101
|
Yang Y, Peng W, Su X, Yue B, Shu S, Wang J, Fu C, Zhong J, Wang H. Epigenomics Analysis of the Suppression Role of SIRT1 via H3K9 Deacetylation in Preadipocyte Differentiation. Int J Mol Sci 2023; 24:11281. [PMID: 37511041 PMCID: PMC10379189 DOI: 10.3390/ijms241411281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/02/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Sirtuin 1 (SIRT1) overexpression significantly inhibits lipid deposition during yak intramuscular preadipocyte (YIMA) differentiation; however, the regulatory mechanism remains unknown. We elucidated the role of SIRT1 in YIMA differentiation using lentivirus-mediated downregulation technology and conducted mRNA-seq and ChIP-seq assays using H3K9ac antibodies after SIRT1 overexpression in order to reveal SIRT1 targets during YIMA adipogenesis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed in order to identify the functional annotation of common genes. In addition, a potential target of SIRT1 was selected to verify its effects on the differentiation and proliferation of YIMAs. SIRT1 interfered with lipid deposition and promoted YIMA differentiation. In total, 143,518 specific peaks were identified after SIRT1 overexpression, where genes associated with downregulation peaks were enriched in transcription, gene expression, lipid-related processes, and classical lipid-related pathways. The H3K9ac signal in the whole genome promoter region (2 kb upstream and downstream of the transcription start site (TSS)) was weakened, and the peaks were distributed across all gene functional regions. Genes that lost signals in their TSS region or gene body region were enriched in both biological processes and pathways associated with lipogenesis. The ChIP-seq results revealed 714 common differential genes in mRNA-seq, which were enriched in "MAPK signaling", "lipid and atherosclerosis", "mTOR signaling", and "FoxO signaling" pathways. A total of 445 genes were downregulated in both their H3K9ac signals and mRNA expression, and one of their most significantly enriched pathways was FoxO signaling. Nine genes (FBP2, FPGT, HSD17B11, KCNJ15, MAP3K20, SLC5A3, TRIM23, ZCCHC10, and ZMYM1) lost the H3K9ac signal in their TSS regions and had low mRNA expression, and three genes (KCNJ15, TGM3, and TRIM54) had low expression but lost their H3K9ac signal in the gene body region. The interference of TRIM23 significantly inhibited fat deposition during preadipocyte differentiation and promoted cell proliferation by increasing S-phase cell numbers. The present study provides new insights into the molecular mechanism of intramuscular fat content deposition and the epigenetic role of SIRT1 in adipocyte differentiation.
Collapse
Affiliation(s)
- Youzhualamu Yang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610225, China
| | - Wei Peng
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, China
| | - Xiaolong Su
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610225, China
| | - Binglin Yue
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610225, China
| | - Shi Shu
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, China
| | - Jikun Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610225, China
| | - Changqi Fu
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, China
| | - Jincheng Zhong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610225, China
| | - Hui Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610225, China
| |
Collapse
|
102
|
Wu LT, Tan LM, You CY, Lan TY, Li WX, Xu YT, Ren ZX, Ding Q, Zhou CY, Tang ZR, Sun WZ, Sun ZH. Effects of dietary niacinamide and CP concentrations on the nitrogen excretion, growth performance, and meat quality of pigs. Animal 2023; 17:100869. [PMID: 37390624 DOI: 10.1016/j.animal.2023.100869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/18/2023] [Accepted: 05/26/2023] [Indexed: 07/02/2023] Open
Abstract
Reducing the dietary CP concentration in the formulation of low-protein diets without adverse effects on animal growth performance and meat quality remains challenging. In this study, we investigated the effects of nicotinamide (NAM) on the nitrogen excretion, growth performance, and meat quality of growing-finishing pigs fed low-protein diets. To measure the nitrogen balance, we conducted two trials: in nitrogen balance trial 1, four crossbred (Duroc × Landrace × Large White) barrows (40 ± 0.5 kg BW) were used in a 4 × 4 Latin square design with four diets and periods. The diets consisted of a basal diet + 30 mg/kg NAM (a control dose), basal diet + 90 mg/kg NAM, basal diet + 210 mg/kg NAM, and basal diet + 360 mg/kg NAM. In nitrogen balance trial 2, another four barrows (40 ± 0.5 kg BW) were used in a 4 × 4 Latin square design. The diets consisted of a basal diet + including 30 mg/kg NAM (control), basal diet + 360 mg/kg NAM, low-protein diet + 30 mg/kg NAM, and low-protein diet + 360 mg/kg NAM. To measure growth performance, two trials were conducted. In growth performance trial 1, 40 barrows (37.0 ± 1.0 kg) were randomly allocated to one of four dietary treatments (n = 10 per group), whereas in growth performance trial 2, 300 barrows (41.4 ± 2.0 kg) were randomly allocated to one of four dietary treatments, with each dietary treatment conducted in five repetitions with 15 pigs each. The four diets in the two growth performance trials were similar to those in nitrogen balance trial 2. Supplementing the diet with 210 or 360 mg/kg NAM reduced urinary nitrogen excretion and total nitrogen excretion and increased nitrogen retention comparted with the control diet (P < 0.05). Compared with the control diet, the low-protein diet with 360 mg/kg NAM reduced faecal, urinary, and total nitrogen excretion (P < 0.05) without affecting nitrogen retention and average daily gain (P > 0.05). Pigs fed the low-protein diet with 360 mg/kg NAM showed a decreased intramuscular fat content in the longissimus thoracis muscle when compared with pigs fed the control diet (P > 0.05). Our results suggest NAM as a suitable dietary additive to reduce dietary CP concentration, maximise nitrogen retention and growth performance, and decrease fat deposition in pigs.
Collapse
Affiliation(s)
- L T Wu
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, PR China
| | - L M Tan
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, PR China
| | - C Y You
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, PR China
| | - T Y Lan
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, PR China
| | - W X Li
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, PR China
| | - Y T Xu
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, PR China
| | - Z X Ren
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, PR China
| | - Q Ding
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, PR China
| | - C Y Zhou
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, PR China
| | - Z R Tang
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, PR China
| | - W Z Sun
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, PR China
| | - Z H Sun
- Laboratory for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
103
|
González LA, Carvalho JGS, Kuinchtner BC, Dona AC, Baruselli PS, D'Occhio MJ. Plasma metabolomics reveals major changes in carbohydrate, lipid, and protein metabolism of abruptly weaned beef calves. Sci Rep 2023; 13:8176. [PMID: 37210395 DOI: 10.1038/s41598-023-35383-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023] Open
Abstract
1H NMR-based metabolomics was used to study the effect of abrupt weaning on the blood metabolome of beef calves. Twenty Angus calves (258 ± 5 kg BW; 5 to 6 months old) were randomly assigned to a non-weaned (NW) group that remained grazing with their dam or a weaned (W) group that underwent abrupt separation from their dam to a separate paddock on d 0 of the study. Body weight, behaviour, and blood samples for cortisol and metabolomics were measured at d 0, 1, 2, 7, and 14 of the study. On d 1 and 2, W calves spent less time grazing and ruminating, and more time vocalising and walking, had a greater concentration of cortisol, NEFA, 3-hydroxybutyrate, betaine, creatine, and phenylalanine, and lesser abundance of tyrosine (P < 0.05) compared to NW calves. Compared to NW calves at d 14, W calves had greater (P < 0.01) relative abundance of acetate, glucose, allantoin, creatinine, creatine, creatine phosphate, glutamate, 3-hydroxybutyrate, 3-hydroxyisobutyrate, and seven AA (alanine, glutamate, leucine, lysine, phenylalanine, threonine and valine) but lesser (P < 0.05) relative abundance of low density and very low-density lipids, and unsaturated lipids. Both PCA and OPLS-DA showed no clustering or discrimination between groups at d 0 and increasing divergence to d 14. Blood metabolomics is a useful tool to quantify the acute effects of stress in calves during the first 2 days after abrupt weaning, and longer-term changes in carbohydrate, lipid and protein metabolism due to nutritional changes from cessation of milk intake and greater reliance on forage intake.
Collapse
Affiliation(s)
- Luciano A González
- Sydney Institute of Agriculture, and School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, NSW, 2570, Australia.
| | - Julia G S Carvalho
- Sydney Institute of Agriculture, and School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, NSW, 2570, Australia
- Departamento de Reprodução Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Bruno C Kuinchtner
- Sydney Institute of Agriculture, and School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, NSW, 2570, Australia
- Natural Pasture Ecology Laboratory (LEPAN), Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Anthony C Dona
- Kolling Institute of Medical Research, Northern Medical School, University of Sydney, St Leonards, NSW, 2065, Australia
| | - Pietro S Baruselli
- Departamento de Reprodução Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Michael J D'Occhio
- Sydney Institute of Agriculture, and School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, NSW, 2570, Australia
| |
Collapse
|
104
|
Yu B, Liu J, Cai Z, Wang H, Feng X, Zhang T, Ma R, Gu Y, Zhang J. RNA N 6-methyladenosine profiling reveals differentially methylated genes associated with intramuscular fat metabolism during breast muscle development in chicken. Poult Sci 2023; 102:102793. [PMID: 37276703 PMCID: PMC10258505 DOI: 10.1016/j.psj.2023.102793] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 06/07/2023] Open
Abstract
Intramuscular fat (IMF) is an important indicator for determining meat quality, and IMF deposition during muscle development is regulated by a complex molecular network involving multiple genes. The N6-methyladenosine (m6A) modification of mRNA plays an important regulatory role in muscle adipogenesis. However, the distribution of m6A and its role in IMF metabolism in poultry has not been reported. In the present study, a transcriptome-wide m6A profile was constructed using methylated RNA immunoprecipitation sequence (MeRIP-seq) and RNA sequence (RNA-seq) to explore the potential mechanism of regulating IMF deposition in the breast muscle based on the comparative analysis of IMF differences in the breast muscles of 42 (group G), 126 (group S), and 180-days old (group M) Jingyuan chickens. The findings revealed that the IMF content in the breast muscle increased significantly with the increase in the growth days of the Jingyuan chickens (P < 0.05). The m6A peak in the breast muscles of the 3 groups was highly enriched in the coding sequence (CDS) and 3' untranslated regions (3' UTR), which corresponded to the consensus motif RRACH. Moreover, we identified 129, 103, and 162 differentially methylated genes (DMGs) in the breast muscle samples of the G, S, and M groups, respectively. Functional enrichment analyses revealed that DMGs are involved in many physiological activities of muscle fat anabolism. The m6A-induced ferroptosis pathway was identified in breast muscle tissue as a new target for regulating IMF metabolism. In addition, association analysis demonstrated that LMOD2 and its multiple m6A negatively regulated DMGs are potential regulators of IMF differential deposition in muscle. The findings of the present study provide a solid foundation for further investigation into the potential role of m6A modification in regulating chicken fat metabolism.
Collapse
Affiliation(s)
- Baojun Yu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Jiamin Liu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Zhengyun Cai
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Haorui Wang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Xiaofang Feng
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Tong Zhang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Ruoshuang Ma
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Yaling Gu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Juan Zhang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
105
|
Roy BC, Bruce HL. Contribution of intramuscular connective tissue and its structural components on meat tenderness-revisited: a review. Crit Rev Food Sci Nutr 2023; 64:9280-9310. [PMID: 37194652 DOI: 10.1080/10408398.2023.2211671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The tenderness of meat influences consumers' perceptions of its quality. Meat tenderness is a key quality characteristic that influences consumer satisfaction, repeat purchases, and willingness to pay higher prices for meat. Muscle fibers, connective tissues, and adipocytes are the main structural components of meat that contribute to its tenderness and texture. In the present review, we have focused on the role of connective tissue and its components in meat tenderness, specifically perimysial intramuscular connective tissue (IMCT) and its concept as an immutable "background toughness." The collagen contribution to cooked meat toughness can be altered by animal diet, compensatory growth, slaughter age, aging, and cooking. As well, progressive thickening of the perimysium leads to a progressive increase in shear force values in beef, pork, chicken, and this may occur prior to adipocyte formation as cattle finish in feedlots. Conversely, adipocyte accumulation in the perimysium can decrease cooked meat shear force, suggesting that the contribution of IMCT to meat toughness is complex and driven by both collagen structure and content. This review provides a theoretical foundation of information to modify IMCT components to improve meat tenderness.
Collapse
Affiliation(s)
- Bimol C Roy
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Heather L Bruce
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
106
|
Pannier L, van de Weijer TM, van der Steen FTHJ, Kranenbarg R, Gardner GE. Prediction of chemical intramuscular fat and visual marbling scores with a conveyor vision scanner system on beef portion steaks. Meat Sci 2023; 199:109141. [PMID: 36827827 DOI: 10.1016/j.meatsci.2023.109141] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/30/2022] [Accepted: 02/12/2023] [Indexed: 02/16/2023]
Abstract
This study describes the performance of a Marel conveyer vision scanner, across beef carcases (n = 102) from a wide visual marbling score range, in its ability to predict chemical intramuscular fat (IMF%), Meat Standards Australia (MSA) and AUS-MEAT marbling scores of portion steaks. Vision scanner marbling scores were acquired on fresh-cut steaks, with its predictions tested using a leave-one-out cross validation method, which demonstrated precise and accurate predictions of IMF% (R2 = 0.87; RMSEP = 1.16; slope = 0.09; bias = 0.22), MSA (R2 = 0.82; RMSEP = 70.11; slope = 0.09; bias = 17.08) and AUS-MEAT marbling (R2 = 0.79; RMSEP = 0.75; slope = 0.16; bias = 0.08). Care must be taken when calibrating devices on non-fresh-cut steak, as fresh-cut steaks produced different vision scanner marbling values suggesting different prediction equations are warranted. The Marel vision scanner prediction of visual grader scores was relatively less precise and accurate than its prediction of IMF%, however in this case it may have been due to error in the grader scores.
Collapse
Affiliation(s)
- L Pannier
- Murdoch University, College of Science, Health, Engineering and Education, Western Australia 6150, Australia.
| | | | | | - R Kranenbarg
- Marel Meat B.V., Handelstraat 3, 5830AD, Boxmeer, the Netherlands
| | - G E Gardner
- Murdoch University, College of Science, Health, Engineering and Education, Western Australia 6150, Australia
| |
Collapse
|
107
|
Gong Y, Lin Z, Wang Y, Liu Y. Research progress of non-coding RNAs regulation on intramuscular adipocytes in domestic animals. Gene 2023; 860:147226. [PMID: 36736503 DOI: 10.1016/j.gene.2023.147226] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/07/2023] [Accepted: 01/20/2023] [Indexed: 02/05/2023]
Abstract
Intramuscular fat (IMF) is the main determinant of the economic value of domestic animal meat, and has a vital impact on the sensory quality characteristics, while the content of IMF is mainly determined by the size and number of intramuscular adipocytes. In recent years, due to the development of sequencing technology and omics technology, a large number of non-coding RNAs have been identified in intramuscular adipocytes. Non-coding RNAs are a kind of RNA regulatory factors with biological functions but without translation function, which mainly include microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs). These non-coding RNAs regulate the key genes of intramuscular adipocyte growth and development at post-transcriptional level through a variety of regulatory mechanisms, and affect the number and size of intramuscular adipocytes, thus affecting the content of IMF. Here, the review summarizes the candidate non-coding RNAs (miRNAs, lncRNAs, circRNAs) and genes involved in the regulation of intramuscular adipocytes, the related regulation mechanism and signaling pathways, in order to provide reference for further clarifying the molecular regulation mechanism of non-coding RNAs on intramuscular adipocytes in domestic animals.
Collapse
Affiliation(s)
- Yanrong Gong
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zhongzhen Lin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yiping Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
108
|
Li X, Yang Y, Li L, Ren M, Zhou M, Li S. Transcriptome Profiling of Different Developmental Stages on Longissimus Dorsi to Identify Genes Underlying Intramuscular Fat Content in Wannanhua Pigs. Genes (Basel) 2023; 14:genes14040903. [PMID: 37107661 PMCID: PMC10137702 DOI: 10.3390/genes14040903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Intramuscular fat (IMF) is a key index to measure the tenderness and flavor of pork. Wannanhua pig, a famous indigenous pig breed in Anhui Province, is renowned for its high lipid deposition and high genetic divergence, making it an ideal model for investigating the lipid position trait mechanisms in pigs. However, the regulatory mechanisms of lipid deposition and development in pigs remain unclear. Furthermore, the temporal differences in gene regulation are based on muscle growth and IMF deposition. The purpose of this study was to study the expression changes of longissimus dorsi (LD) at different growth stages of WH pigs at the molecular level, to screen the candidate genes and signaling pathways related to IMF during development by transcriptome sequencing technology, and to explore the transcriptional regulation mechanism of IMF deposition-related genes at different development stages. In total, 616, 485, and 1487 genes were differentially expressed between LD60 and LD120, LD120 and LD240, and LD60 and LD240, respectively. Numerous differentially expressed genes (DEGs) associated with lipid metabolism and muscle development were identified, and most of them were involved in IMF deposition and were significantly up-regulated in LD120 and LD240 compared to LD60. STEM (Short Time-series Expression Miner) analysis indicated significant variations in the mRNA expression across distinct muscle development stages. The differential expression of 12 selected DEGs was confirmed by RT-qPCR. The results of this study contribute to our understanding of the molecular mechanism of IMF deposition and provide a new way to accelerate the genetic improvement of pork quality.
Collapse
Affiliation(s)
- Xiaojin Li
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou 233100, China
| | - Yanan Yang
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou 233100, China
| | - Lei Li
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou 233100, China
| | - Man Ren
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou 233100, China
| | - Mei Zhou
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230041, China
| | - Shenghe Li
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou 233100, China
| |
Collapse
|
109
|
Yu T, Tian X, Li D, He Y, Yang P, Cheng Y, Zhao X, Sun J, Yang G. Transcriptome, proteome and metabolome analysis provide insights on fat deposition and meat quality in pig. Food Res Int 2023; 166:112550. [PMID: 36914311 DOI: 10.1016/j.foodres.2023.112550] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/19/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023]
Abstract
Intramuscular fat (IMF) content, which is an important determinant of meat quality characteristics such as tenderness, juiciness and flavor, has long been a research hotspot. Chinese local pig breeds are famous for their excellent meat quality which is mainly reflected in the high IMF content, strong hydraulic system and et al. However, there are few analysis of meat quality by omics methods. In our study, we identified 12 different fatty acids, 6 different amino acids, 1,262 differentially expression genes (DEGs), 140 differentially abundant proteins (DAPs) and 169 differentially accumulated metabolites (DAMs) (p < 0.05) with metabolome, transcriptome, and proteome. It has been found that DEGs, DAPs and DAMs were enriched in the Wnt signaling pathway, PI3K-Akt signaling pathway, Rap1 signaling pathway, and Ras signaling pathway which were related to meat quality. Moreover, our Weighted genes co-expression network construction (WGCNA) showed RapGEF1 was the key gene related to IMF content and the RT-qPCR analysis was used to perform validation of the significant genes. In summary, our study provided both fundamental data and new insights to further uncover the secret of pig IMF content.
Collapse
Affiliation(s)
- Taiyong Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xuekai Tian
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Dong Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yulin He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Peiyu Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ye Cheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xin Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jingchun Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Gongshe Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
110
|
Martín A, Giráldez FJ, Mateo J, Caro I, Andrés S. Dietary administration of l-carnitine during the fattening period of early feed restricted lambs modifies lipid metabolism and meat quality. Meat Sci 2023; 198:109111. [PMID: 36657262 DOI: 10.1016/j.meatsci.2023.109111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
Early feed restriction of lambs promotes a permanent mitochondrial dysfunction that impairs β-oxidation of fatty acids along the whole life. Therefore, dietary l-carnitine might help to improve the mitochondrial function of these lambs, thus modifying lipid metabolism and meat quality traits. In order to test this hypothesis an experiment was carried out with 22 Merino lambs that were subjected to an early feed restriction during the suckling period. Once weaned, the lambs were allocated to a control group (CTRL, n = 11) being fed ad libitum a complete pelleted diet during the fattening phase, whereas the second group (CARN, n = 11) received the same diet formulated with 3 g/kg of l-carnitine. Carcass characteristics were not affected (P > 0.05) by treatment. However, lambs fed l-carnitine showed higher amounts of intramuscular fat (26.5 vs. 33.6 g/kg fresh matter; P = 0.047) with a lower ratio between polyunsaturated and saturated fatty acids (0.425 vs 0.333; P = 0.023) and a higher atherogenic (0.507 vs 0.597; P < 0.001) and thrombogenic index (1.23 vs 1.42; P < 0.001). An increase in lightness (P < 0.05) and a tendency to improved oxidative stability in cooked meat (P = 0.066) were also observed in the CARN group. Consequently, dietary l-carnitine supplied during the fattening period of early feed restricted lambs modifies meat quality traits thus increasing lightness, oxidative stability and intramuscular fat content, but worsening the fatty acid profile.
Collapse
Affiliation(s)
- A Martín
- Departamento de Nutrición y Producción de Herbívoros, Instituto de Ganadería de Montaña, CSIC-Universidad de León, Finca Marzanas, 24346, Grulleros, León, Spain
| | - F J Giráldez
- Departamento de Nutrición y Producción de Herbívoros, Instituto de Ganadería de Montaña, CSIC-Universidad de León, Finca Marzanas, 24346, Grulleros, León, Spain
| | - J Mateo
- Departamento de Higiene y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad de León, Campus Vegazana s/n, 24071 León, Spain
| | - I Caro
- Departamento de Pediatría e Inmunología, Obstetricia y Ginecología, Nutrición y Bromatología, Psiquiatría e Historia de la Ciencia, Facultad de Medicina, Universidad de Valladolid, Avda. Ramón y Cajal, 7, 47005 Valladolid, Spain
| | - S Andrés
- Departamento de Nutrición y Producción de Herbívoros, Instituto de Ganadería de Montaña, CSIC-Universidad de León, Finca Marzanas, 24346, Grulleros, León, Spain.
| |
Collapse
|
111
|
Wen C, Gou Q, Gu S, Huang Q, Sun C, Zheng J, Yang N. The cecal ecosystem is a great contributor to intramuscular fat deposition in broilers. Poult Sci 2023; 102:102568. [PMID: 36889043 PMCID: PMC10011826 DOI: 10.1016/j.psj.2023.102568] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Intramuscular fat (IMF) content is a meat quality trait of major economic importance in animal production. Emerging evidence has demonstrated that meat quality can be improved by regulating the gut microbiota. However, the organization and ecological properties of the gut microbiota and its relationship with the IMF content remain unclear in chickens. Here, we investigated the microbial communities of 206 cecal samples from broilers with excellent meat quality. We noted that the cecal microbial ecosystem obtained from hosts reared under the same management and dietary conditions showed clear compositional stratification. Two enterotypes, in which the ecological properties, including diversity and interaction strengths, were significantly different, described the microbial composition pattern. Compared with enterotype 2, enterotype 1, distinguished by the Clostridia_vadinBB60_group, had a higher fat deposition, although no discrepancy was found in growth performance and meat yield. A moderate correlation was observed in the IMF content between 2 muscle tissues, despite the IMF content of thigh muscle was 42.76% greater than that of breast muscle. Additionally, the lower abundance of cecal vadinBE97 was related to higher IMF levels in both muscle tissues. Although vadinBE97 accounted for 0.40% of the total abundance of genera in the cecum, it exhibited significant and positive correlations with other genera (accounting for 25.3% of the tested genera). Our results highlight important insights into the cecal microbial ecosystem and its association with meat quality. Microbial interactions should be carefully considered when developing approaches to improve the IMF content by regulating the gut microbiota in broilers.
Collapse
Affiliation(s)
- Chaoliang Wen
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Qinli Gou
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Shuang Gu
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Qiang Huang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Congjiao Sun
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Jiangxia Zheng
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Ning Yang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
112
|
Wang YL, Hou YH, Ling ZJ, Zhao HL, Zheng XR, Zhang XD, Yin ZJ, Ding YY. RNA sequencing analysis of the longissimus dorsi to identify candidate genes underlying the intramuscular fat content in Anqing Six-end-white pigs. Anim Genet 2023; 54:315-327. [PMID: 36866648 DOI: 10.1111/age.13308] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 01/06/2023] [Accepted: 02/06/2023] [Indexed: 03/04/2023]
Abstract
Intramuscular fat (IMF) is a significant marker for pork quality. The Anqing Six-end-white pig has the characteristics of high meat quality and IMF content. Owing to the influence of European commercial pigs and a late start in resource conservation, the IMF content within local populations varies between individuals. This study analyzed the longissimus dorsi transcriptome of purebred Anqing Six-end-white pigs with varying IMF content to recognize differentially expressed genes. We identified 1528 differentially expressed genes between the pigs with high (H) and low (L) IMF content. Based on these data, 1775 Gene Ontology terms were significantly enriched, including lipid metabolism, modification and storage, and regulation of lipid biosynthesis. Pathway analysis revealed 79 significantly enriched pathways, including the Peroxisome proliferator-activated receptor and mitogen-activated protein kinase signaling pathways. Moreover, gene set enrichment analysis indicated that the L group had increased the expression of genes related to ribosome function. Additionally, the protein-protein interaction network analyses revealed that VEGFA, KDR, LEP, IRS1, IGF1R, FLT1 and FLT4 were promising candidate genes associated with the IMF content. Our study identified the candidate genes and pathways involved in IMF deposition and lipid metabolism and provides data for developing local pig germplasm resources.
Collapse
Affiliation(s)
- Y L Wang
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China.,Anhui Key Laboratory of livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Y H Hou
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Z J Ling
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - H L Zhao
- Anhui Key Laboratory of livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - X R Zheng
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - X D Zhang
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Z J Yin
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Y Y Ding
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| |
Collapse
|
113
|
Buss CE, Afonso J, de Oliveira PSN, Petrini J, Tizioto PC, Cesar ASM, Gustani-Buss EC, Cardoso TF, Rovadoski GA, da Silva Diniz WJ, de Lima AO, Rocha MIP, Andrade BGN, Wolf JB, Coutinho LL, Mourão GB, de Almeida Regitano LC. Bivariate GWAS reveals pleiotropic regions among feed efficiency and beef quality-related traits in Nelore cattle. Mamm Genome 2023; 34:90-103. [PMID: 36463529 DOI: 10.1007/s00335-022-09969-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/16/2022] [Indexed: 12/07/2022]
Abstract
Feed-efficient cattle selection is among the most leading solutions to reduce cost for beef cattle production. However, technical difficulties in measuring feed efficiency traits had limited the application in livestock. Here, we performed a Bivariate Genome-Wide Association Study (Bi-GWAS) and presented candidate biological mechanisms underlying the association between feed efficiency and meat quality traits in a half-sibling design with 353 Nelore steers derived from 34 unrelated sires. A total of 13 Quantitative Trait Loci (QTL) were found explaining part of the phenotypic variations. An important transcription factor of adipogenesis in cattle, the TAL1 (rs133408775) gene located on BTA3 was associated with intramuscular fat and average daily gain (IMF-ADG), and a region located on BTA20, close to CD180 and MAST4 genes, both related to fat accumulation. We observed a low positive genetic correlation between IMF-ADG (r = 0.30 ± 0.0686), indicating that it may respond to selection in the same direction. Our findings contributed to clarifying the pleiotropic modulation of the complex traits, indicating new QTLs for bovine genetic improvement.
Collapse
Affiliation(s)
- Carlos Eduardo Buss
- Department of Genetic and Evolution, Federal University of São Carlos, São Carlos, São Paulo, Brazil
- Mindflow Genomics, Leuven, Flanders, Belgium
| | - Juliana Afonso
- Embrapa Southeast Cattle, Fazenda Canchim, Rodovia Washington Luiz, Km 234, S/N, São Carlos, São Paulo, Brazil
| | - Priscila S N de Oliveira
- Department of Genetic and Evolution, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Juliana Petrini
- Department of Animal Science, University of São Paulo/ESALQ, Piracicaba, São Paulo, Brazil
| | | | - Aline S M Cesar
- Department of Agroindustry, Food and Nutrition, University of São Paulo/ESALQ, Piracicaba, São Paulo, Brazil
| | - Emanuele Cristina Gustani-Buss
- Mindflow Genomics, Leuven, Flanders, Belgium
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000, Leuven, Belgium
| | - Tainã Figueiredo Cardoso
- Embrapa Southeast Cattle, Fazenda Canchim, Rodovia Washington Luiz, Km 234, S/N, São Carlos, São Paulo, Brazil
| | - Gregori A Rovadoski
- Department of Animal Science, University of São Paulo/ESALQ, Piracicaba, São Paulo, Brazil
| | | | - Andressa Oliveira de Lima
- Division of Medical Genetics, Department of Genomics Science, University of Washington, Seattle, WA, USA
| | | | - Bruno Gabriel Nascimento Andrade
- Embrapa Southeast Cattle, Fazenda Canchim, Rodovia Washington Luiz, Km 234, S/N, São Carlos, São Paulo, Brazil
- Department of Computer Science, Munster Technological University/MTU, Cork, Ireland
| | - Jason B Wolf
- Department of Biology & Biochemistry, Milner Centre for Evolution Bath, University of Bath, Bath, BA2 7AY, UK
| | - Luiz Lehmann Coutinho
- Department of Animal Science, University of São Paulo/ESALQ, Piracicaba, São Paulo, Brazil
| | - Gerson Barreto Mourão
- Department of Animal Science, University of São Paulo/ESALQ, Piracicaba, São Paulo, Brazil
| | | |
Collapse
|
114
|
Opaluwa C, Lott T, Karbstein HP, Emin MA. Encapsulation of oil in the high moisture extrusion of wheat gluten: Interrelation between process parameters, matrix viscosity and oil droplet size. FUTURE FOODS 2023. [DOI: 10.1016/j.fufo.2023.100222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023] Open
|
115
|
Shen J, Luo Y, Wang J, Hu J, Liu X, Li S, Hao Z, Li M, Zhao Z, Zhang Y, Yang S, Wang L, Gu Y. Integrated transcriptome analysis reveals roles of long non-coding RNAs (lncRNAs) in caprine skeletal muscle mass and meat quality. Funct Integr Genomics 2023; 23:63. [PMID: 36810929 DOI: 10.1007/s10142-023-00987-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 02/23/2023]
Abstract
Long non-coding RNAs (lncRNAs) play important roles in the growth and development of skeletal muscle. However, there is limited information on goats. In this study, expression profiles of lncRNAs in Longissimus dorsi muscle from Liaoning cashmere (LC) goats and Ziwuling black (ZB) goats with divergent meat yield and meat quality were compared using RNA-sequencing. Based on our previous microRNA (miRNA) and mRNA profiles obtained from the same tissues, the target genes and binding miRNAs of differentially expressed lncRNAs were obtained. Subsequently, lncRNA-mRNA interaction networks and a ceRNA network of lncRNA-miRNA-mRNA were constructed. A total of 136 differentially expressed lncRNAs were identified between the two breeds. Fifteen cis target genes and 143 trans target genes were found for differentially expressed lncRNAs, and they were enriched in muscle contraction, muscle system process, muscle cell differentiation, and p53 signaling pathway. A total of 69 lncRNA-trans target gene pairs were constructed, with close relationship with muscle development, intramuscular fat deposition, and meat tenderness. A total of 16 lncRNA-miRNA-mRNA ceRNA pairs were identified, of which some reportedly associated with skeletal muscle development and fat deposition were found. The study will provide an improved understanding of the roles of lncRNAs in caprine meat yield and meat quality.
Collapse
Affiliation(s)
- Jiyuan Shen
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yuzhu Luo
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jiqing Wang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Jiang Hu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xiu Liu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Shaobin Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zhiyun Hao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Mingna Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zhidong Zhao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yuting Zhang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Shutong Yang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Longbin Wang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yuanhua Gu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|
116
|
Li J, Tang C, Yang Y, Hu Y, Zhao Q, Ma Q, Yue X, Li F, Zhang J. Characterization of meat quality traits, fatty acids and volatile compounds in Hu and Tan sheep. Front Nutr 2023; 10:1072159. [PMID: 36866058 PMCID: PMC9971989 DOI: 10.3389/fnut.2023.1072159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/20/2023] [Indexed: 02/19/2023] Open
Abstract
Sheep breed has a major influence on characteristics of meat quality and intramuscular fat (IMF), however, studies into the relationship between sheep breed and meat quality traits rarely consider the large variation in IMF within breed. In this study, groups of 176 Hu and 76 Tan male sheep were established, weaned at 56 days old, with similar weights, and representative samples were selected based on the distribution of IMF in each population, to investigate variations in meat quality, IMF and volatile compound profiles between breeds. Significant differences were observed in drip loss, shear force, cooking loss, and color coordinates between Hu and Tan sheep (p < 0.01). The IMF content and the predominate unsaturated fatty acids, oleic and cis, cis-linoleic acids, were similar. Eighteen out of 53 volatile compounds were identified as important odor contributors. Of these 18 odor-active volatile compounds, no significant concentration differences were detected between breeds. In another 35 volatile compounds, γ-nonalactone was lower in Tan sheep relative to Hu sheep (p < 0.05). In summary, Tan sheep exhibited lower drip loss, higher shear force values, and redder color, had less saturated fatty acids, and contained less γ-nonalactone against Hu sheep. These findings improve understanding of aroma differences between Hu and Tan sheep meat. Graphical Abstract.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, China,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chaohua Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, China,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Youyou Yang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, China,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ying Hu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, China,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingyu Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, China,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qing Ma
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, China
| | - Xiangpeng Yue
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Fadi Li
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China,Fadi Li, ✉
| | - Junmin Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, China,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, China,*Correspondence: Junmin Zhang, ✉
| |
Collapse
|
117
|
Yang C, Li Q, Lin Y, Wang Y, Shi H, Huang L, Zhao W, Xiang H, Zhu J. MCD Inhibits Lipid Deposition in Goat Intramuscular Preadipocytes. Genes (Basel) 2023; 14:440. [PMID: 36833367 PMCID: PMC9956415 DOI: 10.3390/genes14020440] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/20/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Malonyl-CoA decarboxylase (MCD) is a major regulator of fatty acid oxidation catalyzing the decarboxylation of malonyl coenzyme A (malonyl-CoA). Although its involvement in human diseases has been well studied, its role in intramuscular fat (IMF) deposition remains unknown. In this present study, 1726 bp of MCD cDNA was cloned (OM937122) from goat liver, including 5'UTR of 27 bp, 3'UTR of 199 bp, and CDS of 1500 bp, encoding 499 amino acids. In this present study, although the overexpression of MCD increased the mRNA expression of FASN and DGAT2, the expression of ATGL and ACOX1 was also activated significantly and resulted in a decrease in cellular lipid deposition in goat intramuscular preadipocytes. Meanwhile, the silencing of MCD increased the cellular lipid deposition and was accompanied by the expression activation of DGAT2 and the expression suppression of ATGL and HSL, despite the expression suppression of genes related to fatty acid synthesis, including ACC and FASN. However, the expression of DGAT1 was not affected significantly (p > 0.05) by the expression alteration of MCD in this present study. Furthermore, 2025 bp of MCD promoter was obtained and predicted to be regulated by C/EBPα, SP1, SREBP1, and PPARG. In summary, although different pathways may respond to the expression alteration of MCD, the expression of MCD was negatively correlated with the cellular lipid deposition in goat intramuscular preadipocytes. These data may be beneficial for enhancing our understanding of the regulation of IMF deposition in goats.
Collapse
Affiliation(s)
- Changheng Yang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Qi Li
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Yaqiu Lin
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization (Southwest Minzu University), Ministry of Education, Chengdu 610041, China
| | - Yong Wang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization (Southwest Minzu University), Ministry of Education, Chengdu 610041, China
| | - Hengbo Shi
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Lian Huang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Wangsheng Zhao
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Hua Xiang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization (Southwest Minzu University), Ministry of Education, Chengdu 610041, China
| | - Jiangjiang Zhu
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization (Southwest Minzu University), Ministry of Education, Chengdu 610041, China
| |
Collapse
|
118
|
Baik M, Lee J, Kim SY, Ranaweera KKTN. - Invited Review - Factors affecting beef quality and nutrigenomics of intramuscular adipose tissue deposition. Anim Biosci 2023; 36:350-363. [PMID: 36634658 PMCID: PMC9899583 DOI: 10.5713/ab.22.0380] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/21/2022] [Indexed: 01/14/2023] Open
Abstract
Beef quality is characterized by marbling (marbling degree and marbling fineness), physiochemical (shear force, meat color, fat color, texture, and maturity), and sensory (tenderness, flavor, juiciness, taste, odor, and appearance) traits. This paper summarizes and addresses beef-quality characteristics and the beef-grading systems in Korea, Japan, the USA, and Australia. This paper summarizes recent research progresses on the genetic and nutritional factors that affect beef quality. Intramuscular (i.m.) adipose tissue deposition or marbling is a major determinant of beef quality. This paper addresses the mechanisms of i.m. adipose tissue deposition focused on adipogenesis and lipogenesis. We also address selected signaling pathways associated with i.m. adipose tissue deposition. Nutrients contribute to the cellular response and phenotypes through gene expression and metabolism. This paper addresses control of gene expression through several nutrients (carbohydrates, fat/fatty acids, vitamins, etc.) for i.m. adipose tissue deposition. Several transcription factors responsible for gene expression via nutrients are addressed. We introduce the concept of genome-based precision feeding in Korean cattle.
Collapse
Affiliation(s)
- Myunggi Baik
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea,Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang 25354,
Korea,Corresponding Author: Myunggi Baik, Tel: +82-2-880-4809, Fax: +82-2-873-2271, E-mail:
| | - Jaesung Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
| | - Sang Yeob Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
| | | |
Collapse
|
119
|
Chang C, Zhang QQ, Wang HH, Chu Q, Zhang J, Yan ZX, Liu HG, Geng AL. Dietary metabolizable energy and crude protein levels affect pectoral muscle composition and gut microbiota in native growing chickens. Poult Sci 2023; 102:102353. [PMID: 36473379 PMCID: PMC9720343 DOI: 10.1016/j.psj.2022.102353] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/28/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022] Open
Abstract
The experiment aimed to study effects of dietary metabolizable energy (ME) and crude protein (CP) levels alone and in interaction on performance, pectoral muscle composition and gut microbiota in native growing chickens. A total of 648 10-wks-old Beijing-You Chicken (BYC) female chickens were randomly allocated to 9 groups with 6 replicates per group and 12 chickens per replicate, and the chickens were fed with a 3 × 3 factorial diets (3 levels of dietary ME: 11.31 MJ/kg, 11.51 MJ/kg, 11.71 MJ/kg; and 3 levels of dietary CP: 14%, 15%, 16%). The results showed that dietary ME and CP levels didn't affect average feed intake (AFI), body weight gain, feed gain ratio (P > 0.05), but ME level significantly affected the AFI (P < 0.05); mortality rate of 11.31 MJ/kg group was the highest (P < 0.05). Dietary ME, CP levels, and the interaction significantly affected pectoral CP and crude fat (CF) content of the growing chickens (P < 0.01). Dietary CP level had opposite effects on pectoral CP and CF content (P < 0.01). The 16% CP increased the pectoral CF content, which may have a negative impact on meat flavor. Dietary ME level affected 11 types of pectoral free amino acids (FAA) contents, including aspartic acid, L-threonine (P < 0.05), also amino acid classification, for example, total amino acid (TAA) and essential amino acid (EAA) content (P < 0.05). The 11.51 MJ/kg group had the highest TAA, EAA, delicious amino acid (DAA) content and EAA percentage (P < 0.05), while 11.31 MJ/kg group had the lowest bitter amino acid (BAA) content and BAA percentage and the highest fresh and sweet amino acid (FSAA) percentage (P < 0.05). Dietary CP level significantly affected glutamine and tyrosine content (P < 0.05). The interaction of dietary ME and CP level affected C20:3n6 content, saturated fatty acid (SFA), and unsaturated fatty acid (UFA) percentage (P < 0.05). The CP level significantly affected SFA percentage (P < 0.05). The 16% CP level increased the diversity of gut microbiota, but at the same time increased the relative abundance of Proteobacteria (P < 0.05), which is a sign of microbiota disorder. The increase of dietary ME level resulted in a gradual decrease in the diversity and relative abundance of gut microbiota. In conclusion, the present study suggested that the medium dietary ME (11.51 MJ/kg) and low CP (14-15%) levels can be helpful for enhancing pectoral muscle composition, increase meat quality such as flavor and nutritional value, and benefit for gut microbiota in native growing chickens.
Collapse
Affiliation(s)
- C Chang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, PR China
| | - Q Q Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, PR China
| | - H H Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, PR China
| | - Q Chu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, PR China
| | - J Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, PR China
| | - Z X Yan
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, PR China
| | - H G Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, PR China
| | - A L Geng
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, PR China.
| |
Collapse
|
120
|
The Energy and Nutritional Value of Meat of Broiler Chickens Fed with Various Addition of Wheat Germ Expeller. Animals (Basel) 2023; 13:ani13030499. [PMID: 36766388 PMCID: PMC9913620 DOI: 10.3390/ani13030499] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/26/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
The study concerns the effect of wheat germ expeller (WGE) as a feed additive given to male Ross-308 broiler chickens on their meat's energy and nutritional value, and coverage of nutrient reference values-requirements (NRV-R) of consumers for particular minerals. The chickens in the control group (CT-Control Treatment) were fed a standard complete mix. The experimental groups (EX5, EX10, EX15) were given a feed in which wheat middling was replaced with 5, 10, and 15% WGE. The breast and thigh muscles of 32 randomly selected chickens (8 in each group) were analyzed. More water, crude protein, P, Mg, Fe, Cu, and Mn were determined in the breast muscles, and more crude fat, crude ash, Ca, and Zn in the thigh muscles. Chickens from the CT group consumed significantly (p ≤ 0.01) less feed per body weight than those from groups EX5 to EX15, but achieved the highest body weight per 100 g of consumed feed. A higher (p ≤ 0.01) feed, energy, crude protein, and crude fat intake was observed in groups EX5 to EX15 compared to CT. The higher (p ≤ 0.01) value of protein efficiency ratios was indicated in the CT group. The WGE additive did not impact the muscles' energy values but affected the nutritional value. The daily consumption of 100 g of breast muscles to a large extent covers the consumer NRV-R for P, Mg Fe, Cu, and Mn. However, thigh muscles cover the NRV-R to a greater extent for Ca and Zn. The EX15, EX5, and EX10 muscles covered most of the NRV-R for P, Ca, and Mg, while the CT muscles did the same for Zn and Mn. Adding 5% WGE to broiler feed is optimal as it does not impair the nutritional value of the muscles.
Collapse
|
121
|
Effects of Dietary Vitamin E on Intramuscular Fat Deposition and Transcriptome Profile of the Pectoral Muscle of Broilers. J Poult Sci 2023; 60:2023006. [PMID: 36756043 PMCID: PMC9884639 DOI: 10.2141/jpsa.2023006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/26/2022] [Indexed: 01/25/2023] Open
Abstract
Vitamin E is an essential micronutrient for animals. The aim of this study was to determine the effect of vitamin E on intramuscular fat (IMF) deposition and the transcriptome profile of the pectoral muscle in broiler chickens. Arbor Acres chickens were divided into five treatment groups fed a basal diet supplemented with 0, 20, 50, 75, and 100 IU/kg dietary DL-α-tocopheryl acetate (vitamin E), respectively. Body weight, carcass performance, and IMF content were recorded. Transcriptome profiles of the pectoral muscles of 35-day-old chickens in the control and treatment groups (100 IU/kg of vitamin E) were obtained by RNA sequencing. The results showed that diets supplemented with 100 IU/kg of vitamin E significantly increased IMF deposition in chickens on day 35. In total, 159 differentially expressed genes (DEGs), including 57 up-regulated and 102 down-regulated genes, were identified in the treatment (100 IU/kg vitamin E) group compared to the control group. These DEGs were significantly enriched in 13 Gene Ontology terms involved in muscle development and lipid metabolism; three signaling pathways, including the mitogen-activated protein kinase and FoxO signaling pathways, which play key roles in muscular and lipid metabolism; 28 biofunctional categories associated with skeletal and muscular system development; 17 lipid metabolism functional categories; and three lipid metabolism and muscle development-related networks. The DEGs, pathways, functional categories, and networks identified in this study provide new insights into the regulatory roles of vitamin E on IMF deposition in broilers. Therefore, diets supplemented with 100 IU/kg of vitamin E will be more beneficial to broiler production.
Collapse
|
122
|
Ramírez-Zamudio GD, Ganga MJG, Pereira GL, Nociti RP, Chiaratti MR, Cooke RF, Chardulo LAL, Baldassini WA, Machado-Neto OR, Curi RA. Effect of Cow-Calf Supplementation on Gene Expression, Processes, and Pathways Related to Adipogenesis and Lipogenesis in Longissimus thoracis Muscle of F1 Angus × Nellore Cattle at Weaning. Metabolites 2023; 13:metabo13020160. [PMID: 36837780 PMCID: PMC9962728 DOI: 10.3390/metabo13020160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
The aim of this study was to identify differentially expressed genes, biological processes, and metabolic pathways related to adipogenesis and lipogenesis in calves receiving different diets during the cow-calf phase. Forty-eight uncastrated F1 Angus × Nellore males were randomly assigned to two treatments from thirty days of age to weaning: no creep feeding (G1) or creep feeding (G2). The creep feed offered contained ground corn (44.8%), soybean meal (40.4%), and mineral core (14.8%), with 22% crude protein and 65% total digestible nutrients in dry matter. After weaning, the animals were feedlot finished for 180 days and fed a single diet containing 12.6% forage and 87.4% corn-based concentrate. Longissimus thoracis muscle samples were collected by biopsy at weaning for transcriptome analysis and at slaughter for the measurement of intramuscular fat content (IMF) and marbling score (MS). Animals of G2 had 17.2% and 14.0% higher IMF and MS, respectively (p < 0.05). We identified 947 differentially expressed genes (log2 fold change 0.5, FDR 5%); of these, 504 were upregulated and 443 were downregulated in G2. Part of the genes upregulated in G2 were related to PPAR signaling (PPARA, SLC27A1, FABP3, and DBI), unsaturated fatty acid synthesis (FADS1, FADS2, SCD, and SCD5), and fatty acid metabolism (FASN, FADS1, FADS2, SCD, and SCD5). Regarding biological processes, the genes upregulated in G2 were related to cholesterol biosynthesis (EBP, CYP51A1, DHCR24, and LSS), unsaturated fatty acid biosynthesis (FADS2, SCD, SCD5, and FADS1), and insulin sensitivity (INSIG1 and LPIN2). Cow-calf supplementation G2 positively affected energy metabolism and lipid biosynthesis, and thus favored the deposition of marbling fat during the postweaning period, which was shown here in an unprecedented way, by analyzing the transcriptome, genes, pathways, and enriched processes due to the use of creep feeding.
Collapse
Affiliation(s)
| | - Maria Júlia Generoso Ganga
- School of Agriculture and Veterinary Sciences (FCAV), São Paulo State University (UNESP), Jaboticabal 14884-900, SP, Brazil
| | - Guilherme Luis Pereira
- School of Agriculture and Veterinary Sciences (FCAV), São Paulo State University (UNESP), Jaboticabal 14884-900, SP, Brazil
- School of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil
| | - Ricardo Perecin Nociti
- College of Animal Science and Food Engineering, São Paulo University (USP), Pirassununga 13635-900, SP, Brazil
| | - Marcos Roberto Chiaratti
- Department of Genetics and Evolution, Federal University of São Carlos (UFSCAR), São Carlos 13565-905, SP, Brazil
| | | | - Luis Artur Loyola Chardulo
- School of Agriculture and Veterinary Sciences (FCAV), São Paulo State University (UNESP), Jaboticabal 14884-900, SP, Brazil
- School of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil
| | - Welder Angelo Baldassini
- School of Agriculture and Veterinary Sciences (FCAV), São Paulo State University (UNESP), Jaboticabal 14884-900, SP, Brazil
- School of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil
| | - Otávio Rodrigues Machado-Neto
- School of Agriculture and Veterinary Sciences (FCAV), São Paulo State University (UNESP), Jaboticabal 14884-900, SP, Brazil
- School of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil
| | - Rogério Abdallah Curi
- School of Agriculture and Veterinary Sciences (FCAV), São Paulo State University (UNESP), Jaboticabal 14884-900, SP, Brazil
- School of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil
- Correspondence:
| |
Collapse
|
123
|
Long-Term Dietary Supplementation with Betaine Improves Growth Performance, Meat Quality and Intramuscular Fat Deposition in Growing-Finishing Pigs. Foods 2023; 12:foods12030494. [PMID: 36766024 PMCID: PMC9914383 DOI: 10.3390/foods12030494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
This study was designed to investigate the effects of dietary betaine supplementation on growth performance, meat quality and muscle lipid metabolism of growing-finishing pigs. Thirty-six crossbred pigs weighing 24.68 ± 0.97 kg were randomly allotted into two treatments consisting of a basal diet supplemented with 0 or 1200 mg/kg betaine. Each treatment included six replications of three pigs per pen. Following 119 days of feeding trial, dietary betaine supplementation significantly enhanced average daily gain (ADG) (p < 0.05) and tended to improve average daily feed intake (ADFI) (p = 0.08) and decreased the feed intake to gain ratio (F/G) (p = 0.09) in pigs during 100~125 kg. Furthermore, a tendency to increase ADG (p = 0.09) and finial body weight (p = 0.09) of pigs over the whole period was observed in the betaine diet group. Betaine supplementation significantly increased a*45 min and marbling and decreased b*24 h and cooking loss in longissimus lumborum (p < 0.05), tended to increase intramuscular fat (IMF) content (p = 0.08), however had no significant influence on carcass characteristics (p > 0.05). Betaine supplementation influenced the lipid metabolism of pigs, evidenced by a lower serum concentration of low-density lipoprotein cholesterol (p < 0.05), an up-regulation of mRNA abundance of fatty acid synthase and acetyl-CoA carboxylase (p < 0.05), and a down-regulation of mRNA abundance of lipolysis-related genes, including the silent information regulators of transcription 1 (p = 0.08), peroxisome proliferator-activated receptorα (p < 0.05), peroxisome proliferator-activated receptor gamma coactivator-1α (p = 0.07) and carnitine palmitoyl transferase 1 (p < 0.05) in longissimus lumborum. Moreover, betaine markedly improved the expression of microRNA-181a (miR-181a) (p < 0.05) and tended to enhance miR-370 (p = 0.08). Overall, betaine supplementation at 1200 mg/kg could increase the growth performance of growing-finishing pigs. Furthermore, betaine had a trend to improve meat quality and IMF content via increasing lipogenesis and down-regulating the abundance of genes associated with lipolysis, respectively, which was associated with the regulation of miR-181a and miR-370 expression by betaine.
Collapse
|
124
|
Żurek J, Rudy M, Stanisławczyk R, Duma-Kocan P. The Effect of Kosher Determinants of Beef on Its Color, Texture Profile and Sensory Evaluation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1378. [PMID: 36674131 PMCID: PMC9858953 DOI: 10.3390/ijerph20021378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Traditional ritual slaughter is an underlying practice in religious Jewish communities and it translates into eating in accordance with core beliefs. This paper aims to comprehensively analyze factors determining the kosher status of beef (sex, slaughter method, and muscle type) and assess their impact on selected quality properties, such as color or texture profile. Sensory evaluation was also performed. The muscles were obtained from 80 carcasses (50% of heifers and 50% of young bulls). The experimental results indicate that each studied kosherness determinant influenced beef quality properties. The process of koshering caused the darkening of beef and lowered the share of color parameters red (a*) and yellow (b*). The influence of the type of slaughter on the values of adhesiveness, gumminess, and chewiness of beef was confirmed; higher values were mostly obtained in the muscles of cattle from kosher slaughter. As to sensory evaluation, the study showed that in the case of muscle type, the sex and slaughter method positively influenced only some of the properties.
Collapse
Affiliation(s)
- Jagoda Żurek
- Department of Financial Markets and Public Finance, Institute of Economics and Finance, College of Social Sciences, University of Rzeszow, Cwiklinskiej 2, 35-601 Rzeszów, Poland;
| | - Mariusz Rudy
- Department of Agricultural Processing and Commodity Science, Institute of Food and Nutrition Technology, College of Natural Sciences, University of Rzeszow, Zelwerowicza 4, 35-601 Rzeszów, Poland; (R.S.); (P.D.-K.)
| | - Renata Stanisławczyk
- Department of Agricultural Processing and Commodity Science, Institute of Food and Nutrition Technology, College of Natural Sciences, University of Rzeszow, Zelwerowicza 4, 35-601 Rzeszów, Poland; (R.S.); (P.D.-K.)
| | - Paulina Duma-Kocan
- Department of Agricultural Processing and Commodity Science, Institute of Food and Nutrition Technology, College of Natural Sciences, University of Rzeszow, Zelwerowicza 4, 35-601 Rzeszów, Poland; (R.S.); (P.D.-K.)
| |
Collapse
|
125
|
Yu S, Wang G, Liao J, Shen X, Chen J, Chen X. Co-expression analysis of long non-coding RNAs and mRNAs involved in intramuscular fat deposition in Muchuan black-bone chicken. Br Poult Sci 2023. [PMID: 36622203 DOI: 10.1080/00071668.2022.2162370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The intramuscular fat (IMF) content in meat products is positively correlated with meat quality, making it an important consumer trait. Long non-coding RNAs (lncRNAs) play central roles in regulating various biological processes, but little is currently known about the mechanisms by which they regulate IMF deposition in chickens. This study sampled the breast muscles of chickens with high (H) and low (L) IMF content and constructed six small RNA libraries. High-throughput sequencing technology was used to profile the breast muscle transcriptome (lncRNA and mRNA) and to identify the differentially expressed lncRNAs (DELs) and mRNAs (DEGs) between the H and L groups. In total, 263 DELs (118 up-regulated and 145 down-regulated lncRNAs) and 443 DEGs (203 up-regulated and 240 down-regulated genes) were identified between the two groups. To analyse the DELs-DEGs interaction network, co-expression analysis was conducted to identify lncRNA-mRNA pairs. In total, 19,270 lncRNA/mRNA pairs were identified, including 16,398 significant correlation pairs that presented as positive and 2872 pairs that presented as negative. The lncRNA-mRNA network comprised 263 lncRNA nodes and 440 mRNA nodes. Pathway analysis, using the Kyoto Encyclopedia of Genes and Genomes, indicated that pathways associated with fat deposition and lipid metabolism such as the MAPK, PPAR, GnRH, ErbB and calcium signalling pathways, fatty acid elongation and fatty acid metabolism. Overall, the study identified potential candidate lncRNAs, genes and regulatory networks associated with chicken IMF deposition. These findings provide new insights to help clarify the regulatory mechanisms of IMF deposition in chickens which can be used to improve the IMF content in poultry.
Collapse
Affiliation(s)
- Shigang Yu
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University,Leshan, China
| | - Gang Wang
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University,Leshan, China
| | - Juan Liao
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University,Leshan, China
| | - Xuemei Shen
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University,Leshan, China
| | - Jia Chen
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University,Leshan, China
| | - Xianxin Chen
- Leshan Academy of Agricultural Sciences, Leshan, China
| |
Collapse
|
126
|
Zhao Y, Chen S, Yuan J, Shi Y, Wang Y, Xi Y, Qi X, Guo Y, Sheng X, Liu J, Zhou L, Wang C, Xing K. Comprehensive Analysis of the lncRNA-miRNA-mRNA Regulatory Network for Intramuscular Fat in Pigs. Genes (Basel) 2023; 14:168. [PMID: 36672909 PMCID: PMC9859044 DOI: 10.3390/genes14010168] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/26/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Intramuscular fat (IMF) is an essential trait closely related to meat quality. The IMF trait is a complex quantitative trait that is regulated by multiple genes. In order to better understand the process of IMF and explore the key factors affecting IMF deposition, we identified differentially expressed mRNA, miRNA, and lncRNA in the longissimus dorsi muscle (LD) between Songliao Black (SL) pigs and Landrace pigs. We obtained 606 differentially expressed genes (DEGs), 55 differentially expressed miRNAs (DEMs), and 30 differentially expressed lncRNAs (DELs) between the SL pig and Landrace pig. Enrichment results from GO and KEGG indicate that DEGs are involved in fatty acid metabolism and some pathways related to glycogen synthesis. We constructed an lncRNA-miRNA-mRNA interaction network with 18 DELs, 11 DEMs, and 42 DEGs. Finally, the research suggests that ARID5B, CPT1B, ACSL1, LPIN1, HSP90AA1, IRS1, IRS2, PIK3CA, PIK3CB, and PLIN2 may be the key genes affecting IMF deposition. The LncRNAs MSTRG.19948.1, MSTRG.13120.1, MSTRG.20210.1, and MSTRG.10023.1, and the miRNAs ssc-miRNA-429 and ssc-miRNA-7-1, may play a regulatory role in IMF deposition through their respective target genes. Our research provides a reference for further understanding the regulatory mechanism of IMF.
Collapse
Affiliation(s)
- Yanhui Zhao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Shaokang Chen
- Beijing Animal Husbandry Station, Beijing 100101, China
| | - Jiani Yuan
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Yumei Shi
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Yan Wang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Yufei Xi
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Xiaolong Qi
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Yong Guo
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Xihui Sheng
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Jianfeng Liu
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lei Zhou
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Chuduan Wang
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Kai Xing
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| |
Collapse
|
127
|
Orzuna-Orzuna JF, Dorantes-Iturbide G, Lara-Bueno A, Chay-Canul AJ, Miranda-Romero LA, Mendoza-Martínez GD. Meta-analysis of flavonoids use into beef and dairy cattle diet: Performance, antioxidant status, ruminal fermentation, meat quality, and milk composition. Front Vet Sci 2023; 10:1134925. [PMID: 36876000 PMCID: PMC9975267 DOI: 10.3389/fvets.2023.1134925] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
The objective of this study was to evaluate the effects of dietary supplementation with flavonoids (FLAs) on animal performance, diet digestibility, antioxidant status in blood serum, rumen parameters, meat quality, and milk composition in beef and dairy cattle through a meta-analysis. Thirty-six peer-reviewed publications were included in the data set. The weighted mean differences (WMD) between the FLAs treatments and the control treatment were used to assess the effect size. Dietary supplementation with FLAs decreased feed conversion ratio (WMD = -0.340 kg/kg; p = 0.050) and increased (p < 0.05) dry matter intake (WMD = 0.191 kg/d), dry matter digestibility (WMD = 15.283 g/kg of DM), and daily weight gain (WMD = 0.061 kg/d). In blood serum, FLAs supplementation decreased the serum concentration of malondialdehyde (WMD = -0.779 nmol/mL; p < 0.001) and increased (p < 0.01) the serum concentration of superoxide dismutase (WMD = 8.516 U/mL), glutathione peroxidase (WMD = 12.400 U/mL) and total antioxidant capacity (WMD = 0.771 U/mL). A higher ruminal propionate concentration (WMD = 0.926 mol/100 mol; p = 008) was observed in response to FLAs supplementation. In meat, the dietary inclusion of FLAs decreased (p < 0.05) shear force (WMD = -1.018 kgf/cm2), malondialdehyde content (WMD = -0.080 mg/kg of meat), and yellowness (WMD = -0.460). Supplementation with FLAs decreased milk somatic cell count (WMD = -0.251 × 103 cells/mL; p < 0.001) and increased (p < 0.01) milk production (WMD = 1.348 kg/d), milk protein content (WMD = 0.080/100 g) and milk fat content (WMD = 0.142/100 g). In conclusion, dietary supplementation with FLAs improves animal performance and nutrient digestibility in cattle. In addition, FLAs improve the antioxidant status in blood serum and the quality of meat and milk.
Collapse
|
128
|
Robert C, Bain WE, Craigie C, Hicks TM, Loeffen M, Fraser-Miller SJ, Gordon KC. Fusion of three spectroscopic techniques for prediction of fatty acid in processed lamb. Meat Sci 2023; 195:109005. [DOI: 10.1016/j.meatsci.2022.109005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022]
|
129
|
Jiang S, Quan W, Luo J, Lou A, Zhou X, Li F, Shen QW. Low-protein diets supplemented with glycine improves pig growth performance and meat quality: An untargeted metabolomic analysis. Front Vet Sci 2023; 10:1170573. [PMID: 37143503 PMCID: PMC10153625 DOI: 10.3389/fvets.2023.1170573] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/23/2023] [Indexed: 05/06/2023] Open
Abstract
For the purpose to improve meat quality, pigs were fed a normal diet (ND), a low protein diet (LPD) and a LPD supplemented with glycine (LPDG). Chemical and metabolomic analyses showed that LPD increased IMF deposition and the activities of GPa and PK, but decreased glycogen content, the activities of CS and CcO, and the abundance of acetyl-CoA, tyrosine and its metabolites in muscle. LPDG promoted muscle fiber transition from type II to type I, increased the synthesis of multiple nonessential amino acids, and pantothenic acid in muscle, which should contributed to the improved meat quality and growth rate. This study provides some new insight into the mechanism of diet induced alteration of animal growth performance and meat quality. In addition, the study shows that dietary supplementation of glycine to LPD could be used to improved meat quality without impairment of animal growth.
Collapse
Affiliation(s)
- Shengwang Jiang
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
- College of Animal Science, Xichang University, Xichang, Sichuan, China
| | - Wei Quan
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Jie Luo
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Aihua Lou
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Xihong Zhou
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Fengna Li
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- *Correspondence: Fengna Li,
| | - Qingwu W. Shen
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
- Qingwu W. Shen,
| |
Collapse
|
130
|
Identification of Key Genes and Biological Pathways Associated with Skeletal Muscle Maturation and Hypertrophy in Bos taurus, Ovis aries, and Sus scrofa. Animals (Basel) 2022; 12:ani12243471. [PMID: 36552391 PMCID: PMC9774933 DOI: 10.3390/ani12243471] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
The aim of the current study was to identify the major genes and pathways involved in the process of hypertrophy and skeletal muscle maturation that is common for Bos taurus, Ovis aries, and Sus scrofa species. Gene expression profiles related to Bos taurus, Ovis aries, and Sus scrofa muscle, with accession numbers GSE44030, GSE23563, and GSE38518, respectively, were downloaded from the GEO database. Differentially expressed genes (DEGs) were screened out using the Limma package of R software. Genes with Fold Change > 2 and an adjusted p-value < 0.05 were identified as significantly different between two treatments in each species. Subsequently, gene ontology and pathway enrichment analyses were performed. Moreover, hub genes were detected by creating a protein−protein interaction network (PPI). The results of the analysis in Bos taurus showed that in the period of 280 dpc−3-months old, a total of 1839 genes showed a significant difference. In Ovis aries, however, during the period of 135dpc−2-months old, a total of 486 genes were significantly different. Additionally, in the 91 dpc−adult period, a total of 2949 genes were significantly different in Sus scrofa. The results of the KEGG pathway enrichment analysis and GO function annotation in each species separately revealed that in Bos taurus, DEGs were mainly enriched through skeletal muscle fiber development and skeletal muscle contraction, and the positive regulation of fibroblast proliferation, positive regulation of skeletal muscle fiber development, PPAR signaling pathway, and HIF-1 signaling pathway. In Ovis aries, DEGs were mainly enriched through regulating cell growth, skeletal muscle fiber development, the positive regulation of fibroblast proliferation, skeletal muscle cell differentiation, and the PI3K-Akt signaling, HIF-1 signaling, and Rap1 signaling pathways. In Sus scrofa, DEGs were mainly enriched through regulating striated muscle tissue development, the negative regulation of fibroblast proliferation and myoblast differentiation, and the HIF-1 signaling, AMPK signaling, and PI3K-Akt signaling pathways. Using a Venn diagram, 36 common DEGs were identified between Bos taurus, Ovis aries, and Sus scrofa. A biological pathways analysis of 36 common DEGs in Bos taurus, Ovis aries, and Sus scrofa allowed for the identification of common pathways/biological processes, such as myoblast differentiation, the regulation of muscle cell differentiation, and positive regulation of skeletal muscle fiber development, that orchestrated the development and maturation of skeletal muscle. As a result, hub genes were identified, including PPARGC1A, MYOD1, EPAS1, IGF2, CXCR4, and APOA1, in all examined species. This study provided a better understanding of the relationships between genes and their biological pathways in the skeletal muscle maturation process.
Collapse
|
131
|
Biesek J, Banaszak M, Grabowicz M, Wlaźlak S, Adamski M. Production Efficiency and Utility Features of Broiler Ducks Fed with Feed Thinned with Wheat Grain. Animals (Basel) 2022; 12:ani12233427. [PMID: 36496948 PMCID: PMC9738547 DOI: 10.3390/ani12233427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 11/26/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was to evaluate the production efficiency (economics), growth, and meat quality of ducks fed with feed partially replaced with wheat. A total of 200 ducks were reared for 49 days. Each group consisted of 50 ducks (5 pens with 10 birds). For slaughter, 10 birds per group were chosen. The control group (C) was provided with a complete feed. In the experimental groups, from 42 to 49 days, the feed was replaced with wheat grains at the level of 10% (W10), 20% (W20), or 40% (W40). In the W20 and W40 groups, the cost of feed was reduced. In the W40 group, the profit per 1 kg carcass was increased by PLN 3.34 (more than 24% higher than the C group profit). A higher percentage of pectoral muscles and intramuscular fat was observed in the W20 group, with lower water content. A lower water-holding capacity (WHC) was observed in the duck leg muscles in group W40. The muscles from the W20 group had higher protein, collagen, and water content, and the fat was highest in the W40 group. A lower toughness of cooked meat was observed in the W20 group, and lower shear force in the pectoral muscles of groups C and W40. Thinning feed with wheat grains could represent an alternative to conventional feeding of broiler ducks, owing to reduced feed costs, with no negative impact on utility features, including growth, except the share of pectoral muscle and water absorption traits.
Collapse
|
132
|
Zhang M, Guo Y, Su R, Corazzin M, Hou R, Xie J, Zhang Y, Zhao L, Su L, Jin Y. Transcriptome analysis reveals the molecular regulatory network of muscle development and meat quality in Sunit lamb supplemented with dietary probiotic. Meat Sci 2022; 194:108996. [PMID: 36195032 DOI: 10.1016/j.meatsci.2022.108996] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 09/13/2022] [Accepted: 09/23/2022] [Indexed: 11/27/2022]
Abstract
Supplementing animal feed with probiotic additives can promote muscle production and improve meat quality. The study aimed to explore the effects of dietary probiotics supplementation on the performance, meat quality and muscle transcriptome profile in Sunit lamb. Overall, feeding probiotics significantly increased the body length, LT area, pH24h and intramuscular fat (IMF) content, but decreased cooking loss and meat shear force compared to the control group (P < .05). A total of 651 differentially expressed genes (DEGs) were found in probiotic supplemented lambs. Pathway analysis revealed that DEGs were involved in multiple pathways related to muscle development and fat deposition, such as the ECM-receptor interactions, the MAPK signaling pathway and the FoxO signaling pathway. Therefore, dietary probiotic supplementation can improve muscle development and final meat quality in Sunit lambs by altering gene expression profiles associated with key pathways, providing unique insights into the molecular mechanisms by which dietary probiotics regulate muscle development in the lamb industry.
Collapse
Affiliation(s)
- Min Zhang
- College of Food Science and Engineering, Inner Mongolia Agriculture University, China
| | - Yueying Guo
- College of Food Science and Engineering, Inner Mongolia Agriculture University, China
| | - Rina Su
- Inner Mongolia Vocational College of Chemical Engineering, China
| | - Mirco Corazzin
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Italy
| | - Ran Hou
- College of Food Science and Engineering, Inner Mongolia Agriculture University, China
| | - Jingyu Xie
- College of Food Science and Engineering, Inner Mongolia Agriculture University, China
| | - Yue Zhang
- College of Food Science and Engineering, Inner Mongolia Agriculture University, China
| | - Lihua Zhao
- College of Food Science and Engineering, Inner Mongolia Agriculture University, China
| | - Lin Su
- College of Food Science and Engineering, Inner Mongolia Agriculture University, China
| | - Ye Jin
- College of Food Science and Engineering, Inner Mongolia Agriculture University, China.
| |
Collapse
|
133
|
Pinto DL, Selli A, Tulpan D, Andrietta LT, Garbossa PLM, Voort GV, Munro J, McMorris M, Alves AAC, Carvalheiro R, Poleti MD, Balieiro JCDC, Ventura RV. Image Feature Extraction via Local Binary Patterns for Marbling Score Classification in Beef Cattle Using Tree-based Algorithms. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.105152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
134
|
Chen J, You R, Lv Y, Liu H, Yang G. Conjugated linoleic acid regulates adipocyte fatty acid binding protein expression via peroxisome proliferator-activated receptor α signaling pathway and increases intramuscular fat content. Front Nutr 2022; 9:1029864. [PMID: 36523338 PMCID: PMC9745092 DOI: 10.3389/fnut.2022.1029864] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/19/2022] [Indexed: 06/22/2024] Open
Abstract
Intramuscular fat (IMF) is correlated positively with meat tenderness, juiciness and taste that affected sensory meat quality. Conjugated linoleic acid (CLA) has been extensively researched to increase IMF content in animals, however, the regulatory mechanism remains unclear. Adipocyte fatty acid binding protein (A-FABP) gene has been proposed as candidates for IMF accretion. The purpose of this study is to explore the molecular regulatory pathways of CLA on intramuscular fat deposition. Here, our results by cell lines indicated that CLA treatment promoted the expression of A-FABP through activated the transcription factor of peroxisome proliferator-activated receptor α (PPARα). Moreover, in an animal model, we discovered that dietary supplemental with CLA significantly enhanced IMF deposition by up-regulating the mRNA and protein expression of PPARα and A-FABP in the muscle tissues of mice. In addition, our current study also demonstrated that dietary CLA increased mRNA expression of genes and enzymes involved in fatty acid synthesis and lipid metabolism the muscle tissues of mice. These findings suggest that CLA mainly increases the expression of A-FABP through PPARα signaling pathway and regulates the expression of genes and enzymes related to IMF deposition, thus increasing IMF content. These results contribute to better understanding the molecular mechanism of IMF accretion in animals for the improvement of meat quality.
Collapse
Affiliation(s)
| | | | | | | | - Guoqing Yang
- Laboratory of Animal Gene Engineering, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
135
|
Verma R, Lee Y, Salamone DF. iPSC Technology: An Innovative Tool for Developing Clean Meat, Livestock, and Frozen Ark. Animals (Basel) 2022; 12:3187. [PMID: 36428414 PMCID: PMC9686897 DOI: 10.3390/ani12223187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022] Open
Abstract
Induced pluripotent stem cell (iPSC) technology is an emerging technique to reprogram somatic cells into iPSCs that have revolutionary benefits in the fields of drug discovery, cellular therapy, and personalized medicine. However, these applications are just the tip of an iceberg. Recently, iPSC technology has been shown to be useful in not only conserving the endangered species, but also the revival of extinct species. With increasing consumer reliance on animal products, combined with an ever-growing population, there is a necessity to develop alternative approaches to conventional farming practices. One such approach involves the development of domestic farm animal iPSCs. This approach provides several benefits in the form of reduced animal death, pasture degradation, water consumption, and greenhouse gas emissions. Hence, it is essentially an environmentally-friendly alternative to conventional farming. Additionally, this approach ensures decreased zoonotic outbreaks and a constant food supply. Here, we discuss the iPSC technology in the form of a "Frozen Ark", along with its potential impact on spreading awareness of factory farming, foodborne disease, and the ecological footprint of the meat industry.
Collapse
Affiliation(s)
- Rajneesh Verma
- VG Biomed Thailand Ltd., 888 Polaris Tower, 6th Floor, Soi Sukhumvit 20, Bangkok 10110, Thailand
| | - Younghyun Lee
- VG Biomed Thailand Ltd., 888 Polaris Tower, 6th Floor, Soi Sukhumvit 20, Bangkok 10110, Thailand
- Laboratory of Reproductive Biotechnology, Building 454, Rm 343, Gyeongsang National University, 501 Jinjudae-ro, Jinju 52828, Republic of Korea
| | - Daniel F. Salamone
- Department de Produccion Animal, Facultad de Agronomia, University of Buenos Aires, Av. San Martin 4453 Ciudad Autonoma de Buenos Aires, Buenos Aires B1406, Argentina
| |
Collapse
|
136
|
Li H, Xu C, Meng F, Yao Z, Fan Z, Yang Y, Meng X, Zhan Y, Sun Y, Ma F, Yang J, Yang M, Yang J, Wu Z, Cai G, Zheng E. Genome-Wide Association Studies for Flesh Color and Intramuscular Fat in (Duroc × Landrace × Large White) Crossbred Commercial Pigs. Genes (Basel) 2022; 13:2131. [PMID: 36421806 PMCID: PMC9690869 DOI: 10.3390/genes13112131] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/12/2022] [Accepted: 11/12/2022] [Indexed: 07/30/2023] Open
Abstract
The intuitive impression of pork is extremely important in terms of whether consumers are enthusiastic about purchasing it. Flesh color and intramuscular fat (IMF) are indispensable indicators in meat quality assessment. In this study, we determined the flesh color and intramuscular fat at 45 min and 12 h after slaughter (45 mFC, 45 mIMF, 12 hFC, and 12 hIMF) of 1518 commercial Duroc × Landrace × Large White (DLY) pigs. We performed a single nucleotide polymorphism (SNP) genome-wide association study (GWAS) analysis with 28,066 SNPs. This experiment found that the correlation between 45 mFC and 12 hFC was 0.343. The correlation between 45 mIMF and 12 hIMF was 0.238. The heritability of the traits 45 mFC, 12 hFC, 45 mIMF, and 12 hIMF was 0.112, 0.217, 0.139, and 0.178, respectively, and we identified seven SNPs for flesh color and three SNPs for IMF. Finally, several candidate genes regulating these four traits were identified. Three candidate genes related to flesh color were provided: SNCAIP and PRR16 on SSC2, ST3GAL4 on SSC5, and GALR1 on SSC1. A total of three candidate genes related to intramuscular fat were found, including ABLIM3 on SSC2, DPH5 on SSC4, and DOCK10 on SSC15. Furthermore, GO and KEGG analysis revealed that these genes are involved in the regulation of apoptosis and are implicated in functions such as pigmentation and skeletal muscle metabolism. This study applied GWAS to analyze the scoring results of flesh color and IMF in different time periods, and it further revealed the genetic structure of flesh color and IMF traits, which may provide important genetic loci for the subsequent improvement of pig meat quality traits.
Collapse
Affiliation(s)
- Hao Li
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Cineng Xu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| | - Fanming Meng
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Zekai Yao
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Zhenfei Fan
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| | - Yingshan Yang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| | - Xianglun Meng
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| | - Yuexin Zhan
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| | - Ying Sun
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| | - Fucai Ma
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| | - Jifei Yang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| | - Ming Yang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jie Yang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Zhenfang Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Yunfu Subcenter of Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu 527400, China
| | - Gengyuan Cai
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Enqin Zheng
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
137
|
Zhang Y, Wang C, Su W, Jiang Z, He H, Gong T, Kai L, Xu H, Wang Y, Lu Z. Co-fermented yellow wine lees by Bacillus subtilis and Enterococcus faecium regulates growth performance and gut microbiota in finishing pigs. Front Microbiol 2022; 13:1003498. [PMID: 36338073 PMCID: PMC9633856 DOI: 10.3389/fmicb.2022.1003498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/23/2022] [Indexed: 10/05/2023] Open
Abstract
Fermented yellow wine lees (FYWL) are widely used to increase feed utilization and improve pig performance. Based on the preparation of co-FYWL using Bacillus subtilis and Enterococcus faecalis, the purpose of this study was to investigate the effects of co-FYWL on growth performance, gut microbiota, meat quality, and immune status of finishing pigs. 75 pigs were randomized to 3 treatments (5 replicates/treatment), basal diet (Control), a basal diet supplemented with 4%FYWL, and a basal diet supplemented with 8%FYWL, for 50 days each. Results showed that the 8% FYWL group significantly reduced the F/G and increased the average daily weight gain of pigs compared to the control group. In addition, 8% FYWL improved the richness of Lactobacillus and B. subtilis in the gut, which correlated with growth performance, serum immune parameters, and meat quality. Furthermore, acetate and butyrate in the feces were improved in the FYWL group. Simultaneously, FYWL improved the volatile flavor substances of meat, increased the content of flavor amino acids, and played a positive role in the palatability of meat. In addition, FYWL increased serum IgA, IgM, IL-4 and IL-10 levels. Overall, the growth performance, the gut microbiota associated with fiber degradation, meat quality, and immune status were improved in the 8% FYWL group.
Collapse
Affiliation(s)
- Yu Zhang
- National Engineering Research Center for Green Feed and Healthy Breeding, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Molecular Nutrition, Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Cheng Wang
- National Engineering Research Center for Green Feed and Healthy Breeding, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Molecular Nutrition, Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Weifa Su
- National Engineering Research Center for Green Feed and Healthy Breeding, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Molecular Nutrition, Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zipeng Jiang
- National Engineering Research Center for Green Feed and Healthy Breeding, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Molecular Nutrition, Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Huan He
- National Engineering Research Center for Green Feed and Healthy Breeding, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Molecular Nutrition, Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tao Gong
- National Engineering Research Center for Green Feed and Healthy Breeding, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Molecular Nutrition, Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lixia Kai
- National Engineering Research Center for Green Feed and Healthy Breeding, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Molecular Nutrition, Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Huangen Xu
- National Engineering Research Center for Green Feed and Healthy Breeding, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Molecular Nutrition, Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yizhen Wang
- National Engineering Research Center for Green Feed and Healthy Breeding, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Molecular Nutrition, Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zeqing Lu
- National Engineering Research Center for Green Feed and Healthy Breeding, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Molecular Nutrition, Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
138
|
Ding Y, Hou Y, Ling Z, Chen Q, Xu T, Liu L, Yu N, Ni W, Ding X, Zhang X, Zheng X, Bao W, Yin Z. Identification of Candidate Genes and Regulatory Competitive Endogenous RNA (ceRNA) Networks Underlying Intramuscular Fat Content in Yorkshire Pigs with Extreme Fat Deposition Phenotypes. Int J Mol Sci 2022; 23:12596. [PMID: 36293455 PMCID: PMC9603960 DOI: 10.3390/ijms232012596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 11/27/2022] Open
Abstract
Intramuscular fat (IMF) content is vital for pork quality, serving an important role in economic performance in pig industry. Non-coding RNAs, with mRNAs, are involved in IMF deposition; however, their functions and regulatory mechanisms in porcine IMF remain elusive. This study assessed the whole transcriptome expression profiles of the Longissimus dorsi muscle of pigs with high (H) and low (L) IMF content to identify genes implicated in porcine IMF adipogenesis and their regulatory functions. Hundreds of differentially expressed RNAs were found to be involved in fatty acid metabolic processes, lipid metabolism, and fat cell differentiation. Furthermore, combing co-differential expression analyses, we constructed competing endogenous RNAs (ceRNA) regulatory networks, showing crosstalk among 30 lncRNAs and 61 mRNAs through 20 miRNAs, five circRNAs and 11 mRNAs through four miRNAs, and potential IMF deposition-related ceRNA subnetworks. Functional lncRNAs and circRNAs (such as MSTRG.12440.1, ENSSSCT00000066779, novel_circ_011355, novel_circ_011355) were found to act as ceRNAs of important lipid metabolism-related mRNAs (LEP, IP6K1, FFAR4, CEBPA, etc.) by sponging functional miRNAs (such as ssc-miR-196a, ssc-miR-200b, ssc-miR10391, miR486-y). These findings provide potential regulators and molecular regulatory networks that can be utilized for research on IMF traits in pigs, which would aid in marker-assisted selection to improve pork quality.
Collapse
Affiliation(s)
- Yueyun Ding
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Yinhui Hou
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Zijing Ling
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Qiong Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Tao Xu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Lifei Liu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Na Yu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Wenliang Ni
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Xiaoling Ding
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Xiaodong Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Xianrui Zheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Wenbin Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zongjun Yin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
139
|
Effect of Lipids in Yak Muscle under Different Feeding Systems on Meat Quality Based on Untargeted Lipidomics. Animals (Basel) 2022; 12:ani12202814. [PMID: 36290199 PMCID: PMC9597711 DOI: 10.3390/ani12202814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/08/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary With the development of living standards, consumers are paying more and more attention to meat quality and flavor. When consumers choose meat, they directly pay attention to meat quality and flavor, so the meat quality and flavor directly decide meat price and sales volume. Better meat quality and flavor are the crucial factors that increase the additional value of meat. Because of its special nutritional value and taste, yak meat is popular with consumers. The intramuscular lipids can greatly affect the meat quality and flavor, but there is no report on the effect of lipids in yak muscle on the meat quality and flavor. In this study, we studied the characterization of lipids in yak muscle under different feeding systems and further explored the key lipids affecting yak meat quality and flavor. This study can provide new insight into the improvement of yak meat quality and flavor. Abstract The effect of lipids on yak meat quality and volatile flavor compounds in yak meat under graze feeding (GF) and stall feeding (SF) was explored using untargeted lipidomics based on liquid chromatography–mass spectrometry (LC-MS) in this study. First, the volatile flavor compounds in longissimus dorsi (LD) of SF and GF yaks were detected by gas chromatography–mass spectrometry (GC-MS). In total 49 and 39 volatile flavor substances were detected in the LD of GF and SF yaks, respectively. The contents of pelargonic aldehyde, 3-hydroxy-2-butanone and 1-octen-3-ol in the LD of both GF and SF yaks were the highest among all detected volatile flavor compounds, and the leading volatile flavor substances in yak LD were aldehydes, alcohols and ketones. In total, 596 lipids were simultaneously identified in the LD of SF and GF yaks, and the leading lipids in the LD of both GF and SF yaks were sphingolipids (SPs), glycerolipids (GLs) and glycerophospholipids (GPs). Seventy-five significantly different lipids (SDLs) between GF and SF yaks were identified in the LD. The high content of TG(16:1/18:1/18:1), TG(16:0/17:1/18:1) and TG(16:0/16:1/18:1), PE(18:0/22:4) and PC(18:2/18:0) can improve the a* (redness) and tenderness of yak muscle. The changes in volatile flavor compounds in yak muscle were mainly caused by TG(18:1/18:1/18:2), TG(18:0/18:1/18:1), TG(16:0/17:1/18:1), TG(16:0/16:1/18:1), PC(18:2/18:0), TG(16:1/18:1/18:1), PI(18:0/20:4), TG(16:1/16:1-/18:1) and TG(17:0/18:1/18:1). The above results provide a theoretical basis for improving yak meat quality from the perspective of intramuscular lipids.
Collapse
|
140
|
Terminal Crossbreeding of Murciano-Granadina Goats with Boer Bucks: Characteristics of the Carcass and the Meat. Animals (Basel) 2022; 12:ani12192548. [PMID: 36230290 PMCID: PMC9559626 DOI: 10.3390/ani12192548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
After verifying productive improvements from the crossbreeding (MB) of Boer males with females of the Murciano-Granadina (MG) breed, the aim of this work was to determine its consequences on the carcass and meat characteristics of suckling kids (9 kg of weight at slaughter) of both sexes. A total of 94 kids (25 purebred MG males, 19 purebred MG females, 25 crossed MB males and 25 crossed MB females) were used. It was found that MB kids reached slaughter weight at a younger age (44 ± 1 vs. 63 ± 1 days, p < 0.001). For carcass yield, the interaction genotype x sex was observed, where MB females presented a higher value (51.71 ± 0.34%) than the rest of the animals (MB males 50.53 ± 0.34, p < 0.05; MG males 50.60 ± 0.34, p < 0.05; MG females 49.62 ± 0.39, p < 0.001). MB kids had greater leg compactness, (36.28 ± 0.27 vs. 34.71 ± 0.29 g/cm, p < 0.001), slightly improved expensive carcass cuts (75.93 ± 0.31 vs. 74.77 ± 0.34%, p = 0.014) and higher muscle/bone (2.93 ± 0.03 vs. 2.76 ± 0.03, p < 0.001) and meat/bone ratios (3.56 ± 0.04 vs. 3.36 ± 0.04, p < 0.001) than MG kids. They also showed a somewhat more intense red colour (8.57 ± 0.25 vs. 7.74 ± 0.27, p = 0.027), higher colour saturation (9.06 ± 0.24 vs. 8.20 ± 0.26, p = 0.016) and less meat firmness (1.95 ± 0.08 vs. 2.23 ± 0.081 kg/cm2, p = 0.021). On the other hand, males had a slightly improved proportion of expensive cuts (75.98 ± 0.31 vs. 74.73 ± 0.34, p = 0.008), but their carcass contained a higher proportion of bone (22.16 ± 0.21 vs. 21.17 ± 0.17%; p < 0.001), a lower proportion of intermuscular fat (9.54 ± 0.24 vs. 10.93 ± 0.24, p < 0.001), a higher muscle/fat ratio (5.01 ± 0.10 vs. 4.41 ± 0.10, p < 0.001) and lower muscle/bone (2.80 ± 0.03 vs. 2.89 ± 0.03%, p = 0.016) and meat/bone ratios (3.36 ± 0.04 vs. 3.56 ± 0.04%, p < 0.001) than females. There were no sensory differences in any case. It is concluded that this crossbreeding strategy also improves the carcass and meat characteristics, making it a valid alternative to improve the productive results of MG dairy goat herds.
Collapse
|
141
|
Li R, Meng S, Ji M, Rong X, You Z, Cai C, Guo X, Lu C, Liang G, Cao G, Li B, Yang Y. HMG20A Inhibit Adipogenesis by Transcriptional and Epigenetic Regulation of MEF2C Expression. Int J Mol Sci 2022; 23:ijms231810559. [PMID: 36142473 PMCID: PMC9505946 DOI: 10.3390/ijms231810559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/29/2022] [Accepted: 09/04/2022] [Indexed: 11/24/2022] Open
Abstract
Obesity and its associated metabolic disease do serious harm to human health. The transcriptional cascade network with transcription factors as the core is the focus of current research on adipogenesis and its mechanism. Previous studies have found that HMG domain protein 20A (HMG20A) is highly expressed in the early stage of adipogenic differentiation of porcine intramuscular fat (IMF), which may be involved in regulating adipogenesis. In this study, HMG20A was found to play a key negative regulatory role in adipogenesis. Gain- and loss-of-function studies revealed that HMG20A inhibited the differentiation of SVF cells and C3H10T1/2 cells into mature adipocytes. RNA-seq was used to screen differentially expressed genes after HMG20A knockdown. qRT-PCR and ChIP-PCR confirmed that MEF2C was the real target of HMG20A, and HMG20A played a negative regulatory role through MEF2C. HMG20A binding protein LSD1 was found to alleviate the inhibitory effect of HMG20A on adipogenesis. Further studies showed that HMG20A could cooperate with LSD1 to increase the H3K4me2 of the MEF2C promoter and then increase the expression of MEF2C. Collectively, these findings highlight a role for HMG20A-dependent transcriptional and epigenetic regulation in adipogenesis.
Collapse
|
142
|
Heritability and genetic correlations between marbling in longissimus dorsi muscle and conventional economic traits in Nellore beef cattle. Trop Anim Health Prod 2022; 54:274. [PMID: 36068366 DOI: 10.1007/s11250-022-03293-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 08/31/2022] [Indexed: 10/14/2022]
Abstract
In Nellore beef cattle, studies addressing genetic correlations between ultrasound marbling content and other economically important traits are still incipient. Therefore, this work aimed to estimate heritability and genetic correlations between ultrasound marbling content in the longissimus dorsi muscle (MARB) and growth, reproductive, feed efficiency, and carcass-related traits in a Nellore beef cattle population from Brazil. Phenotypic records of 614,395 Nellore animals were used and included adjusted weight at 210 (W210) and 450 (W450) days of age, adult cow weight (AW), early heifer pregnancy (EH), stayability (STAY), adjusted scrotal circumference at 365 days of age (SC365), ribeye area (REA), subcutaneous backfat thickness (BF), rump fat thickness (RF), and marbling (MARB). The genetic parameters for all traits but EH and STAY were estimated considering a linear animal model, whereas for those two nonlinear traits, a threshold animal model was used. The direct and correlated response to selection for MARB versus the other traits, and the relative efficiency of selection, were also calculated. The heritability estimate for MARB was 0.31 and for the other conventional evaluated traits was low to moderate, with values ranging from 0.14 to 0.41. The genetic correlations between MARB and growth, reproductive, feed efficiency, and carcass-related trait were very low, with values close to zero, with similar correlated responses. The MARB displayed adequate genetic variability to respond to selection and crossbreeding programs looking forward to higher meat quality and differential market standards for the Nellore beef. The selection for growth, reproductive, feed efficiency, and carcass-related traits would not affect MARB in Nellore beef cattle and vice versa. Therefore, this trait should be included as a selection criterion in the Nellore breeding program.
Collapse
|
143
|
Sugii S, Wong CYQ, Lwin AKO, Chew LJM. Reassessment of adipocyte technology for cellular agriculture of alternative fat. Compr Rev Food Sci Food Saf 2022; 21:4146-4163. [PMID: 36018497 DOI: 10.1111/1541-4337.13021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/24/2022] [Accepted: 07/18/2022] [Indexed: 01/28/2023]
Abstract
Alternative proteins, such as cultivated meat, have recently attracted significant attention as novel and sustainable food. Fat tissue/cell is an important component of meat that makes organoleptic and nutritional contributions. Although adipocyte biology is relatively well investigated, there is limited focus on the specific techniques and strategies to produce cultivated fat from agricultural animals. In the assumed standard workflow, stem/progenitor cell lines are derived from tissues of animals, cultured for expansion, and differentiated into mature adipocytes. Here, we compile information from literature related to cell isolation, growth, differentiation, and analysis from bovine, porcine, chicken, other livestock, and seafood species. A diverse range of tissue sources, cell isolation methods, cell types, growth media, differentiation cocktails, and analytical methods for measuring adipogenic levels were used across species. Based on our analysis, we identify opportunities and challenges in advancing new technology era toward producing "alternative fat" that is suitable for human consumption.
Collapse
Affiliation(s)
- Shigeki Sugii
- Bioengineering Systems Division, Institute of Bioengineering and Bioimaging (IBB), A*STAR, Singapore.,Program of Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore
| | - Cheryl Yeh Qi Wong
- Bioengineering Systems Division, Institute of Bioengineering and Bioimaging (IBB), A*STAR, Singapore
| | - Angela Khin Oo Lwin
- Bioengineering Systems Division, Institute of Bioengineering and Bioimaging (IBB), A*STAR, Singapore
| | - Lamony Jian Ming Chew
- Bioengineering Systems Division, Institute of Bioengineering and Bioimaging (IBB), A*STAR, Singapore
| |
Collapse
|
144
|
Yang C, Qiu M, Zhang Z, Song X, Yang L, Xiong X, Hu C, Pen H, Chen J, Xia B, Du H, Li Q, Jiang X, Yu C. Galacto-oligosaccharides and Xylo-oligosaccharides Affect Meat Flavor by Altering the Cecal Microbiome, Metabolome, and Transcriptome of Chickens. Poult Sci 2022; 101:102122. [PMID: 36167016 PMCID: PMC9513281 DOI: 10.1016/j.psj.2022.102122] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 05/31/2022] [Accepted: 08/02/2022] [Indexed: 12/19/2022] Open
Abstract
Studies have shown that prebiotics can affect meat quality; however, the underlying mechanisms remain poorly understood. This study aimed to investigate whether prebiotics affect the flavor of chicken meat via the gut microbiome and metabolome. The gut content was collected from chickens fed with or without prebiotics (galacto-oligosaccharides or xylo-oligosaccharides) and subjected to microbiome and metabolome analyses, whereas transcriptome sequencing was performed using chicken breast. Prebiotic supplementation yielded a slight improvement that was not statistically significant in the growth and production performance of chickens. Moreover, treatment with prebiotics promoted fat synthesis and starch hydrolysis, thus increasing meat flavor by enhancing lipase and α-amylase activity in the blood of broiler chickens. The prebiotics altered the proportions of microbiota in the gut at different levels, especially microbiota in the phyla Bacteroidetes and Firmicutes, such as members of the Alistipes, Bacteroides, and Faecalibacterium genera. Furthermore, the prebiotics altered the content of cecal metabolites related to flavor substances, including 8 types of lysophosphatidylcholine (lysoPC) and 4 types of amino acid. Differentially expressed genes (DEGs) induced by prebiotics were significantly involved in fatty acid accumulation processes, such as lipolysis in adipocytes and the adipocytokine signaling pathway. Changes in gut microbiota were correlated with metabolites, for example, Bacteroidetes and Firmicutes were positively and negatively correlated with lysoPC, respectively. Finally, DEGs interacted with cecal metabolites, especially meat-flavor-related amino acids and their derivatives. The findings of this study integrated and incorporated associations among the gut microbiota, metabolites, and transcriptome, which suggests that prebiotics affect the flavor of chicken meat.
Collapse
Affiliation(s)
- Chaowu Yang
- Sichuan Animal Science Academy, Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Mohan Qiu
- Sichuan Animal Science Academy, Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Zengrong Zhang
- Sichuan Animal Science Academy, Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Xiaoyan Song
- Sichuan Animal Science Academy, Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Li Yang
- Sichuan Animal Science Academy, Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Xia Xiong
- Sichuan Animal Science Academy, Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Chenming Hu
- Sichuan Animal Science Academy, Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Han Pen
- Sichuan Animal Science Academy, Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Jialei Chen
- Sichuan Animal Science Academy, Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Bo Xia
- Sichuan Animal Science Academy, Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Huarui Du
- Sichuan Animal Science Academy, Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Qingyun Li
- Sichuan Animal Science Academy, Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Xiaosong Jiang
- Sichuan Animal Science Academy, Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Chunlin Yu
- Sichuan Animal Science Academy, Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu 610066, China.
| |
Collapse
|
145
|
Zhao W, Liu Q, Jiang H, Zheng M, Qian M, Zeng X, Bai W. Monitoring the variations in physicochemical characteristics of squab meat during the braising cooking process. Food Sci Nutr 2022; 10:2727-2735. [PMID: 35959272 PMCID: PMC9361449 DOI: 10.1002/fsn3.2876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 11/23/2022] Open
Abstract
Braised squabs are traditional Chinese foods. However, the processing is highly experience dependent and lacks a theoretical basis. Hence, a comparative study of the physicochemical properties in different processing stages of braised squabs was necessary. We observed the physicochemical changes in the processing stages of braised squabs (raw meat, braised meat, and fried meat). The color parameters, moisture content, and drip loss rate gradually decreased during the processing. On the contrary, crude protein content and pH value were upregulated in the processing stages of braised squabs. Furthermore, the diameter of muscle fiber significantly increased in the braised meat and further decreased in the fried meat compared with the raw muscle fiber. Similarly, hardness, springiness, and chewiness were also increased in the braised step and decreased in the fried step. Additionally, the contents of essential amino acids remain unchanged. Hence, our results provided a certain reference value on the production of braised squabs.
Collapse
Affiliation(s)
- Wenhong Zhao
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and TechnologyZhongkai University of Agriculture and EngineeringGuangzhou510225China
- College of Light Industry and Food SciencesZhongkai University of Agriculture and EngineeringGuangzhou510225China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty FoodMinistry of AgricultureZhongkai University of Agriculture and EngineeringGuangzhou510225China
- Academy of Contemporary Agricultural Engineering InnovationsZhongkai University of Agriculture and EngineeringGuangzhou510225China
| | - Qiaoyu Liu
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and TechnologyZhongkai University of Agriculture and EngineeringGuangzhou510225China
- College of Light Industry and Food SciencesZhongkai University of Agriculture and EngineeringGuangzhou510225China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty FoodMinistry of AgricultureZhongkai University of Agriculture and EngineeringGuangzhou510225China
- Academy of Contemporary Agricultural Engineering InnovationsZhongkai University of Agriculture and EngineeringGuangzhou510225China
| | - Hao Jiang
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and TechnologyZhongkai University of Agriculture and EngineeringGuangzhou510225China
- College of Light Industry and Food SciencesZhongkai University of Agriculture and EngineeringGuangzhou510225China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty FoodMinistry of AgricultureZhongkai University of Agriculture and EngineeringGuangzhou510225China
- Academy of Contemporary Agricultural Engineering InnovationsZhongkai University of Agriculture and EngineeringGuangzhou510225China
| | - Minyi Zheng
- College of Light Industry and Food SciencesZhongkai University of Agriculture and EngineeringGuangzhou510225China
- Academy of Contemporary Agricultural Engineering InnovationsZhongkai University of Agriculture and EngineeringGuangzhou510225China
| | - Min Qian
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and TechnologyZhongkai University of Agriculture and EngineeringGuangzhou510225China
- College of Light Industry and Food SciencesZhongkai University of Agriculture and EngineeringGuangzhou510225China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty FoodMinistry of AgricultureZhongkai University of Agriculture and EngineeringGuangzhou510225China
- Academy of Contemporary Agricultural Engineering InnovationsZhongkai University of Agriculture and EngineeringGuangzhou510225China
| | - Xiaofang Zeng
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and TechnologyZhongkai University of Agriculture and EngineeringGuangzhou510225China
- College of Light Industry and Food SciencesZhongkai University of Agriculture and EngineeringGuangzhou510225China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty FoodMinistry of AgricultureZhongkai University of Agriculture and EngineeringGuangzhou510225China
- Academy of Contemporary Agricultural Engineering InnovationsZhongkai University of Agriculture and EngineeringGuangzhou510225China
| | - Weidong Bai
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and TechnologyZhongkai University of Agriculture and EngineeringGuangzhou510225China
- College of Light Industry and Food SciencesZhongkai University of Agriculture and EngineeringGuangzhou510225China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty FoodMinistry of AgricultureZhongkai University of Agriculture and EngineeringGuangzhou510225China
- Academy of Contemporary Agricultural Engineering InnovationsZhongkai University of Agriculture and EngineeringGuangzhou510225China
| |
Collapse
|
146
|
Soares MH, de Amorim Rodrigues G, Júnior DTV, da Silva CB, Costa TC, de Souza Duarte M, Saraiva A. Performance, Carcass Traits, Pork Quality and Expression of Genes Related to Intramuscular Fat Metabolism of Two Diverse Genetic Lines of Pigs. Foods 2022; 11:foods11152280. [PMID: 35954050 PMCID: PMC9368243 DOI: 10.3390/foods11152280] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 01/26/2023] Open
Abstract
We aimed to evaluate the performance, carcass and pork quality traits, as well as the mRNA expression of genes related to intramuscular fat deposition in female pigs from different genetic lines. A total of eighteen female pigs (Large White × Landrace × Duroc × Pietrain) × (Large White × Landrace) (Hybrid) averaging 88.96 ± 3.44 kg in body weight and twelve female pigs (Duroc) × (Large White × Landrace) (Duroc) averaging 85.63 ± 1.55 kg in body weight were assigned to a completely randomized design experimental trial that lasted 45 days. Pigs from both genetic lines received the same diet, which was initially adjusted for their nutritional requirements from 0 to 17 days of age and subsequently adjusted for nutritional requirements from 17 to 45 days of age. The performance of pigs did not differ among groups (p > 0.05). Duroc pigs showed a lower backfat thickness (p < 0.03) and greater intramuscular fat content (p < 0.1). A greater mRNA expression of the peroxisome proliferator-activated receptor gamma gene (PPARγ, p = 0.008) and fatty acid protein translocase/cluster differentiation (FAT/CD36, p = 0.002) was observed in the Longissimus dorsi muscle of Duroc pigs. Similarly, a greater expression of PPARγ (p = 0.009) and FAT/CD36 (p = 0.02) was observed in the Soleus muscle of Duroc pigs. Overall, we observed that despite the lack of differences in performance between the genetic groups, Duroc pigs had greater intramuscular fat content than hybrid pigs. The increased intramuscular fat content was associated with an increase in the mRNA expression of key transcriptional factors and genes encoding enzymes involved in adipogenesis and lipogenesis in glycolytic and oxidative skeletal muscle tissues.
Collapse
Affiliation(s)
- Marcos Henrique Soares
- Department of Animal Sciences, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil; (M.H.S.); (G.d.A.R.); (D.T.V.J.); (C.B.d.S.); (T.C.C.); (A.S.)
- Muscle Biology and Nutrigenomics Laboratory, Department of Animal Sciences, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil
| | - Gustavo de Amorim Rodrigues
- Department of Animal Sciences, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil; (M.H.S.); (G.d.A.R.); (D.T.V.J.); (C.B.d.S.); (T.C.C.); (A.S.)
- Muscle Biology and Nutrigenomics Laboratory, Department of Animal Sciences, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil
| | - Dante Teixeira Valente Júnior
- Department of Animal Sciences, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil; (M.H.S.); (G.d.A.R.); (D.T.V.J.); (C.B.d.S.); (T.C.C.); (A.S.)
- Muscle Biology and Nutrigenomics Laboratory, Department of Animal Sciences, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil
| | - Caroline Brito da Silva
- Department of Animal Sciences, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil; (M.H.S.); (G.d.A.R.); (D.T.V.J.); (C.B.d.S.); (T.C.C.); (A.S.)
- Muscle Biology and Nutrigenomics Laboratory, Department of Animal Sciences, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil
| | - Thaís Correia Costa
- Department of Animal Sciences, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil; (M.H.S.); (G.d.A.R.); (D.T.V.J.); (C.B.d.S.); (T.C.C.); (A.S.)
- Muscle Biology and Nutrigenomics Laboratory, Department of Animal Sciences, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil
| | - Marcio de Souza Duarte
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G-2W1, Canada
- Correspondence:
| | - Alysson Saraiva
- Department of Animal Sciences, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil; (M.H.S.); (G.d.A.R.); (D.T.V.J.); (C.B.d.S.); (T.C.C.); (A.S.)
- Muscle Biology and Nutrigenomics Laboratory, Department of Animal Sciences, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil
| |
Collapse
|
147
|
Khongpradit A, Boonsaen P, Homwong N, Matsuba K, Kobayashi Y, Sawanon S. Evaluation of pineapple stem starch as a substitute for corn grain or ground cassava in a cattle feedlot for 206 or 344 days: feedlot performance, carcass characteristics, meat quality, and economic evaluation. Trop Anim Health Prod 2022; 54:226. [PMID: 35796806 DOI: 10.1007/s11250-022-03223-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 06/29/2022] [Indexed: 11/24/2022]
Abstract
The pineapple stem starch substituted for ground cassava or corn as a carbohydrate source in the concentrate diet. The experiment used 36 Holstein crossbred steers (aged 22 months) with an average initial body weight of 453.0 ± 35.3 kg. The experimental units were randomly assigned to three different starch sources of concentrate diets: ground corn (GC), ground cassava (CA), or pineapple stem starch (PS) with two different feeding periods: (1) period 1 for 206 days or (2) period 2 for 344 days with six replicates per treatment (two steers per replication), arranged in a completely randomized design. The animals were slaughtered at the end of the experimental periods. After that, the feedlot performance, carcass characteristics, meat quality, and economic return were evaluated. The results showed that the steers fed PS had a greater weight gain, average daily gain, and lower feed: gain ratio when fed for 206 days than when fed for 344 days, but dry matter intake, carcass characteristics, meat quality, and fatty acids profile did not differ between treatments in both periods of feeding except C14:1 and C18:0. The steers fed PS showed the greatest economic return. As a substitute for cassava or corn, pineapple stem starch had no negative impact on the feedlot performance, carcass characteristics, and meat quality. These results indicate that pineapple stem starch could be a useful feedstuff for the feedlot steers diets as an alternative starch source.
Collapse
Affiliation(s)
- Anchalee Khongpradit
- Department of Animal Science, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom, 73140, Thailand
| | - Phoompong Boonsaen
- Department of Animal Science, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom, 73140, Thailand
| | - Nitipong Homwong
- Department of Animal Science, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom, 73140, Thailand
| | - Keiji Matsuba
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Yasuo Kobayashi
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Suriya Sawanon
- Department of Animal Science, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom, 73140, Thailand.
| |
Collapse
|
148
|
Anne D, Thierry A, Keisuke S, Michiyo M. Transformation of highly marbled meats under various cooking processes. Meat Sci 2022; 189:108810. [PMID: 35381569 DOI: 10.1016/j.meatsci.2022.108810] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 02/25/2022] [Accepted: 03/21/2022] [Indexed: 10/18/2022]
Abstract
Cooking induces modifications in meat structure and composition, affecting its sensory and nutritional properties. These changes depend on the cooking method and meat characteristics. In the present study, beef were cooked in three different ways-grilling, boiling, and sous-vide cooking-with two endpoint temperatures, 55 °C and 77 °C, to better understand the general impact of cooking on the structure of fatty meat. Light microscopy was used to visualize muscle, connective, and adipose tissues. After cooking, muscle fibers were more compact, which can be attributed to perimysium shrinkage and water transfer, for all cooking processes except grilling at 55 °C. The cross-sectional area of muscle fibers was not impacted by cooking, regardless of the temperature or cooking method. Connective tissue between adipocytes was affected by cooking at 77 °C, but not at 55 °C. Despite the cooking method used, cooking to well-done (77 °C) clearly affected the structure of the perimysium of beef, possibly because of collagen denaturation.
Collapse
Affiliation(s)
- Duconseille Anne
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Ikenodai 2, Tsukuba, Ibaraki 305-0901, Japan; Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement (INRAE), QuaPA, F-63122 Saint-Genès-Champanelle, France
| | - Astruc Thierry
- Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement (INRAE), QuaPA, F-63122 Saint-Genès-Champanelle, France
| | - Sasaki Keisuke
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Ikenodai 2, Tsukuba, Ibaraki 305-0901, Japan
| | - Motoyama Michiyo
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Ikenodai 2, Tsukuba, Ibaraki 305-0901, Japan.
| |
Collapse
|
149
|
Afzal A, Saeed F, Afzaal M, Maan AA, Ikram A, Hussain M, Usman I, Shah YA, Anjum W. The chemistry of flavor formation in meat and meat products in response to different thermal and non‐thermal processing techniques: an overview. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Atka Afzal
- Department of Food Science Government College University Faisalabad
| | - Farhan Saeed
- Department of Food Science Government College University Faisalabad
| | - Muhamamd Afzaal
- Department of Food Science Government College University Faisalabad
| | - Abid Aslam Maan
- National Institute of Food Science & Technology University of Agriculture Faisalabad
| | - Ali Ikram
- Department of Food Science Government College University Faisalabad
| | - Muzzamal Hussain
- Department of Food Science Government College University Faisalabad
| | - Ifrah Usman
- Department of Food Science Government College University Faisalabad
| | - Yasir Abass Shah
- Department of Food Science Government College University Faisalabad
| | - Waqas Anjum
- Department of Food Science Government College University Faisalabad
| |
Collapse
|
150
|
Tan L, Chen Z, Ruan Y, Xu H. Differential regulatory roles of microRNAs during intramuscular adipogenesis in Chinese Guizhou Congjiang Xiang pigs. Epigenetics 2022; 17:1800-1819. [PMID: 35695092 DOI: 10.1080/15592294.2022.2086675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Intramuscular fat development is regulated by a series of complicated processes, with non-coding RNA (ncRNA) such as microRNA (miRNA) having a critical role during intramuscular preadipocyte proliferation and differentiation in pigs. In the present study, the miRNA expression profiles of intramuscular preadipocytes from the longissimus dorsi muscle of Chinese Guizhou Congjiang Xiang pigs were detected by RNA-seq during various differentiation stages, namely, day 0 (D0), day 4 (D4), and day 8 (D8). A total of 67, 95, and 16 differentially expressed (DE) miRNAs were detected between D4 and D0, D8 and D0, and D8 and D4, respectively. According to gene ontology and Kyoto Encyclopedia of Genes analysis, target genes of DE miRNAs were enriched in categories and pathways related to lipid metabolic process, lipid biosynthetic process, as well as the PI3K-Akt, AMPK, and MAPK signalling pathways. Notably, miR-148a-3p was differentially expressed, with highest expressed abundance in D0, D4, and D8. Overexpression of miR-148a-3p in intramuscular preadipocytes increased cell proliferation and differentiation, and decreased apoptosis, in comparison to the knockdown of miR-148a-3p in intramuscular preadipocytes. Luciferase activity assays, quantitative polymerase-chain reaction, and western blot analysis confirmed that miR-148a-3p regulated adipogenesis by repressing PPARGC1A expression. Accordingly, the effect of miR-148a-3p mimic was attenuated by overexpression of PPARGC1A intramuscular preadipocytes. Furthermore, miR-148a-3p promoted intramuscular preadipocyte differentiation by inhibiting the AMPK/ACC/CPT1C signalling pathway. Taken together, we identified expression profiles of miRNAs in intramuscular preadipocytes and determined that miR-148a-3p acted as a promoter of adipogenesis.
Collapse
Affiliation(s)
- Lulin Tan
- College of Life Science, Guizhou University, Guiyang, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China.,Guizhou Animal Husbandry and Veterinary Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Zhaojun Chen
- The Potato Institute of Guizhou Province, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Yong Ruan
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
| | - Houqiang Xu
- College of Life Science, Guizhou University, Guiyang, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
| |
Collapse
|