101
|
Sivagnanam V, Gijs MAM. Exploring Living Multicellular Organisms, Organs, and Tissues Using Microfluidic Systems. Chem Rev 2013; 113:3214-47. [DOI: 10.1021/cr200432q] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
| | - Martin A. M. Gijs
- Laboratory
of Microsystems, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne,
Switzerland
| |
Collapse
|
102
|
Chua CK, Pumera M. Detection of silver nanoparticles on a lab-on-chip platform. Electrophoresis 2013; 34:2007-10. [DOI: 10.1002/elps.201200426] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Revised: 08/21/2012] [Accepted: 08/24/2012] [Indexed: 11/11/2022]
Affiliation(s)
- Chun Kiang Chua
- Division of Chemistry & Biological Chemistry; School of Physical and Mathematical Sciences; Nanyang Technological University; Singapore
| | - Martin Pumera
- Division of Chemistry & Biological Chemistry; School of Physical and Mathematical Sciences; Nanyang Technological University; Singapore
| |
Collapse
|
103
|
NUCHTAVORN N, RYVOLOVA M, BEK F, MACKA M, PHECHKRAJANG C, SUNTORNSUK L. Potential of Capillary Electrophoresis (CE) and Chip-CE with Dual Detection (Capacitively-Coupled Contactless Conductivity Detection (C 4D) and Fluorescence Detection) for Monitoring of Nicotine and Cotinine Derivatization. ANAL SCI 2013; 29:339-44. [DOI: 10.2116/analsci.29.339] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Nantana NUCHTAVORN
- Faculty of Pharmacy, Siam University
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University
| | - Marketa RYVOLOVA
- National Centre for Sensor Research, Irish Separation Science Cluster and School of Chemical Sciences, Dublin City University
| | | | - Mirek MACKA
- Australian Centre for Research on Separation Science, School of Chemistry, University of Tasmania
| | | | - Leena SUNTORNSUK
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University
| |
Collapse
|
104
|
Ye J, Wang X, Zhuang J, Zhou Y, Tian Z. Microcontact electrochemical etching technique for rapid fabrication of glass-based microfluidic chips. RSC Adv 2013. [DOI: 10.1039/c3ra40611c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
105
|
Chou J, Li LE, Kulla E, Christodoulides N, Floriano PN, McDevitt JT. Effects of sample delivery on analyte capture in porous bead sensors. LAB ON A CHIP 2012; 12:5249-56. [PMID: 23117481 PMCID: PMC3541674 DOI: 10.1039/c2lc40752c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Sample delivery is a crucial aspect of point-of-care applications where sample volumes need to be low and assay times short, while providing high analytical and clinical sensitivity. In this paper, we explore the influence of the factors surrounding sample delivery on analyte capture in an immunoassay-based sensor array manifold of porous beads resting in individual wells. We model using computational fluid dynamics and a flow-through device containing beads sensitized specifically to C-reactive protein (CRP) to explore the effects of volume of sample, rate of sample delivery, and use of recirculation vs. unilateral delivery on the effectiveness of the capture of CRP on and within the porous bead sensor. Rate of sample delivery lends to the development of a time-dependent, shrinking depletion region around the bead exterior. Our findings reveal that at significantly high rates of delivery, unique to porous bead substrates, capture at the rim of the bead is reaction-limited, while capture in the interior of the bead is transport-limited. While the fluorescence signal results from the aggregate of captured material throughout the bead, multiple kinetic regimes exist within the bead. Further, under constant pressure conditions dictated by the array architecture, we reveal the existence of an optimal flow rate that generates the highest signal, under point-of-care constraints of limited-volume and limited-time. When high sensitivity is needed, recirculation can be implemented to overcome the analyte capture limitations due to volume and time constraints. Computational simulations agree with experimental results performed under similar conditions.
Collapse
Affiliation(s)
- Jie Chou
- Department of Bioengineering, Rice University, Houston, Texas77005, USA
| | | | | | | | | | | |
Collapse
|
106
|
Devendra R, Drazer G. Gravity driven deterministic lateral displacement for particle separation in microfluidic devices. Anal Chem 2012; 84:10621-7. [PMID: 23137317 DOI: 10.1021/ac302074b] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We investigate the two-dimensional continuous size-based separation of suspended particles in gravity-driven deterministic lateral displacement (g-DLD) devices. The suspended particles are driven through a periodic array of cylindrical obstacles under the action of gravity. We perform experiments covering the entire range of forcing orientations with respect to the array of obstacles and identify specific forcing angles that would lead to vector separation, in which different particles migrate, on an average, in different directions. A simple model, based on the lateral displacement induced on the trajectory of a particle by irreversible particle-obstacle interactions, accurately predicts the dependence of the migration angle on the forcing direction. The results provide design guidance for the development of g-DLD devices. We observe directional locking, which strongly depends on the size of the particle and suggests that relatively small forcing angles are well suited for size-fractionation purposes. We demonstrate excellent separation resolution for a binary mixture of particles at relatively small forcing angles, that is, forcing angles that are close to but smaller than the first transition angle of the larger particles in the mixture.
Collapse
Affiliation(s)
- Raghavendra Devendra
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | |
Collapse
|
107
|
Chou J, Wong J, Christodoulides N, Floriano PN, Sanchez X, McDevitt J. Porous bead-based diagnostic platforms: bridging the gaps in healthcare. SENSORS (BASEL, SWITZERLAND) 2012; 12:15467-99. [PMID: 23202219 PMCID: PMC3522972 DOI: 10.3390/s121115467] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Revised: 10/25/2012] [Accepted: 11/01/2012] [Indexed: 01/11/2023]
Abstract
Advances in lab-on-a-chip systems have strong potential for multiplexed detection of a wide range of analytes with reduced sample and reagent volume; lower costs and shorter analysis times. The completion of high-fidelity multiplexed and multiclass assays remains a challenge for the medical microdevice field; as it struggles to achieve and expand upon at the point-of-care the quality of results that are achieved now routinely in remote laboratory settings. This review article serves to explore for the first time the key intersection of multiplexed bead-based detection systems with integrated microfluidic structures alongside porous capture elements together with biomarker validation studies. These strategically important elements are evaluated here in the context of platform generation as suitable for near-patient testing. Essential issues related to the scalability of these modular sensor ensembles are explored as are attempts to move such multiplexed and multiclass platforms into large-scale clinical trials. Recent efforts in these bead sensors have shown advantages over planar microarrays in terms of their capacity to generate multiplexed test results with shorter analysis times. Through high surface-to-volume ratios and encoding capabilities; porous bead-based ensembles; when combined with microfluidic elements; allow for high-throughput testing for enzymatic assays; general chemistries; protein; antibody and oligonucleotide applications.
Collapse
Affiliation(s)
- Jie Chou
- Department of Bioengineering, Rice University, 6100 Main St MS-142, Houston, TX 77005, USA; E-Mails: (J.C.); (N.C.); (P.N.F.); (X.S.)
| | - Jorge Wong
- Department of Chemistry, University of Texas at Austin, 1 University Station A5300, Austin, TX 78712, USA; E-Mail:
| | - Nicolaos Christodoulides
- Department of Bioengineering, Rice University, 6100 Main St MS-142, Houston, TX 77005, USA; E-Mails: (J.C.); (N.C.); (P.N.F.); (X.S.)
- Department of Chemistry, Rice University, 6100 Main St MS-142, Houston, TX 77005, USA
| | - Pierre N. Floriano
- Department of Bioengineering, Rice University, 6100 Main St MS-142, Houston, TX 77005, USA; E-Mails: (J.C.); (N.C.); (P.N.F.); (X.S.)
- Department of Chemistry, Rice University, 6100 Main St MS-142, Houston, TX 77005, USA
| | - Ximena Sanchez
- Department of Bioengineering, Rice University, 6100 Main St MS-142, Houston, TX 77005, USA; E-Mails: (J.C.); (N.C.); (P.N.F.); (X.S.)
- Department of Chemistry, Rice University, 6100 Main St MS-142, Houston, TX 77005, USA
| | - John McDevitt
- Department of Bioengineering, Rice University, 6100 Main St MS-142, Houston, TX 77005, USA; E-Mails: (J.C.); (N.C.); (P.N.F.); (X.S.)
- Department of Chemistry, Rice University, 6100 Main St MS-142, Houston, TX 77005, USA
| |
Collapse
|
108
|
Zhang H, Liu L, Fu X, Zhu Z. Microfluidic beads-based immunosensor for sensitive detection of cancer biomarker proteins using multienzyme-nanoparticle amplification and quantum dots labels. Biosens Bioelectron 2012. [PMID: 23202325 DOI: 10.1016/j.bios.2012.10.076] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
This study reports the development of a microfluidic beads-based immunosensor for sensitive detection of cancer biomarker α-fetoprotein (AFP) that uses multienzyme-nanoparticle amplification and quantum dots labels. This method utilizes microbeads functionalized with the capture antibodies (Ab₁) and modified electron rich proteins as sensing platform that was fabricated within a microfluidic channel, and uses gold nanoparticles (AuNPs) functionalized with the horseradish peroxidase (HRP) and the detection antibodies (Ab₂) as label. Greatly enhanced sensitivity for the cancer biomarker is based on a dual signal amplification strategy: first, the large surface area of Au nanoparticle carrier allows several binding events of HRP on each nanosphere. Enhanced sensitivity was achieved by introducing the multi-HRP-antibody functionalized AuNPs onto the surface of microbeads through "sandwich" immunoreactions and subsequently multiple biotin moieties could be deposited onto the surface of beads resulted from the oxidation of biotin-tyramine by hydrogen peroxide. Streptavidin-labeled quantum dots were then allowed to bind to the deposited biotin moieties and displayed the signal. Secondly, enhanced mass transport capability inherent from microfluidics leads to higher capture efficiency of targets because continuous flow within micro-channel delivers fresh analyte solution to the reaction site which maintains a high concentration gradient differential to enhance mass transport. Based on the dual signal amplification strategy, the developed microfluidic bead-based immunosensor could discriminate as low as 0.2 pg mL⁻¹ AFP in 10 μL of undiluted calf serum (0.2 fg/chip), and showed a 500-fold increase in detection limit compared to the off-chip test and 50-fold increase in detection limit compared to microfluidic beads-based immunoassay using single label HRP-Ab₂. The immunosensor showed acceptable repeatability and reproducibility. This microfluidic beads-based immunosensor is a promising platform for disease-related biomolecules at the lowest level at their earliest incidence.
Collapse
Affiliation(s)
- He Zhang
- School of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, People's Republic of China.
| | | | | | | |
Collapse
|
109
|
Gralinski I, Alan T, Neild A. Non-contact acoustic trapping in circular cross-section glass capillaries: a numerical study. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2012; 132:2978-2987. [PMID: 23145585 DOI: 10.1121/1.4754547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Ultrasonic particle manipulation has many applications in microfluidic systems. Such manipulation is achievable by establishing an ultrasonic standing wave in fluid filled micromachined chambers. In this work, the focus is on analyzing the trapping potential of water filled capillary tubes actuated ultrasonically. The curved walls necessitate the use of a finite element modeling approach. Multiple arrangements of the piezoelectric transducers were studied along with the effects of changing the capillary and piezoelectric transducer thicknesses. Additionally, different modes of driving the piezoelectric transducers were investigated. It was found that positioning four piezoelectric transducers equally spaced around the capillary tube provided the best force potential field for trapping polystyrene spheres in the center of the capillary.
Collapse
Affiliation(s)
- Ian Gralinski
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia
| | | | | |
Collapse
|
110
|
Xia L, Dutta D. A Microchip Device for Enhancing Capillary Zone Electrophoresis Using Pressure-Driven Backflow. Anal Chem 2012; 84:10058-63. [DOI: 10.1021/ac302530y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ling Xia
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Debashis Dutta
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| |
Collapse
|
111
|
Wu M, Cheng S, Li G, Wang Z, Wang Q, He P, Fang Y. Rapid Determination of Free Amino Acids in Milk by Microchip Electrophoresis Coupled with Laser-induced Fluorescence Detection. CHINESE J CHEM 2012. [DOI: 10.1002/cjoc.201200446] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
112
|
Park BH, Jung JH, Zhang H, Lee NY, Seo TS. A rotary microsystem for simple, rapid and automatic RNA purification. LAB ON A CHIP 2012; 12:3875-81. [PMID: 22864412 DOI: 10.1039/c2lc40487g] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In this work, we demonstrate a novel rotary microsystem for simple, rapid and automatic influenza viral RNA purification. The microdevice consists of a silica sol-gel matrix for RNA capture, and three reservoirs for a RNA sample (R(S)), a washing solution (R(W)) and an elution buffer (R(E)) that were connected with different dimensional microfluidic channels (120 μm for R(S), 40 μm for R(W), and 20 μm for R(E)). The hydrophobic property of PDMS and the narrow microchannel served as a passive capillary microvalve, and the loading of the solutions were controlled by centrifugal force. 5 μL of a lysate sample of influenza A H1N1 virus, a washing solution and an elution buffer were injected in each designated reservoir, and the virus sample, the washing solution, and the elution buffer were sequentially loaded into the sol-gel chamber at 1600, 2000, and 2500 RPM, enabling the viral RNA to be captured in the sol-gel solid phase, purified, and eluted in 5 min. The RNA capture yield was measured as ~80%, and the H1 and M gene were successfully amplified from the recovered purified H1N1 viral RNA by reverse-transcriptase PCR. Such a novel rotary sample preparation system eliminates any complicated hardware and human intervention, and performs the RNA extraction with high speed and high fidelity.
Collapse
Affiliation(s)
- Byung Hyun Park
- Department of Chemical and Biomolecular Engineering (BK21 program), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, South Korea
| | | | | | | | | |
Collapse
|
113
|
Abstract
Over the past decade, there has been a growth of interest in the translation of microfluidic systems into real-world clinical practice, especially for use in point-of-care or near patient settings. While initial fabrication advances in microfluidics involved mainly the etching of silicon and glass, the economics of scaling of these materials is not amendable for point-of-care usage where single-test applications force cost considerations to be kept low and throughput high. As such, materials base more consistent with point-of-care needs is required. In this manuscript, the fabrication of a hot embossed, through-hole low-density polyethylene ensembles derived from an anisotropically etched silicon wafer is discussed. This semi-opaque polymer that can be easily sterilized and recycled provides low background noise for fluorescence measurements and yields more affordable cost than other thermoplastics commonly used for microfluidic applications such as cyclic olefin copolymer (COC). To fabrication through-hole microchips from this alternative material for microfluidics, a fabrication technique that uses a high-temperature, high-pressure resistant mold is described. This aluminum-based epoxy mold, serving as the positive master mold for embossing, is casted over etched arrays of pyramidal pits in a silicon wafer. Methods of surface treatment of the wafer prior to casting and PDMS casting of the epoxy are discussed to preserve the silicon wafer for future use. Changes in the thickness of polyethylene are observed for varying embossing temperatures. The methodology described herein can quickly fabricate 20 disposable, single use chips in less than 30 min with the ability to scale up 4 times by using multiple molds simultaneously. When coupled as a platform supporting porous bead sensors, as in the recently developed Programmable Bio-Nano-Chip, this bead chip system can achieve limits of detection, for the cardiac biomarker C-reactive protein, of 0.3 ng/mL, thereby demonstrating that the approach is compatible with high performance, real-world clinical measurements in the context of point-of-care testing.
Collapse
|
114
|
|
115
|
Abstract
Because of intensive developments in recent years, the microfluidic system has become a powerful tool for biological analysis. Entire analytic protocols including sample pretreatment, sample/reagent manipulation, separation, reaction, and detection can be integrated into a single chip platform. A lot of demonstrations on the diagnostic applications related to genes, proteins, and cells have been reported because of their advantages associated with miniaturization, automation, sensitivity, and specificity. The aim of this article is to review recent developments in microfluidic systems for diagnostic applications. Based on the categories of various fluid-manipulating mechanisms and biological detection approaches, in-depth discussion of the microfluidic-based diagnostic systems is provided. Moreover, a brief discussion on materials and manufacturing techniques will be included. The current excellent integration of microfluidic systems and diagnostic applications suggests a solid foundation for the development of practical point-of-care devices.
Collapse
|
116
|
Kim SB, Bae H, Koo KI, Dokmeci MR, Ozcan A, Khademhosseini A. Lens-free imaging for biological applications. ACTA ACUST UNITED AC 2012; 17:43-9. [PMID: 22357607 DOI: 10.1177/2211068211426695] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lens-free (or lensless) imaging is emerging as a cost-effective, compact, and lightweight detection method that can serve numerous biological applications. Lens-free imaging can generate high-resolution images within a field-portable platform, which is ideal for affordable point-of-care devices aiming at resource-limited settings. In this mini-review, we first describe different modes of operation for lens-free imaging and then highlight several recent biological applications of this emerging platform technology.
Collapse
Affiliation(s)
- Sang Bok Kim
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
117
|
Ríos Á, Zougagh M, Avila M. Miniaturization through lab-on-a-chip: Utopia or reality for routine laboratories? A review. Anal Chim Acta 2012; 740:1-11. [DOI: 10.1016/j.aca.2012.06.024] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 05/31/2012] [Accepted: 06/12/2012] [Indexed: 02/09/2023]
|
118
|
Hsu MY, Yang CH, Wang CY, Lin YS. Simulation-Aided Optimal Microfluidic Sorting for Monodispersed Microparticles. INTERNATIONAL JOURNAL OF TECHNOLOGY AND HUMAN INTERACTION 2012. [DOI: 10.4018/jthi.2012070102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In order to avoid performing too many experiments by a trial-and-error approach, this study used the simulation method to investigate the optimum geometry of a microfluidic chip for sorting droplets. Under the framework of the double T-junction hybrid channel, geometry factors such as (i) the distance between the two junctions, (ii) the size of the second junction, and (iii) the size of the broadened channel were analyzed. How these factors impacted the separation process and device performance were examined and discussed to optimize the double T-junction channel design. Results indicated that the best separation performance occurred when the separation layer thickness was 8~15% of the upstream main channel width. This simulation analysis helped the optimum channel geometry design in the microfluidic chip for droplet sorting to prepare uniform microparticles.
Collapse
Affiliation(s)
- Ming-Ying Hsu
- Instrument Technology Research Center National Applied Research Laboratories, Taiwan
| | | | | | | |
Collapse
|
119
|
Chong J, Whitehill JD, Neild A. Low-volume filling of microplate wells using vibration. Anal Biochem 2012; 425:10-2. [DOI: 10.1016/j.ab.2012.02.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 02/22/2012] [Accepted: 02/24/2012] [Indexed: 11/17/2022]
|
120
|
Nuchtavorn N, Bek F, Macka M, Suntornsuk W, Suntornsuk L. Rapid separations of nile blue stained microorganisms as cationic charged species by chip-CE with LIF. Electrophoresis 2012; 33:1421-6. [DOI: 10.1002/elps.201100698] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Nantana Nuchtavorn
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy; Mahidol University; Bangkok; Thailand
| | - Fritz Bek
- Agilent Technologies; Waldbronn; Germany
| | - Mirek Macka
- Australian Centre for Research on Separation Science, School of Chemistry; University of Tasmania; Tasmania; Australia
| | - Worapot Suntornsuk
- Department of Microbiology, Faculty of Science; King Mongkut's University of Technology Thonburi; Bangkok; Thailand
| | - Leena Suntornsuk
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy; Mahidol University; Bangkok; Thailand
| |
Collapse
|
121
|
Liao KT, Chou CF. Nanoscale Molecular Traps and Dams for Ultrafast Protein Enrichment in High-Conductivity Buffers. J Am Chem Soc 2012; 134:8742-5. [DOI: 10.1021/ja3016523] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kuo-Tang Liao
- Institute
of Physics, ‡Institute of Molecular Biology, ⊥Genomics Research Center, and ∥Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Chia-Fu Chou
- Institute
of Physics, ‡Institute of Molecular Biology, ⊥Genomics Research Center, and ∥Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
122
|
Karlinsey JM. Sample introduction techniques for microchip electrophoresis: A review. Anal Chim Acta 2012; 725:1-13. [DOI: 10.1016/j.aca.2012.02.052] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 02/25/2012] [Accepted: 02/29/2012] [Indexed: 12/24/2022]
|
123
|
Microfluidic bead-based enzymatic primer extension for single-nucleotide discrimination using quantum dots as labels. Anal Biochem 2012; 426:30-9. [PMID: 22487314 DOI: 10.1016/j.ab.2012.03.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 03/29/2012] [Accepted: 03/30/2012] [Indexed: 11/21/2022]
Abstract
This study reports the development of an on-chip enzyme-mediated primer extension process based on a microfluidic device with microbeads array for single-nucleotide discrimination using quantum dots as labels. The functionalized microbeads were independently introduced into the arrayed chambers using the loading chip slab. A single channel was used to generate weir structures to confine the microbeads and make the beads array accessible by microfluidics. The applied allele-specific primer extension method employed a nucleotide-degrading enzyme (apyrase) to achieve specific single-nucleotide detection. Based on the apyrase-mediated allele-specific primer extension with quantum dots as labels, on-chip single-nucleotide discrimination was demonstrated with high discrimination specificity and sensitivity (0.5 pM, signal/noise > 3) using synthesized target DNA. The chip-based signal enhancement for single-nucleotide discrimination resulted in 200 times higher sensitivity than that of an off-chip test. This microfluidic device successfully achieved simultaneous detection of two disease-associated single-nucleotide polymorphism sites using polymerase chain reaction products as target. This apyrase-mediated microfluidic primer extension approach combines the rapid binding kinetics of homogeneous assays of suspended microbeads array, the liquid handling capability of microfluidics, and the fluorescence detection sensitivity of quantum dots to provide a platform for single-base analysis with small reagent consumption, short assay time, and parallel detection.
Collapse
|
124
|
Uvet H, Arai T, Mae Y, Takubo T, Yamada M. Miniaturized Vision System for Microfluidic Devices. Adv Robot 2012. [DOI: 10.1163/156855308x338438] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Huseyin Uvet
- a Department of Systems Innovation Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan;,
| | - Tatsuo Arai
- b Department of Systems Innovation Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Yasushi Mae
- c Department of Systems Innovation Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Tomohito Takubo
- d Department of Systems Innovation Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Masato Yamada
- e Department of Systems Innovation Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
125
|
Fu E, Yager P, Floriano PN, Christodoulides N, McDevitt JT. Perspective on diagnostics for global health. IEEE Pulse 2012; 2:40-50. [PMID: 22147068 DOI: 10.1109/mpul.2011.942766] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Elain Fu
- Department of Bioengineering, University of Washington, Washington, USA.
| | | | | | | | | |
Collapse
|
126
|
Zagnoni M. Miniaturised technologies for the development of artificial lipid bilayer systems. LAB ON A CHIP 2012; 12:1026-1039. [PMID: 22301684 DOI: 10.1039/c2lc20991h] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Artificially reproducing cellular environments is a key aim of synthetic biology, which has the potential to greatly enhance our understanding of cellular mechanisms. Microfluidic and lab-on-a-chip (LOC) techniques, which enable the controlled handling of sub-microlitre volumes of fluids in an automated and high-throughput manner, can play a major role in achieving this by offering alternative and powerful methodologies in an on-chip format. Such techniques have been successfully employed over the last twenty years to provide innovative solutions for chemical analysis and cell-, molecular- and synthetic- biology. In the context of the latter, the formation of artificial cell membranes (or artificial lipid bilayers) that incorporate membrane proteins within miniaturised LOC architectures offers huge potential for the development of highly sensitive molecular sensors and drug screening applications. The aim of this review is to give a comprehensive and critical overview of the field of microsystems for creating and exploiting artificial lipid bilayers. Advantages and limitations of three of the most popular approaches, namely suspended, supported and droplet-based lipid bilayers, are discussed. Examples are reported that show how artificial cell membrane microsystems, by combining together biological procedures and engineering techniques, can provide novel methodologies for basic biological and biophysical research and for the development of biotechnology tools.
Collapse
Affiliation(s)
- Michele Zagnoni
- Centre for Microsystems and Photonics, University of Strathclyde, Glasgow, UK.
| |
Collapse
|
127
|
Liu HB, Ting EK, Gong HQ. Manipulating liquid plugs in microchannel with controllable air vents. BIOMICROFLUIDICS 2012; 6:12815-1281510. [PMID: 22662082 PMCID: PMC3365334 DOI: 10.1063/1.3686878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 01/27/2012] [Indexed: 05/07/2023]
Abstract
An air venting element on microchannel, which can be controlled externally and automatically, was demonstrated for manipulating liquid plugs in microfluidic systems. The element's open and closed statuses correspond to the positioning and movement of a liquid plug in the microchannel. Positioning of multiple liquid plugs at an air venting element enabled the merging and mixing of the plugs. Besides these basic functions, other modes of liquid plug manipulations including plug partitioning, multiple plug mixing, and spacing adjustment between liquid plugs, were realized using combination of multiple elements. The structure, operation, and some functions of the element were demonstrated with a microfluidic chip application. The performances of the element including its failure modes, threshold flow rate, and structural optimization were also discussed.
Collapse
Affiliation(s)
- Hao-Bing Liu
- BioMEMS Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798
| | | | | |
Collapse
|
128
|
Miyake M, Nakajima H, Hemmi A, Yahiro M, Adachi C, Soh N, Ishimatsu R, Nakano K, Uchiyama K, Imato T. Performance of an organic photodiode as an optical detector and its application to fluorometric flow-immunoassay for IgA. Talanta 2012; 96:132-9. [PMID: 22817940 DOI: 10.1016/j.talanta.2012.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 01/30/2012] [Accepted: 02/03/2012] [Indexed: 10/14/2022]
Abstract
The performance of an organic thin film photodiode (OPD), fabricated from a hetero-junction comprised of two layers of C(60) and a phthalocyanine-Cu(II) complex was evaluated by detecting the chemiluminescence generated from the reaction of luminol with horseradish peroxidase in the presence of H(2)O(2), and the fluorescence from resorufin, as an optical detector. The photocurrent of the OPD was linear with respect to the power of light from a commercial LED. The sensitivity of the OPD was sufficient for detecting chemiluminescence with a power 0.1μW/cm(2). The OPD was successfully used in a flow-immunoassay for IgA, a marker of human stress, in which a sandwich immunoassay was carried out on the microchip and the fluorescence from resorufin, produced by the enzymatic reaction, was detected. The detection limits for resorufin and IgA were 5.0μM and 16ng/mL, respectively. The photosensitivity of the OPD remained relatively constant for a minimum of one year.
Collapse
Affiliation(s)
- Mayo Miyake
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Viefhues M, Eichhorn R, Fredrich E, Regtmeier J, Anselmetti D. Continuous and reversible mixing or demixing of nanoparticles by dielectrophoresis. LAB ON A CHIP 2012; 12:485-494. [PMID: 22193706 DOI: 10.1039/c1lc20610a] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Mixing and demixing (separation) are essential tasks in microfluidic devices, which seem to be contrary in nature. Accordingly, completely different strategies and devices are usually employed for their realization. We here present a microfluidic device which is capable of performing both these tasks as it can be operated in either mixing or demixing mode. The mixing and demixing processes are reversible and are accomplished by continuous operation of the device. An asymmetric S-shaped ridge extends over the full width of a microfluidic channel (200 μm) creating a constriction of 620 nm in height with an aspect ratio of 1 : 500. Appropriate AC and DC voltages generate electrodeless dielectrophoresis at the constriction as well as (linear) electrokinetic driving forces along the channel. These de/mixing parameters can be adapted in real time in such a way that continuous separation and mixing efficiencies of 85-100% can be achieved. As a proof of concept we demonstrate continuous mixing and demixing of polystyrene nanoparticles (20 and 100 nm). The experimental results are complemented by numerical simulations illustrating the particles' motion under the influence of the electrokinetic effects and thermal noise (diffusion). The monolithic one-step fabrication process by soft lithography (with PDMS in our case) will make integration and combination of several mixing and demixing functions into a more complex lab-on-a-chip device possible.
Collapse
Affiliation(s)
- Martina Viefhues
- Experimental Biophysics and Applied Nanoscience, Faculty of Physics, Bielefeld University, 33615 Bielefeld, Germany.
| | | | | | | | | |
Collapse
|
130
|
Oh KW, Lee K, Ahn B, Furlani EP. Design of pressure-driven microfluidic networks using electric circuit analogy. LAB ON A CHIP 2012; 12:515-45. [PMID: 22179505 DOI: 10.1039/c2lc20799k] [Citation(s) in RCA: 269] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
This article reviews the application of electric circuit methods for the analysis of pressure-driven microfluidic networks with an emphasis on concentration- and flow-dependent systems. The application of circuit methods to microfluidics is based on the analogous behaviour of hydraulic and electric circuits with correlations of pressure to voltage, volumetric flow rate to current, and hydraulic to electric resistance. Circuit analysis enables rapid predictions of pressure-driven laminar flow in microchannels and is very useful for designing complex microfluidic networks in advance of fabrication. This article provides a comprehensive overview of the physics of pressure-driven laminar flow, the formal analogy between electric and hydraulic circuits, applications of circuit theory to microfluidic network-based devices, recent development and applications of concentration- and flow-dependent microfluidic networks, and promising future applications. The lab-on-a-chip (LOC) and microfluidics community will gain insightful ideas and practical design strategies for developing unique microfluidic network-based devices to address a broad range of biological, chemical, pharmaceutical, and other scientific and technical challenges.
Collapse
Affiliation(s)
- Kwang W Oh
- SMALL (Sensors and MicroActuators Learning Lab), Department of Electrical Engineering, University at Buffalo, The State University of New York at Buffalo (SUNY-Buffalo), New York 14260, USA.
| | | | | | | |
Collapse
|
131
|
Stephens JR, Beveridge JS, Williams ME. Analytical methods for separating and isolating magnetic nanoparticles. Phys Chem Chem Phys 2012; 14:3280-9. [PMID: 22306911 DOI: 10.1039/c2cp22982j] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Despite the large body of literature describing the synthesis of magnetic nanoparticles, few analytical tools are commonly used for their purification and analysis. Due to their unique physical and chemical properties, magnetic nanoparticles are appealing candidates for biomedical applications and analytical separations. Yet in the absence of methods for assessing and assuring their purity, the ultimate use of magnetic particles and heterostructures is likely to be limited. In this review, we summarize the separation techniques that have been initially used for this purpose. For magnetic nanoparticles, it is the use of an applied magnetic flux or field gradient that enables separations. Flow based techniques are combined with applied magnetic fields to give methods such as magnetic field flow fractionation and high gradient magnetic separation. Additional techniques have been explored for manipulating particles in microfluidic channels and in mesoporous membranes. Further development of these and new analytical tools for separation and analysis of colloidal particles is critically important to enable the practical use of these, particularly for medicinal purposes.
Collapse
Affiliation(s)
- Jason R Stephens
- The Pennsylvania State University, 104 Chemistry Building, University Park, PA 16802, USA
| | | | | |
Collapse
|
132
|
Liu D, Liang G, Lei X, Chen B, Wang W, Zhou X. Highly efficient capillary polymerase chain reaction using an oscillation droplet microreactor. Anal Chim Acta 2012; 718:58-63. [PMID: 22305898 DOI: 10.1016/j.aca.2011.12.066] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 12/19/2011] [Accepted: 12/23/2011] [Indexed: 11/28/2022]
Abstract
The current work presents the development of a capillary-based oscillation droplet approach to maximize the potential of a continuous-flow polymerase chain reaction (PCR). Through the full utilization of interfacial chemistry, a water-in-oil (w/o) droplet was generated by allowing an oil-water plug to flow along a polytetrafluoroethylene (PTFE) capillary. The w/o droplet functioned as the reactor for oscillating-flow PCR to provide a stable reaction environment, accelerate reagent mixing, and eliminate surface adsorption. The capillary PCR approach proposed in the current research offers high amplification efficiency, fast reaction speed, and easy system control attributable to the oscillation droplet reactor. Experimental results show that the droplet-based micro-PCR assay requires lower reaction volume (2 μL) and shorter reaction time (12 min) compared with conventional PCR methods. Taking the amplification of the New Delhi metallo-beta-lactamase (NDM-1) gene as an example, the present work demonstrates that the oscillation droplet PCR assay is capable of achieving high efficiency up to 89.5% and a detection limit of 10 DNA copies. The miniature PCR protocol developed in the current work is fast, robust, and low-cost, thus exhibiting the potential for expansion into various practical applications.
Collapse
Affiliation(s)
- Dayu Liu
- Department of Laboratory Medicine, Guangzhou First Municipal People's Hospital, Affiliated to Guangzhou Medical College, Guangzhou, China.
| | | | | | | | | | | |
Collapse
|
133
|
Li X, Li PCH. Strategies for the real-time detection of Ca2+ channel events of single cells: recent advances and new possibilities. Expert Rev Clin Pharmacol 2012; 3:267-80. [PMID: 22111609 DOI: 10.1586/ecp.10.16] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ca(2+) ion channels play key roles in cell physiology and they are important drug targets. The Ca(2+) channel events are mainly measurable by fluorescent and patch clamp methods. This review summarizes the recent advances of these techniques for the detection of Ca(2+) channel events and the prospect of their new directions in the near future. Conventional bulk fluorescent methods are amenable to high-throughput applications, but they are not real-time single-cell measurements, which provide kinetic data on individual cells and offer unparalleled sensitive data for rare cells. Recent advances on real-time single-cell fluorescent measurements are conducted on microfluidic chips with scalable cell-retention sites, integrated with electrical stimulation and fluorescent measuring features. Patch clamp techniques are real-time measurements conducted on single cells, but the measurements are of low throughput. Recent advances are conducted on microfluidic patch clamp chips for high-throughput applications. Future real-time single-cell Ca(2+) channel event measurements will be conducted in a multiparametric manner in an integrated and automated microfluidic chip.
Collapse
Affiliation(s)
- XiuJun Li
- University of California at Berkeley, CA 94720, USA
| | | |
Collapse
|
134
|
James D, Oag B, Rushworth CM, Lee JWL, Davies J, Cabral JT, Vallance C. High-sensitivity online detection for microfluidics via cavity ringdown spectroscopy. RSC Adv 2012. [DOI: 10.1039/c2ra20349a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
135
|
Ozhikandathil J, Packirisamy M. Nano-islands integrated evanescence-based lab-on-a-chip on silica-on-silicon and polydimethylsiloxane hybrid platform for detection of recombinant growth hormone. BIOMICROFLUIDICS 2012; 6:46501. [PMID: 24106526 PMCID: PMC3482249 DOI: 10.1063/1.4757968] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Accepted: 09/25/2012] [Indexed: 05/13/2023]
Abstract
Integration of nano-materials in optical microfluidic devices facilitates the realization of miniaturized analytical systems with enhanced sensing abilities for biological and chemical substances. In this work, a novel method of integration of gold nano-islands in a silica-on-silicon-polydimethylsiloxane microfluidic device is reported. The device works based on the nano-enhanced evanescence technique achieved by interacting the evanescent tail of propagating wave with the gold nano-islands integrated on the core of the waveguide resulting in the modification of the propagating UV-visible spectrum. The biosensing ability of the device is investigated by finite-difference time-domain simulation with a simplified model of the device. The performance of the proposed device is demonstrated for the detection of recombinant growth hormone based on antibody-antigen interaction.
Collapse
Affiliation(s)
- J Ozhikandathil
- Optical Bio-Microsystems Laboratory, Department of Mechanical and Industrial Engineering, Concordia University, Montreal, Quebec H3G 1M8, Canada
| | | |
Collapse
|
136
|
Liu YH, Wang CH, Wu JJ, Lee GB. Rapid detection of live methicillin-resistant Staphylococcus aureus by using an integrated microfluidic system capable of ethidium monoazide pre-treatment and molecular diagnosis. BIOMICROFLUIDICS 2012; 6:34119. [PMID: 24019858 PMCID: PMC3461804 DOI: 10.1063/1.4748358] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 08/13/2012] [Indexed: 05/06/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a bacterium resistant to all existing penicillin and lactam-based antimicrobial drugs and, therefore, has become one of the most prevalent antibiotic-resistant pathogens found in hospitals. The multi-drug resistant characteristics of MRSA make it challenging to clinically treat infected patients. Therefore, early diagnosis of MRSA has become a public-health priority worldwide. Conventionally, cell-culture based methodology and microscopic identification are commonly used for MRSA detection. However, they are relatively time-consuming and labor-intensive. Recently, molecular diagnosis based on nucleic acid amplification techniques, such as polymerase chain reaction (PCR), has been widely investigated for the rapid detection of MRSA. However, genomic DNA of both live and dead pathogens can be distinguished by conventional PCR. These results thus could not provide sufficient confirmation of an active infection for clinicians. In this study, live MRSA was rapidly detected by using a new integrated microfluidic system. The microfluidic system has been demonstrated to have 100% specificity to detect live MRSA with S. aureus and other pathogens commonly found in hospitals. The experimental results showed that the limit of detection for live MRSA from biosamples was approximately 10(2) CFU/μl. In addition, the entire diagnostic protocol, from sample pre-treatment to fluorescence observation, can be automatically completed within 2.5 h. Consequently, this microfluidic system may be a powerful tool for the rapid molecular diagnosis of live MRSA.
Collapse
Affiliation(s)
- Yu-Hsin Liu
- Department of Engineering Science, National Cheng Kung University, Tainan, Taiwan 701
| | | | | | | |
Collapse
|
137
|
Forster S, McArthur SL. Stable low-fouling plasma polymer coatings on polydimethylsiloxane. BIOMICROFLUIDICS 2012; 6:36504. [PMID: 24062864 PMCID: PMC3470602 DOI: 10.1063/1.4754600] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 09/10/2012] [Indexed: 05/15/2023]
Abstract
Polydimethylsiloxane (DMS) is a popular material for microfluidics, but it is hydrophobic and is prone to non-specific protein adsorption. In this study, we explore methods for producing stable, protein resistant, tetraglyme plasma polymer coatings on PDMS by combining extended baking processes with multiple plasma polymer coating steps. We demonstrate that by using this approach, it is possible to produce a plasma polymer coatings that resist protein adsorption (<10 ng/cm(2)) and are stable to storage over at least 100 days. This methodology can translate to any plasma polymer system, enabling the introduction of a wide range of surface functionalities on PDMS surfaces.
Collapse
Affiliation(s)
- S Forster
- Department of Engineering Materials, Kroto Research Institute, University of Sheffield, Sheffield Biotactical Engineering Group, IRIS, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, Hawthorn 3122, Australia
| | | |
Collapse
|
138
|
Ozhikandathil J, Packirisamy M. Silica-on-silicon waveguide integrated polydimethylsiloxane lab-on-a-chip for quantum dot fluorescence bio-detection. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:017006. [PMID: 22352672 DOI: 10.1117/1.jbo.17.1.017006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Integration of microfluidics and optical components is an essential requirement for the realization of optical detection in lab-on-a-chip (LOC). In this work, a novel hybrid integration of silica-on-silicon (SOS) waveguide and polydymethylsiloxane (PDMS) microfluidics for realizing optical detection based biochip is demonstrated. SOS is a commonly used platform for integrated photonic circuits due to its lower absorption coefficient of silica and the availability of advanced microfabrication technologies for fabricating complicated optical components. However, the fabrication of complex microfluidics circuits on SOS is an expensive process. On the other hand, any complex 3D and high-aspect-ratio microstructures for the microfluidic applications can be easily patterned on PDMS using soft lithography. By exploring the advantages of these two materials, the proposed hybrid integration method greatly simplifies the fabrication of optical LOC. Two simple technologies--namely, diamond machining and soft lithography--were employed for the integration of an optical microfluidic system. Use of PDMS for the fabrication of any complex 3D microfluidics structures, together with the integration of low loss silica-on-silicon photonic waveguides with a straight microfluidic channel, opens up new possibilities to produce low-cost biochips. The performance of SOS-PDMS-integrated hybrid biochip is demonstrated with the detection of laser induced fluorescence of quantum dots. As quantum dots have immense application potential for biodetection, they are used for the demonstration of biodetection.
Collapse
Affiliation(s)
- Jayan Ozhikandathil
- Concordia University, Optical-Bio Microsystems Laboratory, Department of Mechanical and Industrial Engineering, Montreal, QC, Canada.
| | | |
Collapse
|
139
|
Whitehill JD, Neild A, Stokes MH. Forced spreading behavior of droplets undergoing low frequency vibration. Colloids Surf A Physicochem Eng Asp 2012. [DOI: 10.1016/j.colsurfa.2011.11.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
140
|
Lok KS, Kwok YC, Nguyen NT. Sample loading and retrieval by centrifugation in a closed-loop PCR microchip. Mikrochim Acta 2011. [DOI: 10.1007/s00604-011-0741-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
141
|
Multienzyme-nanoparticles amplification for sensitive virus genotyping in microfluidic microbeads array using Au nanoparticle probes and quantum dots as labels. Biosens Bioelectron 2011; 29:89-96. [DOI: 10.1016/j.bios.2011.07.074] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 07/28/2011] [Indexed: 01/27/2023]
|
142
|
Njoroge SK, Witek MA, Battle KN, Immethun VE, Hupert ML, Soper SA. Integrated continuous flow polymerase chain reaction and micro-capillary electrophoresis system with bioaffinity preconcentration. Electrophoresis 2011; 32:3221-32. [PMID: 22038569 DOI: 10.1002/elps.201100274] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 07/01/2011] [Accepted: 07/04/2011] [Indexed: 12/18/2022]
Abstract
An integrated and modular DNA analysis system is reported that consists of two modules: (i) A continuous flow polymerase chain reaction (CFPCR) module fabricated in a high T(g) (150°C) polycarbonate substrate in which selected gene fragments were amplified using biotin and fluorescently labeled primers accomplished by continuously shuttling small packets of PCR reagents and template through isothermal zones as opposed to heating and cooling large thermal masses typically performed in batch-type thermal reactors. (ii) μCE (micro-capillary electrophoresis) module fabricated in poly(methylmethacrylate) (PMMA), which utilized a bioaffinity selection and purification bed (2.9 μL) to preconcentrate and purify the PCR products generated from the CFPCR module prior to electrophoretic sorting. Biotin-labeled CFPCR products were hydrostatically pumped through the streptavidin-modified bed, where they were extracted onto the surface of micropillars. The affinity bed was also fabricated in PMMA and was populated with an array of microposts (50 μm width; 100 μm height) yielding a total surface area of ∼117 mm(2). This solid-phase extraction (SPE) process demonstrated high selectivity for biotinylated amplicons and utilized the strong streptavidin/biotin interaction (K(d) = 10(-15) M) to generate high recoveries. The SPE selected CFPCR products were thermally denatured and single-stranded DNA released for injection into a 7-cm-long μCE channel for size-based separations and fluorescence detection. The utility of the system was demonstrated using Alu DNA typing for gender and ethnicity determinations as a model. Compared with the traditional cross-T injection procedure typically used for μCE, the affinity pre-concentration and injection procedure generated signal enhancements of 17- to 40-fold, critical for CFPCR thermal cyclers due to Taylor dispersion associated with their operation.
Collapse
Affiliation(s)
- Samuel K Njoroge
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, USA
| | | | | | | | | | | |
Collapse
|
143
|
Eker B, Yilmaz MD, Schlautmann S, Gardeniers JGE, Huskens J. A supramolecular sensing platform for phosphate anions and an anthrax biomarker in a microfluidic device. Int J Mol Sci 2011; 12:7335-51. [PMID: 22174602 PMCID: PMC3233408 DOI: 10.3390/ijms12117335] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 10/19/2011] [Accepted: 10/20/2011] [Indexed: 12/04/2022] Open
Abstract
A supramolecular platform based on self-assembled monolayers (SAMs) has been implemented in a microfluidic device. The system has been applied for the sensing of two different analyte types: biologically relevant phosphate anions and aromatic carboxylic acids, which are important for anthrax detection. A Eu(III)-EDTA complex was bound to β-cyclodextrin monolayers via orthogonal supramolecular host-guest interactions. The self-assembly of the Eu(III)-EDTA conjugate and naphthalene β-diketone as an antenna resulted in the formation of a highly luminescent lanthanide complex on the microchannel surface. Detection of different phosphate anions and aromatic carboxylic acids was demonstrated by monitoring the decrease in red emission following displacement of the antenna by the analyte. Among these analytes, adenosine triphosphate (ATP) and pyrophosphate, as well as dipicolinic acid (DPA) which is a biomarker for anthrax, showed a strong response. Parallel fabrication of five sensing SAMs in a single multichannel chip was performed, as a first demonstration of phosphate and carboxylic acid screening in a multiplexed format that allows a general detection platform for both analyte systems in a single test run with μM and nM detection sensitivity for ATP and DPA, respectively.
Collapse
Affiliation(s)
- Bilge Eker
- Mesoscale Chemical Systems, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE, Enschede, The Netherlands; E-Mails: (B.E.); (S.S.)
| | - Mahmut Deniz Yilmaz
- Molecular Nanofabrication Group, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE, Enschede, The Netherlands; E-Mail: (M.D.Y.)
| | - Stefan Schlautmann
- Mesoscale Chemical Systems, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE, Enschede, The Netherlands; E-Mails: (B.E.); (S.S.)
| | - Johannes G. E. Gardeniers
- Mesoscale Chemical Systems, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE, Enschede, The Netherlands; E-Mails: (B.E.); (S.S.)
| | - Jurriaan Huskens
- Molecular Nanofabrication Group, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE, Enschede, The Netherlands; E-Mail: (M.D.Y.)
| |
Collapse
|
144
|
Lew V, Nguyen D, Khine M. Shrink-induced single-cell plastic microwell array. ACTA ACUST UNITED AC 2011; 16:450-6. [PMID: 22093302 DOI: 10.1016/j.jala.2011.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Indexed: 01/09/2023]
Abstract
The ability to interrogate and track single cells over time in a high-throughput format would provide critical information for fundamental biological understanding of processes and for various applications, including drug screening and toxicology. We have developed an ultrarapid and simple method to create single-cell wells of controllable diameter and depth with commodity shrink-wrap film and tape. Using a programmable CO(2) laser, we cut hole arrays into the tape. The tape then serves as a shadow mask to selectively etch wells into commodity shrink-wrap film by O(2) plasma. When the shrink-wrap film retracts upon briefly heating, high-aspect plastic microwell arrays with diameters down to 20 μm are readily achieved. We calibrated the loading procedure with fluorescent microbeads. Finally, we demonstrate the utility of the wells by loading fluorescently labeled single human embryonic stem cells into the wells.
Collapse
Affiliation(s)
- Valerie Lew
- Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA
| | | | | |
Collapse
|
145
|
Jain A, Munn LL. Biomimetic postcapillary expansions for enhancing rare blood cell separation on a microfluidic chip. LAB ON A CHIP 2011; 11:2941-7. [PMID: 21773633 PMCID: PMC3743538 DOI: 10.1039/c1lc20401g] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Blood cells naturally auto-segregate in postcapillary venules, with the erythrocytes (red blood cells, RBCs) aggregating near the axis of flow and the nucleated cells (NCs)--which include leukocytes, progenitor cells and, in cancer patients, circulating tumor cells--marginating toward the vessel wall. We have used this principle to design a microfluidic device that extracts nucleated cells (NCs) from whole blood. Fabricated using polydimethylsiloxane (PDMS) soft lithography, the biomimetic cell extraction device consists of rectangular microchannels that are 20-400 μm wide, 11 μm deep and up to 2 cm long. The key design feature is the use of repeated expansions/contractions of triangular geometry mimicking postcapillary venules, which enhance margination and optimize the extraction. The device operates on unprocessed whole blood and is able to extract 94 ± 4.5% of NCs with 45.75 ± 2.5-fold enrichment in concentration at a rate of 5 nl s(-1). The device eliminates the need to preprocess blood via centrifugation or RBC lysis, and is ready to be implemented as the initial stage of lab-on-a-chip devices that require enriched nucleated cells. The potential downstream applications are numerous, encompassing all preclinical and clinical assays that operate on enriched NC populations and include on-chip flow cytometry (A. Y. Fu et al., Anal. Chem., 2002, 74, 2451-2457; A. Y. Fu et al., Nat. Biotechnol., 1999, 17, 1109-1111), genetic analyses (M. M. Wang et al., Nat. Biotechnol., 2005, 23, 83-87; L. C. Waters et al., Anal. Chem., 1998, 70, 5172-5176) and circulating tumor cell extraction (S. Nagrath et al., Nature, 2007, 450, 1235-1241; S. L. Stott et al., Proc. Natl. Acad. Sci. U. S. A., 2010, 18392-18397; H. K. Lin et al., Clin. Cancer Res., 2010, 16, 5011-5018).
Collapse
Affiliation(s)
- Abhishek Jain
- Department of Biomedical Engineering, Boston University, 44 Cummington Street, Boston, 02119, USA. . harvard.edu; Tel: +1 617 726-4089
- Steele Lab for Tumor Biology, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Charlestown, MA 02129. ; Fax: +1 617 726 1962; Tel: +1 617 726-4085
| | - Lance L. Munn
- Steele Lab for Tumor Biology, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Charlestown, MA 02129. ; Fax: +1 617 726 1962; Tel: +1 617 726-4085
| |
Collapse
|
146
|
Regtmeier J, Eichhorn R, Viefhues M, Bogunovic L, Anselmetti D. Electrodeless dielectrophoresis for bioanalysis: Theory, devices and applications. Electrophoresis 2011; 32:2253-73. [DOI: 10.1002/elps.201100055] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 05/31/2011] [Accepted: 06/01/2011] [Indexed: 01/05/2023]
|
147
|
Birnbaumer G, Küpcü S, Jungreuthmayer C, Richter L, Vorauer-Uhl K, Wagner A, Valenta C, Sleytr U, Ertl P. Rapid liposome quality assessment using a lab-on-a-chip. LAB ON A CHIP 2011; 11:2753-2762. [PMID: 21691661 DOI: 10.1039/c0lc00589d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Although liposomes have many outstanding features such as biocompatibility, biodegradability, low toxicity and structural diversity, and are successfully applied in many areas of chemistry and biotechnology, a lack of characterization standards and quality control tools are still inhibiting the translation of liposome technology into clinical routine. The greatest obstacle to clinical scale commercialization is the inability to ensure liposome formulation stability because small size variations or altered surface chemistries can significantly influence in vivo distribution and excretion kinetics that could in turn lead to unpredictable therapy outcomes. To enhance the product development process we have developed a microfluidic biochip containing embedded dielectric microsensors capable of providing quantitative results on formulation composition and stability based on the monitoring of the unique electric properties of liposomes. Computational fluid dynamic (CFD) simulations confirmed that microfluidics offer reproducible and well-defined measurement conditions where a moving liposome suspension within a microchannel behaves like a bulk material. Results of this study demonstrate the ability of microfluidics, in combination with dielectric spectroscopy and multivariate data analysis methods, to identify nine different liposomes. We also show that various liposome modifications such as membrane-bound surface proteins, lipid bilayer soluble drugs, as well as protein and dye encapsulations, can be detected in the absence of any labels or indicators. Since shelf-life stability of a liposome formulation is regarded of prime importance for regulatory approval and clinical application, we further provide a possible practical application of the developed liposome analysis platform as a high-throughput tool for industrial quality insurance purposes.
Collapse
Affiliation(s)
- Gerald Birnbaumer
- Department of Health & Environment, Nano Systems, AIT Austrian Institute of Technology, Donau-City Street 1, 1220 Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Viefhues M, Manchanda S, Chao TC, Anselmetti D, Regtmeier J, Ros A. Physisorbed surface coatings for poly(dimethylsiloxane) and quartz microfluidic devices. Anal Bioanal Chem 2011; 401:2113-22. [PMID: 21847528 DOI: 10.1007/s00216-011-5301-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 07/22/2011] [Accepted: 07/28/2011] [Indexed: 01/20/2023]
Abstract
Surface modifications of microfluidic devices are of essential importance for successful bioanalytical applications. Here, we investigate three different coatings for quartz and poly(dimethylsiloxane) (PDMS) surfaces. We employed a triblock copolymer with trade name F(108), poly(L-lysine)-g-poly(ethylene glycol) (PLL-PEG), as well as the hybrid coating n-dodecyl-β-D-maltoside and methyl cellulose (DDM/MC). The impact of these coatings was characterized by measuring the electroosmotic flow (EOF), contact angle, and prevention of protein adsorption. Furthermore, we investigated the influence of static coatings, i.e., the incubation with the coating agent prior to measurements, and dynamic coatings, where the coating agent was present during the measurement. We found that all coatings on PDMS as well as quartz reduced EOF, increased reproducibility of EOF, reduced protein adsorption, and improved the wettability of the surfaces. Among the coating strategies tested, the dynamic coatings with DDM/MC and F(108) demonstrated maximal reduction of EOF and protein adsorption and simultaneously best long-term stability concerning EOF. For PLL-PEG, a reversal in the EOF direction was observed. Interestingly, the static surface coating strategy with F(108) proved to be as effective to prevent protein adsorption as dynamic coating with this block copolymer. These findings will allow optimized parameter choices for coating strategies on PDMS and quartz microfluidic devices in which control of EOF and reduced biofouling are indispensable.
Collapse
Affiliation(s)
- M Viefhues
- Experimental Biophysics and Applied Nanoscience, Bielefeld University, 33615 Bielefeld, Germany
| | | | | | | | | | | |
Collapse
|
149
|
Shahini M, Yeow JTW. Carbon nanotubes for voltage reduction and throughput enhancement of electrical cell lysis on a lab-on-a-chip. NANOTECHNOLOGY 2011; 22:325705. [PMID: 21775777 DOI: 10.1088/0957-4484/22/32/325705] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We report on the enhancement of electrical cell lysis using carbon nanotubes (CNTs). Electrical cell lysis systems are widely utilized in microchips as they are well suited to integration into lab-on-a-chip devices. However, cell lysis based on electrical mechanisms has high voltage requirements. Here, we demonstrate that by incorporating CNTs into microfluidic electrolysis systems, the required voltage for lysis is reduced by half and the lysis throughput at low voltages is improved by ten times, compared to non-CNT microchips. In our experiment, E. coli cells are lysed while passing through an electric field in a microchannel. Based on the lightning rod effect, the electric field strengthened at the tip of the CNTs enhances cell lysis at lower voltage and higher throughput. This approach enables easy integration of cell lysis with other on-chip high-throughput sample-preparation processes.
Collapse
Affiliation(s)
- Mehdi Shahini
- University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada
| | | |
Collapse
|
150
|
Richter L, Charwat V, Jungreuthmayer C, Bellutti F, Brueckl H, Ertl P. Monitoring cellular stress responses to nanoparticles using a lab-on-a-chip. LAB ON A CHIP 2011; 11:2551-60. [PMID: 21687846 DOI: 10.1039/c1lc20256a] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
As nanotechnology moves towards widespread commercialization, new technologies are needed to adequately address the potential health impact of nanoparticles (NPs). Assessing the safety of over 30,000 NPs through animal testing would not only be expensive, but it would also raise a number of ethical considerations. Furthermore, existing in vitro cell-based assays are not sufficient in scope to adequately address the complexity of cell-nanoparticle interactions including NP translocation, accumulation and co-transport of e.g. allergens. In particular, classical optical/fluorescent endpoint detection methods are known to provide irreproducible, inaccurate and unreliable results since these labels can directly react with the highly catalytic surfaces of NP. To bridge this technological gap we have developed a lab-on-a-chip capable of continuously and non-invasively monitoring the collagen production of primary human fibroblast cells (NHDF) using contactless dielectric microsensors. Human dermal fibroblast cells are responsible for the maintenance of soft tissue integrity, are found throughout the human body and their primary function is collagen expression. We show that cellular collagen production can be readily detected and used to assess cellular stress responses to a variety of external stimuli, including exposure to nanoparticles. Results of the study showed a 20% and 95% reduction of collagen production following 4 hour exposure to 10 μg mL(-1) gold and silver nanoparticles (dia.10 nm), respectively. Furthermore a prolonged perfusion of sub-toxic concentrations (0.1 μg mL(-1)) of silver NP reduced NHDF collagen production by 40% after 10 h indicating increased NP take up and accumulation. We demonstrate that the application of microfluidics for the tailored administration of different NP treatments constitutes a powerful new tool to study cell-nanoparticle interactions and nanoparticle accumulation effects in small cell populations.
Collapse
Affiliation(s)
- Lukas Richter
- Department of Health & Environment, Nano Systems, Austrian Institute of Technology (AIT), Donau-City Street 1, 1220 Vienna, Austria
| | | | | | | | | | | |
Collapse
|