101
|
Affiliation(s)
- Feng Xian
- Department
of Chemistry and
Biochemistry, Florida State University,
95 Chieftain Way, Tallahassee, Florida 32310-4390, United States
| | - Christopher L. Hendrickson
- Department
of Chemistry and
Biochemistry, Florida State University,
95 Chieftain Way, Tallahassee, Florida 32310-4390, United States
- Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, 1800
East Paul Dirac Drive, Tallahassee, Florida 32310-4005, United States
| | - Alan G. Marshall
- Department
of Chemistry and
Biochemistry, Florida State University,
95 Chieftain Way, Tallahassee, Florida 32310-4390, United States
- Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, 1800
East Paul Dirac Drive, Tallahassee, Florida 32310-4005, United States
| |
Collapse
|
102
|
MANRI N, TAKEGAWA Y, FUJITANI N, KANEKO A, HIRABAYASHI A, NISHIMURA SI, SAKAMOTO T. Determination of O-Glycosylation Heterogeneity Using a Mass-Spectrometric Method Retaining Sugar Modifications. ANAL SCI 2012; 28:723-7. [DOI: 10.2116/analsci.28.723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
| | | | - Naoki FUJITANI
- Graduate School of Advanced Life Science, Hokkaido University
| | | | | | | | | |
Collapse
|
103
|
Lee S, Valentine SJ, Reilly JP, Clemmer DE. Analyzing a Mixture of Disaccharides by IMS-VUVPD-MS. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2012; 309:161-167. [PMID: 22518093 PMCID: PMC3327510 DOI: 10.1016/j.ijms.2011.09.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Comparative analyses utilizing collision induced dissociation (CID) and vacuum ultraviolet photodissociation (VUVPD) for seven isobaric disaccharides have been performed in order to differentiate the linkage type and anomeric configuration of the isomers. Although an individual CID spectrum of a disaccharide ion provides information related to its structure, CID does not sufficiently differentiate mixture components due to the identical mass-to-charge values of most of the intense fragments. In contrast to the ambiguity of the CID analyses for the disaccharide mixture, VUVPD (157 nm) generates unique fragments for each disaccharide ion that are useful for distinguishing individual components from the mixture. When combined with a gas-phase ion mobility separation of the ions, the identification of each component from the mixture can be obtained.
Collapse
|
104
|
Hart-Smith G, Raftery MJ. Detection and characterization of low abundance glycopeptides via higher-energy C-trap dissociation and orbitrap mass analysis. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:124-140. [PMID: 22083589 DOI: 10.1007/s13361-011-0273-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 10/05/2011] [Accepted: 10/06/2011] [Indexed: 05/31/2023]
Abstract
Broad-scale mass spectrometric analyses of glycopeptides are constrained by the considerable complexity inherent to glycoproteomics, and techniques are still being actively developed to address the associated analytical difficulties. Here we apply Orbitrap mass analysis and higher-energy C-trap dissociation (HCD) to facilitate detailed insights into the compositions and heterogeneity of complex mixtures of low abundance glycopeptides. By generating diagnostic oxonium product ions at mass measurement errors of <5 ppm, highly selective glycopeptide precursor ion detections are made at sub-fmol limits of detection: analyses of proteolytic digests of a hen egg glycoprotein mixture detect 88 previously uncharacterized glycopeptides from 666 precursor ions selected for MS/MS, with only one false positive due to co-fragmentation of a non-glycosylated peptide with a glycopeptide. We also demonstrate that by (1) identifying multiple series of glycoforms using high mass accuracy single stage MS spectra, and (2) performing product ion scans at optimized HCD collision energies, the identification of peptide + N-acetylhexosamine (HexNAc) ions (Y1 ions) can be readily achieved at <5 ppm mass measurement errors. These data allow base peptide sequences and glycan compositional information to be attained with high confidence, even for glycopeptides that produce weak precursor ion signals and/or low quality MS/MS spectra. The glycopeptides characterized from low fmol abundances using these methods allow two previously unreported glycosylation sites on the Gallus gallus protein ovoglycoprotein (amino acids 82 and 90) to be confirmed; considerable glycan heterogeneities at amino acid 90 of ovoglycoprotein, and amino acids 34 and 77 of Gallus gallus ovomucoid are also revealed.
Collapse
Affiliation(s)
- Gene Hart-Smith
- NSW Systems Biology Initiative, University of New South Wales, Sydney, New South Wales 2052, Australia.
| | | |
Collapse
|
105
|
Determination of Peptide and Protein Disulfide Linkages by MALDI Mass Spectrometry. Top Curr Chem (Cham) 2012; 331:79-116. [DOI: 10.1007/128_2012_384] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
106
|
Song H, Håkansson K. Electron detachment dissociation and negative ion infrared multiphoton dissociation of electrosprayed intact proteins. Anal Chem 2011; 84:871-6. [PMID: 22175525 DOI: 10.1021/ac202909z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In top-down proteomics, intact gaseous proteins are fragmented in a mass spectrometer by, e.g., electron capture dissociation (ECD) to obtain structural information. By far, most top-down approaches involve dissociation of protein cations. However, in electrospray ionization of phosphoproteins, the high acidity of phosphate may contribute to the formation of intramolecular hydrogen bonds or salt bridges, which influence subsequent fragmentation behavior. Other acidic proteins or proteins with regions containing multiple acidic residues may also be affected similarly. Negative ion mode, on the other hand, may enhance deprotonation and unfolding of multiply phosphorylated or highly acidic protein regions. Here, activated ion electron detachment dissociation (AI-EDD) and negative ion infrared multiphoton dissociation (IRMPD) were employed to investigate the fragmentation of intact proteins, including multiply phosphorylated β-casein, calmodulin, and glycosylated ribonuclease B. Compared to AI-ECD and positive ion IRMPD, AI-EDD and negative ion IRMPD provide complementary protein sequence information, particularly in regions with high acidity, including the multiply phosphorylated region of β-casein.
Collapse
|
107
|
Takahashi K, Smith AD, Poulsen K, Kilian M, Julian BA, Mestecky J, Novak J, Renfrow MB. Naturally occurring structural isomers in serum IgA1 o-glycosylation. J Proteome Res 2011; 11:692-702. [PMID: 22067045 DOI: 10.1021/pr200608q] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
IgA is the most abundantly produced antibody and plays an important role in the mucosal immune system. Human IgA is represented by two isotypes, IgA1 and IgA2. The major structural difference between these two subclasses is the presence of nine potential sites of O-glycosylation in the hinge region between the first and second constant region domains of the heavy chain. Thr(225), Thr(228), Ser(230), Ser(232) and Thr(236) have been identified as the predominant sites of O-glycan attachment. The range and distribution of O-glycan chains at each site within the context of adjacent sites in this clustered region create a complex heterogeneity of surface epitopes that is incompletely defined. We previously described the analysis of IgA1 O-glycan heterogeneity by use of high resolution LC-MS and electron capture dissociation tandem MS to unambiguously localize all amino acid attachment sites in IgA1 (Ale) myeloma protein. Here, we report the identification and elucidation of IgA1 O-glycopeptide structural isomers that occur based on amino acid position of the attached glycans (positional isomers) and the structure of the O-glycan chains at individual sites (glycan isomers). These isomers are present in a model IgA1 (Mce1) myeloma protein and occur naturally in normal human serum IgA1. Variable O-glycan chains attached to Ser(230), Thr(233) or Thr(236) produce the predominant positional isomers, including O-glycans composed of a single GalNAc residue. These findings represent the first definitive identification of structural isomeric IgA1 O-glycoforms, define the single-site heterogeneity for all O-glycan sites in a single sample, and have implications for defining epitopes based on clustered O-glycan variability.
Collapse
Affiliation(s)
- Kazuo Takahashi
- UAB Biomedical FT-ICR MS Laboratory, MCLM 570, 1530 3rd Avenue South, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | |
Collapse
|
108
|
Chen X, Fung YME, Chan WYK, Wong PS, Yeung HS, Chan TWD. Transition metal ions: charge carriers that mediate the electron capture dissociation pathways of peptides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:2232-2245. [PMID: 21952786 DOI: 10.1007/s13361-011-0246-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 08/31/2011] [Accepted: 09/04/2011] [Indexed: 05/31/2023]
Abstract
Electron capture dissociation (ECD) of model peptides adducted with first row divalent transition metal ions, including Mn(2+), Fe(2+), Co(2+), Ni(2+), Cu(2+), and Zn(2+), were investigated. Model peptides with general sequence of ZGGGXGGGZ were used as probes to unveil the ECD mechanism of metalated peptides, where X is either V or W; and Z is either R or N. Peptides metalated with different divalent transition metal ions were found to generate different ECD tandem mass spectra. ECD spectra of peptides metalated by Mn(2+) and Zn(2+) were similar to those generated by ECD of peptides adducted with alkaline earth metal ions. Series of c-/z-type fragment ions with and without metal ions were observed. ECD of Fe(2+), Co(2+), and Ni(2+) adducted peptides yielded abundant metalated a-/y-type fragment ions; whereas ECD of Cu(2+) adducted peptides generated predominantly metalated b-/y-type fragment ions. From the present experimental results, it was postulated that electronic configuration of metal ions is an important factor in determining the ECD behavior of the metalated peptides. Due presumably to the stability of the electronic configuration, metal ions with fully-filled (i.e., Zn(2+)) and half filled (i.e., Mn(2+)) d-orbitals might not capture the incoming electron. Dissociation of the metal ions adducted peptides would proceed through the usual ECD channel(s) via "hot-hydrogen" or "superbase" intermediates, to form series of c-/z(•)- fragments. For other transition metal ions studied, reduction of the metal ions might occur preferentially. The energy liberated by the metal ion reduction would provide enough internal energy to generate the "slow-heating" type of fragment ions, i.e., metalated a-/y- fragments and metalated b-/y- fragments.
Collapse
Affiliation(s)
- Xiangfeng Chen
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | | | | | | | | | | |
Collapse
|
109
|
Zhou W, Håkansson K. Structural Characterization of Carbohydrates by Fourier Transform Tandem Mass Spectrometry. CURR PROTEOMICS 2011; 8:297-308. [PMID: 22389641 PMCID: PMC3289259 DOI: 10.2174/157016411798220826] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fourier transform tandem mass spectrometry (MS/MS) provides high mass accuracy, high sensitivity, and analytical versatility and has therefore emerged as an indispensable tool for structural elucidation of biomolecules. Glycosylation is one of the most common posttranslational modifications, occurring in ~50% of proteins. However, due to the structural diversity of carbohydrates, arising from non-template driven biosynthesis, achievement of detailed structural insight is highly challenging. This review briefly discusses carbohydrate sample preparation and ionization methods, and highlights recent developments in alternative high-resolution MS/MS strategies, including infrared multiphoton dissociation (IRMPD), electron capture dissociation (ECD), and electron detachment dissociation (EDD), for carbohydrates with a focus on glycans and proteoglycans from mammalian glycoproteins.
Collapse
Affiliation(s)
- Wen Zhou
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Kristina Håkansson
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
110
|
Jahouh F, Hou SJ, Kováč P, Banoub JH. Determination of the glycation sites of Bacillus anthracis neoglycoconjugate vaccine by MALDI-TOF/TOF-CID-MS/MS and LC-ESI-QqTOF-tandem mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2011; 46:993-1003. [PMID: 22012665 PMCID: PMC3427925 DOI: 10.1002/jms.1980] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We present herein an efficient mass spectrometric method for the localization of the glycation sites of a model neoglycoconjugate vaccine formed by a construct of the tetrasaccharide side chain of the Bacillus anthracis exosporium and the protein carrier bovine serum albumin. The glycoconjugate was digested with both trypsin and GluC V8 endoproteinases, and the digests were then analyzed by MALDI-TOF/TOF-CID-MS/MS and nano-LC-ESI-QqTOF-CID-MS/MS. The sequences of the unknown peptides analyzed by MALDI-TOF/TOF-CID-MS/MS, following digestion with the GluC V8 endoproteinase, allowed us to recognize three glycopeptides whose glycation occupancies were, respectively, on Lys 235, Lys 420, and Lys 498. Similarly, the same analysis was performed on the tryptic digests, which permitted us to recognize two glycation sites on Lys 100 and Lys 374. In addition, we have also used LC-ESI-QqTOF-CID-MS/MS analysis for the identification of the tryptic digests. However, this analysis identified a higher number of glycopeptides than would be expected from a glycoconjugate composed of a carbohydrate-protein ratio of 5.4:1, which would have resulted in glycation occupancies of 18 specific sites. This discrepancy was due to the large number of glycoforms formed during the synthetic carbohydrate-spacer-carrier protein conjugation. Likewise, the LC-ESI-QqTOF-MS/MS analysis of the GluC V8 digest also identified 17 different glycation sites on the synthetic glycoconjugate.
Collapse
Affiliation(s)
- Farid Jahouh
- Department of Chemistry, Memorial University of Newfoundland, Saint John’s, NL, Canada
| | - Shu-jie Hou
- NIDDK, LBC, National Institutes of Health, Bethesda, MD 20892-0815, USA
| | - Pavol Kováč
- NIDDK, LBC, National Institutes of Health, Bethesda, MD 20892-0815, USA
| | - Joseph H. Banoub
- Department of Chemistry, Memorial University of Newfoundland, Saint John’s, NL, Canada
- Science Branch, Special Projects, Department of Fisheries and Oceans Canada, Saint John’s, NL A1C 5X1, Canada
| |
Collapse
|
111
|
Glycoproteomics-based identification of cancer biomarkers. INTERNATIONAL JOURNAL OF PROTEOMICS 2011; 2011:601937. [PMID: 22084691 PMCID: PMC3195811 DOI: 10.1155/2011/601937] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 07/16/2011] [Indexed: 01/06/2023]
Abstract
Protein glycosylation is one of the most common posttranslational modifications in mammalian cells. It is involved in many biological pathways and molecular functions and is well suited for proteomics-based disease investigations. Aberrant protein glycosylation may be associated with disease processes. Specific glycoforms of glycoproteins may serve as potential biomarkers for the early detection of disease or as biomarkers for the evaluation of therapeutic efficacy for treatment of cancer, diabetes, and other diseases. Recent technological developments, including lectin affinity chromatography and mass spectrometry, have provided researchers the ability to obtain detailed information concerning protein glycosylation. These in-depth investigations, including profiling and quantifying glycoprotein expression, as well as comprehensive glycan structural analyses may provide important information leading to the development of disease-related biomarkers. This paper describes methodologies for the detection of cancer-related glycoprotein and glycan structural alterations and briefly summarizes several current cancer-related findings.
Collapse
|
112
|
Zhang Y, Giboulot A, Zivy M, Valot B, Jamet E, Albenne C. Combining various strategies to increase the coverage of the plant cell wall glycoproteome. PHYTOCHEMISTRY 2011; 72:1109-23. [PMID: 21109274 DOI: 10.1016/j.phytochem.2010.10.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 10/22/2010] [Accepted: 10/26/2010] [Indexed: 05/18/2023]
Abstract
Glycoproteomics recently became a very active field, mostly in mammals. The first part of this paper consists of a mini-review on the strategies used in glycoproteomics, namely methods for enrichment in glycoproteins and mass spectrometry (MS) techniques currently used. In a second part, these strategies are applied to the cell wall glycoproteome of etiolated hypocotyls of Arabidopsis thaliana, showing their complementarity. Several sub-glycoproteomes were obtained by: (i) affinity chromatography on concanavaline A (ConA) and analysis of glycoproteins by MALDI-TOF MS; (ii) multidimensional lectin chromatography (using AIL, PNA, ConA and WGA lectins) and subsequent identification of glycoproteins by MALDI-TOF MS and LC-MS/MS; (iii) boronic acid chromatography followed by identification of glycoproteins by MALDI-TOF MS. Altogether, 127 glycoproteins were identified. Most glycoproteins were found to be putative N-glycoproteins and N-glycopeptides were predicted from MS data using the ProTerNyc bioinformatics software.
Collapse
Affiliation(s)
- Yu Zhang
- Université de Toulouse, UPS, UMR 5546, Surfaces Cellulaires et Signalisation chez les Végétaux, BP 42617, F-31326 Castanet-Tolosan, France
| | | | | | | | | | | |
Collapse
|
113
|
Froehlich JW, Barboza M, Chu C, Lerno LA, Clowers BH, Zivkovic AM, German JB, Lebrilla CB. Nano-LC-MS/MS of glycopeptides produced by nonspecific proteolysis enables rapid and extensive site-specific glycosylation determination. Anal Chem 2011; 83:5541-7. [PMID: 21661761 DOI: 10.1021/ac2003888] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Given the biological importance of glycosylation on proteins, the identification of protein glycosylation sites is integral to understanding broader biological structure and function. Unfortunately, the determination of the microheterogeneity at the site of glycosylation still remains a significant challenge. Nanoflow liquid chromatography with tandem mass spectrometry provides both separation of glycopeptides and the ability to determine glycan composition and site-specific glycosylation. However, because of the size of glycopeptides, they are not often amenable to tandem MS. In this work, proteins are digested with multiple proteases to produce glycopeptides that are of suitable size for tandem MS analysis. The conditions for collision-induced dissociation are optimized to obtain diagnostic ions that maximize glycan and peptide information. The method is applied to glycoproteins with contrasting glycans and multiple sites of glycosylation and identifies multiple glycan compositions at each individual glycosylation site. This method provides an important improvement in the routine determination of glycan microheterogeneity by mass spectrometry.
Collapse
Affiliation(s)
- John W Froehlich
- Department of Chemistry, University of California, Davis, California 95616, United States
| | | | | | | | | | | | | | | |
Collapse
|
114
|
Picariello G, Mamone G, Addeo F, Ferranti P. The frontiers of mass spectrometry-based techniques in food allergenomics. J Chromatogr A 2011; 1218:7386-98. [PMID: 21737089 DOI: 10.1016/j.chroma.2011.06.033] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 06/06/2011] [Accepted: 06/07/2011] [Indexed: 12/20/2022]
Abstract
In the last years proteomic science has started to provide an important contribution to the disclosure of basic aspects of food-related diseases. Among these, the identification of proteins involved in food allergy and their mechanism of activation of toxicity. Elucidation of these key issues requires the integration of clinical, immunological, genomic and proteomic approaches. These combined research efforts are aimed to obtain structural and functional information to assist the development of novel, more reliable and powerful diagnostic protocols alternative to the currently available procedures, mainly based on food challenge tests. Another crucial aspect related to food allergy is the need for methods to detect trace amounts of allergenic proteins in foods. Mass spectrometry is the only non-immunological method for high-specificity and high-sensitivity detection of allergens in foods. Nowadays, once provided the appropriate sample handling and the correct operative conditions, qualitative and quantitative determination of allergens in foods and ingredients can be efficiently obtained by MALDI-TOF-MS and LC-MS/MS methods, with limits of detection and quantification in the low-ppb range. The availability of accurate and fast alternatives to immunological ELISA tests may also enable the development of novel therapeutic strategies and food processing technologies to aid patients with food allergy or intolerance, and to support allergen labelling and certification processes, all issues where the role of proteomic science is emerging.
Collapse
Affiliation(s)
- Gianluca Picariello
- Istituto di Scienze dell'Alimentazione (ISA) - CNR, Via Roma 52 A/C, 83100 Avellino, Italy
| | | | | | | |
Collapse
|
115
|
Cook SL, Jackson GP. Metastable atom-activated dissociation mass spectrometry of phosphorylated and sulfonated peptides in negative ion mode. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:1088-99. [PMID: 21953050 DOI: 10.1007/s13361-011-0123-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 03/02/2011] [Accepted: 03/03/2011] [Indexed: 05/16/2023]
Abstract
The dissociation behavior of phosphorylated and sulfonated peptide anions was explored using metastable atom-activated dissociation mass spectrometry (MAD-MS) and collision-induced dissociation (CID). A beam of high kinetic energy helium (He) metastable atoms was exposed to isolated phosphorylated and sulfonated peptides in the 3- and 2- charge states. Unlike CID, where phosphate losses are dominant, the major dissociation channels observed using MAD were C(α) - C peptide backbone cleavages and neutral losses of CO(2), H(2)O, and [CO(2) + H(2)O] from the charge reduced (oxidized) product ion, consistent with an electron detachment dissociation (EDD) mechanism such as Penning ionization. Regardless of charge state or modification, MAD provides ample backbone cleavages with little modification loss, which allows for unambiguous PTM site determination. The relative abundance of certain fragment ions in MAD is also demonstrated to be somewhat sensitive to the number and location of deprotonation sites, with backbone cleavage somewhat favored adjacent to deprotonated sites like aspartic acid residues. MAD provides a complementary dissociation technique to CID, ECD, ETD, and EDD for peptide sequencing and modification identification. MAD offers the unique ability to analyze highly acidic peptides that contain few to no basic amino acids in either negative or positive ion mode.
Collapse
Affiliation(s)
- Shannon L Cook
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701-2979, USA
| | | |
Collapse
|
116
|
Kosako H, Nagano K. Quantitative phosphoproteomics strategies for understanding protein kinase-mediated signal transduction pathways. Expert Rev Proteomics 2011; 8:81-94. [PMID: 21329429 DOI: 10.1586/epr.10.104] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Protein phosphorylation is a central regulatory mechanism of cell signaling pathways. This highly controlled biochemical process is involved in most cellular functions, and defects in protein kinases and phosphatases have been implicated in many diseases, highlighting the importance of understanding phosphorylation-mediated signaling networks. However, phosphorylation is a transient modification, and phosphorylated proteins are often less abundant. Therefore, the large-scale identification and quantification of phosphoproteins and their phosphorylation sites under different conditions are one of the most interesting and challenging tasks in the field of proteomics. Both 2D gel electrophoresis and liquid chromatography-tandem mass spectrometry serve as key phosphoproteomic technologies in combination with prefractionation, such as enrichment of phosphorylated proteins/peptides. Recently, new possibilities for quantitative phosphoproteomic analysis have been offered by technical advances in sample preparation, enrichment, separation, instrumentation, quantification and informatics. In this article, we present an overview of several strategies for quantitative phosphoproteomics and discuss how phosphoproteomic analysis can help to elucidate signaling pathways that regulate various cellular processes.
Collapse
Affiliation(s)
- Hidetaka Kosako
- Division of Disease Proteomics, Institute for Enzyme Research, The University of Tokushima, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan.
| | | |
Collapse
|
117
|
Lattová E, Bartusik D, Spicer V, Jellusova J, Perreault H, Tomanek B. Alterations in glycopeptides associated with herceptin treatment of human breast carcinoma mcf-7 and T-lymphoblastoid cells. Mol Cell Proteomics 2011; 10:M111.007765. [PMID: 21610100 DOI: 10.1074/mcp.m111.007765] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The therapeutic humanized monoclonal antibody IgG1 known as Herceptin® has shown remarkable antitumor effects. Although this type of therapy has increased the cancer-free survival of patients, not all tumors respond to this treatment and cancers often develop resistance to the antibody. Despite the fact that Herceptin function has been extensively studied, the precise mechanism underlying its antitumor activity still remains incompletely defined. We previously demonstrated on human breast MCF-7 carcinoma and T-lymphoblastoid CEM cells that monoclonal antibody in combination with Lipoplex consisting of Lipofectamine mixed with plasmid DNA showed a more profound effect on cancer cell viability than antibody alone. The analyses of N-glycans isolated from cancer cells showed dramatic differences in profiles when cells were exposed to Herceptin. Moreover, the investigation of glycosylated peptides from the same cancer cell models after treatment revealed further alterations in the post-translational modifications. Tandem mass spectra obtained from the samples treated confirmed the presence of a series of glycopeptides bearing characteristic oligosaccharides as described in IgG1. However some of them differed by mass differences that corresponded to peptide backbones not described previously and more of them were detected from Herceptin treated samples than from cells transfected with Heceptin/Lipoplex. The results indicate that the presence of Lipoplex prevents antibody transformation and elongates its proper function. The better understanding of the multipart changes described in the glycoconjugates could provide new insights into the mechanism by which antibody induces regression in cancers.
Collapse
Affiliation(s)
- Erika Lattová
- Chemistry Department, University of Manitoba, 144 Dysart Road, Winnipeg, MB R3T2N2, Canada
| | | | | | | | | | | |
Collapse
|
118
|
Mosely JA, Smith MJP, Prakash AS, Sims M, Bristow AWT. Electron-Induced Dissociation of Singly Charged Organic Cations as a Tool for Structural Characterization of Pharmaceutical Type Molecules. Anal Chem 2011; 83:4068-75. [DOI: 10.1021/ac200045n] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jackie A. Mosely
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, United Kingdom
| | - Michael J. P. Smith
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, United Kingdom
| | - Aruna S. Prakash
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, United Kingdom
| | - Martin Sims
- Analytical Sciences, Pharmaceutical Development, AstraZeneca, Macclesfield, Cheshire, SK10 2NA, United Kingdom
| | - Anthony W. T. Bristow
- Analytical Sciences, Pharmaceutical Development, AstraZeneca, Macclesfield, Cheshire, SK10 2NA, United Kingdom
| |
Collapse
|
119
|
Zampronio CG, Blackwell G, Penn CW, Cooper HJ. Novel glycosylation sites localized in Campylobacter jejuni flagellin FlaA by liquid chromatography electron capture dissociation tandem mass spectrometry. J Proteome Res 2011; 10:1238-45. [PMID: 21158479 PMCID: PMC3049644 DOI: 10.1021/pr101021c] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Glycosylation of flagellin in Campylobacter jejuni is essential for motility and virulence. It is well-known that flagellin from C. jejuni 81−176 is glycosylated by pseudaminic acid and its acetamidino derivative, and that Campylobactor coli VC167 flagellin is glycosylated by legionaminic acid and its derivatives. Recently, it was shown, by use of a metabolomics approach, that C. jejuni 11168 is glycosylated by dimethyl glyceric acid derivatives of pseudaminic acid, but the sites of glycosylation were not confirmed. Here, we apply an online liquid chromatography electron capture dissociation (ECD) tandem mass spectrometry approach to localize sites of glycosylation in flagellin from C. jejuni 11168. Flagellin A is glycosylated by a dimethyl glyceric acid derivative of pseudaminic acid at Ser181, Ser207 and either Thr464 or Thr 465; and by a dimethyl glyceric acid derivative of acetamidino pseudaminic acid at Ser181 and Ser207. For comparison, on-line liquid chromatography collision-induced dissociation of the tryptic digests was performed, but it was not possible to assign sites of glycosylation by that method. Liquid chromatography electron capture dissociation tandem mass spectrometry reveals that flagellin A from C. jejuni 11168 is glycosylated by a dimethyl glyceric acid derivative of pseudaminic acid at Ser181, Ser207 and either Thr464 or Thr465; and by a dimethyl glyceric acid at Ser181 and Ser207.
Collapse
Affiliation(s)
- Cleidiane G Zampronio
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, U.K
| | | | | | | |
Collapse
|
120
|
Creese AJ, Grant MM, Chapple ILC, Cooper HJ. On-line liquid chromatography neutral loss-triggered electron transfer dissociationmass spectrometry for the targeted analysis of citrullinated peptides. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2011; 3:259-266. [PMID: 32938022 DOI: 10.1039/c0ay00414f] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Citrullination is a post-translational modification of proteins which deiminates arginine, increasing the mass by 0.98 Da. Protein citrullination is a known biomarker for multiple sclerosis and a potential biomarker for rheumatoid arthritis. Collision-induced dissociation (CID) tandem mass spectrometry of citrullinated peptides produces a dominant neutral loss of isocyanic acid (HNCO, -43 Da) from the deiminated arginine amino acid side-chain. Here we show that the loss of isocyanic acid in CID can be used as a trigger for targeted analysis by supplemental activation electron transfer dissociation (saETD). Unlike CID, post-translational modifications (PTMs) are retained on peptide backbone fragments produced by saETD, improving the confidence in assignment of both peptide sequence and PTM site. The method is demonstrated for four synthetic peptides spiked into complex trypsin-digested saliva samples and a commercial six protein tryptic mixture. In contrast to CID alone, the neutral-loss triggered ETD approach results in high confidence identification of three of the four peptides, including an unexpected disulfide-bound dimer, and zero false positives.
Collapse
Affiliation(s)
- Andrew J Creese
- School of Dentistry, Periodontal Research Group, University of Birmingham, St Chads Queensway, Birmingham, B4 6NN, UK
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Melissa M Grant
- School of Dentistry, Periodontal Research Group, University of Birmingham, St Chads Queensway, Birmingham, B4 6NN, UK
| | - Iain L C Chapple
- School of Dentistry, Periodontal Research Group, University of Birmingham, St Chads Queensway, Birmingham, B4 6NN, UK
| | - Helen J Cooper
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
121
|
Chen X, Chan WYK, Wong PS, Yeung HS, Chan TWD. Formation of peptide radical cations (m+·) in electron capture dissociation of peptides adducted with group IIB metal ions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:233-244. [PMID: 21472583 DOI: 10.1007/s13361-010-0035-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 11/09/2010] [Accepted: 11/11/2010] [Indexed: 05/30/2023]
Abstract
Peptides adducted with different divalent Group IIB metal ions (Zn(2+), Cd(2+), and Hg(2+)) were found to give very different ECD mass spectra. ECD of Zn(2+) adducted peptides gave series of c-/z-type fragment ions with and without metal ions. ECD of Cd(2+) and Hg(2+) adducted model peptides gave mostly a-type fragment ions with M(+•) and fragment ions corresponding to losses of neutral side chain from M(+•). No detectable a-ions could be observed in ECD spectra of Zn(2+) adducted peptides. We rationalized the present findings by invoking both proton-electron recombination and metal-ion reduction processes. As previously postulated, divalent metal-ions adducted peptides could adopt several forms, including (a) [M + Cat](2+), (b) [(M + Cat - H) + H](2+), and (c) [(M + Cat - 2H) + 2H](2+). The relative population of these precursor ions depends largely on the acidity of the metal-ion peptide complexes. Peptides adducted with divalent metal-ions of small ionic radii (i.e., Zn(2+)) would form predominantly species (b) and (c); whereas peptides adducted with metal ions of larger ionic radii (i.e., Hg(2+)) would adopt predominantly species (a). Species (b) and (c) are believed to be essential for proton-electron recombination process to give c-/z-type fragments via the labile ketylamino radical intermediates. Species (c) is particularly important for the formation of non-metalated c-/z-type fragments. Without any mobile protons, species (a) are believed to undergo metal ion reduction and subsequently induce spontaneous electron transfer from the peptide moiety to the charge-reduced metal ions. Depending on the exothermicity of the electron transfer reaction, the peptide radical cations might be formed with substantial internal energy and might undergo further dissociation to give structural related fragment ions.
Collapse
Affiliation(s)
- Xiangfeng Chen
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, SAR, China
| | | | | | | | | |
Collapse
|
122
|
Cook SL, Jackson GP. Characterization of tyrosine nitration and cysteine nitrosylation modifications by metastable atom-activation dissociation mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:221-232. [PMID: 21472582 DOI: 10.1007/s13361-010-0041-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 11/13/2010] [Accepted: 11/14/2010] [Indexed: 05/30/2023]
Abstract
The fragmentation behavior of nitrated and S-nitrosylated peptides were studied using collision induced dissociation (CID) and metastable atom-activated dissociation mass spectrometry (MAD-MS). Various charge states, such as 1+, 2+, 3+, 2-, of modified and unmodified peptides were exposed to a beam of high kinetic energy helium (He) metastable atoms resulting in extensive backbone fragmentation with significant retention of the post-translation modifications (PTMs). Whereas the high electron affinity of the nitrotyrosine moiety quenches radical chemistry and fragmentation in electron capture dissociation (ECD) and electron transfer dissociation (ETD), MAD does produce numerous backbone cleavages in the vicinity of the modification. Fragment ions of nitrosylated cysteine modifications typically exhibit more abundant neutral losses than nitrated tyrosine modifications because of the extremely labile nature of the nitrosylated cysteine residues. However, compared with CID, MAD produced between 66% and 86% more fragment ions, which preserved the labile -NO modification. MAD was also able to differentiate I/L residues in the modified peptides. MAD is able to induce radical ion chemistry even in the presence of strong radical traps and therefore offers unique advantages to ECD, ETD, and CID for determination of PTMs such as nitrated and S-nitrosylated peptides.
Collapse
Affiliation(s)
- Shannon L Cook
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701-2979, USA
| | | |
Collapse
|
123
|
Yoo HJ, Håkansson K. Determination of Phospholipid Regiochemistry by Ag(I) Adduction and Tandem Mass Spectrometry. Anal Chem 2011; 83:1275-83. [DOI: 10.1021/ac102167q] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hyun Ju Yoo
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Kristina Håkansson
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
124
|
Hashimoto R, Fujitani N, Takegawa Y, Kurogochi M, Matsushita T, Naruchi K, Ohyabu N, Hinou H, Gao XD, Manri N, Satake H, Kaneko A, Sakamoto T, Nishimura SI. An Efficient Approach for the Characterization of Mucin-Type Glycopeptides: The Effect of O-Glycosylation on the Conformation of Synthetic Mucin Peptides. Chemistry 2011; 17:2393-404. [DOI: 10.1002/chem.201002754] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2010] [Indexed: 01/19/2023]
|
125
|
Rosenqvist H, Ye J, Jensen ON. Analytical strategies in mass spectrometry-based phosphoproteomics. Methods Mol Biol 2011; 753:183-213. [PMID: 21604124 DOI: 10.1007/978-1-61779-148-2_13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Phosphoproteomics, the systematic study of protein phosphorylation events and cell signaling networks in cells and tissues, is a rapidly evolving branch of functional proteomics. Current phosphoproteomics research provides a large toolbox of strategies and protocols that may assist researchers to reveal key regulatory events and phosphorylation-mediated processes in the cell and in whole organisms. We present an overview of sensitive and robust analytical methods for phosphopeptide analysis, including calcium phosphate precipitation and affinity enrichment methods such as IMAC and TiO(2). We then discuss various tandem mass spectrometry approaches for phosphopeptide sequencing and quantification, and we consider aspects of phosphoproteome data analysis and interpretation. Efficient integration of these stages of phosphoproteome analysis is highly important to ensure a successful outcome of large-scale experiments for studies of phosphorylation-mediated protein regulation.
Collapse
Affiliation(s)
- Heidi Rosenqvist
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, Scotland, UK
| | | | | |
Collapse
|
126
|
Tousi F, Hancock WS, Hincapie M. Technologies and strategies for glycoproteomics and glycomics and their application to clinical biomarker research. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2011; 3:20-32. [PMID: 32938106 DOI: 10.1039/c0ay00413h] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Several approaches and technologies are currently available to study the glycosylated proteome (glycoproteomics) or the entire repertoire of glycans in a biological system (glycomics). The biological importance of glycosylation has driven the development of novel, sensitive separation and detection methods. New and improved methodologies, such as high throughput array systems and liquid chromatography-mass spectrometry for glycan profiling and sequencing, are emerging and are being applied in clinical research. A major thrust of glycoproteomics and glycomic clinical research is the application of these analytical tools to cancer research and is aimed at the discovery of glycan-based biomarkers for diagnosis of early stage human cancers, monitoring disease progression, measuring response to therapy, and detecting recurrence. The identification of cancer biomarkers requires a multidisciplinary approach and therefore this review discusses the strategies, technologies and methods currently used for N-glycoprotein/glycanbiomarker research.
Collapse
Affiliation(s)
- Fateme Tousi
- Barnett Institute and Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA.
| | - William S Hancock
- Barnett Institute and Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA.
| | - Marina Hincapie
- Barnett Institute and Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
127
|
|
128
|
Jones AW, Cooper HJ. Dissociation techniques in mass spectrometry-based proteomics. Analyst 2011; 136:3419-29. [DOI: 10.1039/c0an01011a] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
129
|
Wang X, Emmett MR, Marshall AG. Liquid chromatography electrospray ionization Fourier transform ion cyclotron resonance mass spectrometric characterization of N-linked glycans and glycopeptides. Anal Chem 2010; 82:6542-8. [PMID: 20586410 DOI: 10.1021/ac1008833] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We combine liquid chromatography, electrospray ionization, and Fourier transform ion cyclotron resonance mass spectrometry (LC ESI FT-ICR MS) to determine the sugar composition, linkage pattern, and attachment sites of N-linked glycans. N-linked glycans were enzymatically released from glycoproteins with peptide N-glycosidase F, followed by purification with graphitized carbon cartridge solid-phase extraction and separation over a TSK-Gel Amide80 column under hydrophilic interaction chromatography (HILIC) conditions. Unique glycopeptide compositions were determined from experimentally measured masses for different combinations of glycans and glycopeptides. The method was validated by identifying four peptides glycosylated so as to yield 12 glycopeptides unique in glycan composition for the standard glycoprotein, bovine alpha-2-HS-glycoprotein. We then assigned a total of 137 unique glycopeptide compositions from 18 glycoproteins from fetal bovine serum, and the glycan structures for most of the assigned glycopeptides were heterogeneous. Highly accurate FT-ICR mass measurement is essential for reliable identification.
Collapse
Affiliation(s)
- Xu Wang
- Department of Chemistry and Biochemistry, 95 Chieftain Way, Florida State University, Tallahassee, Florida 32306, USA
| | | | | |
Collapse
|
130
|
Lloyd JR, Hess S. Peptide fragmentation by corona discharge induced electrochemical ionization. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2010; 21:2051-2061. [PMID: 20869880 PMCID: PMC2991398 DOI: 10.1016/j.jasms.2010.08.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 08/24/2010] [Accepted: 08/24/2010] [Indexed: 05/29/2023]
Abstract
Fundamental studies have greatly improved our understanding of electrospray, including the underlying electrochemical reactions. Generally regarded as disadvantageous, we have recently shown that corona discharge (CD) can be used as an effective method to create a radical cation species [M](+·), thus optimizing the electrochemical reactions that occur on the surface of the stainless steel (SS) electrospray capillary tip. This technique is known as CD initiated electrochemical ionization (CD-ECI). Here, we report on the fundamental studies using CD-ECI to induce analytically useful in-source fragmentation of a range of molecules that complex transition metals. Compounds that have been selectively fragmented using CD-ECI include enolate forming phenylglycine containing peptides, glycopeptides, nucleosides, and phosphopeptides. Collision induced dissociation (CID) or other activation techniques were not necessary for CD-ECI fragmentation. A four step mechanism was proposed: (1) complexation using either Fe in the SS capillary tip material or Cu(II) as an offline complexation reagent; (2) electrochemical oxidation of the complexed metal and thus formation of a radical cation (e.g.; Fe - e(-) → Fe(+·)); (3) radical fragmentation of the complexed compound; (4) electrospray ionization of the fragmented neutrals. Fragmentation patterns resembling b- and y-type ions were observed and allowed the localization of the phosphorylation sites.
Collapse
Affiliation(s)
- John R. Lloyd
- Proteomics and Mass Spectrometry Facility, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Sonja Hess
- Proteome Exploration Laboratory, California Institute of Technology, Pasadena, CA
| |
Collapse
|
131
|
Jones AW, Cooper HJ. Probing the mechanisms of electron capture dissociation mass spectrometry with nitrated peptides. Phys Chem Chem Phys 2010; 12:13394-9. [PMID: 20830387 PMCID: PMC3071000 DOI: 10.1039/c0cp00623h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 08/05/2010] [Indexed: 11/21/2022]
Abstract
Previously we have shown that the presence of 3-nitrotyrosine within a peptide sequence severely depletes the peptide backbone fragments typically observed following electron capture dissociation (ECD) mass spectrometry. Instead, ECD of nitrated peptides is characterised by abundant losses of small neutrals (hydroxyl radicals, water and ammonia). Here, we investigate the origin of ammonia loss by comparing the ECD behaviour of lysine- and arginine-containing nitrated peptides, and their N-acetylated counterparts, and nitrated peptides containing no basic amino acid residues. The results reveal that ammonia loss derives from the N-terminus of the peptides, however, the key finding of this work is the insight provided into the hierarchy of various proposed ECD mechanisms: the Utah-Washington mechanism, the electron predator mechanism and the Oslo mechanism.
Collapse
Affiliation(s)
- Andrew W. Jones
- School of Biosciences , College of Life and Environmental Sciences , University of Birmingham , Edgbaston , Birmingham , B15 2TT , UK . ; Fax: +44 (0)121 414 5925 ; Tel: +44 (0)121 414 7527
| | - Helen J. Cooper
- School of Biosciences , College of Life and Environmental Sciences , University of Birmingham , Edgbaston , Birmingham , B15 2TT , UK . ; Fax: +44 (0)121 414 5925 ; Tel: +44 (0)121 414 7527
| |
Collapse
|
132
|
Wang L, Qin Y, Ilchenko S, Bohon J, Shi W, Cho MW, Takamoto K, Chance MR. Structural analysis of a highly glycosylated and unliganded gp120-based antigen using mass spectrometry. Biochemistry 2010; 49:9032-45. [PMID: 20825246 DOI: 10.1021/bi1011332] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Structural characterization of the HIV-1 envelope protein gp120 is very important for providing an understanding of the protein's immunogenicity and its binding to cell receptors. So far, the crystallographic structure of gp120 with an intact V3 loop (in the absence of a CD4 coreceptor or antibody) has not been determined. The third variable region (V3) of the gp120 is immunodominant and contains glycosylation signatures that are essential for coreceptor binding and entry of the virus into T-cells. In this study, we characterized the structure of the outer domain of gp120 with an intact V3 loop (gp120-OD8) purified from Drosophila S2 cells utilizing mass spectrometry-based approaches. We mapped the glycosylation sites and calculated the glycosylation occupancy of gp120-OD8; 11 sites from 15 glycosylation motifs were determined as having high-mannose or hybrid glycosylation structures. The specific glycan moieties of nine glycosylation sites from eight unique glycopeptides were determined by a combination of ECD and CID MS approaches. Hydroxyl radical-mediated protein footprinting coupled with mass spectrometry analysis was employed to provide detailed information about protein structure of gp120-OD8 by directly identifying accessible and hydroxyl radical-reactive side chain residues. Comparison of gp120-OD8 experimental footprinting data with a homology model derived from the ligated CD4-gp120-OD8 crystal structure revealed a flexible V3 loop structure in which the V3 tip may provide contacts with the rest of the protein while residues in the V3 base remain solvent accessible. In addition, the data illustrate interactions between specific sugar moieties and amino acid side chains potentially important to the gp120-OD8 structure.
Collapse
Affiliation(s)
- Liwen Wang
- Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | | | |
Collapse
|
133
|
Takahashi K, Wall SB, Suzuki H, Smith AD, Hall S, Poulsen K, Kilian M, Mobley JA, Julian BA, Mestecky J, Novak J, Renfrow MB. Clustered O-glycans of IgA1: defining macro- and microheterogeneity by use of electron capture/transfer dissociation. Mol Cell Proteomics 2010; 9:2545-57. [PMID: 20823119 DOI: 10.1074/mcp.m110.001834] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
IgA nephropathy (IgAN) is the most common primary glomerulonephritis in the world. Aberrantly glycosylated IgA1, with galactose (Gal)-deficient hinge region (HR) O-glycans, plays a pivotal role in the pathogenesis of the disease. It is not known whether the glycosylation defect occurs randomly or preferentially at specific sites. We have described the utility of activated ion-electron capture dissociation (AI-ECD) mass spectrometric analysis of IgA1 O-glycosylation. However, locating and characterizing the entire range of O-glycan attachment sites are analytically challenging due to the clustered serine and threonine residues in the HR of IgA1 heavy chain. To address this problem, we analyzed all glycoforms of the HR glycopeptides of a Gal-deficient IgA1 myeloma protein, mimicking the aberrant IgA1 in patients with IgAN, by use of a combination of IgA-specific proteases + trypsin and AI-ECD Fourier transform ion cyclotron resonance (FT-ICR) tandem mass spectrometry (MS/MS). The IgA-specific proteases provided a variety of IgA1 HR fragments that allowed unambiguous localization of all O-glycosylation sites in the six most abundant glycoforms, including the sites deficient in Gal. Additionally, this protocol was adapted for on-line liquid chromatography (LC)-AI-ECD MS/MS and LC-electron transfer dissociation MS/MS analysis. Our results thus represent a new clinically relevant approach that requires ECD/electron transfer dissociation-type fragmentation to define the molecular events leading to pathogenesis of a chronic kidney disease. Furthermore, this work offers generally applicable principles for the analysis of clustered sites of O-glycosylation.
Collapse
Affiliation(s)
- Kazuo Takahashi
- Biomedical FT-ICR MS Laboratory, Department of Biochemistry and Molecular Genetics, University of Alabama, Birmingham, Alabama 35294-0005, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Mikhailov VA, Iniesta J, Cooper HJ. Top-down mass analysis of protein tyrosine nitration: comparison of electron capture dissociation with "slow-heating" tandem mass spectrometry methods. Anal Chem 2010; 82:7283-92. [PMID: 20677807 PMCID: PMC2950673 DOI: 10.1021/ac101177r] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 07/14/2010] [Indexed: 11/30/2022]
Abstract
Tyrosine nitration in proteins is an important post-translational modification (PTM) linked to various pathological conditions. When multiple potential sites of nitration exist, tandem mass spectrometry (MS/MS) methods provide unique tools to locate the nitro-tyrosine(s) precisely. Electron capture dissociation (ECD) is a powerful MS/MS method, different in its mechanisms to the "slow-heating" threshold fragmentation methods, such as collision-induced dissociation (CID) and infrared multiphoton dissociation (IRMPD). Generally, ECD provides more homogeneous cleavage of the protein backbone and preserves labile PTMs. However recent studies in our laboratory demonstrated that ECD of doubly charged nitrated peptides is inhibited by the large electron affinity of the nitro group, while CID efficiency remains unaffected by nitration. Here, we have investigated the efficiency of ECD versus CID and IRMPD for top-down MS/MS analysis of multiply charged intact nitrated protein ions of myoglobin, lysozyme, and cytochrome c in a commercial Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. CID and IRMPD produced more cleavages in the vicinity of the sites of nitration than ECD. However the total number of ECD fragments was greater than those from CID or IRMPD, and many ECD fragments contained the site(s) of nitration. We conclude that ECD can be used in the top-down analysis of nitrated proteins, but precise localization of the sites of nitration may require either of the "slow-heating" methods.
Collapse
Affiliation(s)
| | | | - Helen J. Cooper
- To whom correspondence should be addressed. Helen J. Cooper, School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, U.K. Phone: +44 (0)121 4147527. Fax: +44 (0)121 414 5925. E-mail:
| |
Collapse
|
135
|
Pan S, Chen R, Aebersold R, Brentnall TA. Mass spectrometry based glycoproteomics--from a proteomics perspective. Mol Cell Proteomics 2010; 10:R110.003251. [PMID: 20736408 DOI: 10.1074/mcp.r110.003251] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Glycosylation is one of the most important and common forms of protein post-translational modification that is involved in many physiological functions and biological pathways. Altered glycosylation has been associated with a variety of diseases, including cancer, inflammatory and degenerative diseases. Glycoproteins are becoming important targets for the development of biomarkers for disease diagnosis, prognosis, and therapeutic response to drugs. The emerging technology of glycoproteomics, which focuses on glycoproteome analysis, is increasingly becoming an important tool for biomarker discovery. An in-depth, comprehensive identification of aberrant glycoproteins, and further, quantitative detection of specific glycosylation abnormalities in a complex environment require a concerted approach drawing from a variety of techniques. This report provides an overview of the recent advances in mass spectrometry based glycoproteomic methods and technology, in the context of biomarker discovery and clinical application.
Collapse
Affiliation(s)
- Sheng Pan
- Department of Pathology, University of Washington, Seattle, WA 98195, USA.
| | | | | | | |
Collapse
|
136
|
Abstract
Glycosylation defines the adhesive properties of animal cell surfaces and the surrounding extracellular environments. Because cells respond to stimuli by altering glycan expression, glycan structures vary according to spatial location in tissue and temporal factors. These dynamic structural expression patterns, combined with the essential roles glycans play in physiology, drive the need for analytical methods for glycoconjugates. In addition, recombinant glycoprotein drug products represent a multibillion dollar market. Effective analytical methods are needed to speed the identification of new targets and the development of industrial glycoprotein products, both new and biosimilar. Mass spectrometry is an enabling technology in glycomics. This review summarizes mass spectrometry of glycoconjugate glycans. The intent is to summarize appropriate methods for glycans given their chemical properties as distinct from those of proteins, lipids, and small molecule metabolites. Special attention is given to the uses of mass spectral profiling for glycomics with respect to the N-linked, O-linked, ganglioside, and glycosaminoglycan compound classes. Next, the uses of tandem mass spectrometry of glycans are summarized. The review finishes with an update on mass spectral glycoproteomics.
Collapse
Affiliation(s)
- Joseph Zaia
- Department of Biochemistry, Boston University, Boston, Massachusetts, USA.
| |
Collapse
|
137
|
Zhang Z. Prediction of electron-transfer/capture dissociation spectra of peptides. Anal Chem 2010; 82:1990-2005. [PMID: 20148580 DOI: 10.1021/ac902733z] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
An empirical model, based on classic kinetics, was developed for quantitative prediction of electron-transfer dissociation (ETD) and electron-capture dissociation (ECD) spectra of peptides. The model includes most fragmentation pathways described in the literature plus some additional pathways based on the author's assumptions and observations. The ETD model was trained with more than 7000 ETD spectra, with and without supplemental activation. The ECD model was trained with more than 6000 ECD spectra. The trained ETD and ECD models are able to predict ETD and ECD spectra with reasonable accuracy in ion intensities for peptide precursors up to 4000 u in mass.
Collapse
Affiliation(s)
- Zhongqi Zhang
- Process and Product Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, USA.
| |
Collapse
|
138
|
Segu ZM, Mechref Y. Characterizing protein glycosylation sites through higher-energy C-trap dissociation. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2010; 24:1217-1225. [PMID: 20391591 DOI: 10.1002/rcm.4485] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Assigning glycosylation sites of glycoproteins and their microheterogeneity is still a very challenging analytical task despite the rapid advancements in mass spectrometry. It is shown here that glycopeptide ions can be fragmented efficiently using the higher-energy C-trap dissociation (HCD) feature of a linear ion trap orbitrap hybrid mass spectrometer (LTQ Orbitrap). An attractive aspect of this dissociation option is the generation of distinct Y1 ions (peptide+GlcNAc), thus allowing unequivocal assignment of N-glycosylation sites of glycoproteins. The combination of the very informative collision-induced dissociation spectra acquired in the linear ion trap with the distinct features of HCD offers very useful information aiding in the characterization of the glycosylation sites of glycoproteins. The HCD activation energy needed to obtain optimum Y1 ions was studied in terms of glycan structure and charge state, and size and structure of the peptide backbone. The latter appeared to be primarily dictating the needed HCD energy. The distinct Y1 ion formation in HCD facilitated an easy assignment of such an ion and its subsequent isolation and dissociation through multiple-stage tandem mass spectrometry. The resulting MS(3) spectrum of the Y1 ion facilitates database searching and de novo sequencing thus prompting the subsequent identification of the peptide backbone and associated glycosylation sites. Moreover, fragment ions formed by HCD are detected in the Orbitrap, thus overcoming the 1/3 cut-off limitation that is commonly associated with ion trap mass spectrometers. As a result, in addition to the Y1 ion, the common glycan oxonium ions are also detected. The high mass accuracy offered by the LTQ Orbitrap mass spectrometer is also an attractive feature that allows a confident assignment of protein glycosylation sites and the microheterogeneity of such sites.
Collapse
Affiliation(s)
- Zaneer M Segu
- METACyt Biochemical Analysis Center, Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | | |
Collapse
|
139
|
Jones AW, Mikhailov VA, Iniesta J, Cooper HJ. Electron capture dissociation mass spectrometry of tyrosine nitrated peptides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2010; 21:268-277. [PMID: 19931467 DOI: 10.1016/j.jasms.2009.10.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 09/08/2009] [Accepted: 10/14/2009] [Indexed: 05/28/2023]
Abstract
In vivo protein nitration is associated with many disease conditions that involve oxidative stress and inflammatory response. The modification involves addition of a nitro group at the position ortho to the phenol group of tyrosine to give 3-nitrotyrosine. To understand the mechanisms and consequences of protein nitration, it is necessary to develop methods for identification of nitrotyrosine-containing proteins and localization of the sites of modification. Here, we have investigated the electron capture dissociation (ECD) and collision-induced dissociation (CID) behavior of 3-nitrotyrosine-containing peptides. The presence of nitration did not affect the CID behavior of the peptides. For the doubly-charged peptides, addition of nitration severely inhibited the production of ECD sequence fragments. However, ECD of the triply-charged nitrated peptides resulted in some singly-charged sequence fragments. ECD of the nitrated peptides is characterized by multiple losses of small neutral species including hydroxyl radicals, water and ammonia. The origin of the neutral losses has been investigated by use of activated ion (AI) ECD. Loss of ammonia appears to be the result of non-covalent interactions between the nitro group and protonated lysine side-chains.
Collapse
Affiliation(s)
- Andrew W Jones
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | | | | | | |
Collapse
|
140
|
Abstract
Gas-phase ion/ion reactions are emerging as flexible means for probing and manipulating analyte ions with particular utility in bioanalysis.
Collapse
Affiliation(s)
- Scott A McLuckey
- Department of Chemistry, Purdue University, West Lafayette, IN 47907-2084, USA.
| | | |
Collapse
|
141
|
Huang TY, McLuckey SA. Gas-phase chemistry of multiply charged bioions in analytical mass spectrometry. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2010; 3:365-85. [PMID: 20636047 PMCID: PMC3017717 DOI: 10.1146/annurev.anchem.111808.073725] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Ion chemistry has long played an important role in molecular mass spectrometry (MS), as it is central to the use of MS as a structural characterization tool. With the advent of ionization methods capable of producing gaseous ions from large biomolecules, the chemistry of gaseous bioions has become a highly active area of research. Gas-phase biomolecule-ion reactions are usually driven by interactions with neutral molecules, photons, electrons, ions, or surfaces. Ion dissociation or transformation into different ion types can be achieved. The types of reaction products observed depend on the characteristics of the ions, the transformation methods, and the time frame of observation. This review focuses on the gas-phase chemistries of ions derived from the electrospray ionization of peptides, proteins, and oligonucleotides, with particular emphasis on their utility in bioanalysis. Various ion-transformation strategies, which further facilitate structural interrogation by converting ions from one type to another, are also summarized.
Collapse
|
142
|
Hwang H, Zhang J, Chung KA, Leverenz JB, Zabetian CP, Peskind ER, Jankovic J, Su Z, Hancock AM, Pan C, Montine TJ, Pan S, Nutt J, Albin R, Gearing M, Beyer RP, Shi M, Zhang J. Glycoproteomics in neurodegenerative diseases. MASS SPECTROMETRY REVIEWS 2010; 29:79-125. [PMID: 19358229 PMCID: PMC2799547 DOI: 10.1002/mas.20221] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Protein glycosylation regulates protein function and cellular distribution. Additionally, aberrant protein glycosylations have been recognized to play major roles in human disorders, including neurodegenerative diseases. Glycoproteomics, a branch of proteomics that catalogs and quantifies glycoproteins, provides a powerful means to systematically profile the glycopeptides or glycoproteins of a complex mixture that are highly enriched in body fluids, and therefore, carry great potential to be diagnostic and/or prognostic markers. Application of this mass spectrometry-based technology to the study of neurodegenerative disorders (e.g., Alzheimer's disease and Parkinson's disease) is relatively new, and is expected to provide insight into the biochemical pathogenesis of neurodegeneration, as well as biomarker discovery. In this review, we have summarized the current understanding of glycoproteins in biology and neurodegenerative disease, and have discussed existing proteomic technologies that are utilized to characterize glycoproteins. Some of the ongoing studies, where glycoproteins isolated from cerebrospinal fluid and human brain are being characterized in Parkinson's disease at different stages versus controls, are presented, along with future applications of targeted validation of brain specific glycoproteins in body fluids.
Collapse
Affiliation(s)
- Hyejin Hwang
- Department of Pathology, University of Washington, Seattle, Washington
| | - Jianpeng Zhang
- Department of Pathology, University of Washington, Seattle, Washington
| | - Kathryn A. Chung
- Department of Neurology, Oregon Health and Science University, Portland, Oregon
| | - James B. Leverenz
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington
- Department of Neurology, University of Washington School of Medicine, Seattle, Washington
| | - Cyrus P. Zabetian
- Department of Neurology, University of Washington School of Medicine, Seattle, Washington
| | - Elaine R. Peskind
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington
- Department of Neurology, University of Washington School of Medicine, Seattle, Washington
| | - Joseph Jankovic
- Department of Neurology, Baylor College of Medicine, Houston, Texas
| | - Zhen Su
- Department of Pathology, University of Washington, Seattle, Washington
| | - Aneeka M. Hancock
- Department of Pathology, University of Washington, Seattle, Washington
| | - Catherine Pan
- Department of Pathology, University of Washington, Seattle, Washington
| | - Thomas J. Montine
- Department of Pathology, University of Washington, Seattle, Washington
| | - Sheng Pan
- Department of Pathology, University of Washington, Seattle, Washington
| | - John Nutt
- Department of Neurology, Oregon Health and Science University, Portland, Oregon
| | - Roger Albin
- Ann Arbor VAMC GRECC and Department of Neurology, University of Michigan, Ann Arbor, Michigan
| | - Marla Gearing
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia
| | - Richard P. Beyer
- Department of Environmental & Occupational Health Sciences, University of Washington School of Medicine, Seattle, Washington
| | - Min Shi
- Department of Pathology, University of Washington, Seattle, Washington
| | - Jing Zhang
- Department of Pathology, University of Washington, Seattle, Washington
| |
Collapse
|
143
|
Kalli A, Håkansson K. Electron capture dissociation of highly charged proteolytic peptides from Lys N, Lys C and Glu C digestion. MOLECULAR BIOSYSTEMS 2010; 6:1668-81. [DOI: 10.1039/c003834b] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
144
|
Abstract
The O-glycosylation of Ser and Thr by N-acetylgalactosamine-linked (mucin-type) oligosaccharides is often overlooked in protein analysis. Three characteristics make O-linked glycosylation more difficult to analyse than N-linked glycosylation, namely: (a) no amino acid consensus sequence is known; (b) there is no universal enzyme for the release of O-glycans from the protein backbone; and (c) the density and number of occupied sites may be very high. For significant biological conclusions to be drawn, the complete picture of O-linked glycosylation on a protein needs to be determined. This review specifically addresses the analytical approaches that have been used, and the challenges remaining, in the characterization of both the composition and structure of mucin-type O-glycans, and the determination of the occupancy and heterogeneity at each amino acid attachment site.
Collapse
Affiliation(s)
- Pia H Jensen
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, Biomolecular Frontiers Research Centre, Macquarie University, Sydney, Australia
| | | | | |
Collapse
|
145
|
Ralat LA, Ren M, Schilling AB, Tang WJ. Protective role of Cys-178 against the inactivation and oligomerization of human insulin-degrading enzyme by oxidation and nitrosylation. J Biol Chem 2009; 284:34005-18. [PMID: 19808678 DOI: 10.1074/jbc.m109.030627] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin-degrading enzyme (IDE), a 110-kDa metalloendopeptidase, hydrolyzes several physiologically relevant peptides, including insulin and amyloid-beta (Abeta). Human IDE has 13 cysteines and is inhibited by hydrogen peroxide and S-nitrosoglutathione (GSNO), donors of reactive oxygen and nitrogen species, respectively. Here, we report that the oxidative burst of BV-2 microglial cells leads to oxidation or nitrosylation of secreted IDE, leading to the reduced activity. Hydrogen peroxide and GSNO treatment of IDE reduces the V(max) for Abeta degradation, increases IDE oligomerization, and decreases IDE thermostability. Additionally, this inhibitory response of IDE is substrate-dependent, biphasic for Abeta degradation but monophasic for a shorter bradykinin-mimetic substrate. Our mutational analysis of IDE and peptide mass fingerprinting of GSNO-treated IDE using Fourier transform-ion cyclotron resonance mass spectrometer reveal a surprising interplay of Cys-178 with Cys-110 and Cys-819 for catalytic activity and with Cys-789 and Cys-966 for oligomerization. Cys-110 is near the zinc-binding catalytic center and is normally buried. The oxidation and nitrosylation of Cys-819 allow Cys-110 to be oxidized or nitrosylated, leading to complete inactivation of IDE. Cys-789 is spatially adjacent to Cys-966, and their nitrosylation and oxidation together trigger the oligomerization and inhibition of IDE. Interestingly, the Cys-178 modification buffers the inhibition caused by Cys-819 modification and prevents the oxidation or nitrosylation of Cys-110. The Cys-178 modification can also prevent the oligomerization-mediated inhibition. Thus, IDE can be intricately regulated by reactive oxygen or nitrogen species. The structure of IDE reveals the molecular basis for the long distance interactions of these cysteines and how they regulate IDE function.
Collapse
Affiliation(s)
- Luis A Ralat
- Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
146
|
Julian BA, Suzuki H, Suzuki Y, Tomino Y, Spasovski G, Novak J. Sources of Urinary Proteins and their Analysis by Urinary Proteomics for the Detection of Biomarkers of Disease. Proteomics Clin Appl 2009; 3:1029-1043. [PMID: 20161589 PMCID: PMC2808139 DOI: 10.1002/prca.200800243] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Accepted: 04/20/2009] [Indexed: 11/07/2022]
Abstract
Renal disorders account for a substantial fraction of the budget for health care in many countries. Proteinuria is a frequent manifestation in afflicted patients, but the origin of the proteins varies based on the nature of the disorder. The emerging field of urinary proteomics has the potential to replace kidney biopsy as the diagnostic procedure of choice for patients with some glomerular forms of renal disease. To fully realize this potential, it is vital to understand the basis for the urinary excretion of protein in physiological and pathological conditions. In this review, we discuss the structure of the nephron, the functional unit of the kidney, and the process by which proteins/peptides enter the urine. We discuss several aspects of proteinuria that impact the proteomic analysis of urine of patients with renal diseases.
Collapse
Affiliation(s)
| | - Hitoshi Suzuki
- University of Alabama at Birmingham, Birmingham, AL, USA
- Juntendo University School of Medicine, Tokyo, Japan
| | - Yusuke Suzuki
- Juntendo University School of Medicine, Tokyo, Japan
| | | | | | - Jan Novak
- University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
147
|
An HJ, Froehlich JW, Lebrilla CB. Determination of glycosylation sites and site-specific heterogeneity in glycoproteins. Curr Opin Chem Biol 2009; 13:421-6. [PMID: 19700364 DOI: 10.1016/j.cbpa.2009.07.022] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 07/23/2009] [Accepted: 07/27/2009] [Indexed: 11/26/2022]
Abstract
Glycosylation is one of the most common post-translational modifications (PTMs) of proteins. At least 50% of human proteins are glycosylated with some estimates being as high as 70%. Glycoprotein analysis requires determining both the sites of glycosylation as well as the glycan structures associated with each site. Recent advances have led to the development of new analytical methods that employ mass spectrometry extensively making it possible to obtain the glycosylation site and the site microheterogeneity. These tools will be important for the eventual development of glycoproteomics.
Collapse
Affiliation(s)
- Hyun Joo An
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | | | | |
Collapse
|
148
|
Bushey JM, Baba T, Glish GL. Simultaneous collision induced dissociation of the charge reduced parent ion during electron capture dissociation. Anal Chem 2009; 81:6156-64. [PMID: 19572558 PMCID: PMC3141179 DOI: 10.1021/ac900627n] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A method of performing collision induced dissociation (CID) on the charge-reduced parent ion as it is formed during electron capture dissociation (ECD), called ECD+CID, is described. In ECD+CID, the charge-reduced parent ion is selectively activated using resonant excitation and collisions with the helium bath gas inside a linear quadrupole ion trap ECD device (ECD(LIT)). It has been observed that ECD+CID can improve the sequence coverage for beta-endorphin over performing ECD alone (i.e., from 72 to 97%). Perhaps just as important, ECD+CID can be used to reduce the extent of multiple electron capture events observed when performing ECD in the ECD(LIT). Consequently, the abundance of mass-to-charge ratios corresponding to ECD product ions that contain neutralized protons is decreased, simplifying the interpretation of the product ion spectrum.
Collapse
Affiliation(s)
- Jared M. Bushey
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599
| | - Takashi Baba
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599
- Biosystem Research Development, Life Science Research Laboratory in Central Research Laboratory, Hitachi Ltd., 1-280, Higashi-Koigakubo, Kokubunji 185-8601, Japan
| | - Gary L. Glish
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
149
|
Wu R, McMahon TB. Protonation Sites and Conformations of Peptides of Glycine (Gly1−5H+) by IRMPD Spectroscopy. J Phys Chem B 2009; 113:8767-75. [DOI: 10.1021/jp811468q] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ronghu Wu
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Terry B. McMahon
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| |
Collapse
|
150
|
Sohn CH, Chung CK, Yin S, Ramachandran P, Loo JA, Beauchamp JL. Probing the mechanism of electron capture and electron transfer dissociation using tags with variable electron affinity. J Am Chem Soc 2009; 131:5444-59. [PMID: 19331417 PMCID: PMC2765496 DOI: 10.1021/ja806534r] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Electron capture dissociation (ECD) and electron transfer dissociation (ETD) of doubly protonated electron affinity (EA)-tuned peptides were studied to further illuminate the mechanism of these processes. The model peptide FQpSEEQQQTEDELQDK, containing a phosphoserine residue, was converted to EA-tuned peptides via beta-elimination and Michael addition of various thiol compounds. These include propanyl, benzyl, 4-cyanobenzyl, perfluorobenzyl, 3,5-dicyanobenzyl, 3-nitrobenzyl, and 3,5-dinitrobenzyl structural moieties, having a range of EA from -1.15 to +1.65 eV, excluding the propanyl group. Typical ECD or ETD backbone fragmentations are completely inhibited in peptides with substituent tags having EA over 1.00 eV, which are referred to as electron predators in this work. Nearly identical rates of electron capture by the dications substituted by the benzyl (EA = -1.15 eV) and 3-nitrobenzyl (EA = 1.00 eV) moieties are observed, which indicates the similarity of electron capture cross sections for the two derivatized peptides. This observation leads to the inference that electron capture kinetics are governed by the long-range electron-dication interaction and are not affected by side chain derivatives with positive EA. Once an electron is captured to high-n Rydberg states, however, through-space or through-bond electron transfer to the EA-tuning tags or low-n Rydberg states via potential curve crossing occurs in competition with transfer to the amide pi* orbital. The energetics of these processes are evaluated using time-dependent density functional theory with a series of reduced model systems. The intramolecular electron transfer process is modulated by structure-dependent hydrogen bonds and is heavily affected by the presence and type of electron-withdrawing groups in the EA-tuning tag. The anion radicals formed by electron predators have high proton affinities (approximately 1400 kJ/mol for the 3-nitrobenzyl anion radical) in comparison to other basic sites in the model peptide dication, facilitating exothermic proton transfer from one of the two sites of protonation. This interrupts the normal sequence of events in ECD or ETD, leading to backbone fragmentation by forming a stable radical intermediate. The implications which these results have for previously proposed ECD and ETD mechanisms are discussed.
Collapse
Affiliation(s)
- Chang Ho Sohn
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| | - Cheol K. Chung
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| | - Sheng Yin
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
| | - Prasanna Ramachandran
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
| | - J. L. Beauchamp
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|