101
|
Takeda Y, Mizuno S, Iwata R, Morikawa T, Kato N. Gas-fed liquid-covered electrodes used for electrochemical reduction of dilute CO2 in a flue gas. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2023.102472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
102
|
Zhu HL, Zhang L, Shui M, Li ZY, Ma JJ, Zheng YQ. A Novel Manner of Anchoring Cobalt Phthalocyanine on Edge-Defected Carbon for Highly Electrocatalytic CO 2 Reduction. J Phys Chem Lett 2023; 14:3844-3852. [PMID: 37067200 DOI: 10.1021/acs.jpclett.3c00317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Cobalt phthalocyanine anchored on carbon material has attracted an enormous amount of attention due to its superior performance in electrocatalytic CO2 reduction. However, the interaction between cobalt phthalocyanine and the carbon substrate remains problematic, and the role of intrinsic carbon defects is unfortunately ignored in the anchoring of cobalt phthalocyanine on carbon. Herein, new interactions between the bridging N atoms of cobalt phthalocyanine and the edge defects of carbon have been discovered, which result in a novel model of anchoring of cobalt phthalocyanine on ketjen black carbon. Such anchored cobalt phthalocyanine has been found to be responsible for superior catalysis for electrochemical reduction of CO2 to CO with high selectivity and low overpotential.
Collapse
Affiliation(s)
- Hong-Lin Zhu
- Chemistry Institute for Synthesis and Green Application, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Li Zhang
- Chemistry Institute for Synthesis and Green Application, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Miao Shui
- Chemistry Institute for Synthesis and Green Application, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Zhong-Yi Li
- Chemistry Institute for Synthesis and Green Application, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Jing-Jing Ma
- Chemistry Institute for Synthesis and Green Application, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Yue-Qing Zheng
- Chemistry Institute for Synthesis and Green Application, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| |
Collapse
|
103
|
Suhr S, Schröter N, Kleoff M, Neuman N, Hunger D, Walter R, Lücke C, Stein F, Demeshko S, Liu H, Reissig HU, van Slageren J, Sarkar B. Spin State in Homoleptic Iron(II) Terpyridine Complexes Influences Mixed Valency and Electrocatalytic CO 2 Reduction. Inorg Chem 2023; 62:6375-6386. [PMID: 37043797 DOI: 10.1021/acs.inorgchem.3c00253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Two homoleptic Fe(II) complexes in different spin states bearing superbasic terpyridine derivatives as ligands are investigated to determine the relationship between spin state and electrochemical/spectroscopic behavior. Antiferromagnetic coupling between a ligand-centered radical and the high-spin metal center leads to an anodic shift of the first reduction potential and results in a species that shows mixed valency with a moderately intense intervalence-charge-transfer band. The differences afforded by the different spin states extend to the electrochemical reactivity of the complexes: while the low-spin species is a precatalyst for electrocatalytic CO2 reduction and leads to the preferential formation of CO with a Faradaic efficiency of 37%, the high-spin species only catalyzes proton reduction at a modest Faradaic efficiency of approximately 20%.
Collapse
Affiliation(s)
- Simon Suhr
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Nicolai Schröter
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Merlin Kleoff
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
| | - Nicolas Neuman
- Instituto de Desarrollo Tecnológico para la Industria Química - INTEC, UNL-CONICET, CCT-CONICET Santa Fe, S3000ZAA Santa Fe, Santa Fe, Argentina
| | - David Hunger
- Institut für Physikalische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Robert Walter
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Clemens Lücke
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Felix Stein
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Serhiy Demeshko
- Institut für Anorganische Chemie, Georg-August Universität Göttingen, Tammannstraße 4, 37077 Göttingen, Germany
| | - Hang Liu
- Institut für Technische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Hans-Ulrich Reissig
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
| | - Joris van Slageren
- Institut für Physikalische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Biprajit Sarkar
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| |
Collapse
|
104
|
Chen F, Wiriyarattanakul A, Xie W, Shi L, Rungrotmongkol T, Jia R, Maitarad P. Quantitative Structure–Electrochemistry Relationship (QSER) Studies on Metal–Amino–Porphyrins for the Rational Design of CO2 Reduction Catalysts. Molecules 2023; 28:molecules28073105. [PMID: 37049867 PMCID: PMC10096077 DOI: 10.3390/molecules28073105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
The quantitative structure–electrochemistry relationship (QSER) method was applied to a series of transition-metal-coordinated porphyrins to relate their structural properties to their electrochemical CO2 reduction activity. Since the reactions mainly occur within the core of the metalloporphyrin catalysts, the cluster model was used to calculate their structural and electronic properties using density functional theory with the M06L exchange–correlation functional. Three dependent variables were employed in this work: the Gibbs free energies of H*, C*OOH, and O*CHO. QSER, with the genetic algorithm combined with multiple linear regression (GA–MLR), was used to manipulate the mathematical models of all three Gibbs free energies. The obtained statistical values resulted in a good predictive ability (R2 value) greater than 0.945. Based on our QSER models, both the electronic properties (charges of the metal and porphyrin) and the structural properties (bond lengths between the metal center and the nitrogen atoms of the porphyrin) play a significant role in the three Gibbs free energies. This finding was further applied to estimate the CO2 reduction activities of the metal–monoamino–porphyrins, which will prove beneficial in further experimental developments.
Collapse
Affiliation(s)
- Furong Chen
- Research Center of Nano Science and Technology, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Amphawan Wiriyarattanakul
- Program in Chemistry, Faculty of Science and Technology, Uttaradit Rajabhat University, Uttaradit 53000, Thailand
| | - Wanting Xie
- Research Center of Nano Science and Technology, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Liyi Shi
- Research Center of Nano Science and Technology, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
- Emerging Industries Institute Shanghai University, Jiaxing 314006, China
| | - Thanyada Rungrotmongkol
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (T.R.); (P.M.)
| | - Rongrong Jia
- Department of Physics, Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Phornphimon Maitarad
- Research Center of Nano Science and Technology, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
- Correspondence: (T.R.); (P.M.)
| |
Collapse
|
105
|
Liu T, Wang Y, Li Y. Can Metal-Nitrogen-Carbon Single-Atom Catalysts Boost the Electroreduction of Carbon Monoxide? JACS AU 2023; 3:943-952. [PMID: 37006764 PMCID: PMC10052228 DOI: 10.1021/jacsau.3c00026] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 05/25/2023]
Abstract
Metal-nitrogen-carbon single-atom catalysts (SACs) have exhibited substantial potential for CO2 electroreduction. Unfortunately, the SACs generally cannot generate chemicals other than CO, while deep reduction products are more appealing because of their higher market potential, and the origin of governing CO reduction (COR) remains elusive. Here, by using constant-potential/hybrid-solvent modeling and revisiting Cu catalysts, we show that the Langmuir-Hinshelwood mechanism is of importance for *CO hydrogenation, and the pristine SACs lack another site to place *H, thus preventing their COR. Then, we propose a regulation strategy to enable COR on the SACs: (I) the metal site has a moderate CO adsorption affinity; (II) the graphene skeleton is doped by a heteroatom to allow *H formation; and (III) the distance between the heteroatom and the metal atom is appropriate to facilitate *H migration. We discover a P-doped Fe-N-C SAC with promising COR reactivity and further extend this model to other SACs. This work provides mechanistic insight into the limiting factors of COR and highlights the rational design of the local structures of active centers in electrocatalysis.
Collapse
Affiliation(s)
- Tianyang Liu
- Jiangsu Key Laboratory of New Power
Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional
Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Yu Wang
- Jiangsu Key Laboratory of New Power
Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional
Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Yafei Li
- Jiangsu Key Laboratory of New Power
Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional
Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| |
Collapse
|
106
|
Menachekanian S, Voegtle MJ, Warburton RE, Hammes-Schiffer S, Dawlaty JM. Inductive Effect Alone Cannot Explain Lewis Adduct Formation and Dissociation at Electrode Interfaces. J Am Chem Soc 2023; 145:5759-5768. [PMID: 36862607 DOI: 10.1021/jacs.2c12370] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Understanding breaking and formation of Lewis bonds at an electrified interface is relevant to a large range of phenomena, including electrocatalysis and electroadsorption. The complexities of interfacial environments and associated reactions often impede a systematic understanding of this type of bond at interfaces. To address this challenge, we report the creation of a main group classic Lewis acid-base adduct on an electrode surface and its behavior under varying electrode potentials. The Lewis base is a self-assembled monolayer of mercaptopyridine and the Lewis acid is BF3, forming a Lewis bond between nitrogen and boron. The bond is stable at positive potentials but cleaves at potentials more negative of approximately -0.3 V vs Ag/AgCl without an associated current. We also show that if the Lewis acid BF3 is supplied from a reservoir of Li+BF4- electrolyte, the cleavage is completely reversible. We propose that the N-B Lewis bond is affected both by the field-induced intramolecular polarization (electroinduction) and by the ionic structures and ionic equilibria near the electrode. Our results indicate that the second effect is responsible for the Lewis bond cleavage at negative potentials. This work is relevant to understanding the fundamentals of electrocatalytic and electroadsorption processes.
Collapse
Affiliation(s)
- Sevan Menachekanian
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Matthew J Voegtle
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | | | | | - Jahan M Dawlaty
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
107
|
Sonea A, Branch KL, Warren JJ. The Pattern of Hydroxyphenyl-Substitution Influences CO 2 Reduction More Strongly than the Number of Hydroxyphenyl Groups in Iron-Porphyrin Electrocatalysts. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Affiliation(s)
- Ana Sonea
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Kaitlin L. Branch
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Jeffrey J. Warren
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
108
|
Hong W, Luthra M, Jakobsen JB, Madsen MR, Castro AC, Hammershøj HCD, Pedersen SU, Balcells D, Skrydstrup T, Daasbjerg K, Nova A. Exploring the Parameters Controlling Product Selectivity in Electrochemical CO 2 Reduction in Competition with Hydrogen Evolution Employing Manganese Bipyridine Complexes. ACS Catal 2023; 13:3109-3119. [PMID: 36910875 PMCID: PMC9990071 DOI: 10.1021/acscatal.2c05951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/30/2023] [Indexed: 02/18/2023]
Abstract
Selective reduction of CO2 is an efficient solution for producing nonfossil-based chemical feedstocks and simultaneously alleviating the increasing atmospheric concentration of this greenhouse gas. With this aim, molecular electrocatalysts are being extensively studied, although selectivity remains an issue. In this work, a combined experimental-computational study explores how the molecular structure of Mn-based complexes determines the dominant product in the reduction of CO2 to HCOOH, CO, and H2. In contrast to previous Mn(bpy-R)(CO)3Br catalysts containing alkyl amines in the vicinity of the Br ligand, here, we report that bpy-based macrocycles locking these amines at the side opposite to the Br ligand change the product selectivity from HCOOH to H2. Ab initio molecular dynamics simulations of the active species showed that free rotation of the Mn(CO)3 moiety allows for the approach of the protonated amine to the reactive center yielding a Mn-hydride intermediate, which is the key in the formation of H2 and HCOOH. Additional studies with DFT methods showed that the macrocyclic moiety hinders the insertion of CO2 to the metal hydride favoring the formation of H2 over HCOOH. Further, our results suggest that the minor CO product observed experimentally is formed when CO2 adds to Mn on the side opposite to the amine ligand before protonation. These results show how product selectivity can be modulated by ligand design in Mn-based catalysts, providing atomistic details that can be leveraged in the development of a fully selective system.
Collapse
Affiliation(s)
- Wanwan Hong
- Carbon Dioxide Activation Center (CADIAC), Interdisciplinary Nanoscience Center, Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Mahika Luthra
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, 0315 Oslo, Norway
| | - Joakim B Jakobsen
- Carbon Dioxide Activation Center (CADIAC), Interdisciplinary Nanoscience Center, Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Monica R Madsen
- Carbon Dioxide Activation Center (CADIAC), Interdisciplinary Nanoscience Center, Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Abril C Castro
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, 0315 Oslo, Norway
| | - Hans Christian D Hammershøj
- Carbon Dioxide Activation Center (CADIAC), Interdisciplinary Nanoscience Center, Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Steen U Pedersen
- Interdisciplinary Nanoscience Center, Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - David Balcells
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, 0315 Oslo, Norway
| | - Troels Skrydstrup
- Carbon Dioxide Activation Center (CADIAC), Novo Nordisk Foundation (NNF) CO2 Research Center, Interdisciplinary Nanoscience Center, Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Kim Daasbjerg
- Novo Nordisk Foundation (NNF) CO2 Research Center, Interdisciplinary Nanoscience Center, Department of Chemistry, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark
| | - Ainara Nova
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, 0315 Oslo, Norway.,Centre for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, 0315 Oslo, Norway
| |
Collapse
|
109
|
Yuan LJ, Sui XL, Liu C, Zhuo YL, Li Q, Pan H, Wang ZB. Electrocatalysis Mechanism and Structure-Activity Relationship of Atomically Dispersed Metal-Nitrogen-Carbon Catalysts for Electrocatalytic Reactions. SMALL METHODS 2023; 7:e2201524. [PMID: 36642792 DOI: 10.1002/smtd.202201524] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Atomically dispersed metal-nitrogen-carbon catalysts (M-N-C) have been widely used in the field of energy conversion, which has already attracted a huge amount of attention. Due to their unsaturated d-band electronic structure of the center atoms, M-N-C catalysts can be applied in different electrocatalytic reactions by adjusting their own microscopic electronic structures to achieve the optimization of the structure-activity relationship. Consequently, it is of great significance for the revelation of electrocatalytic mechanism and structure-activity relationship of M-N-C catalysts. Thus, this review first introduces the relative research methods, including in situ/operando characterization techniques and theoretical calculation methods. Furthermore, clarifying the electrocatalytic mechanism and structure-activity relationship of M-N-C catalysts in different electrochemical energy conversion reactions is focused. Moreover, the future research directions are pointed out based on the discussion. This review will provide good guidance to systematically study the catalytic mechanism of single-atom catalysts and reasonably design the single-atom catalysts.
Collapse
Affiliation(s)
- Long-Ji Yuan
- Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advance Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Xu-Lei Sui
- Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advance Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Chang Liu
- Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advance Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yu-Ling Zhuo
- Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advance Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Qi Li
- Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advance Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Hui Pan
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao, SAR, 999078, China
- Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Macao, SAR, 999078, China
| | - Zhen-Bo Wang
- Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advance Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
110
|
Xu Z, Peng C, Zheng G. Coupling Value-Added Anodic Reactions with Electrocatalytic CO 2 Reduction. Chemistry 2023; 29:e202203147. [PMID: 36380419 DOI: 10.1002/chem.202203147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 11/17/2022]
Abstract
Electrocatalytic CO2 reduction features a promising approach to realize carbon neutrality. However, its competitiveness is limited by the sluggish oxygen evolution reaction (OER) at anode, which consumes a large portion of energy. Coupling value-added anodic reactions with CO2 electroreduction has been emerging as a promising strategy in recent years to enhance the full-cell energy efficiency and produce valuable chemicals at both cathode and anode of the electrolyzer. This review briefly summarizes recent progresses on the electrocatalytic CO2 reduction, and the economic feasibility of different CO2 electrolysis systems is discussed. Then a comprehensive summary of recent advances in the coupled electrolysis of CO2 and potential value-added anodic reactions is provided, with special focus on the specific cell designs. Finally, current challenges and future opportunities for the coupled electrolysis systems are proposed, which are targeted to facilitate progress in this field and push the CO2 electrolyzers to a more practical level.
Collapse
Affiliation(s)
- Zikai Xu
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Chen Peng
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Gengfeng Zheng
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| |
Collapse
|
111
|
Li S, Jin H, Wang Y. Recent progress on the synthesis of metal alloy nanowires as electrocatalysts. NANOSCALE 2023; 15:2488-2515. [PMID: 36722933 DOI: 10.1039/d2nr06090f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Benefiting from both one-dimensional (1D) morphology and alloy composition, metal alloy nanowires have been exploited as advanced electrocatalysts in various electrochemical processes. In this review, the synthesis approaches for metal alloy nanowires are classified into two categories: direct syntheses and syntheses based on preformed 1D nanostructures. Ligand systems that are of critical importance to the formation of alloy nanowires are summarized and reviewed, together with the strategies imposed to achieve the co-reduction of different metals. Meanwhile, different scenarios that form alloy nanowires from pre-synthesized 1D nanostructures are compared and contrasted. In addition, the characterization and electrocatalytic applications of metal alloy nanowires are briefly discussed.
Collapse
Affiliation(s)
- Shumin Li
- Institute of Advanced Synthesis (IAS), Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P.R. China.
| | - Hui Jin
- Institute of Advanced Synthesis (IAS), Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P.R. China.
| | - Yawen Wang
- Institute of Advanced Synthesis (IAS), Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P.R. China.
| |
Collapse
|
112
|
Cao Y, Shi L, Li M, You B, Liao R. Deciphering the Selectivity of the Electrochemical CO 2 Reduction to CO by a Cobalt Porphyrin Catalyst in Neutral Aqueous Solution: Insights from DFT Calculations. ChemistryOpen 2023; 12:e202200254. [PMID: 36744721 PMCID: PMC9900731 DOI: 10.1002/open.202200254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/09/2023] [Indexed: 02/07/2023] Open
Abstract
Density functional theory (DFT) calculations were conducted to investigate the cobalt porphyrin-catalyzed electro-reduction of CO2 to CO in an aqueous solution. The results suggest that CoII -porphyrin (CoII -L) undertakes a ligand-based reduction to generate the active species CoII -L⋅- , where the CoII center antiferromagnetically interacts with the ligand radical anion. CoII -L⋅- then performs a nucleophilic attack on CO2 , followed by protonation and a reduction to give CoII -L-COOH. An intermolecular proton transfer leads to the heterolytic cleavage of the C-O bond, producing intermediate CoII -L-CO. Subsequently, CO is released from CoII -L-CO, and CoII -L is regenerated to catalyze the next cycle. The rate-determining step of this CO2 RR is the nucleophilic attack on CO2 by CoII -L⋅- , with a total barrier of 20.7 kcal mol-1 . The competing hydrogen evolution reaction is associated with a higher total barrier. A computational investigation regarding the substituent effects of the catalyst indicates that the CoPor-R3 complex is likely to display the highest activity and selectivity as a molecular catalyst.
Collapse
Affiliation(s)
- Yu‐Chen Cao
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationHubei Key Laboratory of Bioinorganic Chemistry and Materia MedicaHubei Key Laboratory of Materials Chemistry and Service FailureSchool of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Le‐Le Shi
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationHubei Key Laboratory of Bioinorganic Chemistry and Materia MedicaHubei Key Laboratory of Materials Chemistry and Service FailureSchool of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Man Li
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationHubei Key Laboratory of Bioinorganic Chemistry and Materia MedicaHubei Key Laboratory of Materials Chemistry and Service FailureSchool of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Bo You
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationHubei Key Laboratory of Bioinorganic Chemistry and Materia MedicaHubei Key Laboratory of Materials Chemistry and Service FailureSchool of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Rong‐Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationHubei Key Laboratory of Bioinorganic Chemistry and Materia MedicaHubei Key Laboratory of Materials Chemistry and Service FailureSchool of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhan430074P. R. China
| |
Collapse
|
113
|
An L, De La Torre P, Smith PT, Narouz MR, Chang CJ. Synergistic Porosity and Charge Effects in a Supramolecular Porphyrin Cage Promote Efficient Photocatalytic CO 2 Reduction. Angew Chem Int Ed Engl 2023; 62:e202209396. [PMID: 36538739 PMCID: PMC9868116 DOI: 10.1002/anie.202209396] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Indexed: 12/24/2022]
Abstract
We present a supramolecular approach to catalyzing photochemical CO2 reduction through second-sphere porosity and charge effects. An iron porphyrin box (PB) bearing 24 cationic groups, FePB-2(P), was made via post-synthetic modification of an alkyne-functionalized supramolecular synthon. FePB-2(P) promotes the photochemical CO2 reduction reaction (CO2 RR) with 97 % selectivity for CO product, achieving turnover numbers (TON) exceeding 7000 and initial turnover frequencies (TOFmax ) reaching 1400 min-1 . The cooperativity between porosity and charge results in a 41-fold increase in activity relative to the parent Fe tetraphenylporphyrin (FeTPP) catalyst, which is far greater than analogs that augment catalysis through porosity (FePB-3(N), 4-fold increase) or charge (Fe p-tetramethylanilinium porphyrin (Fe-p-TMA), 6-fold increase) alone. This work establishes that synergistic pendants in the secondary coordination sphere can be leveraged as a design element to augment catalysis at primary active sites within confined spaces.
Collapse
Affiliation(s)
- Lun An
- Department of Chemistry, University of California, Berkeley, 94720-1460, Berkeley, CA, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, 94720-1460, Berkeley, CA, USA
| | - Patricia De La Torre
- Department of Chemistry, University of California, Berkeley, 94720-1460, Berkeley, CA, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, 94720-1460, Berkeley, CA, USA
| | - Peter T Smith
- Department of Chemistry, University of California, Berkeley, 94720-1460, Berkeley, CA, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, 94720-1460, Berkeley, CA, USA
| | - Mina R Narouz
- Department of Chemistry, University of California, Berkeley, 94720-1460, Berkeley, CA, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, 94720-1460, Berkeley, CA, USA
| | - Christopher J Chang
- Department of Chemistry, University of California, Berkeley, 94720-1460, Berkeley, CA, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, 94720-1460, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, 94720-1460, Berkeley, CA, USA
| |
Collapse
|
114
|
Zheng J, Zhou D, Han J, Liu J, Cao R, Lei H, Bian H, Fang Y. Non-negligible Axial Ligand Effect on Electrocatalytic CO 2 Reduction with Iron Porphyrin Complexes. J Phys Chem Lett 2022; 13:11811-11817. [PMID: 36519945 DOI: 10.1021/acs.jpclett.2c03235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Iron(III) porphyrin complexes have been demonstrated as one of the efficient molecular catalysts for the electrochemical reduction of CO2. However, the role of axial ligands coordinated with a metal center in the complex on the electrochemical CO2 reduction activity has not been fully explored yet. Herein, iron(III) tetraphenylporphyrin thiocyanate (FeTPP-SCN) is synthesized from a commercially available catalyst of FeTPP-Cl by a counteranion exchanging reaction. Cyclic voltammetry measurements showed that the catalytic activity of FeTPP-SCN is noticeably suppressed in the DMF solutions. The structural dynamics of the axial ligand in FeTPP-SCN are further examined by the FTIR and ultrafast IR spectroscopies, where the SCN ligand is employed as the local vibrational probe. Vibrational relaxation measurements showed that the reorientational dynamics of SCN ligands was strongly restricted in DMF solution, suggesting that the subtle electrostatic interaction between the ligands and metal center in the complex can have a non-negligible effect on its catalytic activity.
Collapse
Affiliation(s)
- Jiancong Zheng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Dexia Zhou
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Jinxiu Han
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Jing Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Hongtao Bian
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
115
|
An L, De La Torre P, Smith PT, Narouz MR, Chang CJ. Synergistic Porosity and Charge Effects in a Supramolecular Porphyrin Cage Promote Efficient Photocatalytic CO
2
Reduction**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Lun An
- Department of Chemistry University of California, Berkeley 94720-1460 Berkeley, CA USA
- Chemical Sciences Division Lawrence Berkeley National Laboratory 94720-1460 Berkeley, CA USA
| | - Patricia De La Torre
- Department of Chemistry University of California, Berkeley 94720-1460 Berkeley, CA USA
- Chemical Sciences Division Lawrence Berkeley National Laboratory 94720-1460 Berkeley, CA USA
| | - Peter T. Smith
- Department of Chemistry University of California, Berkeley 94720-1460 Berkeley, CA USA
- Chemical Sciences Division Lawrence Berkeley National Laboratory 94720-1460 Berkeley, CA USA
| | - Mina R. Narouz
- Department of Chemistry University of California, Berkeley 94720-1460 Berkeley, CA USA
- Chemical Sciences Division Lawrence Berkeley National Laboratory 94720-1460 Berkeley, CA USA
| | - Christopher J. Chang
- Department of Chemistry University of California, Berkeley 94720-1460 Berkeley, CA USA
- Chemical Sciences Division Lawrence Berkeley National Laboratory 94720-1460 Berkeley, CA USA
- Department of Molecular and Cell Biology University of California, Berkeley 94720-1460 Berkeley, CA USA
| |
Collapse
|
116
|
Alvarez-Hernandez JL, Salamatian AA, Han JW, Bren KL. Potential- and Buffer-Dependent Selectivity for the Conversion of CO 2 to CO by a Cobalt Porphyrin-Peptide Electrocatalyst in Water. ACS Catal 2022; 12:14689-14697. [PMID: 36504916 PMCID: PMC9724230 DOI: 10.1021/acscatal.2c03297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/02/2022] [Indexed: 11/17/2022]
Abstract
A semisynthetic electrocatalyst for carbon dioxide reduction to carbon monoxide in water is reported. Cobalt microperoxidase-11 (CoMP11-Ac) is shown to reduce CO2 to CO with a turnover number of up to 32,000 and a selectivity of up to 88:5 CO:H2. Higher selectivity for CO production is favored by a less cathodic applied potential and use of a higher pK a buffer. A mechanistic hypothesis is presented in which avoiding the formation and protonation of a formal Co(I) species favors CO production. These results demonstrate how tuning reaction conditions impact reactivity toward CO2 reduction for a biocatalyst previously developed for H2 production.
Collapse
|
117
|
Pan YZ, Xia Q, Zhu JX, Wang YC, Liang Y, Wang H, Tang HT, Pan YM. Electrochemically Mediated Carboxylative Cyclization of Allylic/Homoallylic Amines with CO 2 at Ambient Pressure. Org Lett 2022; 24:8239-8243. [DOI: 10.1021/acs.orglett.2c03377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yong-Zhou Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, People’s Republic of China
| | - Qiang Xia
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, People’s Republic of China
| | - Jin-Xiu Zhu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, People’s Republic of China
| | - Ying-Chun Wang
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Ying Liang
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, People’s Republic of China
| | - Hengshan Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, People’s Republic of China
| | - Hai-Tao Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, People’s Republic of China
| | - Ying-Ming Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, People’s Republic of China
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| |
Collapse
|
118
|
Liang Y, Lihter M, Lingenfelder M. Spin‐Control in Electrocatalysis for Clean Energy. Isr J Chem 2022. [DOI: 10.1002/ijch.202200052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yunchang Liang
- Max Planck-EPFL Laboratory for Molecular Nanoscience and Technology École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
- Institut of Physics (IPHYS) Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Martina Lihter
- Max Planck-EPFL Laboratory for Molecular Nanoscience and Technology École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
- Institut of Physics (IPHYS) Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Magalí Lingenfelder
- Max Planck-EPFL Laboratory for Molecular Nanoscience and Technology École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
- Institut of Physics (IPHYS) Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|
119
|
Shi LL, Li M, You B, Liao RZ. Theoretical Study on the Electro-Reduction of Carbon Dioxide to Methanol Catalyzed by Cobalt Phthalocyanine. Inorg Chem 2022; 61:16549-16564. [PMID: 36216788 DOI: 10.1021/acs.inorgchem.2c00739] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Density functional theory (DFT) calculations have been conducted to investigate the mechanism of cobalt(II) tetraamino phthalocyanine (CoPc-NH2) catalyzed electro-reduction of CO2. Computational results show that the catalytically active species 1 (4[CoII(H4L)]0) is formed by a four-electron-four-proton reduction of the initial catalyst CoPc-NH2. Complex 1 can attack CO2 after a one-electron reduction to give a [CoIII-CO22-]- intermediate, followed by a protonation and a one-electron reduction to give intermediate [CoII-COOH]- (4). Complex 4 is then protonated on its hydroxyl group by a carbonic acid to generate the critical species 6 (CoIII-L•--CO), which can release the carbon monoxide as an intermediate (and also as a product). In parallel, complex 6 can go through a successive four-electron-four-proton reduction to produce the targeted product methanol without forming formaldehyde as an intermediate product. The high-lying π orbital and the low-lying π* orbital of the phthalocyanine endow the redox noninnocent nature of the ligand, which could be a dianion, a radical monoanion, or a radical trianion during the catalysis. The calculated results for the hydrogen evolution reaction indicate a higher energy barrier than the carbon dioxide reduction. This is consistent with the product distribution in the experiments. Additionally, the amino group on the phthalocyanine ligand was found to have a minor effect on the barriers of critical steps, and this accounts for the experimentally observed similar activity for these two catalysts, namely, CoPc-NH2 and CoPc.
Collapse
Affiliation(s)
- Le-Le Shi
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan430074, China
| | - Man Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan430074, China
| | - Bo You
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan430074, China
| | - Rong-Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan430074, China
| |
Collapse
|
120
|
Shi T, Liu D, Liu N, Zhang Y, Feng H, Li Q. Triple-Phase Interface Engineered Hierarchical Porous Electrode for CO 2 Electroreduction to Formate. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204472. [PMID: 36047612 PMCID: PMC9596843 DOI: 10.1002/advs.202204472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Indexed: 06/12/2023]
Abstract
The aqueous electrochemical CO2 reduction to valuable products is seen as one of the most promising candidates to achieve carbon neutrality yet still suffers from poor selectivity and lower current density. Highly efficient CO2 reduction significantly relies on well-constructed electrode to realize efficient and stable triple-phase contact of CO2 , electrolyte, and active sites. Herein, a triple-phase interface engineering approach featuring the combination of hierarchical porous morphology design and surface modification is presented. A hierarchical porous electrode is constructed by depositing bismuth nanosheet array on copper foam followed by trimethoxy (1H,1H,2H,2H-heptadecafluorodecyl) silane modification on the nanosheet surface. This electrode not only achieves highly selective and efficient CO2 reduction performance with formate selectivity above 90% over wide potentials and a partial current density over -90 mA cm-2 in H-cell but also maintains a superior stability during the long-term operation. It is demonstrated that this remarkable performance is attributed to the construction of efficient and stable triple-phase interface. Theoretical calculations also show that the modified surface optimizes the activation path by lowering thermodynamic barriers of the key intermediates *OCHO for the formation of formate during electrochemical CO2 reduction.
Collapse
Affiliation(s)
- Tong Shi
- State Key Laboratory of Multiphase Flow in Power EngineeringSchool of Energy and Power EngineeringXi'an Jiaotong UniversityXi'an710049China
- MIIT Key Laboratory of Thermal Control of Electronic EquipmentSchool of Energy and Power EngineeringNanjing University of Science and TechnologyNanjing210094China
| | - Dong Liu
- MIIT Key Laboratory of Thermal Control of Electronic EquipmentSchool of Energy and Power EngineeringNanjing University of Science and TechnologyNanjing210094China
| | - Ning Liu
- MIIT Key Laboratory of Thermal Control of Electronic EquipmentSchool of Energy and Power EngineeringNanjing University of Science and TechnologyNanjing210094China
| | - Ying Zhang
- MIIT Key Laboratory of Thermal Control of Electronic EquipmentSchool of Energy and Power EngineeringNanjing University of Science and TechnologyNanjing210094China
| | - Hao Feng
- MIIT Key Laboratory of Thermal Control of Electronic EquipmentSchool of Energy and Power EngineeringNanjing University of Science and TechnologyNanjing210094China
| | - Qiang Li
- State Key Laboratory of Multiphase Flow in Power EngineeringSchool of Energy and Power EngineeringXi'an Jiaotong UniversityXi'an710049China
- MIIT Key Laboratory of Thermal Control of Electronic EquipmentSchool of Energy and Power EngineeringNanjing University of Science and TechnologyNanjing210094China
| |
Collapse
|
121
|
Centi G, Perathoner S. Catalysis for an Electrified Chemical Production. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
122
|
Narouz MR, De La Torre P, An L, Chang CJ. Multifunctional Charge and Hydrogen-Bond Effects of Second-Sphere Imidazolium Pendants Promote Capture and Electrochemical Reduction of CO 2 in Water Catalyzed by Iron Porphyrins. Angew Chem Int Ed Engl 2022; 61:e202207666. [PMID: 35878059 PMCID: PMC9452489 DOI: 10.1002/anie.202207666] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Indexed: 08/26/2023]
Abstract
Microenvironments tailored by multifunctional secondary coordination sphere groups can enhance catalytic performance at primary metal active sites in natural systems. Here, we capture this biological concept in synthetic systems by developing a family of iron porphyrins decorated with imidazolium (im) pendants for the electrochemical CO2 reduction reaction (CO2 RR), which promotes multiple synergistic effects to enhance CO2 RR and enables the disentangling of second-sphere contributions that stem from each type of interaction. Fe-ortho-im(H), which poises imidazolium units featuring both positive charge and hydrogen-bond capabilities proximal to the active iron center, increases CO2 binding affinity by 25-fold and CO2 RR activity by 2000-fold relative to the parent Fe tetraphenylporphyrin (Fe-TPP). Comparison with monofunctional analogs reveals that through-space charge effects have a greater impact on catalytic CO2 RR performance compared to hydrogen bonding in this context.
Collapse
Affiliation(s)
- Mina R Narouz
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720-1460, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720-1460, USA
| | - Patricia De La Torre
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720-1460, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720-1460, USA
| | - Lun An
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720-1460, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720-1460, USA
| | - Christopher J Chang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720-1460, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720-1460, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-1460, USA
| |
Collapse
|
123
|
In situ Electrochemical Restructuring Integrating Corrosion Engineering to Fabricate Zn Nanosheets for Efficient CO2 Electroreduction. Electrocatalysis (N Y) 2022. [DOI: 10.1007/s12678-022-00767-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
124
|
Han SG, Zhang M, Fu ZH, Zheng L, Ma DD, Wu XT, Zhu QL. Enzyme-Inspired Microenvironment Engineering of a Single-Molecular Heterojunction for Promoting Concerted Electrochemical CO 2 Reduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202830. [PMID: 35765774 DOI: 10.1002/adma.202202830] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Challenges remain in the development of novel multifunctional electrocatalysts and their industrial operation on low-electricity pair-electrocatalysis platforms for the carbon cycle. Herein, an enzyme-inspired single-molecular heterojunction electrocatalyst ((NHx )16 -NiPc/CNTs) with specific atomic nickel centers and amino-rich local microenvironments for industrial-level electrochemical CO2 reduction reaction (eCO2 RR) and further energy-saving integrated CO2 electrolysis is designed and developed. (NHx )16 -NiPc/CNTs exhibit unprecedented catalytic performance with industry-compatible current densities, ≈100% Faradaic efficiency and remarkable stability for CO2 -to-CO conversion, outperforming most reported catalysts. In addition to the enhanced CO2 capture by chemisorption, the sturdy deuterium kinetic isotope effect and proton inventory studies sufficiently reveal that such distinctive local microenvironments provide an effective proton ferry effect for improving local alkalinity and proton transfer and creating local interactions to stabilize the intermediate, ultimately enabling the high-efficiency operation of eCO2 RR. Further, by using (NHx )16 -NiPc/CNTs as a bifunctional electrocatalyst in a flow cell, a low-electricity overall CO2 electrolysis system coupling cathodic eCO2 RR with anodic oxidation reaction is developed to achieve concurrent feed gas production and sulfur recovery, simultaneously decreasing the energy input. This work paves the new way in exploring molecular electrocatalysts and electrolysis systems with techno-economic feasibility.
Collapse
Affiliation(s)
- Shu-Guo Han
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Min Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Zhi-Hua Fu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Lirong Zheng
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Dong-Dong Ma
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Xin-Tao Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, P. R. China
| | - Qi-Long Zhu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, P. R. China
| |
Collapse
|
125
|
Narouz MR, De La Torre P, An L, Chang CJ. Multifunctional Charge and Hydrogen‐Bond Effects of Second‐Sphere Imidazolium Pendants Promote Capture and Electrochemical Reduction of CO2 in Water Catalyzed by Iron Porphyrins. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mina R. Narouz
- UC Berkeley: University of California Berkeley Chemistry UNITED STATES
| | | | - Lun An
- UC Berkeley: University of California Berkeley Chemistry UNITED STATES
| | - Christopher J. Chang
- University of California Department of Chemistry 532A Latimer Hall 94720-1460 Berkeley UNITED STATES
| |
Collapse
|
126
|
Cheng W, Su H, Liu Q. Tracking the Oxygen Dynamics of Solid-Liquid Electrochemical Interfaces by Correlative In Situ Synchrotron Spectroscopies. Acc Chem Res 2022; 55:1949-1959. [PMID: 35801353 DOI: 10.1021/acs.accounts.2c00239] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
ConspectusOxygen-involved electrocatalytic processes, including the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR), are central to a series of advanced modern energy and conversion technologies, such as water electrolyzers, fuel cells, and CO2 reduction or N2 fixation devices. A comprehensive and in-depth understanding of the charge transfer and energy conversion process that ubiquitously occurs over solid-liquid electrochemical interfaces during oxygen electrocatalysis is crucial for understanding the key essence of oxygen-related electrochemistry. The huge challenges for dynamic studies over solid-liquid interfaces during oxygen electrocatalysis lie in the all-embracing electrochemical processes of the catalytic reactions, associated with both structural and reactive intermediates evolution on the electrode surface, and in the significant influence of the aqueous environments of electrolytes used. Hence, overcoming these challenges intrinsically calls for a great cooperation of multiple cutting-edge in situ technologies. Synchrotron radiation (SR) X-ray absorption fine structure (SR-XAFS) spectroscopy is highly sensitive to the local atomic structure of nanomaterials, and SR-based Fourier transform infrared (SR-FTIR) spectroscopy features unique molecular fingerprint identification to determine active species on the surface of electrodes. One can imagine that the correlative in situ SR-XAFS/FTIR spectroscopic investigations will potentially provide sufficient, reliable, and complementary information at the atomic/molecular level to depict vivid and comprehensive "dynamic movies" of solid-liquid electrochemical interfaces during oxygen electrocatalysis, which will help effectively promote/simplify the complicated screening process of advanced oxygen electrocatalysts for efficient high-energy-density energy systems.In this Account, starting with some fundamentals of SR-based spectroscopic technologies, tips for obtaining high-quality SR-XAFS and SR-FTIR spectroscopy results during the electrocatalytic process are comprehensively specified. Subsequently, the latest research achievements of dynamic investigations mainly from our group based on in situ SR-XAFS and/or SR-FTIR spectroscopies will be systematically scrutinized and properly emphasized in detail, where the currently attractive metal-organic-framework (MOF) nanomaterials and single-atom catalysts (SACs) are selected as the main object of research. Moreover, the vital contributions of correlative in situ SR-XAFS/FTIR studies on new discoveries of the dynamic evolution of solid-liquid interfaces during oxygen electrocatalysis are highlighted. In particular, our pioneering research found that the potential-dependent dynamically coupled oxygen formed in the precatalytic stage was a very useful promoter in SACs to promote efficient OER kinetics under acidic conditions. In addition, the in situ generated metastable Ni1-N2 centers with more structural degrees of freedom in SACs could potentially facilitate the fast 4e- ORR kinetics. This Account is anticipated to stimulate broad interest in dynamic explorations in various catalytic processes of interest in the material science and electrochemistry communities using correlative SR-based technologies.
Collapse
Affiliation(s)
- Weiren Cheng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, Anhui, P. R. China.,Institute for Catalysis, Hokkaido University, Sapporo 001-0021, Japan
| | - Hui Su
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, Anhui, P. R. China
| | - Qinghua Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, Anhui, P. R. China
| |
Collapse
|
127
|
Abdinejad M, Tang K, Dao C, Saedy S, Burdyny T. Immobilization strategies for porphyrin-based molecular catalysts for the electroreduction of CO 2. JOURNAL OF MATERIALS CHEMISTRY. A 2022; 10:7626-7636. [PMID: 35444810 PMCID: PMC8981215 DOI: 10.1039/d2ta00876a] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
The ever-growing level of carbon dioxide (CO2) in our atmosphere, is at once a threat and an opportunity. The development of sustainable and cost-effective pathways to convert CO2 to value-added chemicals is central to reducing its atmospheric presence. Electrochemical CO2 reduction reactions (CO2RRs) driven by renewable electricity are among the most promising techniques to utilize this abundant resource; however, in order to reach a system viable for industrial implementation, continued improvements to the design of electrocatalysts is essential to improve the economic prospects of the technology. This review summarizes recent developments in heterogeneous porphyrin-based electrocatalysts for CO2 capture and conversion. We specifically discuss the various chemical modifications necessary for different immobilization strategies, and how these choices influence catalytic properties. Although a variety of molecular catalysts have been proposed for CO2RRs, the stability and tunability of porphyrin-based catalysts make their use particularly promising in this field. We discuss the current challenges facing CO2RRs using these catalysts and our own solutions that have been pursued to address these hurdles.
Collapse
Affiliation(s)
- Maryam Abdinejad
- Department of Chemical Engineering, Delft University of Technology Van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Keith Tang
- Department of Physical and Environmental Sciences, University of Toronto Scarborough 1265 Military Trail Toronto ON M1C 1A4 Canada
| | - Caitlin Dao
- Department of Physical and Environmental Sciences, University of Toronto Scarborough 1265 Military Trail Toronto ON M1C 1A4 Canada
| | - Saeed Saedy
- Department of Chemical Engineering, Delft University of Technology Van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Tom Burdyny
- Department of Chemical Engineering, Delft University of Technology Van der Maasweg 9 2629 HZ Delft The Netherlands
| |
Collapse
|