101
|
Tatunashvili E, Maloney CJ, Chan B, McErlean CSP. Generation and reaction of alanyl radicals in open flasks. Chem Commun (Camb) 2023; 59:2094-2097. [PMID: 36722990 DOI: 10.1039/d2cc06211a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The generation and Giese-type reaction of alanyl radicals under metal-free reaction conditions is described. The procedure is operationally simple, occurring at ambient temperature in an open reaction vessel, and requiring short reaction times (≤5 min). The reaction occurs without epimerization and provides ready access to non-proteinogenic amino acids and peptides. Importantly, the process is tolerant of light absorbing groups including commonly used fluorescent tags.
Collapse
Affiliation(s)
| | - Callan J Maloney
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia.
| | - Bun Chan
- Graduate School of Engineering, Nagasaki University, Bunkyo-machi 1-14, Nagasaki-shi, Nagasaki, 852-8521, Japan
| | | |
Collapse
|
102
|
Huang L, Szewczyk M, Kancherla R, Maity B, Zhu C, Cavallo L, Rueping M. Modulating stereoselectivity in allylic C(sp 3)-H bond arylations via nickel and photoredox catalysis. Nat Commun 2023; 14:548. [PMID: 36725849 PMCID: PMC9892578 DOI: 10.1038/s41467-023-36103-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 01/16/2023] [Indexed: 02/03/2023] Open
Abstract
While significant progress has been made in developing selective C-H bond cross-couplings in the field of radical chemistry, the site and stereoselectivity remain a long-standing challenge. Here, we present the successful development of stereodivergent allylic C(sp3)-H bond arylations through a systematic investigation of the direction and degree of stereoselectivity in the cross-coupling process. In contrast to the signature photosensitized geometrical isomerization of alkenes, the catalytic reaction demonstrates the feasibility of switching the C-C double bond stereoselectivity by means of ligand control as well as steric and electronic effects. Computational studies explain the stereochemical outcome and indicate that excitation of a Ni-allyl complex from singlet to a triplet state results in a spontaneous change of the allyl group coordination and that the subsequent isomerization can be directed by the choice of the ligand to achieve E/Z selectivity.
Collapse
Affiliation(s)
- Long Huang
- grid.1957.a0000 0001 0728 696XInstitute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Marcin Szewczyk
- grid.1957.a0000 0001 0728 696XInstitute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Rajesh Kancherla
- grid.45672.320000 0001 1926 5090KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia
| | - Bholanath Maity
- grid.45672.320000 0001 1926 5090KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia
| | - Chen Zhu
- grid.45672.320000 0001 1926 5090KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia
| | - Luigi Cavallo
- grid.45672.320000 0001 1926 5090KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia
| | - Magnus Rueping
- grid.45672.320000 0001 1926 5090KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia ,grid.1957.a0000 0001 0728 696XInstitute for Experimental Molecular Imaging, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
103
|
Villo P, Shatskiy A, Kärkäs MD, Lundberg H. Electrosynthetic C-O Bond Activation in Alcohols and Alcohol Derivatives. Angew Chem Int Ed Engl 2023; 62:e202211952. [PMID: 36278406 PMCID: PMC10107720 DOI: 10.1002/anie.202211952] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Indexed: 11/07/2022]
Abstract
Alcohols and their derivatives are ubiquitous and versatile motifs in organic synthesis. Deoxygenative transformations of these compounds are often challenging due to the thermodynamic penalty associated with the cleavage of the C-O bond. However, electrochemically driven redox events have been shown to facilitate the C-O bond cleavage in alcohols and their derivatives either through direct electron transfer or through the use of electron transfer mediators and electroactive catalysts. Herein, a comprehensive overview of preparative electrochemically mediated protocols for C-O bond activation and functionalization is detailed, including direct and indirect electrosynthetic methods, as well as photoelectrochemical strategies.
Collapse
Affiliation(s)
- Piret Villo
- Department of ChemistryKTH Royal Institute of TechnologySE-100 44StockholmSweden
| | - Andrey Shatskiy
- Department of ChemistryKTH Royal Institute of TechnologySE-100 44StockholmSweden
| | - Markus D. Kärkäs
- Department of ChemistryKTH Royal Institute of TechnologySE-100 44StockholmSweden
| | - Helena Lundberg
- Department of ChemistryKTH Royal Institute of TechnologySE-100 44StockholmSweden
| |
Collapse
|
104
|
Mikra C, Mitrakas A, Ghizzani V, Katsani KR, Koffa M, Koukourakis M, Psomas G, Protti S, Fagnoni M, Fylaktakidou KC. Effect of Arylazo Sulfones on DNA: Binding, Cleavage, Photocleavage, Molecular Docking Studies and Interaction with A375 Melanoma and Non-Cancer Cells. Int J Mol Sci 2023; 24:1834. [PMID: 36768159 PMCID: PMC9915714 DOI: 10.3390/ijms24031834] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/04/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
A set of arylazo sulfones, known to undergo N-S bond cleavage upon light exposure, has been synthesized, and their activity in the dark and upon irradiation towards DNA has been investigated. Their interaction with calf-thymus DNA has been examined, and the significant affinity observed (most probably due to DNA intercalation) was analyzed by means of molecular docking "in silico" calculations that pointed out polar contacts, mainly via the sulfonyl moiety. Incubation with plasmid pBluescript KS II revealed DNA cleavage that has been studied over time and concentration. UV-A irradiation considerably improved DNA damage for most of the compounds, whereas under visible light the effect was slightly lower. Moving to in vitro experiments, irradiation was found to slightly enhance the death of the cells in the majority of the compounds. Naphthylazosulfone 1 showed photo-disruptive effect under UV-A irradiation (IC50 ~13 μΜ) followed by derivatives 14 and 17 (IC50 ~100 μΜ). Those compounds were irradiated in the presence of two non-cancer cell lines and were found equally toxic only upon irradiation and not in the dark. The temporal and spatial control of light, therefore, might provide a chance for these novel scaffolds to be useful for the development of phototoxic pharmaceuticals.
Collapse
Affiliation(s)
- Chrysoula Mikra
- Laboratory of Organic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Achilleas Mitrakas
- Laboratory of Cellular Biology and Cell Cycle, Molecular Biology and Genetics Department, Democritus University of Thrace, University Campus, Dragana, 68100 Alexandroupolis, Greece
- Department of Radiotherapy and Oncology, Democritus University of Thrace, University General Hospital of Alexandroupolis, 68100 Alexandroupolis, Greece
| | - Virginia Ghizzani
- PhotoGreen Lab, Department of Chemistry, University of Pavia, V. Le Taramelli 12, 27100 Pavia, Italy
| | - Katerina R. Katsani
- Laboratory of Biochemistry and Molecular Virology, Molecular Biology and Genetics Department, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece
| | - Maria Koffa
- Laboratory of Cellular Biology and Cell Cycle, Molecular Biology and Genetics Department, Democritus University of Thrace, University Campus, Dragana, 68100 Alexandroupolis, Greece
| | - Michael Koukourakis
- Department of Radiotherapy and Oncology, Democritus University of Thrace, University General Hospital of Alexandroupolis, 68100 Alexandroupolis, Greece
| | - George Psomas
- Laboratory of Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Stefano Protti
- PhotoGreen Lab, Department of Chemistry, University of Pavia, V. Le Taramelli 12, 27100 Pavia, Italy
| | - Maurizio Fagnoni
- PhotoGreen Lab, Department of Chemistry, University of Pavia, V. Le Taramelli 12, 27100 Pavia, Italy
| | - Konstantina C. Fylaktakidou
- Laboratory of Organic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
105
|
Peng TY, Zhang FL, Wang YF. Lewis Base-Boryl Radicals Enabled Borylation Reactions and Selective Activation of Carbon-Heteroatom Bonds. Acc Chem Res 2023; 56:169-186. [PMID: 36571794 DOI: 10.1021/acs.accounts.2c00752] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
ConspectusThe past decades have witnessed tremendous progress on radical reactions. However, in comparison with carbon, nitrogen, oxygen, and other main group element centered radicals, the synthetic chemistry of boron centered radicals was less studied, mainly due to the high electron-deficiency and instability of such 3-center-5-electron species. In the 1980s, Roberts and co-workers found that the coordination of a Lewis base (amines or phosphines) with the boron center could form 4-center-7-electron boryl radicals (Lewis base-boryl radicals, LBRs) that are found to be more stable. However, only limited synthetic applications were developed. In 2008, Curran and co-workers achieved a breakthrough with the discovery of N-heterocyclic carbene (NHC) boryl radicals, which could enable a range of radical reduction and polymerization reactions. Despite these exciting findings, more powerful and valuable synthetic applications of LBRs would be expected, given that the structures and reactivities of LBRs could be easily modulated, which would provide ample opportunities to discover new reactions. In this Account, a summary of our key contributions in LBR-enabled radical borylation reactions and selective activation of inert carbon-heteroatom bonds will be presented.Organoboron compounds have shown versatile applications in chemical society, and their syntheses rely principally on ionic borylation reactions. The development of mechanistically different radical borylation reactions allows synthesizing products that are inaccessible by traditional methods. For this purpose, we progressively developed a series of NHC-boryl radical mediated chemo-, regio-, and stereoselective radical borylation reactions of alkenes and alkynes, by which a wide variety of structurally diverse organoboron molecules were successfully prepared. The synthetic utility of these borylated products was also demonstrated. Furthermore, we disclosed a photoredox protocol for oxidative generation of NHC-boryl radicals, which enabled useful defluoroborylation and arylboration reactions.Selective bond activation is an ideal way to convert simple starting materials to value-added products, while the cleavage of inert chemical bonds, in particular the chemoselectivity control when multiple identical bonds are present in similar chemical environments, remains a long-standing challenge. We envisaged that finely tuning the properties of LBRs might provide a new solution to address this challenge. Recently, we disclosed a 4-dimethylaminopyridine (DMAP)-boryl radical promoted sequential C-F bond functionalization of trifluoroacetic acid derivatives, in which the α-C-F bonds were selectively snipped via a spin-center shift mechanism. This strategy enables facile conversion of abundantly available trifluoroacetic acid to highly valuable mono- and difluorinated molecules. Encouraged by this finding, we further developed a boryl radical enabled three-step sequence to construct all-carbon quaternary centers from a range of trichloromethyl groups, where the three C-Cl bonds were selectively cleaved by the rational choice of suitable boryl radical precursors in each step. Furthermore, a boryl radical promoted dehydroxylative alkylation of α-hydroxy carboxylic acid derivatives was achieved, allowing for the efficient conversion of some biomass platform molecules to high value products.
Collapse
Affiliation(s)
- Tian-Yu Peng
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026 Anhui, China
| | - Feng-Lian Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026 Anhui, China
| | - Yi-Feng Wang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026 Anhui, China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| |
Collapse
|
106
|
Capurro P, Ricciardiello V, Lova P, Lambruschini C, Protti S, Basso A. Visible-Light-Driven Solventylation Strategy for Olefin Functionalization. ACS OMEGA 2022; 7:48564-48571. [PMID: 36591128 PMCID: PMC9798500 DOI: 10.1021/acsomega.2c07172] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Amphiphilic aryl radicals generated upon visible light irradiation of arylazo sulfones have been exploited in the development of a solventylation strategy via hydrogen atom transfer (HAT). The present protocol succeeded in the versatile functionalization of various olefins with carbon-centered radicals deriving from acetone, acetonitrile, chloroform, methylene chloride, nitromethane, methyl acetate, and methyl formate under metal- and photocatalyst-free conditions. The direct addition of the aryl radicals onto the olefin substrates was suppressed under high dilution conditions.
Collapse
Affiliation(s)
- Pietro Capurro
- Dipartimento
di Chimica e Chimica Industriale, Università
degli Studi di Genova, Via Dodecaneso 31, 16146 Genova, Italy
| | - Valentina Ricciardiello
- Dipartimento
di Chimica e Chimica Industriale, Università
degli Studi di Genova, Via Dodecaneso 31, 16146 Genova, Italy
| | - Paola Lova
- Dipartimento
di Chimica e Chimica Industriale, Università
degli Studi di Genova, Via Dodecaneso 31, 16146 Genova, Italy
| | - Chiara Lambruschini
- Dipartimento
di Chimica e Chimica Industriale, Università
degli Studi di Genova, Via Dodecaneso 31, 16146 Genova, Italy
| | - Stefano Protti
- PhotoGreenLab,
Dipartimento di Chimica, Università
di Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Andrea Basso
- Dipartimento
di Chimica e Chimica Industriale, Università
degli Studi di Genova, Via Dodecaneso 31, 16146 Genova, Italy
| |
Collapse
|
107
|
Kim J, Lee JK, Moon B, Lee A. Photocatalytic Alkyl Addition to Access Quaternary Alkynyl α-Amino Esters. Org Lett 2022; 24:8870-8874. [PMID: 36414400 DOI: 10.1021/acs.orglett.2c03669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A regioselective alkylation of β,γ-alkynyl-α-imino esters by visible-light photocatalysis has been developed. This method enables 1,2-addition of methyl, primary, secondary, and tertiary alkyl radicals to the conjugated imines under mild conditions to produce a variety of quaternary alkynyl α-amino acid and cyclic amino acid motifs. Alkyl radicals are generated from alkyl bis(catecholato)silicates with an organic photocatalyst. This process is effective under an air atmosphere, providing operational benefits compared to conventional alkylation using organometallic reagents.
Collapse
Affiliation(s)
- Juyeong Kim
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.,Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Jae Kyun Lee
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Bongjin Moon
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Ansoo Lee
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.,Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| |
Collapse
|
108
|
Apostolina LP, Bosveli A, Profyllidou A, Montagnon T, Tsopanakis V, Kaloumenou M, Kalaitzakis D, Vassilikogiannakis G. Multiphotocatalyst Cascades: From Furans to Fused Butyrolactones and Substituted Cyclopentanones. Org Lett 2022; 24:8786-8790. [PMID: 36417313 DOI: 10.1021/acs.orglett.2c03513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
High value oxygenated polycycles have been rapidly and efficiently accessed from simple precursors in one pot processes. The reported methodology relies on a new and mild method for butenolide synthesis mediated by thiols. The initial photooxygenation and butenolide synthesis have been merged with subsequent photoredox reactions to achieve rare dual-photocatalyst cascades affording various fused butyrolactones. Ground state Lewis acid activity for methylene blue has been unveiled and then exploited in the synthesis of substituted cyclopentanones.
Collapse
Affiliation(s)
| | - Artemis Bosveli
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003 Iraklion, Crete, Greece
| | - Antonia Profyllidou
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003 Iraklion, Crete, Greece
| | - Tamsyn Montagnon
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003 Iraklion, Crete, Greece
| | - Vasileios Tsopanakis
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003 Iraklion, Crete, Greece
| | - Maria Kaloumenou
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003 Iraklion, Crete, Greece
| | - Dimitris Kalaitzakis
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003 Iraklion, Crete, Greece
| | | |
Collapse
|
109
|
Cong F, Mega RS, Chen J, Day CS, Martin R. Trifluoromethylation of Carbonyl and Unactivated Olefin Derivatives by C(sp 3 )-C Bond Cleavage. Angew Chem Int Ed Engl 2022; 62:e202214633. [PMID: 36416716 DOI: 10.1002/anie.202214633] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022]
Abstract
Herein, we report a Cu-mediated trifluoromethylation of carbonyl-type compounds and unactivated olefins enabled by visible-light irradiation via σ C(sp3 )-C bond-functionalization. The reaction is distinguished by its modularity, mild conditions and wide scope-even in the context of late-stage functionalization-thus offering a complementary approach en route to valuable C(sp3 )-CF3 architectures from easily accessible precursors.
Collapse
Affiliation(s)
- Fei Cong
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain.,Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, c/Marcel ⋅ lí Domingo, 1, 43007, Tarragona, Spain
| | - Riccardo S Mega
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Jinhong Chen
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain.,Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, c/Marcel ⋅ lí Domingo, 1, 43007, Tarragona, Spain
| | - Craig S Day
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain.,Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, c/Marcel ⋅ lí Domingo, 1, 43007, Tarragona, Spain
| | - Ruben Martin
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluïs Companys 23, 08010, Barcelona, Spain
| |
Collapse
|
110
|
Yue F, Ma H, Song H, Liu Y, Dong J, Wang Q. Alkylboronic acids as alkylating agents: photoredox-catalyzed alkylation reactions assisted by K 3PO 4. Chem Sci 2022; 13:13466-13474. [PMID: 36507180 PMCID: PMC9683010 DOI: 10.1039/d2sc05521j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
Despite the ubiquity of alkylboronic acids in organic synthesis, their utility as alkyl radical precursors in visible-light-induced photocatalytic reactions is limited by their high oxidation potentials. In this study, we demonstrated that an inorganophosphorus compound can modulate the oxidation potentials of alkylboronic acids so that they can act as alkyl radical precursors. We propose a mechanism based on the results of fluorescence quenching experiments, electrochemical experiments, 11B and 31P NMR spectroscopy, and other techniques. In addition, we describe a simple and reliable alkylation method that has good functional group tolerance and can be used for direct C-B chlorination, cyanation, vinylation, alkynylation, and allylation, as well as late-stage functionalization of derivatized drug molecules. Notably, alkylboronic acids can be selectively activated in the presence of a boronic pinacol ester.
Collapse
Affiliation(s)
- Fuyang Yue
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai UniversityTianjin 300071People's Republic of China
| | - Henan Ma
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai UniversityTianjin 300071People's Republic of China
| | - Hongjian Song
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai UniversityTianjin 300071People's Republic of China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai UniversityTianjin 300071People's Republic of China
| | - Jianyang Dong
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai UniversityTianjin 300071People's Republic of China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai UniversityTianjin 300071People's Republic of China
| |
Collapse
|
111
|
Uchikura T, Tsubono K, Hara Y, Akiyama T. Dual-Role Halogen-Bonding-Assisted EDA-SET/HAT Photoreaction System with Phenol Catalyst and Aryl Iodide: Visible-Light-Driven Carbon–Carbon Bond Formation. J Org Chem 2022; 87:15499-15510. [DOI: 10.1021/acs.joc.2c02032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Tatsuhiro Uchikura
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1, Mejiro,
Toshima-ku, Tokyo 171-8588, Japan
| | - Kazushi Tsubono
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1, Mejiro,
Toshima-ku, Tokyo 171-8588, Japan
| | - Yurina Hara
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1, Mejiro,
Toshima-ku, Tokyo 171-8588, Japan
| | - Takahiko Akiyama
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1, Mejiro,
Toshima-ku, Tokyo 171-8588, Japan
| |
Collapse
|
112
|
Mistry S, Kumar R, Lister A, Gaunt MJ. C(sp 3)-C(sp 3) coupling of non-activated alkyl-iodides with electron-deficient alkenes via visible-light/silane-mediated alkyl-radical formation. Chem Sci 2022; 13:13241-13247. [PMID: 36425511 PMCID: PMC9667957 DOI: 10.1039/d2sc03516b] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/27/2022] [Indexed: 08/24/2023] Open
Abstract
Here, we present a remarkably mild and general initiation protocol for alkyl-radical generation from non-activated alkyl-iodides. An interaction between a silane and an alkyl iodide is excited by irradiation with visible light to trigger carbon-iodide bond homolysis and form the alkyl radical. We show how this method can be developed into an operationally simple and general Giese addition reaction that can tolerate a range of sensitive functionalities not normally explored in established approaches to this strategically important transformation. The new method requires no photocatalyst or other additives and uses only commerical tris(trimethylsilyl)silane and visible light to effectively combine a broad range of alkyl halides with activated alkenes to form C(sp3)-C(sp3) bonds embedded within complex frameworks.
Collapse
Affiliation(s)
- Sanesh Mistry
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Roopender Kumar
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | | | - Matthew J Gaunt
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
113
|
Oroz P, Navo CD, Avenoza A, Busto JH, Corzana F, Jiménez-Osés G, Peregrina JM. Towards Enantiomerically Pure Unnatural α-Amino Acids via Photoredox Catalytic 1,4-Additions to a Chiral Dehydroalanine. J Org Chem 2022; 87:14308-14318. [PMID: 36179039 PMCID: PMC9639051 DOI: 10.1021/acs.joc.2c01774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Chemo- and diastereoselective 1,4-conjugate additions of anionic and radical C-nucleophiles to a chiral bicyclic dehydroalanine (Dha) are described. Of particular importance, radical carbon photolysis by a catalytic photoredox process using a simple method with a metal-free photocatalyst provides exceptional yields and selectivities at room temperature. Moreover, these 1,4-conjugate additions offer an excellent starting point for synthesizing enantiomerically pure carbon-β-substituted unnatural α-amino acids (UAAs), which could have a high potential for applications in chemical biology.
Collapse
Affiliation(s)
- Paula Oroz
- Departamento
de Química, Centro de Investigación en Síntesis
Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| | - Claudio D. Navo
- Center
for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building
800, 48160 Derio, Spain
| | - Alberto Avenoza
- Departamento
de Química, Centro de Investigación en Síntesis
Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| | - Jesús H. Busto
- Departamento
de Química, Centro de Investigación en Síntesis
Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| | - Francisco Corzana
- Departamento
de Química, Centro de Investigación en Síntesis
Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| | - Gonzalo Jiménez-Osés
- Center
for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building
800, 48160 Derio, Spain,Ikerbasque, Basque
Foundation for Science, 48013 Bilbao, Spain
| | - Jesús M. Peregrina
- Departamento
de Química, Centro de Investigación en Síntesis
Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain,
| |
Collapse
|
114
|
Wang L, Chen Z, Fan G, Liu X, Liu P. Organophotoredox and Hydrogen Atom Transfer Cocatalyzed C-H Alkylation of Quinoxalin-2(1 H)-ones with Aldehydes, Amides, Alcohols, Ethers, or Cycloalkanes. J Org Chem 2022; 87:14580-14587. [PMID: 36206555 DOI: 10.1021/acs.joc.2c01967] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Described is a mild method that merges organophotoredox catalysis with hydrogen atom transfer to enable C-H alkylation of quinoxalin-2(1H)-ones with feedstock aldehydes, amides, alcohols, ethers, or cycloalkanes. This reaction occurred under environmentally benign and external oxidant-free reaction conditions, providing a general and sustainable access to various C3-alkylated quinoxalinone derivatives with broad substituent diversity and good functional group compatibility.
Collapse
Affiliation(s)
- Liling Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Zhaoxing Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Guohua Fan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Xiaozu Liu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Peijun Liu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
115
|
Sanjosé-Orduna J, Silva RC, Raymenants F, Reus B, Thaens J, de Oliveira KT, Noël T. Dual role of benzophenone enables a fast and scalable C-4 selective alkylation of pyridines in flow. Chem Sci 2022; 13:12527-12532. [PMID: 36382292 PMCID: PMC9629060 DOI: 10.1039/d2sc04990b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/08/2022] [Indexed: 08/27/2023] Open
Abstract
The efficient C-4 selective modification of pyridines is a major challenge for the synthetic community. Current strategies are plagued with at least one drawback regarding functional group-tolerant electronic activation of the heteroarene, mild generation of the required alkyl radicals, regioselectivity, safety and/or scalability. Herein, we describe a fast, safe and scalable flow process which allows preparation of said C-4 alkylated pyridines. The process involves a photochemical hydrogen atom transfer (HAT) event to generate the carbon-centered radicals needed to alkylate the C-2 blocked pyridine. In a two-step streamlined flow process, this light-mediated alkylation step is combined with a nearly instantaneous inline removal of the blocking group. Notably, cheap benzophenone plays a dual role in the pyridine alkylation mechanism by activating the hydrocarbon feedstock reagents via a HAT mechanism, and by acting as a benign, terminal oxidant. The key role of benzophenone in the operative reaction mechanism has also been revealed through a combination of experimental and computational studies.
Collapse
Affiliation(s)
- Jesús Sanjosé-Orduna
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands https://www.noelresearchgroup.com/
| | - Rodrigo C Silva
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands https://www.noelresearchgroup.com/
- Departamento de Química, Universidade Federal de São Carlos SP 13565-905 Brazil
| | - Fabian Raymenants
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands https://www.noelresearchgroup.com/
| | - Bente Reus
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands https://www.noelresearchgroup.com/
| | - Jannik Thaens
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands https://www.noelresearchgroup.com/
| | | | - Timothy Noël
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands https://www.noelresearchgroup.com/
| |
Collapse
|
116
|
Zhang H, Liang S, Wei D, Xu K, Zeng C. Electrocatalytic Generation of Acyl Radicals and Their Applications. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Haonan Zhang
- Faculty of Environmental and Life Beijing University of Technology 100 Pingleyuan Rd. 100124 Beijing China
| | - Sen Liang
- Beijing Key Laboratory of Flavor Chemistry Beijing Technology and Business University 100048 Beijing China
| | - Dengchao Wei
- Faculty of Environmental and Life Beijing University of Technology 100 Pingleyuan Rd. 100124 Beijing China
| | - Kun Xu
- Faculty of Environmental and Life Beijing University of Technology 100 Pingleyuan Rd. 100124 Beijing China
| | - Chengchu Zeng
- Faculty of Environmental and Life Beijing University of Technology 100 Pingleyuan Rd. 100124 Beijing China
| |
Collapse
|
117
|
Jiang YS, Liu F, Huang MS, Luo XL, Xia PJ. Photocatalytic Modular Cyanoalkylamination of Alkenes Involving Two Different Iminyl Radicals. Org Lett 2022; 24:8019-8024. [PMID: 36264241 DOI: 10.1021/acs.orglett.2c03233] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The modular cyanoalkylamination of alkenes using bench-stable and easy-to-handle α-imino-oxy acid oxime esters as difunctional reagents creates new synthetic avenues. A metal-free photosensitization protocol for the installation of both amino and cyanoalkyl functionalities onto alkene feedstocks in a single step via two differently reactive nitrogen-centered radicals was developed via energy-transfer catalysis. Excellent functional group tolerance and mild reaction conditions also render this protocol suitable for the cyanoalkylamination of pharmaceutically relevant molecule-derived alkenes.
Collapse
Affiliation(s)
- Yu-Shi Jiang
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Fu Liu
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Miao-Sha Huang
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Xue-Ling Luo
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Peng-Ju Xia
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| |
Collapse
|
118
|
Kim C, Jeong J, Vellakkaran M, Hong S. Photocatalytic Decarboxylative Pyridylation of Carboxylic Acids Using In Situ-Generated Amidyl Radicals as Oxidants. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Changha Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Jinwook Jeong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Mari Vellakkaran
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Sungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| |
Collapse
|
119
|
Luguera Ruiz A, La Mantia M, Merli D, Protti S, Fagnoni M. Alkyl Radical Generation via C–C Bond Cleavage in 2-Substituted Oxazolidines. ACS Catal 2022; 12:12469-12476. [PMID: 36249874 PMCID: PMC9552967 DOI: 10.1021/acscatal.2c03768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/21/2022] [Indexed: 11/30/2022]
Abstract
![]()
There is an urgent need to develop uncharged radical
precursors
to be activated under mild photocatalyzed conditions. 2-Substituted-1,3-oxazolidines
(Eox < 1.3 V vs SCE, smoothly prepared
from the corresponding aldehydes) have been herein employed for the
successful release of tertiary, α-oxy, and α-amido radicals
under photo-organo redox catalysis. The reaction relies on the unprecedented
C–C cleavage occurring from the radical cation of these heterocyclic
derivatives. Such a protocol is applied to the visible-light-driven
conjugate radical addition onto Michael acceptors and vinyl (hetero)arenes
under mild metal-free conditions.
Collapse
Affiliation(s)
- Adrián Luguera Ruiz
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Marta La Mantia
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Daniele Merli
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Stefano Protti
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Maurizio Fagnoni
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
120
|
Exploiting photoredox catalysis for carbohydrate modification through C–H and C–C bond activation. Nat Rev Chem 2022; 6:782-805. [PMID: 37118094 DOI: 10.1038/s41570-022-00422-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2022] [Indexed: 11/09/2022]
Abstract
Photoredox catalysis has recently emerged as a powerful synthetic platform for accessing complex chemical structures through non-traditional bond disconnection strategies that proceed through free-radical intermediates. Such synthetic strategies have been used for a range of organic transformations; however, in carbohydrate chemistry they have primarily been applied to the generation of oxocarbenium ion intermediates in the ubiquitous glycosylation reaction. In this Review, we present more intricate light-induced synthetic strategies to modify native carbohydrates through homolytic C-H and C-C bond cleavage. These strategies allow access to glycans and glycoconjugates with profoundly altered carbohydrate skeletons, which are challenging to obtain through conventional synthetic means. Carbohydrate derivatives with such structural motifs represent a broad class of natural products integral to numerous biochemical processes and can be found in active pharmaceutical substances. Here we present progress made in C-H and C-C bond activation of carbohydrates through photoredox catalysis, focusing on the operational mechanisms and the scope of the described methodologies.
Collapse
|
121
|
Constantin T, Górski B, Tilby MJ, Chelli S, Juliá F, Llaveria J, Gillen KJ, Zipse H, Lakhdar S, Leonori D. Halogen-atom and group transfer reactivity enabled by hydrogen tunneling. Science 2022; 377:1323-1328. [DOI: 10.1126/science.abq8663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The generation of carbon radicals by halogen-atom and group transfer reactions is generally achieved using tin and silicon reagents that maximize the interplay of enthalpic (thermodynamic) and polar (kinetic) effects. In this work, we demonstrate a distinct reactivity mode enabled by quantum mechanical tunneling that uses the cyclohexadiene derivative γ-terpinene as the abstractor under mild photochemical conditions. This protocol activates alkyl and aryl halides as well as several alcohol and thiol derivatives. Experimental and computational studies unveiled a noncanonical pathway whereby a cyclohexadienyl radical undergoes concerted aromatization and halogen-atom or group abstraction through the reactivity of an effective H atom. This activation mechanism is seemingly thermodynamically and kinetically unfavorable but is rendered feasible through quantum tunneling.
Collapse
Affiliation(s)
| | - Bartosz Górski
- Department of Chemistry, University of Manchester, Manchester M13 9PL, UK
| | - Michael J. Tilby
- Department of Chemistry, University of Manchester, Manchester M13 9PL, UK
| | - Saloua Chelli
- CNRS/Université Toulouse III—Paul Sabatier, Laboratoire Hétérochimie Fondamentale et Appliquée, LHFA UMR 5069, 31062 Toulouse Cedex 09, France
| | - Fabio Juliá
- Department of Chemistry, University of Manchester, Manchester M13 9PL, UK
| | - Josep Llaveria
- Global Discovery Chemistry, Therapeutics Discovery, Janssen Research & Development, Janssen-Cilag S.A., 45007 Toledo, Spain
| | - Kevin J. Gillen
- LifeArc, Accelerator Building, Open Innovation Campus, Stevenage SG1 2FX, UK
| | - Hendrik Zipse
- Department Chemie, LMU München, D-81377 München, Germany
| | - Sami Lakhdar
- CNRS/Université Toulouse III—Paul Sabatier, Laboratoire Hétérochimie Fondamentale et Appliquée, LHFA UMR 5069, 31062 Toulouse Cedex 09, France
| | - Daniele Leonori
- Institute of Organic Chemistry, RWTH Aachen University, 52056 Aachen, Germany
| |
Collapse
|
122
|
Liu H, Fan X, Hu J, Ma T, Wang F, Yang J, Li D. Visible-Light-Enabled Ph 3P/LiI-Promoted Tandem Radical Trifluoromethylation/Cyclization/Iodination of 1,6-Enynes with Togni's Reagent. J Org Chem 2022; 87:12877-12889. [PMID: 36074642 DOI: 10.1021/acs.joc.2c01453] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the visible-light-induced Ph3P/LiI-promoted intermolecular cascade trifluoromethyl radical addition/5-exo-dig cyclization/iodination of 1,6-enynes with Togni's reagent using LiI as the iodine source without the need of the transition metal, oxidant, and base. This reaction promises to be a useful method for the preparation of trifluoromethyl-substituted and vinyl C-I bond-containing pyrrolidines and benzofuran products with good regioselectivity and functional-group tolerance under ambient conditions.
Collapse
Affiliation(s)
- Hui Liu
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, P. R. China
| | - Xu Fan
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, P. R. China
| | - Jinkai Hu
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, P. R. China
| | - Tongtong Ma
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, P. R. China
| | - Feng Wang
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, P. R. China
| | - Jinhui Yang
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, P. R. China
| | - Dianjun Li
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, P. R. China
| |
Collapse
|
123
|
Plöger S, Mück-Lichtenfeld C, Daniliuc CG, Studer A. Azodioxy compounds as precursors for C-radicals and their application in thermal styrene difunctionalization. Chem Sci 2022; 13:9749-9754. [PMID: 36091902 PMCID: PMC9400666 DOI: 10.1039/d2sc03860a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/03/2022] [Indexed: 11/21/2022] Open
Abstract
An atom-economic thermal α,β-difunctionalization of various styrenes with readily prepared azodioxy compounds is reported. Mechanistic studies reveal that the starting azodioxy compounds can thermally be cleaved to the corresponding C-nitroso compounds, which under these thermal conditions further homolyze to generate reactive C-radicals along with the persistent NO radical. In the presence of a styrene, C-radical addition with subsequent nitrosylation followed by tautomerization is occurring, resulting in an overall styrene β-alkylation-α-oximation reaction.
Collapse
Affiliation(s)
- Stefanie Plöger
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Christian Mück-Lichtenfeld
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| |
Collapse
|
124
|
Protti S, Fagnoni M. Recent Advances in Light-Induced Selenylation. ACS ORGANIC & INORGANIC AU 2022; 2:455-463. [PMID: 36855533 PMCID: PMC9955339 DOI: 10.1021/acsorginorgau.2c00033] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 11/28/2022]
Abstract
Selenium-containing organic molecules have recently found a plethora of applications, ranging from organic synthesis to pharmacology and material sciences. In view of these concepts, the development of mild, efficient, and general protocols for the formation of C-Se bonds is desirable, and light induced approaches are appealing ways. The aim of this Review is to provide the reader with the most recent examples of light promoted selenylation processes.
Collapse
|
125
|
Lu B, Xu M, Qi X, Jiang M, Xiao WJ, Chen JR. Switchable Radical Carbonylation by Philicity Regulation. J Am Chem Soc 2022; 144:14923-14935. [PMID: 35939790 DOI: 10.1021/jacs.2c06677] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Carbonylation reactions involving CO as readily available C1 synthons have become one of the most important tools for the construction of carbonyl compounds from feedstock chemicals. Despite numerous catalytic methods for carbonylation reactions proceeding via ionic or radical pathways, an inherent limitation to these methods is the need to control switchable single and double carbonylative formation of value-added products from the same and simple starting materials. Here, we describe a new strategy that exploits photoredox catalysis to regulate the philicity of amine coupling partners to drive switchable radical carbonylation reactions. In double carbonylation, amines were first transformed into nitrogen radical cations by single-electron transfer-oxidation and coupled with CO to form carbamoyl radicals, which further underwent radical cross-coupling with the incipient cyanoalkyl acyl radicals to afford the double carbonylation products. Upon the addition of stoichiometric 4-dimethylaminopyridine (DMAP), DMAP competitively traps the initially formed cyanoalkyl acyl radical to form the relatively stabilized cyanoalkyl acyl-DMAP salts that engaged in the subsequent substitution with the nucleophilic amines to produce the single carbonylation products. The reaction proceeded smoothly with excellent selectivity in the presence of various amine nucleophiles at room temperature, generating valuable amides and α-ketoamides in a versatile and controlled fashion. Combined experimental and computational studies provided mechanistic insights into the possible pathways.
Collapse
Affiliation(s)
- Bin Lu
- Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Minghao Xu
- Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Xiaotian Qi
- Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Min Jiang
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, P. R. China
| | - Wen-Jing Xiao
- Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.,State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jia-Rong Chen
- Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| |
Collapse
|
126
|
Wise DE, Gogarnoiu ES, Duke AD, Paolillo JM, Vacala TL, Hussain WA, Parasram M. Photoinduced Oxygen Transfer Using Nitroarenes for the Anaerobic Cleavage of Alkenes. J Am Chem Soc 2022; 144:15437-15442. [PMID: 35930615 DOI: 10.1021/jacs.2c05648] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein we report the anaerobic cleavage of alkenes into carbonyl compounds using nitroarenes as oxygen transfer reagents under visible light. This approach serves as a safe and practical alternative to mainstream oxidative cleavage protocols, such as ozonolysis and the Lemieux-Johnson reaction. A wide range of alkenes possessing oxidatively sensitive functionalities underwent anaerobic cleavage to generate carbonyl derivatives with high efficiency and regioselectivity. Mechanistic studies support that the transformation occurs via direct photoexcitation of the nitroarene followed by a nonstereospecific radical cycloaddition event with alkenes. This leads to 1,3,2- and 1,4,2-dioxazolidine intermediates that fragment to give the carbonyl products. A combination of radical clock experiments and in situ photoNMR spectroscopy revealed the identities of the key radical species and the putative aryl dioxazolidine intermediates, respectively.
Collapse
Affiliation(s)
- Dan E Wise
- Department of Chemistry, New York University, 24 Waverly Place, third floor, New York, New York 10003, United States
| | - Emma S Gogarnoiu
- Department of Chemistry, New York University, 24 Waverly Place, third floor, New York, New York 10003, United States
| | - Alana D Duke
- Department of Chemistry, New York University, 24 Waverly Place, third floor, New York, New York 10003, United States
| | - Joshua M Paolillo
- Department of Chemistry, New York University, 24 Waverly Place, third floor, New York, New York 10003, United States
| | - Taylor L Vacala
- Department of Chemistry, New York University, 24 Waverly Place, third floor, New York, New York 10003, United States
| | - Waseem A Hussain
- Department of Chemistry, New York University, 24 Waverly Place, third floor, New York, New York 10003, United States
| | - Marvin Parasram
- Department of Chemistry, New York University, 24 Waverly Place, third floor, New York, New York 10003, United States
| |
Collapse
|
127
|
Zhu F, Miller E, Powell WC, Johnson K, Beggs A, Evenson GE, Walczak MA. Umpolung Ala
B
Reagents for the Synthesis of Non‐Proteogenic Amino Acids, Peptides and Proteins**. Angew Chem Int Ed Engl 2022; 61:e202207153. [PMID: 35653581 PMCID: PMC9329247 DOI: 10.1002/anie.202207153] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Indexed: 11/07/2022]
Abstract
Non-proteogenic amino acids and functionalized peptides are important motifs in modern drug discovery. Here we report that AlaB can serve as universal building blocks in the synthesis of a diverse collection of modified amino acids, peptides, and proteins. First, we develop the synthesis of AlaB from redox-active esters of aspartic acid resulting in a series of β-boronoalanine derivatives. Next, we show that AlaB can be integrated into automated oligopeptide solid-phase synthesis. AlaB is compatible with common transformations used in preparative peptide chemistry such as native chemical ligation and radical desulfurization as showcased by total synthesis of AlaB -containing ubiquitin. Furthermore, AlaB reagents participate in Pd-catalyzed reactions, including C-C cross-couplings and macrocyclizations. Taken together, AlaB synthons are practical reagents to access modified peptides, proteins, and in the synthesis of cyclic/stapled peptides.
Collapse
Affiliation(s)
- Feng Zhu
- Frontiers Science Center for Transformative Molecules Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Eric Miller
- Department of Chemistry University of Colorado Boulder CO 80309 USA
| | - Wyatt C. Powell
- Department of Chemistry University of Colorado Boulder CO 80309 USA
| | - Kelly Johnson
- Department of Chemistry University of Colorado Boulder CO 80309 USA
| | - Alexander Beggs
- Department of Chemistry University of Colorado Boulder CO 80309 USA
| | | | | |
Collapse
|
128
|
Wang X, Meng J, Zhao D, Tang S, Sun K. Synthesis and applications of thiosulfonates and selenosulfonates as free-radical reagents. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.08.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
129
|
Abstract
![]()
Here, we present a visible light-catalyzed hydroalkylation
of aryl-alkenes
affording C–C bonds using aryl-alkenes and alkyl iodides. We
demonstrate the formation of various hydroalkylation products in excellent
yields, with primary, secondary, and tertiary alkyl iodides being
tolerated in the reaction. Mechanistic experiments reveal a pathway
consisting of halogen atom transfer followed by a radical-polar crossover
mechanism delivering the desired hydroalkylation products.
Collapse
Affiliation(s)
- Cornelia S Buettner
- Institute for Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, 1060 Vienna, Austria
| | - Michael Schnürch
- Institute for Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, 1060 Vienna, Austria
| | - Katharina Bica-Schröder
- Institute for Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, 1060 Vienna, Austria
| |
Collapse
|
130
|
Madani A, Anghileri L, Heydenreich M, Möller HM, Pieber B. Benzylic Fluorination Induced by a Charge-Transfer Complex with a Solvent-Dependent Selectivity Switch. Org Lett 2022; 24:5376-5380. [PMID: 35848228 PMCID: PMC9344467 DOI: 10.1021/acs.orglett.2c02050] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
![]()
We present a divergent strategy for the fluorination
of phenylacetic
acid derivatives that is induced by a charge-transfer complex between
Selectfluor and 4-(dimethylamino)pyridine. A comprehensive investigation
of the conditions revealed a critical role of the solvent on the reaction
outcome. In the presence of water, decarboxylative fluorination through
a single-electron oxidation is dominant. Non-aqueous conditions result
in the clean formation of α-fluoro-α-arylcarboxylic acids.
Collapse
Affiliation(s)
- Amiera Madani
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Lucia Anghileri
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Matthias Heydenreich
- Institute of Chemistry/Analytical Chemistry, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| | - Heiko M Möller
- Institute of Chemistry/Analytical Chemistry, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| | - Bartholomäus Pieber
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
131
|
Singh S, Tripathi KN, Singh RP. Redox activated amines in the organophotoinduced alkylation of coumarins. Org Biomol Chem 2022; 20:5716-5720. [PMID: 35838252 DOI: 10.1039/d2ob00943a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The coumarin core represents the quintessential scaffold of many natural products. While C-3 alkylation is easily achievable, effective greener strategies for C-4 alkylation have been less forthcoming. Herein, we report a metal-free photoinduced deaminative strategy for C-4 alkylation of coumarins using redox activated secondary and benzylic amine derived Katritzky pyridinium salts.
Collapse
Affiliation(s)
- Shashank Singh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| | - Krishna N Tripathi
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| | - Ravi P Singh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
132
|
Zhao F, Jiang F, Wang X. Deoxygenative alkylation of tertiary amides using alkyl iodides under visible light. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1331-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
133
|
Oxidative lactonization of C(sp3)-H bond in methyl aromatic alcohols enabled by proton-coupled electron transfer. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1283-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
134
|
Huang H, Steiniger KA, Lambert TH. Electrophotocatalysis: Combining Light and Electricity to Catalyze Reactions. J Am Chem Soc 2022; 144:12567-12583. [PMID: 35816101 DOI: 10.1021/jacs.2c01914] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Visible-light photocatalysis and electrocatalysis are two powerful strategies for the promotion of chemical reactions that have received tremendous attention in recent years. In contrast, processes that combine these two modalities, an area termed electrophotocatalysis, have until recently remained quite rare. However, over the past several years a number of reports in this area have shown the potential of combining the power of light and electrical energy to realize new catalytic transformations. Electrophotocatalysis offers the ability to perform photoredox reactions without the need for large quantities of stoichiometric or superstoichiometric chemical oxidants or reductants by making use of an electrochemical potential as the electron source or sink. In addition, electrophotocatalysis is readily amenable to the generation of open-shell photocatalysts, which tend to have exceptionally strong redox potentials. In this way, potent yet selective redox reactions have been realized under relatively mild conditions. This Perspective highlights recent advances in the area of electrophotocatalysis and provides some possible avenues for future work in this growing area.
Collapse
Affiliation(s)
- He Huang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Keri A Steiniger
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Tristan H Lambert
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
135
|
Singh J, Patel RI, Sharma A. Visible‐Light‐Mediated C‐2 Functionalization and Deoxygenative Strategies in Heterocyclic
N
‐Oxides. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jitender Singh
- Department of Chemistry Indian Institute of Technology Roorkee Roorkee 247667 India
| | - Roshan I. Patel
- Department of Chemistry Indian Institute of Technology Roorkee Roorkee 247667 India
| | - Anuj Sharma
- Department of Chemistry Indian Institute of Technology Roorkee Roorkee 247667 India
| |
Collapse
|
136
|
Kato N, Nanjo T, Takemoto Y. A Pyridine-Based Donor–Acceptor Molecule: A Highly Reactive Organophotocatalyst That Enables the Reductive Cleavage of C–Br Bonds through Halogen Bonding. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Natsuki Kato
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takeshi Nanjo
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoshiji Takemoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
137
|
Quevedo-Acosta Y, Jurberg ID, Gamba-Sánchez D. Cyclization Strategies Using Imide Derivatives for the Synthesis of Polycyclic Nitrogen‐Containing Compounds. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Igor D. Jurberg
- Universidade Estadual de Campinas Institute of Chemistry 13083 BRAZIL
| | - Diego Gamba-Sánchez
- Universidad de Los Andes Chemistry Department Cra 1 No. 18A-12 Q:305 111711 Bogota COLOMBIA
| |
Collapse
|
138
|
Zhu F, Miller E, Powell W, Johnson K, Beggs A, Evenson G, Walczak MA. Umpolung AlaB Reagents for the Synthesis of Non‐Proteogenic Amino Acids, Peptides and Proteins. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Feng Zhu
- Shanghai Jiao Tong University Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs CHINA
| | - Eric Miller
- University of Colorado Boulder Department of Chemistry UNITED STATES
| | - Wyatt Powell
- University of Colorado Boulder Department of Chemistry UNITED STATES
| | - Kelly Johnson
- University of Colorado Boulder Department of Chemistry UNITED STATES
| | - Alexander Beggs
- University of Colorado Boulder Department of Chemistry UNITED STATES
| | - Garrett Evenson
- University of Colorado Boulder Department of Chemistry UNITED STATES
| | - Maciej A. Walczak
- University of Colorado Boulder Department of Chemistry and Biochemistry 215 UCB 80309 Boulder UNITED STATES
| |
Collapse
|
139
|
Golden DL, Suh SE, Stahl SS. Radical C(sp3)-H functionalization and cross-coupling reactions. Nat Rev Chem 2022; 6:405-427. [PMID: 35965690 PMCID: PMC9364982 DOI: 10.1038/s41570-022-00388-4] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2022] [Indexed: 11/09/2022]
Abstract
C─H functionalization reactions are playing an increasing role in the preparation and modification of complex organic molecules, including pharmaceuticals, agrochemicals, and polymer precursors. Radical C─H functionalization reactions, initiated by hydrogen-atom transfer (HAT) and proceeding via open-shell radical intermediates, have been expanding rapidly in recent years. These methods introduce strategic opportunities to functionalize C(sp3)─H bonds. Examples include synthetically useful advances in radical-chain reactivity and biomimetic radical-rebound reactions. A growing number of reactions, however, proceed via "radical relay" whereby HAT generates a diffusible radical that is functionalized by a separate reagent or catalyst. The latter methods provide the basis for versatile C─H cross-coupling methods with diverse partners. In the present review, highlights of recent radical-chain and radical-rebound methods provide context for a survey of emerging radical-relay methods, which greatly expand the scope and utility of intermolecular C(sp3)─H functionalization and cross coupling.
Collapse
Affiliation(s)
- Dung L. Golden
- Department of Chemistry, University of Wisconsin–Madison, WI, USA
- These authors contributed equally: Dung L. Golden, Sung-Eun Suh
| | - Sung-Eun Suh
- Department of Chemistry, University of Wisconsin–Madison, WI, USA
- These authors contributed equally: Dung L. Golden, Sung-Eun Suh
- Department of Chemistry, Ajou University, Suwon, Republic of Korea
| | - Shannon S. Stahl
- Department of Chemistry, University of Wisconsin–Madison, WI, USA
| |
Collapse
|
140
|
Zhang WK, Li JZ, Zhang CC, Zhang J, Zheng YN, Hu Y, Li T, Wei WT. The Synthesis of Polycyclic Quinazolinones via C(sp3)–H Functionalization of Inert Alkanes or Visible‐light Promoted Oxidation Decarboxylation of N‐hydroxyphthalimide (NHP‐esters). European J Org Chem 2022. [DOI: 10.1002/ejoc.202200523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | | | | | | | | | | | - Ting Li
- Nanyang Normal University chemistry CHINA
| | - Wen-Ting Wei
- Ningbo University Materials Science and Chemical Engineering 818, Fenghua Road, Jiangbei District 315211 Ningbo CHINA
| |
Collapse
|
141
|
Huang CY, Li J, Li CJ. Photocatalytic C(sp 3) radical generation via C-H, C-C, and C-X bond cleavage. Chem Sci 2022; 13:5465-5504. [PMID: 35694342 PMCID: PMC9116372 DOI: 10.1039/d2sc00202g] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/17/2022] [Indexed: 12/12/2022] Open
Abstract
C(sp3) radicals (R˙) are of broad research interest and synthetic utility. This review collects some of the most recent advancements in photocatalytic R˙ generation and highlights representative examples in this field. Based on the key bond cleavages that generate R˙, these contributions are divided into C–H, C–C, and C–X bond cleavages. A general mechanistic scenario and key R˙-forming steps are presented and discussed in each section. C(sp3) radicals (R˙) are of broad research interest and synthetic utility.![]()
Collapse
Affiliation(s)
- Chia-Yu Huang
- Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University 801 Sherbrooke Street W. Montreal Quebec H3A 0B8 Canada
| | - Jianbin Li
- Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University 801 Sherbrooke Street W. Montreal Quebec H3A 0B8 Canada
| | - Chao-Jun Li
- Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University 801 Sherbrooke Street W. Montreal Quebec H3A 0B8 Canada
| |
Collapse
|
142
|
Pillitteri S, Ranjan P, Van der Eycken EV, Sharma UK. Uncovering the Potential of Boronic Acid and Derivatives as Radical Source in Photo(electro)chemical Reactions. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200204] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Serena Pillitteri
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC) Department of Chemistry University of Leuven (KU Leuven) Celestijnenlaan 200F B-3001 Leuven Belgium
| | - Prabhat Ranjan
- Aachen Maastricht Institute for Biobased Materials (AMIBM) Maastricht University Urmonderbaan 22 6167 RD Geleen The Netherlands
| | - Erik V. Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC) Department of Chemistry University of Leuven (KU Leuven) Celestijnenlaan 200F B-3001 Leuven Belgium
- Peoples' Friendship University of Russia (RUDN University) Miklukho-Maklaya street 6 RU-117198 Moscow Russia
| | - Upendra K. Sharma
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC) Department of Chemistry University of Leuven (KU Leuven) Celestijnenlaan 200F B-3001 Leuven Belgium
| |
Collapse
|
143
|
Wang S, Li T, Gu C, Han J, Zhao CG, Zhu C, Tan H, Xie J. Decarboxylative tandem C-N coupling with nitroarenes via S H2 mechanism. Nat Commun 2022; 13:2432. [PMID: 35508545 PMCID: PMC9068905 DOI: 10.1038/s41467-022-30176-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/18/2022] [Indexed: 12/13/2022] Open
Abstract
Aromatic tertiary amines are one of the most important classes of organic compounds in organic chemistry and drug discovery. It is difficult to efficiently construct tertiary amines from primary amines via classical nucleophilic substitution due to consecutive overalkylation. In this paper, we have developed a radical tandem C-N coupling strategy to efficiently construct aromatic tertiary amines from commercially available carboxylic acids and nitroarenes. A variety of aromatic tertiary amines can be furnished in good yields (up to 98%) with excellent functional group compatibility under mild reaction conditions. The use of two different carboxylic acids also allows for the concise synthesis of nonsymmetric aromatic tertiary amines in satisfactory yields. Mechanistic studies suggest the intermediacy of the arylamine–(TPP)Fe(III) species and might provide a possible evidence for an SH2 (bimolecular homolytic substitution) pathway in the critical C-N bond formation step. Aromatic tertiary amines are versatile building blocks in organic synthesis. In this article, the authors report on an iron-catalysed reaction for the decarboxylative C-N coupling from carboxylic acids and nitroarenes, leading to non-symmetric tertiary aromatic amines.
Collapse
Affiliation(s)
- Shuaishuai Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Tingrui Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Chengyihan Gu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Jie Han
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Chuan-Gang Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Chengjian Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China. .,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, 200032, Shanghai, China. .,Green Catalysis Center, College of Chemistry and Molecular Engineering, Zhengzhou University, 450001, Zhengzhou, China.
| | - Hairen Tan
- National Laboratory of Solid-State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, 210023, Nanjing, China
| | - Jin Xie
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China. .,Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, 410082, Changsha, China.
| |
Collapse
|
144
|
Bajya KR, Sermadurai S. Dual Photoredox and Cobalt Catalysis Enabled Transformations. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | - Selvakumar Sermadurai
- Indian Institute of Technology Indore Chemistry Khandwa road Simrol 453552 Indore INDIA
| |
Collapse
|
145
|
Patel RI, Singh J, Sharma A. Visible Light‐Mediated Manipulation of 1,n‐Enynes in Organic Synthesis. ChemCatChem 2022. [DOI: 10.1002/cctc.202200260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Roshan I. Patel
- IIT Roorkee: Indian Institute of Technology Roorkee CHEMISTRY INDIA
| | - Jitender Singh
- IIT Roorkee: Indian Institute of Technology Roorkee CHEMISTRY INDIA
| | - Anuj Sharma
- Indian Institute of Technoology Roorkee Deptartment of Chemistry Room 303DDepartment of Chemistry, IIT Roorkee 247667 Roorkee INDIA
| |
Collapse
|
146
|
Peng X, Xu K, Zhang Q, Liu L, Tan J. Dehydroalanine modification sees the light: a photochemical conjugate addition strategy. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
147
|
Salaverri N, Carli B, Gratal PB, Marzo L, Alemán J. Remote Giese Radical Addition by Photocatalytic Ring Opening of Activated Cycloalkanols. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Noelia Salaverri
- Organic Chemistry Department Módulo 1 Universidad Autónoma de Madrid 28049 Madrid Spain
| | - Benedetta Carli
- Organic Chemistry Department Módulo 1 Universidad Autónoma de Madrid 28049 Madrid Spain
| | - Patricia B. Gratal
- Organic Chemistry Department Módulo 1 Universidad Autónoma de Madrid 28049 Madrid Spain
| | - Leyre Marzo
- Organic Chemistry Department Módulo 1 Universidad Autónoma de Madrid 28049 Madrid Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem) Universidad Autónoma de Madrid Madrid 28049 Spain
| | - José Alemán
- Organic Chemistry Department Módulo 1 Universidad Autónoma de Madrid 28049 Madrid Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem) Universidad Autónoma de Madrid Madrid 28049 Spain
- Center for Innovation in Advanced Chemistry (ORFEO-CINQA) Universidad Autónoma de Madrid Madrid 28049 Spain
| |
Collapse
|
148
|
Li WD, Wu Y, Li SJ, Jiang YQ, Li YL, Lan Y, Xia JB. Boryl Radical Activation of Benzylic C-OH Bond: Cross-Electrophile Coupling of Free Alcohols and CO 2 via Photoredox Catalysis. J Am Chem Soc 2022; 144:8551-8559. [PMID: 35378034 DOI: 10.1021/jacs.1c12463] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A new strategy for the direct cleavage of the C(sp3)-OH bond has been developed via activation of free alcohols with neutral diphenyl boryl radical generated from sodium tetraphenylborate under mild visible light photoredox conditions. This strategy has been verified by cross-electrophile coupling of free alcohols and carbon dioxide for the synthesis of carboxylic acids. Direct transformation of a range of primary, secondary, and tertiary benzyl alcohols to acids has been achieved. Control experiments and computational studies indicate that activation of alcohols with neutral boryl radical undergoes homolysis of the C(sp3)-OH bond, generating alkyl radicals. After reducing the alkyl radical into carbon anion under photoredox conditions, the following carboxylation with CO2 affords the coupling product.
Collapse
Affiliation(s)
- Wen-Duo Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Lanzhou Institute of Chemical Physics (LICP), University of Chinese Academy of Sciences, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yang Wu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Lanzhou Institute of Chemical Physics (LICP), University of Chinese Academy of Sciences, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Shi-Jun Li
- College of Chemistry, and Institute of Green Catalysis, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, China
| | - Yi-Qian Jiang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Lanzhou Institute of Chemical Physics (LICP), University of Chinese Academy of Sciences, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yan-Lin Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Lanzhou Institute of Chemical Physics (LICP), University of Chinese Academy of Sciences, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yu Lan
- College of Chemistry, and Institute of Green Catalysis, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, China.,School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
| | - Ji-Bao Xia
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Lanzhou Institute of Chemical Physics (LICP), University of Chinese Academy of Sciences, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
149
|
Wang R, Wang X, Mao S, Zhao Y, Yuan B, Yang X, Li J, Chen Z. Metal‐Free Photochemical C−Se Cross‐Coupling of Aryl Halides with Diselenides. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ruizhe Wang
- School of Chemistry MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter Xi'an Jiaotong University 710049 Xi'an Shaanxi People's Republic of China
| | - Xinyu Wang
- Department of Medicinal Chemistry School of Pharmacy Xi'an Jiaotong University 710061 Xi'an Shaanxi People's Republic of China
| | - Shuai Mao
- Department of Medicinal Chemistry School of Pharmacy Xi'an Jiaotong University 710061 Xi'an Shaanxi People's Republic of China
| | - Yahao Zhao
- Department of Medicinal Chemistry School of Pharmacy Xi'an Jiaotong University 710061 Xi'an Shaanxi People's Republic of China
| | - Bo Yuan
- Department of Medicinal Chemistry School of Pharmacy Xi'an Jiaotong University 710061 Xi'an Shaanxi People's Republic of China
| | - Xue‐Yan Yang
- Department of Medicinal Chemistry School of Pharmacy Xi'an Jiaotong University 710061 Xi'an Shaanxi People's Republic of China
| | - Jianjun Li
- School of Chemistry MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter Xi'an Jiaotong University 710049 Xi'an Shaanxi People's Republic of China
| | - Zhengkai Chen
- Department of Chemistry Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province Zhejiang Sci-Tech University 310018 Hangzhou People's Republic of China
| |
Collapse
|
150
|
Li HC, Li GN, Sun K, Chen XL, Jiang MX, Qu LB, Yu B. Ce(III)/Photoassisted Synthesis of Amides from Carboxylic Acids and Isocyanates. Org Lett 2022; 24:2431-2435. [DOI: 10.1021/acs.orglett.2c00699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Hao-Cong Li
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Guan-Nan Li
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Kai Sun
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xiao-Lan Chen
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Ming-Xuan Jiang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Ling-Bo Qu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Bing Yu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|