela Weitkunat
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Frank Schnorrer
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| |
Collapse
|
116
|
Weavers H, Skaer H. Tip cells act as dynamic cellular anchors in the morphogenesis of looped renal tubules in Drosophila. Dev Cell 2014; 27:331-44. [PMID: 24229645 PMCID: PMC3898071 DOI: 10.1016/j.devcel.2013.09.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 09/06/2013] [Accepted: 09/22/2013] [Indexed: 01/13/2023]
Abstract
Tissue morphogenesis involves both the sculpting of tissue shape and the positioning of tissues relative to one another in the body. Using the renal tubules of Drosophila, we show that a specific distal tubule cell regulates both tissue architecture and position in the body cavity. Focusing on the anterior tubules, we demonstrate that tip cells make transient contacts with alary muscles at abdominal segment boundaries, moving progressively forward as convergent extension movements lengthen the tubule. Tip cell anchorage antagonizes forward-directed, TGF-β-guided tubule elongation, thereby ensuring the looped morphology characteristic of renal tubules from worms to humans. Distinctive tip cell exploratory behavior, adhesion, and basement membrane clearing underlie target recognition and dynamic interactions. Defects in these features obliterate tip cell anchorage, producing misshapen and misplaced tubules with impaired physiological function. Tip cells stabilize elongating renal tubules by binding to specific muscle targets Tip cell anchorage antagonizes migration, producing excretory tubule looping Tip cell exploration and adhesion dynamics underpin regulated tubule morphogenesis Lack of continued anchorage results in deformed tubules with impaired function
Collapse
Affiliation(s)
- Helen Weavers
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | | |
Collapse
|
117
|
Abstract
In humans, an ~200-residue "inserted" I domain, a von Willebrand factor A domain (vWFA), buds out from the β-propeller domain in 9 of 18 integrin α subunits. The vWFA domain is not unique to the α subunit as it is an integral part of all integrin β subunits and many other proteins. The βI domain has always been a component of integrins but the αI domain makes its appearance relatively late, in early chordates, since it is found in tunicates and later diverging species. The tunicate αI domains are distinct from the human collagen and leukocyte recognizing integrin α subunits, but fragments of integrins from agnathastomes suggest that the human-type αI domains arose in an ancestor of the very first vertebrate species. The rise of integrins with αI domains parallels the enormous changes in body plan and systemic development of the chordate line that began some 550 million or more years ago.
Collapse
|
118
|
Vedula SRK, Hirata H, Nai MH, Brugués A, Toyama Y, Trepat X, Lim CT, Ladoux B. Epithelial bridges maintain tissue integrity during collective cell migration. NATURE MATERIALS 2014; 13:87-96. [PMID: 24292420 DOI: 10.1038/nmat3814] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 10/17/2013] [Indexed: 05/22/2023]
Abstract
The ability of skin to act as a barrier is primarily determined by the efficiency of skin cells to maintain and restore its continuity and integrity. In fact, during wound healing keratinocytes migrate collectively to maintain their cohesion despite heterogeneities in the extracellular matrix. Here, we show that monolayers of human keratinocytes migrating along functionalized micropatterned surfaces comprising alternating strips of extracellular matrix (fibronectin) and non-adherent polymer form suspended multicellular bridges over the non-adherent areas. The bridges are held together by intercellular adhesion and are subjected to considerable tension, as indicated by the presence of prominent actin bundles. We also show that a model based on force propagation through an elastic material reproduces the main features of bridge maintenance and tension distribution. Our findings suggest that multicellular bridges maintain tissue integrity during wound healing when cell-substrate interactions are weak and may prove helpful in the design of artificial scaffolds for skin regeneration.
Collapse
Affiliation(s)
| | - Hiroaki Hirata
- Mechanobiology Institute, National University of Singapore, 117411, Singapore
| | - Mui Hoon Nai
- Mechanobiology Institute, National University of Singapore, 117411, Singapore
| | - Agustí Brugués
- Institut de Bioenginyeria de Catalunya (IBEC), ICREA, and Facultat de Medicina-Universitat de Barcelona, 08028 Barcelona, Spain
| | - Yusuke Toyama
- 1] Mechanobiology Institute, National University of Singapore, 117411, Singapore [2] Department of Biological Sciences, National University of Singapore and Temasek Life Sciences Laboratory, 117543, Singapore
| | - Xavier Trepat
- Institut de Bioenginyeria de Catalunya (IBEC), ICREA, and Facultat de Medicina-Universitat de Barcelona, 08028 Barcelona, Spain
| | - Chwee Teck Lim
- 1] Mechanobiology Institute, National University of Singapore, 117411, Singapore [2] Department of Biomedical Engineering and Department of Mechanical Engineering, National University of Singapore, 117576, Singapore
| | - Benoit Ladoux
- 1] Mechanobiology Institute, National University of Singapore, 117411, Singapore [2] Institut Jacques Monod (IJM), CNRS UMR 7592 and Université Paris Diderot, Paris 75013, France
| |
Collapse
|
119
|
Young developmental age cardiac extracellular matrix promotes the expansion of neonatal cardiomyocytes in vitro. Acta Biomater 2014; 10:194-204. [PMID: 24012606 DOI: 10.1016/j.actbio.2013.08.037] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 08/01/2013] [Accepted: 08/27/2013] [Indexed: 02/02/2023]
Abstract
A major limitation to cardiac tissue engineering and regenerative medicine strategies is the lack of proliferation of postnatal cardiomyocytes. The extracellular matrix (ECM) is altered during heart development, and studies suggest that it plays an important role in regulating myocyte proliferation. Here, the effects of fetal, neonatal and adult cardiac ECM on the expansion of neonatal rat ventricular cells in vitro are studied. At 24h, overall cell attachment was lowest on fetal ECM; however, ~80% of the cells were cardiomyocytes, while many non-myocytes attached to older ECM and poly-l-lysine controls. After 5 days, the cardiomyocyte population remained highest on fetal ECM, with a 4-fold increase in number. Significantly more cardiomyocytes stained positively for the mitotic marker phospho-histone H3 on fetal ECM compared with other substrates at 5 days, suggesting that proliferation may be a major mechanism of cardiomyocyte expansion on young ECM. Further study of the beneficial properties of early developmental aged cardiac ECM could advance the design of novel biomaterials aimed at promoting cardiac regeneration.
Collapse
|
120
|
Abstract
Morphogenesis is the remarkable process by which cells self-assemble into complex tissues and organs that exhibit specialized form and function during embryological development. Many of the genes and chemical cues that mediate tissue and organ formation have been identified; however, these signals alone are not sufficient to explain how tissues and organs are constructed that exhibit their unique material properties and three-dimensional forms. Here, we review work that has revealed the central role that physical forces and extracellular matrix mechanics play in the control of cell fate switching, pattern formation, and tissue development in the embryo and how these same mechanical signals contribute to tissue homeostasis and developmental control throughout adult life.
Collapse
Affiliation(s)
- Tadanori Mammoto
- Vascular Biology Program, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115;
| | | | | |
Collapse
|
121
|
Otagiri D, Yamada Y, Hozumi K, Katagiri F, Kikkawa Y, Nomizu M. Cell attachment and spreading activity of mixed laminin peptide-chitosan membranes. Biopolymers 2013; 100:751-9. [DOI: 10.1002/bip.22303] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 04/24/2013] [Accepted: 05/28/2013] [Indexed: 01/16/2023]
Affiliation(s)
- Dai Otagiri
- Department of Clinical Biochemistry; Faculty of Pharmacy, Tokyo University of Pharmacy and Life Sciences; Hachioji Tokyo 192-0392 Japan
| | - Yuji Yamada
- Department of Clinical Biochemistry; Faculty of Pharmacy, Tokyo University of Pharmacy and Life Sciences; Hachioji Tokyo 192-0392 Japan
| | - Kentaro Hozumi
- Department of Clinical Biochemistry; Faculty of Pharmacy, Tokyo University of Pharmacy and Life Sciences; Hachioji Tokyo 192-0392 Japan
| | - Fumihiko Katagiri
- Department of Clinical Biochemistry; Faculty of Pharmacy, Tokyo University of Pharmacy and Life Sciences; Hachioji Tokyo 192-0392 Japan
| | - Yamato Kikkawa
- Department of Clinical Biochemistry; Faculty of Pharmacy, Tokyo University of Pharmacy and Life Sciences; Hachioji Tokyo 192-0392 Japan
| | - Motoyoshi Nomizu
- Department of Clinical Biochemistry; Faculty of Pharmacy, Tokyo University of Pharmacy and Life Sciences; Hachioji Tokyo 192-0392 Japan
| |
Collapse
|
122
|
Mirsaidi A, Tiaden AN, Richards PJ. Preparation and Osteogenic Differentiation of Scaffold‐Free Mouse Adipose‐Derived Stromal Cell Microtissue Spheroids (ASC‐MT). ACTA ACUST UNITED AC 2013; 27:2B.5.1-2B.5.12. [DOI: 10.1002/9780470151808.sc02b05s27] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Ali Mirsaidi
- Bone and Stem Cell Research Group, CABMM, University of Zurich Zurich Switzerland
| | - André N. Tiaden
- Bone and Stem Cell Research Group, CABMM, University of Zurich Zurich Switzerland
| | - Peter J. Richards
- Bone and Stem Cell Research Group, CABMM, University of Zurich Zurich Switzerland
| |
Collapse
|
123
|
Saravanan S, Sameera D, Moorthi A, Selvamurugan N. Chitosan scaffolds containing chicken feather keratin nanoparticles for bone tissue engineering. Int J Biol Macromol 2013; 62:481-6. [DOI: 10.1016/j.ijbiomac.2013.09.034] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 06/22/2013] [Accepted: 09/24/2013] [Indexed: 10/26/2022]
|
124
|
Clause KC, Barker TH. Extracellular matrix signaling in morphogenesis and repair. Curr Opin Biotechnol 2013; 24:830-3. [PMID: 23726156 DOI: 10.1016/j.copbio.2013.04.011] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 04/23/2013] [Accepted: 04/24/2013] [Indexed: 12/16/2022]
Abstract
The extracellular matrix (ECM) is critically important for many cellular processes including growth, differentiation, survival, and morphogenesis. Cells remodel and reshape the ECM by degrading and reassembling it, playing an active role in sculpting their surrounding environment and directing their own phenotypes. Both mechanical and biochemical molecules influence ECM dynamics in multiple ways; by releasing small bioactive signaling molecules, releasing growth factors stored within the ECM, eliciting structural changes to matrix proteins which expose cryptic sites and by degrading matrix proteins directly. The dynamic reciprocal communication between cells and the ECM plays a fundamental roll in tissue development, homeostasis, and wound healing.
Collapse
Affiliation(s)
- Kelly C Clause
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive NW, Atlanta, GA 30332, USA
| | | |
Collapse
|
125
|
Abstract
Integrin-mediated cell adhesions to the extracellular matrix (ECM) contribute to tissue morphogenesis and coherence and provide cells with vital environmental cues. These apparently static structures display remarkable plasticity and dynamic properties: they exist in multiple, interconvertible forms that are constantly remodeled in response to changes in ECM properties, cytoskeletal organization, cell migration, and signaling processes. Thus, integrin-mediated environmental sensing enables cells to adapt to chemical and physical properties of the surrounding matrix by modulating their proliferation, differentiation, and survival. This intriguing interplay between the apparently robust structure of matrix adhesions and their highly dynamic properties is the focus of this article.
Collapse
Affiliation(s)
- Haguy Wolfenson
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
126
|
Abstract
The ageing skeleton experiences a progressive decline in the rate of bone formation, which can eventually result in osteoporosis--a common disease characterized by reduced bone mass and altered bone microarchitecture which can result in fractures. One emerging therapy involves the identification of molecules that target bone-marrow mesenchymal stromal cells (MSCs) and promote their differentiation into osteoblasts, thereby counteracting bone loss. This Review highlights the discovery that some integrins, a family of heterodimeric transmembrane proteins that can interact with matrix proteins and generate intracellular signals, can be targeted to promote homing of MSCs to bone, osteogenic differentiation and bone formation. Specifically, priming of the α(5)β(1) integrin, which is required for osteoblastic differentiation of MSCs, leads to increased bone formation and improved bone repair in mice. Additionally, treatment with a peptidomimetic ligand of the α(4)β(1) integrin coupled to an agent with a high affinity for bone improves the homing of MSCs to bone and promotes osteoblast differentiation and bone formation, leading to increased bone mass in osteopenic mice. Strategies that target key integrins expressed by MSCs might, therefore, translate into improved therapies for age-related bone loss and possibly other disorders.
Collapse
Affiliation(s)
- Pierre J Marie
- Unité Mixte de Recherche 606, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
127
|
Bharadwaj R, Roy M, Ohyama T, Sivan-Loukianova E, Delannoy M, Lloyd TE, Zlatic M, Eberl DF, Kolodkin AL. Cbl-associated protein regulates assembly and function of two tension-sensing structures in Drosophila. Development 2013; 140:627-38. [PMID: 23293294 DOI: 10.1242/dev.085100] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cbl-associated protein (CAP) localizes to focal adhesions and associates with numerous cytoskeletal proteins; however, its physiological roles remain unknown. Here, we demonstrate that Drosophila CAP regulates the organization of two actin-rich structures in Drosophila: muscle attachment sites (MASs), which connect somatic muscles to the body wall; and scolopale cells, which form an integral component of the fly chordotonal organs and mediate mechanosensation. Drosophila CAP mutants exhibit aberrant junctional invaginations and perturbation of the cytoskeletal organization at the MAS. CAP depletion also results in collapse of scolopale cells within chordotonal organs, leading to deficits in larval vibration sensation and adult hearing. We investigate the roles of different CAP protein domains in its recruitment to, and function at, various muscle subcellular compartments. Depletion of the CAP-interacting protein Vinculin results in a marked reduction in CAP levels at MASs, and vinculin mutants partially phenocopy Drosophila CAP mutants. These results show that CAP regulates junctional membrane and cytoskeletal organization at the membrane-cytoskeletal interface of stretch-sensitive structures, and they implicate integrin signaling through a CAP/Vinculin protein complex in stretch-sensitive organ assembly and function.
Collapse
Affiliation(s)
- Rajnish Bharadwaj
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Lin G, Zhang X, Ren J, Pang Z, Wang C, Xu N, Xi R. Integrin signaling is required for maintenance and proliferation of intestinal stem cells in Drosophila. Dev Biol 2013; 377:177-87. [PMID: 23410794 DOI: 10.1016/j.ydbio.2013.01.032] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 01/24/2013] [Accepted: 01/27/2013] [Indexed: 11/16/2022]
Abstract
Tissue-specific stem cells are maintained by both local secreted signals and cell adhesion molecules that position the stem cells in the niche microenvironment. In the Drosophila midgut, multipotent intestinal stem cells (ISCs) are located basally along a thin layer of basement membrane that composed of extracellular matrix (ECM), which separates ISCs from the surrounding visceral musculature: the muscle cells constitute a regulatory niche for ISCs by producing multiple secreted signals that directly regulate ISC maintenance and proliferation. Here we show that integrin-mediated cell adhesion, which connects the ECM and intracellular cytoskeleton, is required for ISC anchorage to the basement membrane. Specifically, the α-integrin subunits including αPS1 encoded by mew and αPS3 encoded by scb, and the β-integrin subunit encoded by mys are richly expressed in ISCs and are required for the maintenance, rather than their survival or multiple lineage differentiation. Furthermore, ISC maintenance also requires the intercellular and intracellular integrin signaling components including Talin, Integrin-linked kinase (Ilk), and the ligand, Laminin A. Notably, integrin mutant ISCs are also less proliferative, and genetic interaction studies suggest that proper integrin signaling is a pre-requisite for ISC proliferation in response to various proliferative signals and for the initiation of intestinal hyperplasia after loss of adenomatous polyposis coli (Apc). Our studies suggest that integrin not only functions to anchor ISCs to the basement membrane, but also serves as an essential element for ISC proliferation during normal homeostasis and in response to oncogenic mutations.
Collapse
Affiliation(s)
- Guonan Lin
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | | | | | | | | | | | | |
Collapse
|
129
|
Tissues, the Extracellular Matrix, and Cell–Biomaterial Interactions. Biomater Sci 2013. [DOI: 10.1016/b978-0-08-087780-8.00039-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
130
|
|
131
|
Mitra J, Tripathi G, Sharma A, Basu B. Scaffolds for bone tissue engineering: role of surface patterning on osteoblast response. RSC Adv 2013. [DOI: 10.1039/c3ra23315d] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
132
|
The extracellular matrix proteoglycan perlecan facilitates transmembrane semaphorin-mediated repulsive guidance. Genes Dev 2012; 26:2222-35. [PMID: 23028146 DOI: 10.1101/gad.193136.112] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The Drosophila transmembrane semaphorin-1a (Sema-1a) is a repulsive guidance cue that uses the Plexin A (PlexA) receptor during neural development. Sema-1a is required in axons to facilitate motor axon defasciculation at guidance choice points. We found that mutations in the trol gene strongly suppress Sema-1a-mediated repulsive axon guidance. trol encodes the phylogenetically conserved secreted heparan sulfate proteoglycan (HSPG) perlecan, a component of the extracellular matrix. Motor axon guidance defects in perlecan mutants resemble those observed in Sema-1a- and PlexA-null mutant embryos, and perlecan mutants genetically interact with PlexA and Sema-1a. Perlecan protein is found in both the CNS and the periphery, with higher expression levels in close proximity to motor axon trajectories and pathway choice points. Restoring perlecan to mutant motor neurons rescues perlecan axon guidance defects. Perlecan augments the reduction in phospho-focal adhesion kinase (phospho-FAK) levels that result from treating insect cells in vitro with Sema-1a, and genetic interactions among integrin, Sema-1a, and FAK in vivo support an antagonistic relationship between Sema-1a and integrin signaling. Therefore, perlecan is required for Sema-1a-PlexA-mediated repulsive guidance, revealing roles for extracellular matrix proteoglycans in modulating transmembrane guidance cue signaling during neural development.
Collapse
|
133
|
Regulation of endodermal differentiation of human embryonic stem cells through integrin-ECM interactions. Cell Death Differ 2012; 20:369-81. [PMID: 23154389 PMCID: PMC3569984 DOI: 10.1038/cdd.2012.138] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Many cellular responses during development are regulated by interactions between integrin receptors and extracellular matrix proteins (ECMPs). Although the majority of recent studies in human embryonic stem cell (hESC) differentiation have focused on the role of growth factors, such as FGF, TGFβ, and WNT, relatively little is known about the role of ECMP-integrin signaling in this process. Moreover, current strategies to direct hESC differentiation into various lineages are inefficient and have yet to produce functionally mature cells in vitro. This suggests that additional factors, such as ECMPs, are required for the efficient differentiation of hESCs. Using a high-throughput multifactorial cellular array technology, we investigated the effect of hundreds of ECMP combinations and concentrations on differentiation of several hPSC lines to definitive endoderm (DE), an early embryonic cell population fated to give rise to internal organs such as the lung, liver, pancreas, stomach, and intestine. From this screen we identified fibronectin (FN) and vitronectin (VTN) as ECMP components that promoted DE differentiation. Analysis of integrin expression revealed that differentiation toward DE led to an increase in FN-binding integrin α5 (ITGA5) and VTN-binding integrin αV (ITGAV). Conditional short hairpin RNA-mediated knockdown of ITGA5 and ITGAV disrupted hESC differentiation toward DE. Finally, fluorescence-based cell sorting for ITGA5 and ITGAV significantly enriched cells with gene expression signatures associated with DE, demonstrating that these cell surface proteins permit isolation and enrichment of DE from hESCs. These data provide evidence that FN and VTN promote endoderm differentiation of hESCs through interaction with ITGA5 and ITGAV, and that ECMP-integrin interactions are required for hESC differentiation into functionally mature cells.
Collapse
|
134
|
Chountala M, Vakaloglou KM, Zervas CG. Parvin overexpression uncovers tissue-specific genetic pathways and disrupts F-actin to induce apoptosis in the developing epithelia in Drosophila. PLoS One 2012; 7:e47355. [PMID: 23077599 PMCID: PMC3471835 DOI: 10.1371/journal.pone.0047355] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 09/11/2012] [Indexed: 01/15/2023] Open
Abstract
Parvin is a putative F-actin binding protein important for integrin-mediated cell adhesion. Here we used overexpression of Drosophila Parvin to uncover its functions in different tissues in vivo. Parvin overexpression caused major defects reminiscent of metastatic cancer cells in developing epithelia, including apoptosis, alterations in cell shape, basal extrusion and invasion. These defects were closely correlated with abnormalities in the organization of F-actin at the basal epithelial surface and of integrin-matrix adhesion sites. In wing epithelium, overexpressed Parvin triggered increased Rho1 protein levels, predominantly at the basal side, whereas in the developing eye it caused a rough eye phenotype and severely disrupted F-actin filaments at the retina floor of pigment cells. We identified genes that suppressed these Parvin-induced dominant effects, depending on the cell type. Co-expression of both ILK and the apoptosis inhibitor DIAP1 blocked Parvin-induced lethality and apoptosis and partially ameliorated cell delamination in epithelia, but did not rescue the elevated Rho1 levels, the abnormal organization of F-actin in the wing and the assembly of integrin-matrix adhesion sites. The rough eye phenotype was suppressed by coexpression of either PTEN or Wech, or by knock-down of Xrp1. Two main conclusions can be drawn from our studies: (1), high levels of cytoplasmic Parvin are toxic in epithelial cells; (2) Parvin in a dose dependent manner affects the organization of actin cytoskeleton in both wing and eye epithelia, independently of its role as a structural component of the ILK-PINCH-Parvin complex that mediates the integrin-actin link. Thus, distinct genetic interactions of Parvin occur in different cell types and second site modifier screens are required to uncover such genetic circuits.
Collapse
Affiliation(s)
- Maria Chountala
- Division of Genetics, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Katerina M. Vakaloglou
- Division of Genetics, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Christos G. Zervas
- Division of Genetics, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
- * E-mail:
| |
Collapse
|
135
|
Wong VW, Longaker MT, Gurtner GC. Soft tissue mechanotransduction in wound healing and fibrosis. Semin Cell Dev Biol 2012; 23:981-6. [PMID: 23036529 DOI: 10.1016/j.semcdb.2012.09.010] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 09/25/2012] [Indexed: 12/17/2022]
Abstract
Recent evidence suggests that mechanical forces can significantly impact the biologic response to injury. Integrated mechanical and chemical signaling networks have been discovered that enable physical cues to regulate disease processes such as pathologic scar formation. Distinct molecular mechanisms control how tensional forces influence wound healing and fibrosis. Conceptual frameworks to understand cutaneous repair have expanded beyond traditional cell-cytokine models to include dynamic interactions driven by mechanical force and the extracellular matrix. Strategies to manipulate these biomechanical signaling networks have tremendous therapeutic potential to reduce scar formation and promote skin regeneration.
Collapse
Affiliation(s)
- Victor W Wong
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | |
Collapse
|
136
|
Goulet-Hanssens A, Lai Wing Sun K, Kennedy TE, Barrett CJ. Photoreversible Surfaces to Regulate Cell Adhesion. Biomacromolecules 2012; 13:2958-63. [DOI: 10.1021/bm301037k] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Alexis Goulet-Hanssens
- Department of Chemistry, Program
in NeuroEngineering, McGill University,
801 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0B8
| | - Karen Lai Wing Sun
- Department of Neurology and
Neurosurgery, Program in NeuroEngineering, Montreal Neurological Institute, 3801 University Street, Montreal, Quebec,
Canada H3A 2B4
| | - Timothy E. Kennedy
- Department of Neurology and
Neurosurgery, Program in NeuroEngineering, Montreal Neurological Institute, 3801 University Street, Montreal, Quebec,
Canada H3A 2B4
| | - Christopher J. Barrett
- Department of Chemistry, Program
in NeuroEngineering, McGill University,
801 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0B8
| |
Collapse
|
137
|
Reichardt LF, Prokop A. Introduction: the role of extracellular matrix in nervous system development and maintenance. Dev Neurobiol 2012; 71:883-8. [PMID: 21898856 DOI: 10.1002/dneu.20975] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
138
|
Wang X, Boire TC, Bronikowski C, Zachman AL, Crowder SW, Sung HJ. Decoupling polymer properties to elucidate mechanisms governing cell behavior. TISSUE ENGINEERING PART B-REVIEWS 2012; 18:396-404. [PMID: 22536977 DOI: 10.1089/ten.teb.2012.0011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Determining how a biomaterial interacts with cells ("structure-function relationship") reflects its eventual clinical applicability. Therefore, a fundamental understanding of how individual material properties modulate cell-biomaterial interactions is pivotal to improving the efficacy and safety of clinically translatable biomaterial systems. However, due to the coupled nature of material properties, their individual effects on cellular responses are difficult to understand. Structure-function relationships can be more clearly understood by the effective decoupling of each individual parameter. In this article, we discuss three basic decoupling strategies: (1) surface modification, (2) cross-linking, and (3) combinatorial approaches (i.e., copolymerization and polymer blending). Relevant examples of coupled material properties are briefly reviewed in each section to highlight the need for improved decoupling methods. This follows with examples of more effective decoupling techniques, mainly from the perspective of three primary classes of synthetic materials: polyesters, polyethylene glycol, and polyacrylamide. Recent strides in decoupling methodologies, especially surface-patterning and combinatorial techniques, offer much promise in further understanding the structure-function relationships that largely govern the success of future advancements in biomaterials, tissue engineering, and drug delivery.
Collapse
Affiliation(s)
- Xintong Wang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | | | | | | | | | |
Collapse
|
139
|
Spatial anisotropies and temporal fluctuations in extracellular matrix network texture during early embryogenesis. PLoS One 2012; 7:e38266. [PMID: 22693609 PMCID: PMC3365023 DOI: 10.1371/journal.pone.0038266] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 05/05/2012] [Indexed: 01/23/2023] Open
Abstract
Early stages of vertebrate embryogenesis are characterized by a remarkable series of shape changes. The resulting morphological complexity is driven by molecular, cellular, and tissue-scale biophysical alterations. Operating at the cellular level, extracellular matrix (ECM) networks facilitate cell motility. At the tissue level, ECM networks provide material properties required to accommodate the large-scale deformations and forces that shape amniote embryos. In other words, the primordial biomaterial from which reptilian, avian, and mammalian embryos are molded is a dynamic composite comprised of cells and ECM. Despite its central importance during early morphogenesis we know little about the intrinsic micrometer-scale surface properties of primordial ECM networks. Here we computed, using avian embryos, five textural properties of fluorescently tagged ECM networks — (a) inertia, (b) correlation, (c) uniformity, (d) homogeneity, and (e) entropy. We analyzed fibronectin and fibrillin-2 as examples of fibrous ECM constituents. Our quantitative data demonstrated differences in the surface texture between the fibronectin and fibrillin-2 network in Day 1 (gastrulating) embryos, with the fibronectin network being relatively coarse compared to the fibrillin-2 network. Stage-specific regional anisotropy in fibronectin texture was also discovered. Relatively smooth fibronectin texture was exhibited in medial regions adjoining the primitive streak (PS) compared with the fibronectin network investing the lateral plate mesoderm (LPM), at embryonic stage 5. However, the texture differences had changed by embryonic stage 6, with the LPM fibronectin network exhibiting a relatively smooth texture compared with the medial PS-oriented network. Our data identify, and partially characterize, stage-specific regional anisotropy of fibronectin texture within tissues of a warm-blooded embryo. The data suggest that changes in ECM textural properties reflect orderly time-dependent rearrangements of a primordial biomaterial. We conclude that the ECM microenvironment changes markedly in time and space during the most important period of amniote morphogenesis—as determined by fluctuating textural properties.
Collapse
|
140
|
Patel U, Davies SA, Myat MM. Receptor-type guanylyl cyclase Gyc76C is required for development of the Drosophila embryonic somatic muscle. Biol Open 2012; 1:507-15. [PMID: 23213443 PMCID: PMC3509439 DOI: 10.1242/bio.2012943] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Guanylyl cyclases mediate a number of physiological processes, including smooth muscle function and axonal guidance. Here, we report a novel role for Drosophila receptor-type guanylyl cyclase at 76C, Gyc76C, in development of the embryonic somatic muscle. In embryos lacking function of Gyc76C or the downstream cGMP-dependent protein kinase (cGK), DG1, patterning of the somatic body wall muscles was abnormal with ventral and lateral muscle groups showing the most severe defects. In contrast, specification and elongation of the dorsal oblique and dorsal acute muscles of gyc76C mutant embryos was normal, and instead, these muscles showed defects in proper formation of the myotendinous junctions (MTJs). During MTJ formation in gyc76C and pkg21D mutant embryos, the βPS integrin subunit failed to localize to the MTJs and instead was found in discrete puncta within the myotubes. Tissue-specific rescue experiments showed that gyc76C function is required in the muscle for proper patterning and βPS integrin localization at the MTJ. These studies provide the first evidence for a requirement for Gyc76C and DG1 in Drosophila somatic muscle development, and suggest a role in transport and/or retention of integrin receptor subunits at the developing MTJs.
Collapse
Affiliation(s)
- Unisha Patel
- Department of Cell and Developmental Biology, Weill Cornell Medical College , 1300 York Avenue, New York, NY 10065 , USA
| | | | | |
Collapse
|
141
|
Papagiannouli F, Lohmann I. Shaping the niche: lessons from the Drosophila testis and other model systems. Biotechnol J 2012; 7:723-36. [PMID: 22488937 DOI: 10.1002/biot.201100352] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 01/31/2012] [Accepted: 02/27/2012] [Indexed: 11/12/2022]
Abstract
Stem cells are fascinating, as they supply the cells that construct our adult bodies and replenish, as we age, worn out, damaged, and diseased tissues. Stem cell regulation relies on intrinsic signals but also on inputs emanating from the neighbouring niche. The Drosophila testis provides an excellent system for studying such processes. Although recent advances have uncovered several signalling, cytoskeletal and other factors affecting niche homeostasis and testis differentiation, many aspects of niche regulation and maintenance remain unsolved. In this review, we discuss aspects of niche establishment and integrity not yet fully understood and we compare it to the current knowledge in other model systems such as vertebrates and plants. We also address specific questions on stem cell maintenance and niche regulation in the Drosophila testis under the control of Hox genes. Finally, we provide insights on the striking functional conservation of homologous genes in plants and animals and their respective stem cell niches. Elucidating conserved mechanisms of stem cell control in both lineages could reveal the importance underlying this conservation and justify the evolutionary pressure to adapt homologous molecules for performing the same task.
Collapse
Affiliation(s)
- Fani Papagiannouli
- Centre for Organismal Studies (COS) Heidelberg and CellNetworks - Cluster of Excellence, Heidelberg, Germany.
| | | |
Collapse
|
142
|
Elias MC, Pronovost SM, Cahill KJ, Beckerle MC, Kadrmas JL. A crucial role for Ras suppressor-1 (RSU-1) revealed when PINCH and ILK binding is disrupted. J Cell Sci 2012; 125:3185-94. [PMID: 22467865 DOI: 10.1242/jcs.101386] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
PINCH, integrin-linked kinase (ILK) and Ras suppressor-1 (RSU-1) are molecular scaffolding proteins that form a physical complex downstream of integrins, and have overlapping roles in cellular adhesion. In Drosophila, PINCH and ILK colocalize in cells and have indistinguishable functions in maintaining wing adhesion and integrin to actin linkage in the muscle. We sought to determine whether the direct physical interaction between PINCH and ILK was essential for their functions using transgenic flies expressing a version of PINCH with a point mutation that disrupts ILK binding (PINCH(Q38A)). We demonstrate that the PINCH-ILK interaction is not required for viability, for integrin-mediated adhesion of the wing or muscle, or for maintaining appropriate localization or levels of either PINCH or ILK. These results suggest alternative modes for PINCH localization, stabilization and linkage to the actin cytoskeleton that are independent of a direct interaction with ILK. Furthermore, we identified a synthetic lethality in flies carrying both the PINCH(Q38A) mutation and a null mutation in the gene encoding RSU-1. This lethality does not result from PINCH mislocalization or destabilization, and illustrates a novel compensatory role for RSU-1 in maintaining viability in flies with compromised PINCH-ILK binding. Taken together, this work highlights the existence of redundant mechanisms in adhesion complex assembly that support integrin function in vivo.
Collapse
Affiliation(s)
- Maria C Elias
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | | | |
Collapse
|
143
|
Antagonistic regulation of apoptosis and differentiation by the Cut transcription factor represents a tumor-suppressing mechanism in Drosophila. PLoS Genet 2012; 8:e1002582. [PMID: 22438831 PMCID: PMC3305397 DOI: 10.1371/journal.pgen.1002582] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 01/19/2012] [Indexed: 01/19/2023] Open
Abstract
Apoptosis is essential to prevent oncogenic transformation by triggering self-destruction of harmful cells, including those unable to differentiate. However, the mechanisms linking impaired cell differentiation and apoptosis during development and disease are not well understood. Here we report that the Drosophila transcription factor Cut coordinately controls differentiation and repression of apoptosis via direct regulation of the pro-apoptotic gene reaper. We also demonstrate that this regulatory circuit acts in diverse cell lineages to remove uncommitted precursor cells in status nascendi and thereby interferes with their potential to develop into cancer cells. Consistent with the role of Cut homologues in controlling cell death in vertebrates, we find repression of apoptosis regulators by Cux1 in human cancer cells. Finally, we present evidence that suggests that other lineage-restricted specification factors employ a similar mechanism to put the brakes on the oncogenic process. Apoptosis is a highly conserved cellular function to remove excessive or unstable cells in diverse developmental processes and disease-responses. An important example is the elimination of cells unable to differentiate, which have the potential to generate tumors. Despite the significance of this process, the mechanisms coupling loss of differentiation and apoptosis have remained elusive. Using cell-type specification in Drosophila as a model, we now identify a conserved regulatory logic that underlies cell-type specific removal of uncommitted cells by apoptosis. We find that the transcription factor Cut activates differentiation, while it simultaneously represses cell death via the direct regulation of a pro-apoptotic gene. We show that this regulatory interaction occurs in many diverse cell types and is essential for normal development. Using in vivo Drosophila cancer models, we demonstrate that apoptosis activation in differentiation-compromised cells is an immediate-early cancer prevention mechanism. Importantly, we show that this type of regulatory wiring is also found in vertebrates and that other cell-type specification factors might employ a similar mechanism for tumor suppression. Thus, our findings suggest that the coupling of differentiation and apoptosis by individual transcription factors is a widely used and evolutionarily conserved cancer prevention module, which is hard-wired into the developmental program.
Collapse
|
144
|
Kim ME, Shrestha BR, Blazeski R, Mason CA, Grueber WB. Integrins establish dendrite-substrate relationships that promote dendritic self-avoidance and patterning in drosophila sensory neurons. Neuron 2012; 73:79-91. [PMID: 22243748 DOI: 10.1016/j.neuron.2011.10.033] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2011] [Indexed: 10/14/2022]
Abstract
Dendrites achieve characteristic spacing patterns during development to ensure appropriate coverage of territories. Mechanisms of dendrite positioning via repulsive dendrite-dendrite interactions are beginning to be elucidated, but the control, and importance, of dendrite positioning relative to their substrate is poorly understood. We found that dendritic branches of Drosophila dendritic arborization sensory neurons can be positioned either at the basal surface of epidermal cells, or enclosed within epidermal invaginations. We show that integrins control dendrite positioning on or within the epidermis in a cell autonomous manner by promoting dendritic retention on the basal surface. Loss of integrin function in neurons resulted in excessive self-crossing and dendrite maintenance defects, the former indicating a role for substrate interactions in self-avoidance. In contrast to a contact-mediated mechanism, we find that integrins prevent crossings that are noncontacting between dendrites in different three-dimensional positions, revealing a requirement for combined dendrite-dendrite and dendrite-substrate interactions in self-avoidance.
Collapse
Affiliation(s)
- Michelle E Kim
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, 630 W. 168th St. P&S 12-403, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
145
|
Morita H, Kajiura-Kobayashi H, Takagi C, Yamamoto TS, Nonaka S, Ueno N. Cell movements of the deep layer of non-neural ectoderm underlie complete neural tube closure in Xenopus. Development 2012; 139:1417-26. [PMID: 22378637 DOI: 10.1242/dev.073239] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In developing vertebrates, the neural tube forms from a sheet of neural ectoderm by complex cell movements and morphogenesis. Convergent extension movements and the apical constriction along with apical-basal elongation of cells in the neural ectoderm are thought to be essential for the neural tube closure (NTC) process. In addition, it is known that non-neural ectoderm also plays a crucial role in this process, as the neural tube fails to close in the absence of this tissue in chick and axolotl. However, the cellular and molecular mechanisms by which it functions in NTC are as yet unclear. We demonstrate here that the non-neural superficial epithelium moves in the direction of tensile forces applied along the dorsal-ventral axis during NTC. We found that this force is partly attributable to the deep layer of non-neural ectoderm cells, which moved collectively towards the dorsal midline along with the superficial layer. Moreover, inhibition of this movement by deleting integrin β1 function resulted in incomplete NTC. Furthermore, we demonstrated that other proposed mechanisms, such as oriented cell division, cell rearrangement and cell-shape changes have no or only minor roles in the non-neural movement. This study is the first to demonstrate dorsally oriented deep-cell migration in non-neural ectoderm, and suggests that a global reorganization of embryo tissues is involved in NTC.
Collapse
Affiliation(s)
- Hitoshi Morita
- Division of Morphogenesis, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi, Japan
| | | | | | | | | | | |
Collapse
|
146
|
Tissue architecture in the Caenorhabditis elegans gonad depends on interactions among fibulin-1, type IV collagen and the ADAMTS extracellular protease. Genetics 2012; 190:1379-88. [PMID: 22298704 DOI: 10.1534/genetics.111.133173] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Molecules in the extracellular matrix (ECM) regulate cellular behavior in both development and pathology. Fibulin-1 is a conserved ECM protein. The Caenorhabditis elegans ortholog, FBL-1, regulates gonad-arm elongation and expansion by acting antagonistically to GON-1, an ADAMTS (a disintegrin and metalloprotease with thrombospondin motifs) family protease. The elongation of gonad arms is directed by gonadal distal tip cells (DTCs). Here we report that a dominant mutation in the EMB-9/type IV collagen α1 subunit can compensate for loss of FBL-1 activity in gonadogenesis. A specific amino acid substitution in the noncollagenous 1 (NC1) domain of EMB-9 suppressed the fbl-1 null mutant. FBL-1 was required to maintain wild-type EMB-9 in the basement membrane (BM), whereas mutant EMB-9 was retained in the absence of FBL-1. EMB-9 (either wild type or mutant) localization in the BM enhanced PAT-3/β-integrin expression in DTCs. In addition, overexpression of PAT-3 partially rescued the DTC migration defects in fbl-1 mutants, suggesting that EMB-9 acts in part through PAT-3 to control DTC migration. In contrast to the suppression of fbl-1(tk45), mutant EMB-9 enhanced the gonadal defects of gon-1(e1254), suggesting that it gained a function similar to that of wild-type FBL-1, which promotes DTC migration by inhibiting GON-1. We propose that FBL-1 and GON-1 control EMB-9 accumulation in the BM and promote PAT-3 expression to control DTC migration.
Collapse
|
147
|
Chen DY, Li MY, Wu SY, Lin YL, Tsai SP, Lai PL, Lin YT, Kuo JC, Meng TC, Chen GC. The Bro1 domain-containing Myopic/HDPTP coordinates with Rab4 to regulate cell adhesion and migration. J Cell Sci 2012; 125:4841-52. [DOI: 10.1242/jcs.108597] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Protein tyrosine phosphatases (PTPs) are a group of tightly regulated enzymes that coordinate with protein tyrosine kinases to control protein phosphorylation during various cellular processes. Using genetic analysis in Drosophila non-transmembrane PTPs, we identified one role that Myopic (Mop), the Drosophila homolog of the human His domain phosphotyrosine phosphatase (HDPTP), plays in cell adhesion. Depletion of Mop results in aberrant integrin distribution and border cell dissociation during Drosophila oogenesis. Interestingly, Mop phosphatase activity is not required for its role in maintaining border cell cluster integrity. We further identified Rab4 GTPase as a Mop interactor in a yeast two-hybrid screen. Expression of the Rab4 dominant negative mutant leads to border cell dissociation and suppresses Mop-induced wing-blade adhesion defects, suggesting a critical role of Rab4 in Mop-mediated signaling. In mammals, it has been shown that Rab4-dependent recycling of integrins is necessary for cell adhesion and migration. We found that human HDPTP regulates the spatial distribution of Rab4 and integrin trafficking. Depletion of HDPTP resulted in actin reorganization and increased cell motility. Together, our findings suggest an evolutionarily conserved function of HDPTP-Rab4 in the regulation of endocytic trafficking, cell adhesion and migration.
Collapse
|
148
|
Vakaloglou KM, Chountala M, Zervas CG. Functional analysis of parvin and different modes of IPP-complex assembly at integrin sites during Drosophila development. J Cell Sci 2012; 125:3221-32. [DOI: 10.1242/jcs.102384] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Integrin-linked kinase (ILK), PINCH and Parvin constitute the tripartite IPP-complex that maintains the integrin-actin link at embryonic muscle attachment sites (MASs) in Drosophila. Here we showed that parvin null mutations in Drosophila exhibit defects in muscle adhesion, similar to ILK and PINCH mutants. Furthermore, the identical muscle phenotype of the triple mutant, which for the first time in any organism removed the entire IPP-complex function, genetically demonstrated that parvin, ILK and PINCH function synergistically. This is consistent with the tight localization of the tripartite complex at sites of integrin adhesion, namely MASs in the developing embryo and focal contact-like structures in the wing epithelium. Parvin contains tandem unconventional Calponin-Homology (CH) domains separated by a linker sequence, and a less well conserved N-terminal region. In vivo structure-function analysis revealed that all the domains are essential for parvin function, whereas recruitment at integrin adhesion sites is mediated by two localization signals: one located within the CH2-domain as previously reported, and a second novel signal within the CH1 domain. Interestingly, this site is masked by the linker region between the two CH-domains, suggesting a regulatory mechanism to control parvin localization. Finally, whereas in muscles only ILK controls the stability and localization of both PINCH and parvin, in the wing epithelium the three proteins mutually depend on each other. Thus molecular differences exist in the assembly properties of IPP-complex in specific tissues during development, where differential modulation of the integrin connection to cytoskeleton is required.
Collapse
|
149
|
Enriquez J, de Taffin M, Crozatier M, Vincent A, Dubois L. Combinatorial coding of Drosophila muscle shape by Collier and Nautilus. Dev Biol 2011; 363:27-39. [PMID: 22200594 DOI: 10.1016/j.ydbio.2011.12.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 12/09/2011] [Accepted: 12/10/2011] [Indexed: 11/28/2022]
Abstract
The diversity of Drosophila muscles correlates with the expression of combinations of identity transcription factors (iTFs) in muscle progenitors. Here, we address the question of when and how a combinatorial code is translated into muscle specific properties, by studying the roles of the Collier and Nautilus iTFs that are expressed in partly overlapping subsets of muscle progenitors. We show that the three dorso-lateral (DL) progenitors which express Nautilus and Collier are specified in a fixed temporal sequence and that each expresses additionally other, distinct iTFs. Removal of Collier leads to changes in expression of some of these iTFs and mis-orientation of several DL muscles, including the dorsal acute DA3 muscle which adopts a DA2 morphology. Detailed analysis of this transformation revealed the existence of two steps in the attachment of elongating muscles to specific tendon cells: transient attachment to alternate tendon cells, followed by a resolution step selecting the final sites. The multiple cases of triangular-shaped muscles observed in col mutant embryos indicate that transient binding of elongating muscle to exploratory sites could be a general feature of the developing musculature. In nau mutants, the DA3 muscle randomly adopts the attachment sites of the DA3 or DO5 muscles that derive from the same progenitor, resulting in a DA3, DO5-like or bifid DA3-DO5 orientation. In addition, nau mutant embryos display thinner muscle fibres. Together, our data show that the sequence of expression and combinatorial activities of Col and Nau control the pattern and morphology of DL muscles.
Collapse
Affiliation(s)
- Jonathan Enriquez
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
150
|
Broadie K, Baumgartner S, Prokop A. Extracellular matrix and its receptors in Drosophila neural development. Dev Neurobiol 2011; 71:1102-30. [PMID: 21688401 PMCID: PMC3192297 DOI: 10.1002/dneu.20935] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Extracellular matrix (ECM) and matrix receptors are intimately involved in most biological processes. The ECM plays fundamental developmental and physiological roles in health and disease, including processes underlying the development, maintenance, and regeneration of the nervous system. To understand the principles of ECM-mediated functions in the nervous system, genetic model organisms like Drosophila provide simple, malleable, and powerful experimental platforms. This article provides an overview of ECM proteins and receptors in Drosophila. It then focuses on their roles during three progressive phases of neural development: (1) neural progenitor proliferation, (2) axonal growth and pathfinding, and (3) synapse formation and function. Each section highlights known ECM and ECM-receptor components and recent studies done in mutant conditions to reveal their in vivo functions, all illustrating the enormous opportunities provided when merging work on the nervous system with systematic research into ECM-related gene functions.
Collapse
Affiliation(s)
- Kendal Broadie
- Departments of Biological Sciences and Cell and Developmental Biology, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37232 USA
| | - Stefan Baumgartner
- Department of Experimental Medical Sciences, Lund University, BMC B12, 22184 Lund, Sweden
| | - Andreas Prokop
- Faculty of Life Sciences, Wellcome Trust Centre for Cell-Matrix Research, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|