101
|
Orešič M. Bioinformatics and computational approaches applicable to lipidomics. EUR J LIPID SCI TECH 2009. [DOI: 10.1002/ejlt.200800144] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
102
|
Han X, Jiang X. A review of lipidomic technologies applicable to sphingolipidomics and their relevant applications. EUR J LIPID SCI TECH 2009; 111:39-52. [PMID: 19690629 DOI: 10.1002/ejlt.200800117] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Sphingolipidomics, a branch of lipidomics, focuses on the large-scale study of the cellular sphingolipidomes. In the current review, two main approaches for the analysis of cellular sphingolipidomes (i.e. LC-MS- or LC-MS/MS-based approach and shotgun lipidomics-based approach) are briefly discussed. Their advantages, some considerations of these methods, and recent applications of these approaches are summarized. It is the authors' sincere hope that this review article will add to the readers understanding of the advantages and limitations of each developed method for the analysis of a cellular sphingolipidome.
Collapse
Affiliation(s)
- Xianlin Han
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, USA
| | | |
Collapse
|
103
|
Haimi P, Chaithanya K, Kainu V, Hermansson M, Somerharju P. Instrument-independent software tools for the analysis of MS-MS and LC-MS lipidomics data. Methods Mol Biol 2009; 580:285-94. [PMID: 19784606 DOI: 10.1007/978-1-60761-325-1_16] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Mass spectrometry (MS), particularly electrospray-MS, is the key tool in modern lipidomics. However, as even a modest scale experiment produces a great amount of data, data processing often becomes limiting. Notably, the software provided with MS instruments are not well suited for quantitative analysis of lipidomes because of the great variety of species present and complexities in response calibration. Here we describe the use of two recently introduced software tools: lipid mass spectrum analysis (LIMSA) and spectrum extraction from chromatographic data (SECD), which significantly increase the speed and reliability of mass spectrometric analysis of complex lipidomes. LIMSA is a Microsoft Excel add-on that (1) finds and integrates the peaks in an imported spectrum, (2) identifies the peaks, (3) corrects the peak areas for overlap by isotopic peaks of other species and (4) quantifies the identified species using included internal standards. LIMSA is instrument-independent because it processes text-format MS spectra. Typically, the analysis of one spectrum takes only a few seconds.The SECD software allows one to display MS chromatograms as two-dimensional maps, which is useful for visual inspection of the data. More importantly, however, SECD allows one to extract mass spectra from user-defined regions of the map for further analysis with, e.g., LIMSA. The use of select regions rather than simple time-range averaging significantly improves the signal-to-noise ratio as signals outside the region of interest are more efficiently excluded. LIMSA and SECD have proven to be robust and convenient tools and are available free of charge from the authors.
Collapse
Affiliation(s)
- Perttu Haimi
- Department of Biochemistry, Institute of Biomedicine, University of Helsinki, Helsinki, Finland
| | | | | | | | | |
Collapse
|
104
|
Bioinformatics strategies for the analysis of lipids. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2009; 580:339-68. [PMID: 19784609 DOI: 10.1007/978-1-60761-325-1_19] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Owing to their importance in cellular physiology and pathology as well as to recent technological advances, the study of lipids has reemerged as a major research target. However, the structural diversity of lipids presents a number of analytical and informatics challenges. The field of lipidomics is a new postgenome discipline that aims to develop comprehensive methods for lipid analysis, necessitating concomitant developments in bioinformatics. The evolving research paradigm requires that new bioinformatics approaches accommodate genomic as well as high-level perspectives, integrating genome, protein, chemical and network information. The incorporation of lipidomics information into these data structures will provide mechanistic understanding of lipid functions and interactions in the context of cellular and organismal physiology. Accordingly, it is vital that specific bioinformatics methods be developed to analyze the wealth of lipid data being acquired. Herein, we present an overview of the Kyoto Encyclopedia of Genes and Genomes (KEGG) database and application of its tools to the analysis of lipid data. We also describe a series of software tools and databases (KGML-ED, VANTED, MZmine, and LipidDB) that can be used for the processing of lipidomics data and biochemical pathway reconstruction, an important next step in the development of the lipidomics field.
Collapse
|
105
|
Somerharju P, Virtanen JA, Cheng KH, Hermansson M. The superlattice model of lateral organization of membranes and its implications on membrane lipid homeostasis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1788:12-23. [PMID: 19007747 DOI: 10.1016/j.bbamem.2008.10.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 10/10/2008] [Accepted: 10/10/2008] [Indexed: 01/10/2023]
Abstract
Most biological membranes are extremely complex structures consisting of hundreds of different lipid and protein molecules. According to the famous fluid-mosaic model lipids and many proteins are free to diffuse very rapidly in the plane of the membrane. While such fast diffusion implies that different membrane lipids would be laterally randomly distributed, accumulating evidence indicates that in model and natural membranes the lipid components tend to adopt regular (superlattice-like) distributions. The superlattice model, put forward based on such evidence, is intriguing because it predicts that 1) there is a limited number of allowed compositions representing local minima in membrane free energy and 2) those energy minima could provide set-points for enzymes regulating membrane lipid compositions. Furthermore, the existence of a discrete number of allowed compositions could help to maintain organelle identity in the face of rapid inter-organelle membrane traffic.
Collapse
Affiliation(s)
- Pentti Somerharju
- Institute of Biomedicine, Department of Medical Biochemistry, University of Helsinki, Finland.
| | | | | | | |
Collapse
|
106
|
Hu C, van Dommelen J, van der Heijden R, Spijksma G, Reijmers TH, Wang M, Slee E, Lu X, Xu G, van der Greef J, Hankemeier T. RPLC-Ion-Trap-FTMS Method for Lipid Profiling of Plasma: Method Validation and Application to p53 Mutant Mouse Model. J Proteome Res 2008; 7:4982-91. [DOI: 10.1021/pr800373m] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Chunxiu Hu
- Division of Analytical Biosciences, LACDR, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, 457 Zhongshan Road, 116023, Dalian, China, SU BioMedicine and TNO Quality of Life, Utrechtseweg 48, P.O. Box 360, 3700 AJ, Zeist, The Netherlands, and Ludwig Institute for Cancer Research, University of Oxford, Old Road Campus Research Building, off Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Judith van Dommelen
- Division of Analytical Biosciences, LACDR, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, 457 Zhongshan Road, 116023, Dalian, China, SU BioMedicine and TNO Quality of Life, Utrechtseweg 48, P.O. Box 360, 3700 AJ, Zeist, The Netherlands, and Ludwig Institute for Cancer Research, University of Oxford, Old Road Campus Research Building, off Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Rob van der Heijden
- Division of Analytical Biosciences, LACDR, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, 457 Zhongshan Road, 116023, Dalian, China, SU BioMedicine and TNO Quality of Life, Utrechtseweg 48, P.O. Box 360, 3700 AJ, Zeist, The Netherlands, and Ludwig Institute for Cancer Research, University of Oxford, Old Road Campus Research Building, off Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Gerwin Spijksma
- Division of Analytical Biosciences, LACDR, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, 457 Zhongshan Road, 116023, Dalian, China, SU BioMedicine and TNO Quality of Life, Utrechtseweg 48, P.O. Box 360, 3700 AJ, Zeist, The Netherlands, and Ludwig Institute for Cancer Research, University of Oxford, Old Road Campus Research Building, off Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Theo H. Reijmers
- Division of Analytical Biosciences, LACDR, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, 457 Zhongshan Road, 116023, Dalian, China, SU BioMedicine and TNO Quality of Life, Utrechtseweg 48, P.O. Box 360, 3700 AJ, Zeist, The Netherlands, and Ludwig Institute for Cancer Research, University of Oxford, Old Road Campus Research Building, off Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Mei Wang
- Division of Analytical Biosciences, LACDR, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, 457 Zhongshan Road, 116023, Dalian, China, SU BioMedicine and TNO Quality of Life, Utrechtseweg 48, P.O. Box 360, 3700 AJ, Zeist, The Netherlands, and Ludwig Institute for Cancer Research, University of Oxford, Old Road Campus Research Building, off Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Elizabeth Slee
- Division of Analytical Biosciences, LACDR, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, 457 Zhongshan Road, 116023, Dalian, China, SU BioMedicine and TNO Quality of Life, Utrechtseweg 48, P.O. Box 360, 3700 AJ, Zeist, The Netherlands, and Ludwig Institute for Cancer Research, University of Oxford, Old Road Campus Research Building, off Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Xin Lu
- Division of Analytical Biosciences, LACDR, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, 457 Zhongshan Road, 116023, Dalian, China, SU BioMedicine and TNO Quality of Life, Utrechtseweg 48, P.O. Box 360, 3700 AJ, Zeist, The Netherlands, and Ludwig Institute for Cancer Research, University of Oxford, Old Road Campus Research Building, off Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Guowang Xu
- Division of Analytical Biosciences, LACDR, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, 457 Zhongshan Road, 116023, Dalian, China, SU BioMedicine and TNO Quality of Life, Utrechtseweg 48, P.O. Box 360, 3700 AJ, Zeist, The Netherlands, and Ludwig Institute for Cancer Research, University of Oxford, Old Road Campus Research Building, off Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Jan van der Greef
- Division of Analytical Biosciences, LACDR, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, 457 Zhongshan Road, 116023, Dalian, China, SU BioMedicine and TNO Quality of Life, Utrechtseweg 48, P.O. Box 360, 3700 AJ, Zeist, The Netherlands, and Ludwig Institute for Cancer Research, University of Oxford, Old Road Campus Research Building, off Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Thomas Hankemeier
- Division of Analytical Biosciences, LACDR, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, 457 Zhongshan Road, 116023, Dalian, China, SU BioMedicine and TNO Quality of Life, Utrechtseweg 48, P.O. Box 360, 3700 AJ, Zeist, The Netherlands, and Ludwig Institute for Cancer Research, University of Oxford, Old Road Campus Research Building, off Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| |
Collapse
|
107
|
Wiesner P, Leidl K, Boettcher A, Schmitz G, Liebisch G. Lipid profiling of FPLC-separated lipoprotein fractions by electrospray ionization tandem mass spectrometry. J Lipid Res 2008; 50:574-585. [PMID: 18832345 DOI: 10.1194/jlr.d800028-jlr200] [Citation(s) in RCA: 281] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Glycerophospholipid and sphingolipid species and their bioactive metabolites are important regulators of lipoprotein and cell function. The aim of the study was to develop a method for lipid species profiling of separated lipoprotein classes. Human serum lipoproteins VLDL, LDL, and HDL of 21 healthy fasting blood donors were separated by fast performance liquid chromatography (FPLC) from 50 microl serum. Subsequently, phosphatidylcholine (PC), lysophosphatidylcholine, sphingomyelin (SM), ceramide (CER), phosphatidylethanolamine (PE), PE-based plasmalogen (PE-pl), cholesterol, and cholesteryl ester (CE) content of the separated lipoproteins was quantified by electrospray ionization tandem mass spectrometry (ESI-MS/MS). Analysis of FPLC fractions with PAGE demonstrated that albumin partially coelutes with HDL fractions. However, analysis of an HDL deficient serum (Tangier disease) showed that only lysophosphatidylcholine, but none of the other lipids analyzed, exhibited a significant coelution with the albumin containing fractions. Approximately 60% of lipoprotein CER were found in LDL fractions and 60% of PC, PE, and plasmalogens in HDL fractions. VLDL, LDL, and HDL displayed characteristic lipid class and species pattern. The developed method provides a detailed lipid class and species composition of lipoprotein fractions and may serve as a valuable tool to identify alterations of lipoprotein lipid species profiles in disease with a reasonable experimental effort.
Collapse
Affiliation(s)
- Philipp Wiesner
- Institute of Clinical Chemistry and Laboratory Medicine, University of Regensburg, Germany
| | - Katharina Leidl
- Institute of Clinical Chemistry and Laboratory Medicine, University of Regensburg, Germany
| | - Alfred Boettcher
- Institute of Clinical Chemistry and Laboratory Medicine, University of Regensburg, Germany
| | - Gerd Schmitz
- Institute of Clinical Chemistry and Laboratory Medicine, University of Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University of Regensburg, Germany.
| |
Collapse
|
108
|
Leidl K, Liebisch G, Richter D, Schmitz G. Mass spectrometric analysis of lipid species of human circulating blood cells. Biochim Biophys Acta Mol Cell Biol Lipids 2008; 1781:655-64. [DOI: 10.1016/j.bbalip.2008.07.008] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 07/21/2008] [Accepted: 07/28/2008] [Indexed: 11/30/2022]
|
109
|
Sun G, Yang K, Zhao Z, Guan S, Han X, Gross RW. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometric analysis of cellular glycerophospholipids enabled by multiplexed solvent dependent analyte-matrix interactions. Anal Chem 2008; 80:7576-85. [PMID: 18767869 DOI: 10.1021/ac801200w] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) based approach was developed for the rapid analyses of cellular glycerophospholipids. Through multiplexed solvent-enabled optimization of analyte-matrix interactions during the crystallization process, over a 30-fold increase in S/N was achieved using 9-aminoacridine as the matrix. The linearity of response (r(2) = 0.99) and dynamic range of this method (over 2 orders of magnitude) were excellent. Moreover, through multiplexing ionization conditions by generating suites of different analyte-matrix interactions in the absence or presence of different alkali metal cations in the matrix, discrete lipid classes were highly and selectively ionized under different conditions resulting in the de facto resolution of lipid classes without chromatography. The resultant decreases in spectral complexity facilitated tandem mass spectrometric analysis through high energy fragmentation of lithiated molecular ions that typically resulted in informative fragment ions. Anionic phospholipids were also detected as singly negatively charged species that could be fragmented using MALDI tandem mass spectrometry leading to structural assignments. Collectively, these results identify a rapid, sensitive, and highly informative MALDI-TOF MS approach for analysis of cellular glycerophospholipids directly from extracts of mammalian tissues without the need for prior chromatographic separation.
Collapse
Affiliation(s)
- Gang Sun
- Division of Bioorganic Chemistry and Molecular Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | |
Collapse
|
110
|
Kim H, Ahn E, Moon MH. Profiling of human urinary phospholipids by nanoflow liquid chromatography/tandem mass spectrometry. Analyst 2008; 133:1656-63. [PMID: 19082067 DOI: 10.1039/b804715d] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanoflow liquid chromatography-electrospray ionization-tandem mass spectrometry (nanoLC-ESI-MS-MS) was used for the first time in a comprehensive analysis of human urinary phospholipids (PL). PL mixtures from human urine were separated with a reversed phase LC capillary column coupled to ESI-MS-MS. This study used the dual scan method in which two consecutive LC-ESI-MS-MS runs were done in both positive ion mode to detect phosphatidylcholine (PC) and phosphatidylethanolamine (PE), and in negative ion mode to detect phosphatidylserine (PS), phosphatidylinositol (PI), phosphatidic acid (PA), and phosphatidylglycerol (PG). We focused on identifying the maximum number of PLs from a healthy human urine sample by varying the extracted volume of urine along with the evaluation of extraction efficiency for urinary PLs. We found that 22 PCs, 14 PEs, 15 PIs, 13 PSs, 7 PAs, and 4 PGs were identified during nLC-ESI-MS-MS when phospholipids in urine were extracted by ultracentrifugation. The efficiency of lipid extraction by ultracentrifugation versus lyophilization was evaluated by reducing the initial urine volume. We found that lyophilization was more efficient than ultracentrifugation for extracting lipids from small volumes (1 mL) of urine.
Collapse
Affiliation(s)
- Hanna Kim
- Department of Chemistry, Yonsei University, Seoul, South Korea
| | | | | |
Collapse
|
111
|
Jabs S, Quitsch A, Kkel R, Koch B, Tyynel J, Brade H, Glatzel M, Walkley S, Saftig P, Vanier MT, Braulke T. Accumulation of bis(monoacylglycero)phosphate and gangliosides in mouse models of neuronal ceroid lipofuscinosis. J Neurochem 2008; 106:1415-25. [DOI: 10.1111/j.1471-4159.2008.05497.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
112
|
A matter of fat: An introduction to lipidomic profiling methods. J Chromatogr B Analyt Technol Biomed Life Sci 2008; 871:174-81. [DOI: 10.1016/j.jchromb.2008.04.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2008] [Revised: 03/27/2008] [Accepted: 04/03/2008] [Indexed: 02/02/2023]
|
113
|
Schwab U, Seppänen-Laakso T, Yetukuri L, Ågren J, Kolehmainen M, Laaksonen DE, Ruskeepää AL, Gylling H, Uusitupa M, Orešič M. Triacylglycerol fatty acid composition in diet-induced weight loss in subjects with abnormal glucose metabolism--the GENOBIN study. PLoS One 2008; 3:e2630. [PMID: 18612464 PMCID: PMC2440352 DOI: 10.1371/journal.pone.0002630] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Accepted: 06/10/2008] [Indexed: 12/02/2022] Open
Abstract
Background The effect of weight loss on different plasma lipid subclasses at the molecular level is unknown. The aim of this study was to examine whether a diet-induced weight reduction result in changes in the extended plasma lipid profiles (lipidome) in subjects with features of metabolic syndrome in a 33-week intervention. Methodology/Principal Findings Plasma samples of 9 subjects in the weight reduction group and 10 subjects in the control group were analyzed using mass spectrometry based lipidomic and fatty acid analyses. Body weight decreased in the weight reduction group by 7.8±2.9% (p<0.01). Most of the serum triacylglycerols and phosphatidylcholines were reduced. The decrease in triacylglycerols affected predominantly the saturated short chain fatty acids. This decrease of saturated short chain fatty acid containing triacylglycerols correlated with the increase of insulin sensitivity. However, levels of several longer chain fatty acids, including arachidonic and docosahexanoic acid, were not affected by weight loss. Levels of other lipids known to be associated with obesity such as sphingolipids and lysophosphatidylcholines were not altered by weight reduction. Conclusions/Significance Diet-induced weight loss caused significant changes in global lipid profiles in subjects with abnormal glucose metabolism. The observed changes may affect insulin sensitivity and glucose metabolism in these subjects. Trial Registration ClinicalTrials.gov NCT00621205
Collapse
Affiliation(s)
- Ursula Schwab
- School of Public Health and Clinical Nutrition, Department of Clinical Nutrition and Food and Health Research Centre, University of Kuopio, Kuopio, Finland
- Kuopio University Hospital, Kuopio, Finland
- * E-mail: (US); (MO)
| | | | | | - Jyrki Ågren
- Department of Physiology, University of Kuopio, Kuopio, Finland
| | - Marjukka Kolehmainen
- School of Public Health and Clinical Nutrition, Department of Clinical Nutrition and Food and Health Research Centre, University of Kuopio, Kuopio, Finland
| | - David E. Laaksonen
- Department of Physiology, University of Kuopio, Kuopio, Finland
- Department of Medicine, Kuopio University Hospital, Kuopio, Finland
| | | | - Helena Gylling
- School of Public Health and Clinical Nutrition, Department of Clinical Nutrition and Food and Health Research Centre, University of Kuopio, Kuopio, Finland
- Kuopio University Hospital, Kuopio, Finland
| | - Matti Uusitupa
- School of Public Health and Clinical Nutrition, Department of Clinical Nutrition and Food and Health Research Centre, University of Kuopio, Kuopio, Finland
| | - Matej Orešič
- VTT Technical Research Centre of Finland, Espoo, Finland
- * E-mail: (US); (MO)
| | | |
Collapse
|
114
|
Han X, Yang K, Gross RW. Microfluidics-based electrospray ionization enhances the intrasource separation of lipid classes and extends identification of individual molecular species through multi-dimensional mass spectrometry: development of an automated high-throughput platform for shotgun lipidomics. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2008; 22:2115-24. [PMID: 18523984 PMCID: PMC2927983 DOI: 10.1002/rcm.3595] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Herein, we exploit the use of microfluidics and optimized Taylor cones for improved intrasource separation/selective ionization of lipid classes during electrospray ionization. Increased differential ionization of multiple phospholipid classes was achieved through microfluidics with chip-based ionization resulting in substantial enhancement of intrasource separation/selective ionization of phospholipid classes in comparison to the conventional ion source. For example, using myocardial lipid extracts, 3-fold improvements in intrasource separation/selective ionization of myocardial phospholipid classes were routinely realized in the negative-ion mode in the absence of LiOH or other basic modifiers in the infused sample solutions. Importantly, the relative ratios of ions corresponding to individual molecular species in each lipid class to a selected internal standard from myocardial extracts were nearly identical between the chip-based interface and the syringe-pump-driven capillary interface. Therefore, quantitation of individual lipid molecular species directly from biological extracts through comparisons with internal standards in each lipid class was readily accomplished with an accuracy and dynamic range nearly identical to those documented using the well-established direct syringe-pump-driven capillary interface. Collectively, the use of microfluidics and robotic sample handling substantially enhances intrasource separation of lipids in comparison to routine capillary interfaces and greatly facilitates the use of multi-dimensional mass spectrometry using shotgun lipidomics, thereby providing an automated and high-throughput platform for global analyses of cellular lipidomes.
Collapse
Affiliation(s)
- Xianlin Han
- Division of Bioorganic Chemistry and Molecular Pharmacology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | |
Collapse
|
115
|
Reid CW, Stupak J, Chen MM, Imperiali B, Li J, Szymanski CM. Affinity-capture tandem mass spectrometric characterization of polyprenyl-linked oligosaccharides: tool to study protein N-glycosylation pathways. Anal Chem 2008; 80:5468-75. [PMID: 18547063 DOI: 10.1021/ac800079r] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
N-glycosylation of proteins is recognized as one of the most common post-translational modifications. Until recently it was believed that N-glycosylation occurred exclusively in eukaryotes before the discovery of the general protein glycosylation pathway (Pgl) in Campylobacter jejuni. To date, most techniques to analyze lipid-linked oligosaccharides (LLOs) of these pathways involve the use of radiolabels and chromatographic separation. Technologies capable of characterizing eukaryotic and the newly described bacterial N-glycosylation systems from biologically relevant samples in a quick, accurate, and cost-effective manner are needed. In this paper a new glycomics strategy based on lectin-affinity capture was devised and validated on the C. jejuni N-glycan pathway and the engineered Escherichia coli strains expressing the functional C. jejuni pathway. The lipid-linked oligosaccharide intermediates of the Pgl pathway were then enriched using SBA-agarose affinity-capture and examined by capillary electrophoresis-mass spectrometry (CE-MS). We demonstrate that this method is capable of detecting low levels of LLOs, the sugars are indeed assembled on undecaprenylpyrophosphate, and structural information for expected and unexpected LLOs can be obtained without further sample manipulation. Furthermore, CE-MS analyses of C. jejuni and the E. coli "glyco-factories" showed striking differences in the assembly and control of N-glycan biosynthesis.
Collapse
Affiliation(s)
- Christopher W Reid
- National Research Council, Institute for Biological Sciences, 100 Sussex Drive, Ottawa, ON, Canada, K1A 0R6
| | | | | | | | | | | |
Collapse
|
116
|
Retra K, Bleijerveld OB, van Gestel RA, Tielens AGM, van Hellemond JJ, Brouwers JF. A simple and universal method for the separation and identification of phospholipid molecular species. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2008; 22:1853-62. [PMID: 18470873 DOI: 10.1002/rcm.3562] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
One of the major challenges in lipidomics is to obtain as much information about the lipidome as possible. Here, we present a simple yet universal high-performance liquid chromatography/tandem mass spectrometry (HPLC/MS/MS) method to separate molecular species of all phospholipid classes in one single run. The method is sensitive, robust and allows lipid profiling using full scan mass spectrometry, as well as lipid class specific scanning in positive and negative ionisation mode. This allows high-throughput processing of samples for lipidomics, even if different types of MS analysis are required. Excellent separation of isobaric and even isomeric species is achieved, and original levels of lyso-lipids can be determined without interference from lyso-lipids formed from diacyl species by source fragmentation. As examples of application of this method, more than 400 phospholipid species were identified and quantified in crude phospholipid extracts from rat liver and the parasitic helminth Schistosoma mansoni.
Collapse
Affiliation(s)
- Kim Retra
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
117
|
Ahn EJ, Kim H, Chung BC, Kong G, Moon MH. Quantitative profiling of phosphatidylcholine and phosphatidylethanolamine in a steatosis/fibrosis model of rat liver by nanoflow liquid chromatography/tandem mass spectrometry. J Chromatogr A 2008; 1194:96-102. [DOI: 10.1016/j.chroma.2008.04.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 04/08/2008] [Accepted: 04/15/2008] [Indexed: 11/26/2022]
|
118
|
Käkelä R, Mattila M, Hermansson M, Haimi P, Uphoff A, Paajanen V, Somerharju P, Vornanen M. Seasonal acclimatization of brain lipidome in a eurythermal fish (Carassius carassius) is mainly determined by temperature. Am J Physiol Regul Integr Comp Physiol 2008; 294:R1716-28. [DOI: 10.1152/ajpregu.00883.2007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Crucian carp ( Carassius carassius) is an excellent vertebrate model for studies on temperature adaptation in biological excitable membranes, since the species can tolerate temperatures from 0 to +36°C. To determine how temperature affects the lipid composition of brain, the fish were acclimated for 4 wk at +30, +16, or +4°C in the laboratory, or seasonally acclimatized individuals were captured from the wild throughout the year (temperature = +1 to +23°C), and the brain glycerophospholipid and sphingolipid compositions were analyzed in detail by electrospray-ionization mass spectrometry. Numerous significant temperature-related changes were found in the molecular species composition of the membrane lipids. The most notable and novel finding was a large (∼3-fold) increase of the di-22:6n-3 phosphatidylserine and phosphatidylethanolamine species in the cold. Since the increase of 22:6n-3 in the total fatty acyl pool of the brain was small, the formation of di-22:6n-3 aminophospholipid species appears to be a specific adaptation to low temperature. Such highly unsaturated species could be needed to maintain adequate membrane fluidity in the vicinity of transporters and other integral membrane proteins. Plasmalogens increased somewhat at higher temperatures, possibly to protect membranes against oxidation. The modifications of brain lipidome during the 4-wk laboratory acclimation were, in many respects, similar to those found in the wild, which indicates that the seasonal changes observed in the wild are temperature dependent rather than induced by other environmental factors.
Collapse
|
119
|
Matyash V, Liebisch G, Kurzchalia TV, Shevchenko A, Schwudke D. Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J Lipid Res 2008; 49:1137-46. [PMID: 18281723 DOI: 10.1194/jlr.d700041-jlr200] [Citation(s) in RCA: 1699] [Impact Index Per Article: 99.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Accurate profiling of lipidomes relies upon the quantitative and unbiased recovery of lipid species from analyzed cells, fluids, or tissues and is usually achieved by two-phase extraction with chloroform. We demonstrated that methyl-tert-butyl ether (MTBE) extraction allows faster and cleaner lipid recovery and is well suited for automated shotgun profiling. Because of MTBE's low density, lipid-containing organic phase forms the upper layer during phase separation, which simplifies its collection and minimizes dripping losses. Nonextractable matrix forms a dense pellet at the bottom of the extraction tube and is easily removed by centrifugation. Rigorous testing demonstrated that the MTBE protocol delivers similar or better recoveries of species of most all major lipid classes compared with the "gold-standard" Folch or Bligh and Dyer recipes.
Collapse
Affiliation(s)
- Vitali Matyash
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | | | | | | | | |
Collapse
|
120
|
Kainu V, Hermansson M, Somerharju P. Electrospray Ionization Mass Spectrometry and Exogenous Heavy Isotope-labeled Lipid Species Provide Detailed Information on Aminophospholipid Acyl Chain Remodeling. J Biol Chem 2008; 283:3676-3687. [DOI: 10.1074/jbc.m709176200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
121
|
Yetukuri L, Ekroos K, Vidal-Puig A, Orešič M. Informatics and computational strategies for the study of lipids. ACTA ACUST UNITED AC 2008; 4:121-7. [DOI: 10.1039/b715468b] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
122
|
Laurinavicius S, Bamford DH, Somerharju P. Transbilayer distribution of phospholipids in bacteriophage membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:2568-77. [PMID: 17658459 DOI: 10.1016/j.bbamem.2007.06.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Revised: 05/31/2007] [Accepted: 06/12/2007] [Indexed: 11/18/2022]
Abstract
We have previously demonstrated that the membranes of several bacteriophages contain more phosphatidylglycerol (PG) and less phosphatidylethanolamine (PE) than the host membrane from where they are derived. Here, we determined the transbilayer distribution of PG and PE in the membranes of bacteriophages PM2, PRD1, Bam35 and phi6 using selective modification of PG and PE in the outer membrane leaflet with sodium periodate or trinitrobenzene sulfonic acid, respectively. In phi6, the transbilayer distributions of PG, PE and cardiolipin could also be analyzed by selective hydrolysis of the lipids in the outer leaflet by phospholipase A(2). We used electrospray ionization mass-spectrometry to determine the transbilayer distribution of phospholipid classes and individual molecular species. In each bacteriophage, PG was enriched in the outer membrane leaflet and PE in the inner one (except for Bam35). Only modest differences in the transbilayer distribution between different molecular species were observed. The effective shape and charge of the phospholipid molecules and lipid-protein interactions are likely to be most important factors driving the asymmetric distribution of phospholipids in the phage membranes. The results of this first systematic study on the phospholipid distribution in bacteriophage membranes will be very helpful when interpreting the accumulating high-resolution data on these organisms.
Collapse
Affiliation(s)
- Simonas Laurinavicius
- Department of Biochemistry, Institute of Biomedicine, University of Helsinki, Biomedicum Helsinki (Haartmaninkatu 8), Room C205, PO Box 63, 00014 Helsinki, Finland
| | | | | |
Collapse
|
123
|
Ahn EJ, Kim H, Chung BC, Moon MH. Quantitative analysis of phosphatidylcholine in rat liver tissue by nanoflow liquid chromatography/tandem mass spectrometry. J Sep Sci 2007; 30:2598-604. [PMID: 17763510 DOI: 10.1002/jssc.200700231] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A quantitative method was developed for the determination of phosphatidylcholine (PC) species concentration using nanoflow LC-ESI-MS/MS. In this study, a calibration method is developed to determine the effect of PC carbon chain length on MS peak intensity. Using the multiple standard addition method, a relationship between the peak intensities of different PC species from nanoflow LC-MS and carbon chain length is established first using different injection amounts of PC standards. From this relationship, a calibration curve for each carbon chain length can be obtained for the concentration calculation. It was found that the MS peak area of PC species analyzed by nanoflow LC-MS linearly decreased with increased acyl carbon numbers, and that the effect of the degree of acyl chain unsaturation on MS peak intensity was minimized when the injection amount was maintained at less than 1 pmol. The method was applied for the quantitative calculation of 34 PC species from rat liver, which were identified from data-dependent MS/MS analysis during nanoflow LC separation.
Collapse
Affiliation(s)
- Eun Jeong Ahn
- Department of Chemistry, Yonsei University, Seoul, Korea
| | | | | | | |
Collapse
|
124
|
Gao F, Zhang Z, Fu X, Li W, Wang T, Liu H. Analysis of phospholipids by NACE with on-line ESI-MS. Electrophoresis 2007; 28:1418-25. [PMID: 17372939 DOI: 10.1002/elps.200600533] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A hyphenated method of nonaqueous capillary electrophoresis coupled to electrospray ionization mass spectrometry (NACE-ESI-MS) is described for the simultaneous analysis of phospholipids. The best results were obtained with a mixed solution of methanol/ACN (40:60 v/v) containing 20 mM ammonium acetate and 0.5% acetic acid, under the applied voltage of 30 kV and capillary temperature of 25 degrees C. ESI-MS measurements were performed in the negative mode with methanol/ACN (40:60 v/v) containing 50 mM ammonium acetate as sheath liquid at a flow rate of 2 microL/min. Different phospholipid classes have been successfully separated within 16 min, and the molecular species of every single class have been identified by using MS(2) or MS(3), which generates characteristic fragments through CID. The developed method has been applied to analyze the phospholipids extracted from rat peritoneal surface and the molecular species of phospholipid classes are presented.
Collapse
Affiliation(s)
- Fei Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | | | | | | | | | | |
Collapse
|
125
|
Katajamaa M, Oresic M. Data processing for mass spectrometry-based metabolomics. J Chromatogr A 2007; 1158:318-28. [PMID: 17466315 DOI: 10.1016/j.chroma.2007.04.021] [Citation(s) in RCA: 399] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Revised: 04/06/2007] [Accepted: 04/10/2007] [Indexed: 01/15/2023]
Abstract
Modern analytical technologies afford comprehensive and quantitative investigation of a multitude of different metabolites. Typical metabolomic experiments can therefore produce large amounts of data. Handling such complex datasets is an important step that has big impact on extent and quality at which the metabolite identification and quantification can be made, and thus on the ultimate biological interpretation of results. Increasing interest in metabolomics thus led to resurgence of interest in related data processing. A wide variety of methods and software tools have been developed for metabolomics during recent years, and this trend is likely to continue. In this paper we overview the key steps of metabolomic data processing and focus on reviewing recent literature related to this topic, particularly on methods for handling data from liquid chromatography mass spectrometry (LC-MS) experiments.
Collapse
Affiliation(s)
- Mikko Katajamaa
- Turku Centre for Biotechnology, Tykistökatu 6, FIN-20521 Turku, Finland.
| | | |
Collapse
|
126
|
Shui G, Bendt AK, Pethe K, Dick T, Wenk MR. Sensitive profiling of chemically diverse bioactive lipids. J Lipid Res 2007; 48:1976-84. [PMID: 17565170 DOI: 10.1194/jlr.m700060-jlr200] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we present an improved method for sensitive profiling of lipids in a single high-performance liquid chromatography-electrospray ionization-quadrupole time of flight mass spectrometry experiment. The approach consists of i) sensitive isocratic elution, which takes advantage of C18 column material that is resistant to increased pH values induced by piperidine, ii) chemometric alignment of mass spectra followed by differential analysis of ion intensities, and iii) semiquantitative analysis of extracted ion chromatograms of interest. A key advantage of this method is its wide applicability to extracts that harbor lipids of considerable chemical complexity. The method allows qualitative and semiquantitative analysis of fatty acyls, glycerophospholipids (such as glycerophosphatidylinositols, glycerophosphatidylserines, and glycerophosphatidylcholines in brain extracts), phosphatidylinositol mannosides, acylated glycerophospholipids, sphingolipids (including ceramides and gangliosides in brain extracts), and, for the first time with ESI, prenols and mycolic acids (MAs). MAs are targets in antimycobacterial therapy, and they play an important immunomodulatory role during host-pathogen interactions. We compared high-resolution mass spectra of MAs derived from Mycobacterium bovis Bacille Camette-Guérin during entry into nonreplicative conditions induced by oxygen deprivation (hypoxic dormancy). Although the overall composition is not drastically altered, there are pronounced differences in individual MAs. alpha-MAs accumulate during entry into dormancy, whereas a subpopulation of keto-MAs is almost entirely eliminated. This effect is reversed upon resuscitation of dormant mycobacteria. These results provide detailed chemical information with relevance to drug development and immunobiology of mycobacteria.
Collapse
Affiliation(s)
- Guanghou Shui
- Yong Loo Lin School of Medicine, National University of Singapore, Department of Biochemistry, Singapore 117597
| | | | | | | | | |
Collapse
|
127
|
Abstract
Electrospray ionization mass spectrometry is becoming an established tool for the investigation of lipids. As the methods for lipid analysis become more mature and their throughput increases, computer algorithms for the interpretation of such data will become a necessity. Toward this end, an algorithm dedicated to the analysis of Fourier transform mass spectral data from lipid extracts has been developed. The algorithm, Fatty Acid Analysis Tool, termed FAAT, has been successfully used to investigate complex lipid extracts containing thousands of components, from various species of mycobacteria including M. tuberculosis and M. abscessus. FAAT is rapid, generally taking tens of seconds to interpret multiple spectra, and accessible to most users as it is implemented in Microsoft Excel Visual Basic Software. In the reduction of data, FAAT begins by scaling spectra (i.e., to account for dilution factors), identifying monoisotopic ions, and assigning isotope packets. Unique features of FAAT include the following: (1) overlapping saturated and unsaturated lipid species can be distinguished, (2) known ions are assigned from a user-defined library including species that possess methylene heterogeneity, (3) and isotopic shifts from stable isotope labeling experiments are identified and assigned (up to a user-defined maximum). In addition, abundance differences between samples grown under normal and stressed conditions can be determined. In the analysis of mycobacterial lipid extracts, FAAT has successfully identified isotopic shifts from incorporation of 15N in M. abscessus. Additionally, FAAT has been used to successfully determine differences in lipid abundances between M. tuberculosis wild-type and mutant strains.
Collapse
Affiliation(s)
- Michael D Leavell
- Genome and Biomedical Sciences Facility, University of California, Davis, California 95616, USA.
| | | |
Collapse
|
128
|
Schwudke D, Oegema J, Burton L, Entchev E, Hannich JT, Ejsing CS, Kurzchalia T, Shevchenko A. Lipid profiling by multiple precursor and neutral loss scanning driven by the data-dependent acquisition. Anal Chem 2007; 78:585-95. [PMID: 16408944 DOI: 10.1021/ac051605m] [Citation(s) in RCA: 247] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Data-dependent acquisition of MS/MS spectra from lipid precursors enables to emulate the simultaneous acquisition of an unlimited number of precursor and neutral loss scans in a single analysis. This approach takes full advantage of rich fragment patterns in tandem mass spectra of lipids and enables their profiling by complex (Boolean) scans, in which masses of several fragment ions are considered within a single logical framework. No separation of lipids is required, and the accuracy of identification and quantification is not compromised, compared to conventional precursor and neutral loss scanning.
Collapse
Affiliation(s)
- Dominik Schwudke
- MPI of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | | | | | | | | | | | | | | |
Collapse
|
129
|
Yetukuri L, Katajamaa M, Medina-Gomez G, Seppänen-Laakso T, Vidal-Puig A, Orešič M. Bioinformatics strategies for lipidomics analysis: characterization of obesity related hepatic steatosis. BMC SYSTEMS BIOLOGY 2007; 1:12. [PMID: 17408502 PMCID: PMC1839890 DOI: 10.1186/1752-0509-1-12] [Citation(s) in RCA: 185] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Accepted: 02/15/2007] [Indexed: 02/07/2023]
Abstract
Background Lipids are an important and highly diverse class of molecules having structural, energy storage and signaling roles. Modern analytical technologies afford screening of many lipid molecular species in parallel. One of the biggest challenges of lipidomics is elucidation of important pathobiological phenomena from the integration of the large amounts of new data becoming available. Results We present computational and informatics approaches to study lipid molecular profiles in the context of known metabolic pathways and established pathophysiological responses, utilizing information obtained from modern analytical technologies. In order to facilitate identification of lipids, we compute the scaffold of theoretically possible lipids based on known lipid building blocks such as polar head groups and fatty acids. Each compound entry is linked to the available information on lipid pathways and contains the information that can be utilized for its automated identification from high-throughput UPLC/MS-based lipidomics experiments. The utility of our approach is demonstrated by its application to the lipidomic characterization of the fatty liver of the genetically obese insulin resistant ob/ob mouse model. We investigate the changes of correlation structure of the lipidome using multivariate analysis, as well as reconstruct the pathways for specific molecular species of interest using available lipidomic and gene expression data. Conclusion The methodology presented herein facilitates identification and interpretation of high-throughput lipidomics data. In the context of the ob/ob mouse liver profiling, we have identified the parallel associations between the elevated triacylglycerol levels and the ceramides, as well as the putative activated ceramide-synthesis pathways.
Collapse
Affiliation(s)
- Laxman Yetukuri
- VTT Technical Research Centre of Finland, Tietotie 2, FIN-02044, Espoo, Finland
| | - Mikko Katajamaa
- Turku Centre for Biotechnology, Tykistökatu 6, FIN-20521, Turku, Finland
| | - Gema Medina-Gomez
- University of Cambridge Department of Clinical Biochemistry, Addenbrooke's Hospital, Hills Road, CB2 2QR, Cambridge, UK
| | | | - Antonio Vidal-Puig
- University of Cambridge Department of Clinical Biochemistry, Addenbrooke's Hospital, Hills Road, CB2 2QR, Cambridge, UK
| | - Matej Orešič
- VTT Technical Research Centre of Finland, Tietotie 2, FIN-02044, Espoo, Finland
| |
Collapse
|
130
|
Rainville PD, Stumpf CL, Shockcor JP, Plumb RS, Nicholson JK. Novel Application of Reversed-Phase UPLC-oaTOF-MS for Lipid Analysis in Complex Biological Mixtures: A New Tool for Lipidomics. J Proteome Res 2007; 6:552-8. [PMID: 17269712 DOI: 10.1021/pr060611b] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ultra-Performance LC (UPLC) utilizing sub-2-mum porous stationary phase particles operating with high linear velocities at pressures >9000 psi was coupled with orthogonal acceleration time-of-flight (oaTOF) mass spectrometry and successfully employed for the rapid separation of lipids from complex matrices. The UPLC system produced information-rich chromatograms with typical measured peak widths of 3 s at peak base, generating peak capacities in excess of 200 in 10 min. Further UPLC coupled with MSE technology provided parent and fragment mass information of lipids in one chromatographic run, thus, providing an attractive alternative to current LC methods for targeted lipid analysis as well as lipidomic studies.
Collapse
|
131
|
Haimi P, Uphoff A, Hermansson M, Somerharju P. Software tools for analysis of mass spectrometric lipidome data. Anal Chem 2007; 78:8324-31. [PMID: 17165823 DOI: 10.1021/ac061390w] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
New software tools for quantitative analysis of mass spectrometric lipidome data have been developed. The LIMSA tool finds and integrates peaks in a mass spectrum, matches the peaks with a user-supplied list of expected lipids, corrects for overlap in their isotopic patterns, and quantifies the identified lipid species according to internal standards. Three different algorithms for isotopic correction (deconvolution) were implemented and compared. LIMSA has a convenient user interface and can be applied on any type of MS spectrum. Typically, analysis of one spectrum takes only a few seconds. The SECD tool, designed for analysis of LC-MS data sets, provides an intuitive and informative display of MS chromatograms as two-dimensional "maps" for visual inspection of the data and allows the user to extract mass spectra, to be further analyzed with LIMSA, from arbitrary regions of these maps. More reliable analysis of complex lipidome data with improved signal-to-noise ratio is obtained when compared to standard time-range averaged spectra. The functionality of these tools is demonstrated by analysis of standard mixtures as well as complex biological samples. The tools described here make accurate, high-throughput analysis of extensive sample sets feasible and are made available to the scientific community free of charge.
Collapse
Affiliation(s)
- Perttu Haimi
- Institute of Biomedicine, Department of Biochemistry, University of Helsinki, Haartmaninkatu 8, PL 8, 00014 Helsinki, Finland
| | | | | | | |
Collapse
|
132
|
Siggins S, Bykov I, Hermansson M, Somerharju P, Lindros K, Miettinen TA, Jauhiainen M, Olkkonen VM, Ehnholm C. Altered hepatic lipid status and apolipoprotein A-I metabolism in mice lacking phospholipid transfer protein. Atherosclerosis 2007; 190:114-23. [PMID: 16554055 DOI: 10.1016/j.atherosclerosis.2006.02.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Revised: 02/10/2006] [Accepted: 02/15/2006] [Indexed: 11/19/2022]
Abstract
The effect of PLTP deficiency on hepatic lipid status and apolipoprotein A-I (apoA-I) biosynthesis in PLTP knockout (PLTP-KO) mice was investigated. PLTP-KO mice exhibited a marked reduction in HDL levels, but also increased triglycerides (TG), phospholipids (PL), and cholesterol in very-low-density lipoproteins (VLDL). Both male and female PLTP-KO mice displayed increased hepatic PL and decreased TG, and in the females, increased hepatic cholesterol was also detected. Primary hepatocytes from PLTP-KO mice displayed a different PL molecular species composition to the wild type (WT) controls, with prominent changes being a reduction of long chain fatty acid-containing and an increase of medium chain mono- or di-unsaturated fatty acid containing PL species. Cultured PLTP-KO hepatocytes synthesized and secreted apoA-I in similar quantities as the WT cells. However, the apoA-I secreted by PLTP-KO hepatocytes contained less choline PL, differing also in phosphatidylcholine/sphingomyelin ratio and fatty acyl species composition when compared to apoA-I from WT hepatocytes. Furthermore, the PLTP-KO-derived PL-deficient apoA-I was less stable in the hepatocyte culture medium than that produced by WT cells. These results demonstrate a complex regulatory role of PLTP in serum and liver lipid homeostasis, as well as in the formation of nascent apoA-I-PL complexes from the liver.
Collapse
Affiliation(s)
- Sarah Siggins
- Department of Molecular Medicine, National Public Health Institute, Biomedicum, P.O. Box 104, FI-00251 Helsinki, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Abstract
This review presents an overview of the dynamically developing field of mass spectrometry-based metabolomics. Metabolomics aims at the comprehensive and quantitative analysis of wide arrays of metabolites in biological samples. These numerous analytes have very diverse physico-chemical properties and occur at different abundance levels. Consequently, comprehensive metabolomics investigations are primarily a challenge for analytical chemistry and specifically mass spectrometry has vast potential as a tool for this type of investigation. Metabolomics require special approaches for sample preparation, separation, and mass spectrometric analysis. Current examples of those approaches are described in this review. It primarily focuses on metabolic fingerprinting, a technique that analyzes all detectable analytes in a given sample with subsequent classification of samples and identification of differentially expressed metabolites, which define the sample classes. To perform this complex task, data analysis tools, metabolite libraries, and databases are required. Therefore, recent advances in metabolomics bioinformatics are also discussed.
Collapse
Affiliation(s)
- Katja Dettmer
- Department of Entomology, University of California at Davis, Davis, California 95616
| | - Pavel A. Aronov
- Department of Entomology, University of California at Davis, Davis, California 95616
| | - Bruce D. Hammock
- Department of Entomology, University of California at Davis, Davis, California 95616
- Cancer Research Center, University of California at Davis, Davis, California 95616
- *Correspondence to: Bruce D. Hammock, Department of Entomology, One Shields Avenue, University of California, Davis, CA 95616. E-mail:
| |
Collapse
|
134
|
|
135
|
Abstract
The Lipid Metabolites and Pathways Strategy (LIPID MAPS) initiative constitutes the first broad scale national exploration of lipidomics and is supported by a U.S. National Institute of General Medical Sciences Large Scale Collaborative "Glue" Grant. The emerging field of lipidomics faces many obstacles to become a true systems biology approach on par with the other "omics" disciplines. With a goal to overcome these hurdles, LIPID MAPS has been developing the necessary infrastructure and techniques to ensure success. This review introduces a few of the challenges and solutions implemented by LIPID MAPS. Among these solutions is the new comprehensive classification system for lipids, along with a recommended nomenclature and structural drawing representation. This classification system was developed by the International Lipids Classification and Nomenclature Committee (ILCNC) in collaboration with LIPID MAPS and representatives from Europe and Asia. The latest changes implemented by the committee are summarized. In addition, we discuss the adoption of mass spectrometry (MS) as the instrumental platform to investigate lipidomics. This platform has the versatility to quantify known individual lipid molecular species and search for novel lipids affecting biological systems.
Collapse
|
136
|
Oresic M, Vidal-Puig A, Hänninen V. Metabolomic approaches to phenotype characterization and applications to complex diseases. Expert Rev Mol Diagn 2006; 6:575-85. [PMID: 16824031 DOI: 10.1586/14737159.6.4.575] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Metabolites are the key regulators of systems homeostasis. As such, concentration changes of specific groups of metabolites may reflect systemic responses to environmental, therapeutic or genetic interventions. Thus, the study of metabolites is a powerful tool for the characterization of complex phenotypes as well as for the development of biomarkers for specific physiological responses. Therefore, metabolomics is a valuable platform for studies of complex diseases and the development of new therapies, both in nonclinical disease model characterization and clinical settings.
Collapse
Affiliation(s)
- Matej Oresic
- VTT Technical Research Centre of Finland, Tietotie 2, Espoo, FIN-02044 VTT, Finland.
| | | | | |
Collapse
|
137
|
Identification of Phospholipid Molecular Species in Porcine Brain Extracts Using High Mass Accuracy of 4.7 Tesla Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. B KOREAN CHEM SOC 2006. [DOI: 10.5012/bkcs.2006.27.5.793] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
138
|
Käkelä R, Tanhuanpää K, Laitinen S, Somerharju P, Olkkonen VM. Overexpression of OSBP-related protein 2 (ORP2) in CHO cells induces alterations of phospholipid species composition. Biochem Cell Biol 2006; 83:677-83. [PMID: 16234858 DOI: 10.1139/o05-056] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have previously shown that overexpression of human OSBP-related protein 2 (ORP2) in Chinese hamster ovary (CHO) cells results in increased efflux and reduced esterification of cholesterol. The ORP2-expressing cells also have a reduced level of triacylglycerols. We investigated the effects of ORP2 expression on the phospholipid (PL) molecular species and the neutral lipid (NL) fatty acid composition of CHO cells cultured in the presence or absence of serum lipoproteins. In the presence of lipoproteins, ORP2/CHO cells display an increase in polyunsaturated PL species, and polyunsaturated fatty acids (PUFA) in the diminished NL pool are reduced. The increase of polyunsaturated PL may represent a compensatory response to alterations in cholesterol metabolism. Upon lipoprotein deprivation, the ORP2/CHO cells display a drop in polyunsaturated and an increase in mono and diunsaturated PL species. Our results suggest that this is due to defective recycling of PUFA from the diminished NL pool to PL. Furthermore, the PL PUFA, which are elevated in ORP2/CHO cells, are most likely subject to more rapid turnover than the NL-associated pool. The results provide evidence for a delicate integration of cholesterol, PL, and NL metabolism and a role of ORP2 as a regulator of the cellular lipidome.
Collapse
Affiliation(s)
- Reijo Käkelä
- Department of Biochemistry, Insitute of Biomedicine, P.O.Box 63, University of Helsinki, Finland
| | | | | | | | | |
Collapse
|
139
|
Bleijerveld OB, Houweling M, Thomas MJ, Cui Z. Metabolipidomics: Profiling metabolism of glycerophospholipid species by stable isotopic precursors and tandem mass spectrometry. Anal Biochem 2006; 352:1-14. [PMID: 16564484 DOI: 10.1016/j.ab.2006.02.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Revised: 02/13/2006] [Accepted: 02/15/2006] [Indexed: 10/24/2022]
Affiliation(s)
- Onno B Bleijerveld
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, and Institute of Biomembranes, Utrecht University, P.O. Box 80176, 3508 TD, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
140
|
Gao F, Tian X, Wen D, Liao J, Wang T, Liu H. Analysis of phospholipid species in rat peritoneal surface layer by liquid chromatography/electrospray ionization ion-trap mass spectrometry. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761:667-76. [PMID: 16714143 DOI: 10.1016/j.bbalip.2006.03.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Revised: 03/27/2006] [Accepted: 03/29/2006] [Indexed: 11/28/2022]
Abstract
The main phospholipids in rat peritoneal surface layer were analyzed by normal-phase high-performance liquid chromatography (HPLC) coupled with electrospray ionization (ESI) ion-trap mass spectrometry (MS). By using a silica gel column and a gradient of hexane/isopropanol/water as mobile phase containing 5 mmol/L ammonium formate as modifiers, a baseline separation of glycerophosphoehtanolamine (PE), phosphatidylinositol (PI), phosphatidylserine (PS), phosphatidylcholine (PC), sphingomyelin (SM) and lyso-phosphatidylcholine (LPC) was obtained and more than 90 phospholipid constituents in rat peritoneal surface were identified and determined by on-line ion-trap MS detection. The major ethanolamine glycerophospholipids in rat peritoneal surfaces were plasmalogens that were highly enriched in polyunsaturated fatty acids at the sn-2 position. In addition, the fragmentation patterns for each phospholipid class by the ion-trap MS were discussed.
Collapse
Affiliation(s)
- Fei Gao
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | | | | | | | | | | |
Collapse
|
141
|
Han X, Yang K, Yang J, Fikes KN, Cheng H, Gross RW. Factors influencing the electrospray intrasource separation and selective ionization of glycerophospholipids. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2006; 17:264-74. [PMID: 16413201 DOI: 10.1016/j.jasms.2005.11.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Revised: 11/07/2005] [Accepted: 11/08/2005] [Indexed: 05/06/2023]
Abstract
The external electric field induces a separation of cations from negative electrolyte ions in the infusate while differential ionization of molecular species that possess differential electrical propensities can be induced in either the positive- or negative-ion mode during the electrospray ionization process. These physical and electrical processes that occur in the electrospray ion source have been used to selectively ionize lipid classes possessing different electrical propensities that are now known as "intrasource separation and selective ionization". However, the chemical principles underlying charge-dependent alterations in ionization efficiencies responsible for the selective ionization of lipid classes are not known with certainty. Herein, we examined the multiple factors that contribute to intrasource separation and selective ionization of lipid classes under optimal instrumental conditions. We demonstrated that many different lipid classes could be selectively ionized in the ion source and that intrasource resolution of distinct molecular constituents was independent of lipid concentration, flow rate, and residual ions under most experimental conditions. Moreover, the presence of alkaline conditions facilitates the selective ionization of many lipid classes through a mechanism independent of the design of the ESI ion source. Collectively, this study provides an empirical foundation for understanding the chemical mechanisms underlying intrasource separation and selective ionization of lipid classes that can potentially be used for global analysis of cellular lipidomes without the need for chromatographic separation.
Collapse
Affiliation(s)
- Xianlin Han
- Division of Bioorganic Chemistry and Molecular Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | | | | | | | |
Collapse
|
142
|
Mutch DM, Fauconnot L, Grigorov M, Fay LB. Putting the 'Ome' in lipid metabolism. BIOTECHNOLOGY ANNUAL REVIEW 2006; 12:67-84. [PMID: 17045192 DOI: 10.1016/s1387-2656(06)12003-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The recognition that altered lipid metabolism underlies many metabolic disorders challenging Western society highlights the importance of this metabolomic subset, herein referred to as the lipidome. Although comprehensive lipid analyses are not a recent concept, the novelty of a lipidomic approach lies with the application of robust statistical algorithms to highlight subtle, yet significant, changes in a population of lipid molecules. First-generation lipidomic studies have demonstrated the sensitivity of interpreting quantitative datasets with computational software; however, the innate power of comprehensive lipid profiling is often not exploited, as robust statistical models are not routinely utilized. Therefore, the current review aims to briefly describe the current technologies suitable for comprehensive lipid analysis, outline innovative mathematical models that have the ability to reveal subtle changes in metabolism, which will ameliorate our understanding of lipid biochemistry, and demonstrate the biological revelations found through lipidomic approaches and their potential implications for health management.
Collapse
Affiliation(s)
- David M Mutch
- Nestlé Research Center, Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland
| | | | | | | |
Collapse
|
143
|
Cvacka J, Krafková E, Jiros P, Valterová I. Computer-assisted interpretation of atmospheric pressure chemical ionization mass spectra of triacylglycerols. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2006; 20:3586-94. [PMID: 17091535 DOI: 10.1002/rcm.2770] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Current lipidomics approaches require simple and rapid algorithms enabling the interpretation of mass spectra of lipids. Most lipids are complex mixtures of related components in which the composition of the aliphatic fatty acid chains varies from one molecule to the next. Triacylglycerols (TAGs) are an example of such a lipid class. Fatty acid chains are the only parts of the molecule to change from one species to another. Fatty acids, and consequently also TAGs, can be characterized by two parameters; the number of carbon atoms and the number of double bonds. All calculations reflecting relations among ions in the spectra can be easily made using these parameters. An algorithm for the automated interpretation of TAGs from atmospheric pressure chemical ionization mass spectra (TriglyAPCI) is presented in this paper. The algorithm first identifies diacylglycerol fragments and molecular adducts. In the next step, relations among the ions are searched and possible TAG structures are suggested. Individual features of the algorithm are described in detail and the software performance is demonstrated for the liquid chromatography/mass spectrometric (LC/MS) analysis of TAGs isolated from the termite Prorhinotermes canalifrons.
Collapse
Affiliation(s)
- Josef Cvacka
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo námestí 2, 166 10 Prague 6, Czech Republic.
| | | | | | | |
Collapse
|
144
|
Current literature in mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2005; 40:1390-401. [PMID: 16237664 DOI: 10.1002/jms.811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
|
145
|
Jones JJ, Batoy SMAB, Wilkins CL. A comprehensive and comparative analysis for MALDI FTMS lipid and phospholipid profiles from biological samples. Comput Biol Chem 2005; 29:294-302. [PMID: 16039161 DOI: 10.1016/j.compbiolchem.2005.06.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2005] [Indexed: 11/30/2022]
Abstract
Described here is a computationally automated method for translating complex accurate mass spectra into biologically relevant and meaningful data. Rapid profiling of detailed high resolution mass spectra resulting from direct analysis of whole cells and tissues by matrix-assisted laser desorption/ionization (MALDI) Fourier transform mass spectrometry (FTMS) is discussed. Lipid and phospholipid ions create complex spectra containing multiple m/z values corresponding to the same fundamental chemical species. A computational approach is employed to sort ions, with mass to charge ratios lower than m/z 1000, into groups of similar lipid and phospholipid compositions for comprehensive and rapid analysis. By sorting or binning ions in this manner, variations in the degree of cation exchange can be avoided, thus increasing the comparability of the data. The result is displayed as a histogram that is easily interpretable and comparable with similar analyses and is particularly useful for direct comparison of similar tissues. Spectra of leaves from a healthy Prunus persica (peach) tree are compared with those from leaves infected by the fungus Taphrina deformans. Although the infection can be seen as a difference in leaf structure and by visual inspection of the mass spectra, the method described here details the chemical difference in phospholipid compositions and their relative abundances.
Collapse
|
146
|
Abstract
The crucial role of lipids in cell, tissue and organ physiology is demonstrated by a large number of genetic studies and by many human diseases that involve the disruption of lipid metabolic enzymes and pathways. Examples of such diseases include cancer, diabetes, as well as neurodegenerative and infectious diseases. So far, the explosion of information in the fields of genomics and proteomics has not been matched by a corresponding advancement of knowledge in the field of lipids, which is largely due to the complexity of lipids and the lack of powerful tools for their analysis. Novel analytical approaches--in particular, liquid chromatography and mass spectrometry--for systems-level analysis of lipids and their interacting partners (lipidomics) now make this field a promising area of biomedical research, with a variety of applications in drug and biomarker development.
Collapse
Affiliation(s)
- Markus R Wenk
- Department of Biochemistry, National University of Singapore, 8 Medical Drive, MD7, Singapore 117597.
| |
Collapse
|
147
|
Hermansson M, Käkelä R, Berghäll M, Lehesjoki AE, Somerharju P, Lahtinen U. Mass spectrometric analysis reveals changes in phospholipid, neutral sphingolipid and sulfatide molecular species in progressive epilepsy with mental retardation, EPMR, brain: a case study. J Neurochem 2005; 95:609-17. [PMID: 16086686 DOI: 10.1111/j.1471-4159.2005.03376.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Progressive epilepsy with mental retardation, EPMR, belongs to a group of inherited neurodegenerative disorders, the neuronal ceroid lipofuscinoses. The CLN8 gene that underlies EPMR encodes a novel transmembrane protein that localizes to the endoplasmic reticulum (ER) and ER-Golgi intermediate compartment. Recently, CLN8 was linked to a large eukaryotic protein family of TLC (TRAM, Lag1, CLN8) domain homologues with postulated functions in lipid synthesis, transport or sensing. By using liquid chromatography/mass spectrometry we analysed molecular species of major phosholipid and simple sphingolipid classes from cerebral samples of two EPMR patients representing a progressive and advanced state of the disease. The progressive state brain showed reduced levels of ceramide, galactosyl- and lactosylceramide and sulfatide as well as a decrease in long fatty acyl chain containing molecular species within these classes. Among glycerophospholipid classes, an increase in species containing polyunsaturated acyl chains was detected especially in phosphatidylserines and phosphatidylethanolamines. By contrast, saturated and monounsaturated species were overrepresented among phosphatidylserine, phosphatidylethanolamine and phosphatidylinositol classes in the advanced state sample. The observed changes in brain sphingo- and phospholipid molecular profiles may result in altered membrane stability, lipid peroxidation, vesicular trafficking or neurotransmission and thus may contribute to the progression of the molecular pathogenesis of EPMR.
Collapse
Affiliation(s)
- Martin Hermansson
- Institute of Biomedicine, Department of Biochemistry, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|