101
|
Zhao X, Cheng Y, Xu H, Hao Y, Lv Y, Li X. Design and Preparation of Molecularly Imprinted Membranes for Selective Separation of Acteoside. Front Chem 2020; 8:775. [PMID: 33195018 PMCID: PMC7554516 DOI: 10.3389/fchem.2020.00775] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/24/2020] [Indexed: 01/11/2023] Open
Abstract
Acteoside (ACT) belongs to a type of phenylethanoid glycosides (PhGs), and it is worthy of obtaining high-purity due to its significant medicinal functions. In this study, a novel class of MIMs was designed and synthesized with PVDF membranes as the base membrane for high selective separation and enrichment of ACT. The effects of the different functional monomers, the amounts of functional monomers, crosslinking agents, and initiators on the separation properties of MIMs were investigated. Furthermore, adsorption ability, permeation capacity, and reusability of MIMs were discussed for ACT. It indicated that MIM7 was the optimal performance of MIMs. The adsorption ability of MIM7 for ACT was 62.83 mg/g, and the selectivity factor (α) of MIM7 was up to 2.74 and its permeability factor (β) was greater than 2.66. Moreover, the adsorption amount of MIM7 was still more than 88.57% of the initial value after five cycles. As an ACT imprinted layer of MIMs only had recognition sites for ACT molecules, which recombined with the recognition sites in the membrane permeation experiment, ACT molecules penetration was hindered. However, the analogs of ECH successfully passed MIMs. It indicated that the selective MIMs for ACT followed the mechanism of delayed permeation. This work provides an important reference for the high permselective separation of natural products.
Collapse
Affiliation(s)
- Xiaobin Zhao
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Yun Cheng
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Helin Xu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Yanyan Hao
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Yin Lv
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Xueqin Li
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| |
Collapse
|
102
|
Improving imprinting effect by reducing sites embedding: Selective extraction of 1,2,3,4,6-penta-O-galloyl-β-d-glucose from Paeonia lactiflora Pall by hydrophilic molecularly imprinted polymers based on macromonomer and metal ion pivot. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
103
|
Ostrander JW, Wang L, Ali Kizi T, Dajani JA, Carr AV, Teeters D, Lamar AA. Enhanced Conductivity via Extraction of Hydrocarbon Templates from Nanophase-Separated PEO-LiOTf Polymer Electrolyte Films. ACS OMEGA 2020; 5:20567-20574. [PMID: 32832810 PMCID: PMC7439704 DOI: 10.1021/acsomega.0c02794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
A series of poly(ethylene oxide)-LiOTf electrolyte films were prepared using a variety of hydrocarbon templates as nanofillers, resulting in observable nanophase separation in the polymer electrolyte. Upon partial extraction of the nanofiller template, an enhanced conductivity over 2 orders of magnitude was measured using ac impedance. Scanning electron microscopy, differential scanning calorimetry, and thermogravimetric analysis were employed to characterize the porosity, composition, and mass loss of template-extracted and nonextracted film samples.
Collapse
Affiliation(s)
- John W. Ostrander
- Department
of Chemistry and Biochemistry, The University
of Tulsa, 800 S. Tucker
Dr., Tulsa, Oklahoma 74104, United States
| | - Lei Wang
- Department
of Chemistry and Biochemistry, The University
of Tulsa, 800 S. Tucker
Dr., Tulsa, Oklahoma 74104, United States
| | - Teljan Ali Kizi
- Department
of Chemistry and Biochemistry, The University
of Tulsa, 800 S. Tucker
Dr., Tulsa, Oklahoma 74104, United States
| | - Jana A. Dajani
- Department
of Chemistry, Hanover College, 517 Ball Drive, Hanover, Indiana 47243, United States
| | - Austin V. Carr
- Department
of Chemistry and Biochemistry, The University
of Tulsa, 800 S. Tucker
Dr., Tulsa, Oklahoma 74104, United States
| | - Dale Teeters
- Department
of Chemistry and Biochemistry, The University
of Tulsa, 800 S. Tucker
Dr., Tulsa, Oklahoma 74104, United States
| | - Angus A. Lamar
- Department
of Chemistry and Biochemistry, The University
of Tulsa, 800 S. Tucker
Dr., Tulsa, Oklahoma 74104, United States
| |
Collapse
|
104
|
Enhancement anti-interference ability of photoelectrochemical sensor via differential molecularly imprinting technique demonstrated by dopamine determination. Anal Chim Acta 2020; 1125:201-209. [DOI: 10.1016/j.aca.2020.05.063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/13/2020] [Accepted: 05/26/2020] [Indexed: 01/07/2023]
|
105
|
Yang J, Zhang X, Mijiti Y, Sun Y, Jia M, Liu Z, Huang Y, Aisa HA. Improving performance of molecularly imprinted polymers prepared with template of low purity utilizing the strategy of macromolecular crowding. J Chromatogr A 2020; 1624:461155. [DOI: 10.1016/j.chroma.2020.461155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/10/2020] [Accepted: 04/21/2020] [Indexed: 01/24/2023]
|
106
|
Ibarra IS, Miranda JM, Pérez-Silva I, Jardinez C, Islas G. Sample treatment based on molecularly imprinted polymers for the analysis of veterinary drugs in food samples: a review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:2958-2977. [PMID: 32930156 DOI: 10.1039/d0ay00533a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The use of veterinary drugs in medical treatments and in the livestock industry is a recurrent practice. When applied in subtherapeutic doses over prolonged times, they can also act as growth promoters. However, residues of these substances in foods present a risk to human health. Their analysis is thus important and can help guarantee consumer safety. The critical point in each analytical technique is the sample treatment and the analytical matrix complexity. The present manuscript summarizes the development, type of synthesis, characterization, and application of molecularly imprinted polymers in the separation, identification, and quantification techniques for the determination of veterinary drug residues in food samples in extraction, clean-up, isolation, and pre-concentration systems. Synthesized sorbents with specific recognition properties improve the interactions between the analytes and the polymeric sorbents, providing better analysis conditions and advantages in comparison with commercial sorbents in terms of high selectivity, analytical sensitivity, easy performance, and low cost analysis.
Collapse
Affiliation(s)
- I S Ibarra
- Área Académica de Quimica, Universidad Autónoma del Estado de Hidalgo, Carr. Pachuca-Tulancingo Km. 4.5, 42184, Mineral de la Reforma, Hgo, México.
| | - J M Miranda
- Departamento Quimica Analítica, Nutrición y Bromatología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Pabellon 4 planta bajo, Campus Universitario s/n, 27002 Lugo, Spain
| | - I Pérez-Silva
- Área Académica de Quimica, Universidad Autónoma del Estado de Hidalgo, Carr. Pachuca-Tulancingo Km. 4.5, 42184, Mineral de la Reforma, Hgo, México.
| | - C Jardinez
- Área Académica de Quimica, Universidad Autónoma del Estado de Hidalgo, Carr. Pachuca-Tulancingo Km. 4.5, 42184, Mineral de la Reforma, Hgo, México.
| | - G Islas
- Área Académica de Quimica, Universidad Autónoma del Estado de Hidalgo, Carr. Pachuca-Tulancingo Km. 4.5, 42184, Mineral de la Reforma, Hgo, México.
- Universidad Politécnica de Francisco I. Madero, Área de Ingeniería Agroindustrial, Domicilio Conocido, 42640 Tepatepec, Hgo, Mexico
| |
Collapse
|
107
|
Spychalska K, Zając D, Baluta S, Halicka K, Cabaj J. Functional Polymers Structures for (Bio)Sensing Application-A Review. Polymers (Basel) 2020; 12:E1154. [PMID: 32443618 PMCID: PMC7285029 DOI: 10.3390/polym12051154] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 11/16/2022] Open
Abstract
In this review we present polymeric materials for (bio)sensor technology development. We focused on conductive polymers (conjugated microporous polymer, polymer gels), composites, molecularly imprinted polymers and their influence on the design and fabrication of bio(sensors), which in the future could act as lab-on-a-chip (LOC) devices. LOC instruments enable us to perform a wide range of analysis away from the stationary laboratory. Characterized polymeric species represent promising candidates in biosensor or sensor technology for LOC development, not only for manufacturing these devices, but also as a surface for biologically active materials' immobilization. The presence of biological compounds can improve the sensitivity and selectivity of analytical tools, which in the case of medical diagnostics is extremely important. The described materials are biocompatible, cost-effective, flexible and are an excellent platform for the anchoring of specific compounds.
Collapse
Affiliation(s)
| | | | | | | | - Joanna Cabaj
- Faculty of Chemistry, Wrocław University of Science and Technology, 50-137 Wrocław, Poland; (K.S.); (D.Z.); (S.B.); (K.H.)
| |
Collapse
|
108
|
Zhang Z, Yu X, Zhao J, Shi X, Sun A, Jiao H, Xiao T, Li D, Chen J. A fluorescence microplate assay based on molecularly imprinted silica coated quantum dot optosensing materials for the separation and detection of okadaic acid in shellfish. CHEMOSPHERE 2020; 246:125622. [PMID: 31918075 DOI: 10.1016/j.chemosphere.2019.125622] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/07/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
Molecularly imprinted polymers (MIPs) are attracting substantial interest as artificial plastic antibodies because of their biometric capability for targeting small molecules. In this study, molecularly imprinted silica material-coated quantum dots (MIS-QDs) with selective recognition capability to okadaic acid (OA) were developed and characterized. The synthesized MIS-QDs with specific imprinting cavities exhibited excellent recognition capability similar to those of biological antibodies and high fluorescence (FL) quenching selectivity for OA. Furthermore, the MIS-QDs with unsaturated bonds were immobilized onto the surface of 96-well microplates by cold plasma-induced grafting. A novel direct competitive microplate assay strategy was then proposed. The FL quenching properties of the developed microplate assay showed an excellent linear relationship with OA in the range of 10.0-100.0 μg/kg with a correlation coefficient of 0.9961. The limit of detection for OA was 0.25 μg/kg in the shellfish samples. The mean quantitative recoveries were 92.5%-101.0% and 92.9%-101.3%, with relative standard deviations of <7.7% and 7.6% for pure solvents and purified shellfish samples, respectively. The established microplate assay strategy can be used as a rapid and high-throughput method for analyzing OA marine toxins in biological samples.
Collapse
Affiliation(s)
- Zeming Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, 315211, PR China
| | - Xinru Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China
| | - Jian Zhao
- Ningbo Academy of Agricultural Sciences, 19 Houde Road, Ningbo, 315040, PR China
| | - Xizhi Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, 315211, PR China.
| | - Aili Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China
| | - Haifeng Jiao
- College of Biological and Environment Science, Zhejiang Wanli University, Ningbo, 315100, PR China
| | - Tingting Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China
| | - Dexiang Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; School of Marine Sciences, Ningbo University, 818 Fenghua Road, Ningbo, 315211, PR China
| |
Collapse
|
109
|
Kuhn J, Aylaz G, Sari E, Marco M, Yiu HHP, Duman M. Selective binding of antibiotics using magnetic molecular imprint polymer (MMIP) networks prepared from vinyl-functionalized magnetic nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2020; 387:121709. [PMID: 31812475 DOI: 10.1016/j.jhazmat.2019.121709] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 05/12/2023]
Abstract
Adverse effects of pharmaceutical emerging contaminants (PECs), including antibiotics, in water supplies has been a global concern in recent years as they threaten fresh water security and lead to serious health problems to human, wildlife and the environment. However, detection of these contaminants in water sources, as well as food products, is difficult due to their low concentration. Here, we prepared a new family of magnetic molecular imprinted polymer (MMIP) networks for binding antibiotics via a microemulsion polymerization technique using vinyl silane modified Fe3O4 magnetic nanoparticles. The cross-linked polymer backbone successfully integrated with 20-30 nm magnetic nanoparticles and generated a novel porous polymeric network structure. These networks showed a high binding capacity for both templates, erythromycin and ciprofloxacin at 70 and 32 mg/g. Both MMIPs were also recyclable, retaining 75 % and 68 % of the binding capacity after 4 cycles. These MMIPs have showed a clear preference for binding the template molecules, with a binding capacity 4- to 7-fold higher than the other antibiotics in the same matrix. These results demonstrate our MMIP networks, which offered high binding capacity and selectivity as well as recyclability, can be used for both removal and monitoring hazardous antibiotic pollutants in different sources/samples and food products.
Collapse
Affiliation(s)
- Joel Kuhn
- Chemical Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Gülgün Aylaz
- Nanotechnology and Nanomedicine Division, Institute of Science, Hacettepe University, Ankara, Turkey
| | - Esma Sari
- Vocational School of Health Services, Medical Laboratory Techniques, Yüksek İhtisas University, Ankara, Turkey
| | - Mariano Marco
- Chemical Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Humphrey H P Yiu
- Chemical Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
| | - Memed Duman
- Nanotechnology and Nanomedicine Division, Institute of Science, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
110
|
Sensors design based on hybrid gold-silica nanostructures. Biosens Bioelectron 2020; 153:112054. [DOI: 10.1016/j.bios.2020.112054] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 01/11/2020] [Accepted: 01/25/2020] [Indexed: 12/14/2022]
|
111
|
A novel electrochemical biosensor with molecularly imprinted polymers and aptamer-based sandwich assay for determining amyloid-β oligomer. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114017] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
112
|
|
113
|
Wang J, Zhang Y, Wang Y, Sun S. Bimetallic Ce-UiO-66-NH2/diatomite (CUD) self-assembled membrane simultaneously with synergetic effect of phase equilibrium and rate separation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117730] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
114
|
Zhao X, Pei W, Guo R, Li X. Selective Adsorption and Purification of the Acteoside in Cistanche tubulosa by Molecularly Imprinted Polymers. Front Chem 2020; 7:903. [PMID: 32039143 PMCID: PMC6989468 DOI: 10.3389/fchem.2019.00903] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 12/13/2019] [Indexed: 12/02/2022] Open
Abstract
Acteoside (ACT) is the main component of phenylethanoid glycosides in Cistanche tubulosa, and it is extremely desirable for obtaining high purification of ACT by molecularly imprinted polymers (MIPs) from their extracts. In this study, MIPs were designed and synthetized to adsorb selectively the ACT in C. tubulosa. The effects of different functional monomers, cross-linkers, and solvents of MIPs were investigated. MIPs were studied in terms of static adsorption experiments, dynamic adsorption experiments, and selectivity experiments. The optimal functional monomer, cross-linking agent, and solvent are 4-vinylpyridine, ethylene glycol dimethylacrylate, and the mixed solvent (acetonitrile and N,N-dimethylformamide, 1:1.5, v/v), respectively. Under the optimal conditions, the synthesized MIP1 has a high adsorption performance for ACT. The adsorption capacity of MIP1 to ACT reached 112.60 mg/g, and the separation factor of ACT/echinacoside was 4.68. Because the molecularly imprinted cavities of MIP1 resulted from template molecules of ACT, it enables MIP1 to recognize selectively ACT. Moreover, the N–H groups on MIP1 can form hydrogen bonds with the hydroxyl groups on the ACT; this improves the separation factor of MIP1. The dynamic adsorption of ACT accorded with the quasi-second-order kinetics; it indicated that the adsorption process of MIP1 is the process of chemical adsorption to ACT. MIPs can be applied as a potential adsorption material to purify the active ingredients of herbal medicines.
Collapse
Affiliation(s)
- Xiaobin Zhao
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Wenjing Pei
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Ruili Guo
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Xueqin Li
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| |
Collapse
|
115
|
Zhou Z, Liu X, Zhang M, Jiao J, Zhang H, Du J, Zhang B, Ren Z. Preparation of highly efficient ion-imprinted polymers with Fe 3O 4 nanoparticles as carrier for removal of Cr(VI) from aqueous solution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 699:134334. [PMID: 33736196 DOI: 10.1016/j.scitotenv.2019.134334] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/05/2019] [Accepted: 09/05/2019] [Indexed: 06/12/2023]
Abstract
Fe3O4 magnetic nanoparticles were prepared by hydrothermal synthesis and their surface was modified by the sol-gel method. Polymers imprinted with magnetic Cr (VI) were prepared by using Cr2O72- as template ion, 4-vinyl pyridine (4-VP) as monomer, isopropanol as solvent and Fe3O4 as matrix. The effects of solvent type, amount of Cr (VI) addition and volume of crosslinking agent on the adsorption properties of the imprinted polymers were investigated. The polymers were characterized by Fourier transform infrared (FT-IR) spectroscopy, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA). The adsorption equilibrium was reached within 50 min, and the maximum adsorption capacity was 201.55 mg·g-1. The adsorption process conformed to the Langmuir model, and the results of kinetic fitting showed that the pseudo-first-order kinetic model applied. In the Cr2O72-/AlF4- and Cr2O72-/CrO42- competitive systems, the imprinted polymer showed good selectivity to the template ions, with relative selectivity factors of 6.91 and 5.99, respectively. When the imprinted polymer was reused 6 times, the adsorption capacity decreased by only 8.2%, demonstrating good reusability.
Collapse
Affiliation(s)
- Zhiyong Zhou
- College of Chemical Engineering, Beijing University of Chemical Technology, No. 15, North Third Ring Road East, Beijing 100029, People's Republic of China
| | - Xueting Liu
- College of Chemical Engineering, Beijing University of Chemical Technology, No. 15, North Third Ring Road East, Beijing 100029, People's Republic of China
| | - Minghui Zhang
- College of Chemical Engineering, Beijing University of Chemical Technology, No. 15, North Third Ring Road East, Beijing 100029, People's Republic of China
| | - Jian Jiao
- College of Chemical Engineering, Beijing University of Chemical Technology, No. 15, North Third Ring Road East, Beijing 100029, People's Republic of China
| | - Hewei Zhang
- College of Chemical Engineering, Beijing University of Chemical Technology, No. 15, North Third Ring Road East, Beijing 100029, People's Republic of China
| | - Jian Du
- College of Chemical Engineering, Beijing University of Chemical Technology, No. 15, North Third Ring Road East, Beijing 100029, People's Republic of China
| | - Bing Zhang
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, No. 15, North Third Ring Road East, Beijing 100029, People's Republic of China.
| | - Zhongqi Ren
- College of Chemical Engineering, Beijing University of Chemical Technology, No. 15, North Third Ring Road East, Beijing 100029, People's Republic of China.
| |
Collapse
|
116
|
Yang K, Li S, Liu L, Chen Y, Zhou W, Pei J, Liang Z, Zhang L, Zhang Y. Epitope Imprinting Technology: Progress, Applications, and Perspectives toward Artificial Antibodies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902048. [PMID: 31423663 DOI: 10.1002/adma.201902048] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/17/2019] [Indexed: 06/10/2023]
Abstract
Epitope imprinting is a promising tool to generate antibody-like specific recognition sites. Recently, because of the ease of obtaining templates, the flexibility in selecting monomers, their resistance to harsh environments, and the high specificity toward targets, epitope-imprinted materials have attracted much attention in various fields, such as bioanalysis, clinical therapy, and pharmacy. Here, the discussion is focused on the current representative epitope imprinting technologies, including epitope bulk imprinting and epitope surface imprinting. Moreover, the application of epitope-imprinted materials to the recognition of peptides, proteins, and cells is reviewed. Finally, the remaining challenges arising from the intrinsic properties of epitope imprinting are discussed, and future development in the field is prospected.
Collapse
Affiliation(s)
- Kaiguang Yang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Senwu Li
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Lukuan Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yuwan Chen
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Wen Zhou
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Jiaqi Pei
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Zhen Liang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Lihua Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yukui Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
117
|
New chemistry supporting portable solutions for end-stage renal disease dialysis treatment. J Artif Organs 2019; 23:47-53. [PMID: 31571018 DOI: 10.1007/s10047-019-01131-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 09/10/2019] [Indexed: 10/25/2022]
Abstract
A new polymeric adsorbent to improve portable dialysis treatment by simplifying urea removal at the dialysate regeneration step is proposed. An adsorbent to remove urea was synthesized by molecular imprinting technology that can potentially overcome drawbacks existing in urease enzyme-based dialysate regeneration technology. Molecularly imprinted polymer (MIP) for urea generates cavities both in shape and in size targeted for urea. Using the synthesized MIP, we have shown removal of urea present in the dialysate buffer. Various experimental conditions such as choice of monomers, porogen, and template to monomer ratios were optimized to achieve highest binding capacity on a column flow through system monitored using high-performance liquid chromatography (HPLC). Taking advantage of the basicity of urea molecule, monomers having Brønsted acidic groups such as acrylic acid, methacrylic acid and itaconic acid were screened. The MIP synthesized using urea:acrylic acid:EGDMA (1:4:12) in acetonitrile:ethylene dichloride (1:1) as porogen gave highest binding capacity of 24.5 g/kg of urea in the dialysate buffer matrix.
Collapse
|
118
|
Assavapanumat S, Gupta B, Salinas G, Goudeau B, Wattanakit C, Kuhn A. Chiral platinum-polypyrrole hybrid films as efficient enantioselective actuators. Chem Commun (Camb) 2019; 55:10956-10959. [PMID: 31451809 DOI: 10.1039/c9cc05854k] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We report the synthesis of a hybrid bilayer, being composed of a free-standing conducting polymer film and a layer of mesoporous metal, encoded with chiral features. The resulting structure constitutes an enantioselective actuator, which can be electrochemically addressed in a wireless way. The controlled discriminatory deformation of the film allows an easy readout of chiral information.
Collapse
Affiliation(s)
- Sunpet Assavapanumat
- University of Bordeaux, CNRS, Bordeaux INP, ISM UMR 5255, Site ENSCBP, 16 avenue Pey Berland, 33607, Pessac, France.
| | | | | | | | | | | |
Collapse
|
119
|
Cairo P, De Luca G, Tocci E, Drioli E. 110th Anniversary: Selective Recognition of 5-Fluorouracil with Molecular Imprinting Membranes: Molecular Details. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b02281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Patrizia Cairo
- Institute on Membrane Technology, ITM-CNR, Via P. Bucci 17/C, 87030 Rende (CS), Italy
| | - Giorgio De Luca
- Institute on Membrane Technology, ITM-CNR, Via P. Bucci 17/C, 87030 Rende (CS), Italy
| | - Elena Tocci
- Institute on Membrane Technology, ITM-CNR, Via P. Bucci 17/C, 87030 Rende (CS), Italy
| | - Enrico Drioli
- Institute on Membrane Technology, ITM-CNR, Via P. Bucci 17/C, 87030 Rende (CS), Italy
- Department of Chemical Engineering and Materials, University of Calabria, Via P. Bucci 44, 87030 Rende (CS), Italy
- King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
- WCU Department of Energy Engineering, College of Engineering, Hanyang University, Seoul, 133-791, Korea
| |
Collapse
|
120
|
Xie W, Wang H, Tong YW, Sankarakumar N, Yin M, Wu D, Duan X. Specific purification of a single protein from a cell broth mixture using molecularly imprinted membranes for the biopharmaceutical industry. RSC Adv 2019; 9:23425-23434. [PMID: 35530613 PMCID: PMC9069334 DOI: 10.1039/c9ra02805f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 07/11/2019] [Indexed: 02/04/2023] Open
Abstract
A surface imprinting method is presented herein for the development of a highly selective yet highly permeable molecularly imprinted membrane for protein separation and purification. The resultant protein imprinted membrane was shown to exhibit great potential for the efficient separation of the template protein from a binary mixture and a cell lysate solution, while maintaining high transport flux for complementary molecules. Bovine Serum Albumin (BSA) and Lysozyme (Lys) were individually immobilized on a cellulose acetate membrane as template molecules. In situ surface crosslinking polymerization was then used for protein imprinting on the membrane for a controlled duration. Both membranes showed high adsorption capacity towards template proteins in the competitive batch rebinding tests. In addition, the adsorption capacity could be greatly enhanced in a continuous permeation procedure, where the resultant membrane specifically adsorbed the template protein for more than 40 h. Moreover, this is the first report of purification of a specific protein from the cell broth mixture using a molecularly imprinted membrane. The protein imprinted membrane enables the transport of multiple non-template proteins with high permeation rate in a complex system, thus opening the way for high efficiency protein separation at a low cost for the industry.
Collapse
Affiliation(s)
- Wenyuan Xie
- Institute for Innovative Materials and Energy, Yangzhou University Yangzhou 225002 Jiangsu People's Republic of China
- School of Chemistry and Chemical Engineering, Yangzhou University Yangzhou 225002 Jiangsu People's Republic of China
| | - Honglei Wang
- Department of Chemical & Biomolecular Engineering, National University of Singapore Block E5 #02-09, 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Yen Wah Tong
- Department of Chemical & Biomolecular Engineering, National University of Singapore Block E5 #02-09, 4 Engineering Drive 4 Singapore 117585 Singapore
- Yangzhou Zhongcheng Nanotech Co, Ltd. 7# Chuangye Road, Guangling District Yangzhou 225000 Jiangsu China
| | - Niranjani Sankarakumar
- Department of Chemical & Biomolecular Engineering, National University of Singapore Block E5 #02-09, 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Ming Yin
- Yangzhou Zhongcheng Nanotech Co, Ltd. 7# Chuangye Road, Guangling District Yangzhou 225000 Jiangsu China
| | - Defeng Wu
- School of Chemistry and Chemical Engineering, Yangzhou University Yangzhou 225002 Jiangsu People's Republic of China
| | - Xiaoli Duan
- School of Chemistry and Materials Science, Ludong University Yantai 264025 People's Republic of China
| |
Collapse
|
121
|
Dincer C, Bruch R, Costa-Rama E, Fernández-Abedul MT, Merkoçi A, Manz A, Urban GA, Güder F. Disposable Sensors in Diagnostics, Food, and Environmental Monitoring. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806739. [PMID: 31094032 DOI: 10.1002/adma.201806739] [Citation(s) in RCA: 299] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 03/29/2019] [Indexed: 05/18/2023]
Abstract
Disposable sensors are low-cost and easy-to-use sensing devices intended for short-term or rapid single-point measurements. The growing demand for fast, accessible, and reliable information in a vastly connected world makes disposable sensors increasingly important. The areas of application for such devices are numerous, ranging from pharmaceutical, agricultural, environmental, forensic, and food sciences to wearables and clinical diagnostics, especially in resource-limited settings. The capabilities of disposable sensors can extend beyond measuring traditional physical quantities (for example, temperature or pressure); they can provide critical chemical and biological information (chemo- and biosensors) that can be digitized and made available to users and centralized/decentralized facilities for data storage, remotely. These features could pave the way for new classes of low-cost systems for health, food, and environmental monitoring that can democratize sensing across the globe. Here, a brief insight into the materials and basics of sensors (methods of transduction, molecular recognition, and amplification) is provided followed by a comprehensive and critical overview of the disposable sensors currently used for medical diagnostics, food, and environmental analysis. Finally, views on how the field of disposable sensing devices will continue its evolution are discussed, including the future trends, challenges, and opportunities.
Collapse
Affiliation(s)
- Can Dincer
- Department of Bioengineering, Imperial College London, Royal School of Mines, SW7 2AZ, London, UK
- University of Freiburg, Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), 79110, Freiburg, Germany
- Laboratory for Sensors, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110, Freiburg, Germany
| | - Richard Bruch
- University of Freiburg, Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), 79110, Freiburg, Germany
- Laboratory for Sensors, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110, Freiburg, Germany
| | - Estefanía Costa-Rama
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, 4249-015, Porto, Portugal
- Departamento de Química Física y Analítica, Universidad de Oviedo, 33006, Oviedo, Spain
| | | | - Arben Merkoçi
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, 08193, Barcelona, Spain
- ICREA, 08010, Barcelona, Spain
| | - Andreas Manz
- Korea Institute of Science and Technology in Europe, 66123, Saarbrücken, Germany
| | - Gerald Anton Urban
- Laboratory for Sensors, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110, Freiburg, Germany
- University of Freiburg, Freiburg Materials Research Center (FMF), 79104, Freiburg, Germany
| | - Firat Güder
- Department of Bioengineering, Imperial College London, Royal School of Mines, SW7 2AZ, London, UK
| |
Collapse
|
122
|
Tavares APM, Truta LAANA, Moreira FTC, Minas G, Sales MGF. Photovoltaics, plasmonics, plastic antibodies and electrochromism combined for a novel generation of self-powered and self-signalled electrochemical biomimetic sensors. Biosens Bioelectron 2019; 137:72-81. [PMID: 31082647 DOI: 10.1016/j.bios.2019.04.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/24/2019] [Accepted: 04/29/2019] [Indexed: 12/18/2022]
Abstract
This work describes further developments into the self-powered and self-signalled biosensing system that merges photovoltaic cells, plastic antibodies and electrochromic cells into a single target. Herein, the plasmonic effect is introduced to improve the photoanode features of the photovoltaic cell, a dye sensitized solar cell (DSSC), and better electrocatalytic features are introduced in the electrode containing the sensing element. In brief, the DSSC had a counter-electrode of poly(3,4-ethylenedioxythiophene) on an FTO glass modified by a plastic antibody of 3,4-ethylenedioxythiophene and pyrrol. The photoanode had dye sensitized TiO2 modified with gold nanoparticles (AuNPs) to increase the cell efficiency, aiming to improve the sensitivity of the response of hybrid device for the target biomarker. The target biomarker was carcinoembryonic antigen (CEA). The response of the hybrid device evidenced a linear trend from 0.1 ng/mL to 10 μg/mL, with an anionic slope of 0.1431 per decade concentration. The response of the plastic antibody for CEA revealed great selectivity against other tumour markers (CA 15-3 or CA 125). The colour response of the electrochromic cell was also CEA concentration dependent and more sensitive when the hybrid device was set-up with a photoanode with AuNPs. A more intense blue colour was obtained when higher concentrations of CEA were present. Overall, this improved version of the self-powered and self-signalled set-up has zero-requirements and is particularly suitable for point-of-care analysis (POC). It is capable of screening CEA in real samples and differentiating clinical levels of interest. This concept opens new horizons into the current cancer screening approaches.
Collapse
Affiliation(s)
- Ana P M Tavares
- BioMark/ISEP, School of Engineering, Polytechnic Institute of Porto, Portugal; CEB, Center of Biological Engineering, Minho University, Portugal; CMEMS, Center for Microelectromechanical Systems, Minho University, Portugal
| | - Liliana A A N A Truta
- BioMark/ISEP, School of Engineering, Polytechnic Institute of Porto, Portugal; CEB, Center of Biological Engineering, Minho University, Portugal
| | - Felismina T C Moreira
- BioMark/ISEP, School of Engineering, Polytechnic Institute of Porto, Portugal; CEB, Center of Biological Engineering, Minho University, Portugal
| | - G Minas
- CMEMS, Center for Microelectromechanical Systems, Minho University, Portugal
| | - M Goreti F Sales
- BioMark/ISEP, School of Engineering, Polytechnic Institute of Porto, Portugal; CEB, Center of Biological Engineering, Minho University, Portugal.
| |
Collapse
|
123
|
Liu B, Lian H, Chen L, Wei X, Sun X. Differential potential ratiometric sensing platform for enantiorecognition of chiral drugs. Anal Biochem 2019; 574:39-45. [PMID: 30914245 DOI: 10.1016/j.ab.2019.03.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 11/28/2022]
Abstract
A versatile, robust and efficient differential potential ratiometric sensing platform was developed for enantioselective recognition of dual chiral targets based on a composite membrane of molecularly imprinted polymers (MIPs) and reduced graphene oxide (rGO) modified glassy carbon electrode (GCE). The functional chitosan-based MIPs and rGO were compatibly immobilized on the GCE with high selectivity and efficient signal amplification. Moreover, via the systematic optimization of series conditions, a distinct potential difference (PD), reaching 135 mV, was obtained between the R-/S-prop based on the MIPs/rGO/GCE. In a controllable concentration range from 50 μM to 1000 μM, different ratios of R-/S-prop were linearly related to the peak potentials (Eps) in the racemic mixture. Using this low-cost reversible electrochemical platform, both Prop enantiomers were simultaneously identified with high repeatability and time-based stability. This novel semi-quantitative electrochemical sensing platform was established to rapidly quantify the ratio of S-/R-prop by Ep for the chiral drug recognition with great potential for practical applications in fields of pharmacological detection and clinical analysis.
Collapse
Affiliation(s)
- Bin Liu
- College of Materials Science and Engineering, Huaqiao University, Key Laboratory of Molecular Designing and Green Conversions Fujian University, Xiamen, 361021, People's Republic of China.
| | - Huiting Lian
- College of Materials Science and Engineering, Huaqiao University, Key Laboratory of Molecular Designing and Green Conversions Fujian University, Xiamen, 361021, People's Republic of China
| | - Lu Chen
- College of Materials Science and Engineering, Huaqiao University, Key Laboratory of Molecular Designing and Green Conversions Fujian University, Xiamen, 361021, People's Republic of China
| | - Xiaofeng Wei
- College of Materials Science and Engineering, Huaqiao University, Key Laboratory of Molecular Designing and Green Conversions Fujian University, Xiamen, 361021, People's Republic of China
| | - Xiangying Sun
- College of Materials Science and Engineering, Huaqiao University, Key Laboratory of Molecular Designing and Green Conversions Fujian University, Xiamen, 361021, People's Republic of China
| |
Collapse
|
124
|
Molecularly imprinted composite bacterial cellulose nanofibers for antibiotic release. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:450-461. [DOI: 10.1080/09205063.2019.1580665] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
125
|
Juric D, Rohner NA, von Recum HA. Molecular Imprinting of Cyclodextrin Supramolecular Hydrogels Improves Drug Loading and Delivery. Macromol Biosci 2019; 19:e1800246. [PMID: 30565847 PMCID: PMC8934526 DOI: 10.1002/mabi.201800246] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 11/01/2018] [Indexed: 02/05/2023]
Abstract
Cyclodextrin-based controlled delivery materials have previously been developed for controlled release of different therapeutic drugs. In this study, a supramolecular hydrogel made from cyclodextrin-based macromonomers is subjected to molecular imprinting to investigate the impact on release kinetics and drug loading, when compared with non-imprinted, or alternately imprinted hydrogels. Mild synthesis conditions are used to molecularly imprint three antibiotics-novobiocin, rifampicin, and vancomycin-and to test two different hydrogel chemistries. The release profile and drug loading of the molecularly imprinted hydrogels are characterized using ultraviolet spectroscopy over a period of 35 days and compared to non-imprinted, and alternately imprinted hydrogels. While only modest differences are observed in the release rate of the antibiotics tested, a substantial difference is observed in the total drug-loading amount possible for hydrogels releasing drugs which has been templated by those drugs. Hydrogels releasing drugs which are templated by other drugs do not show improved release or loading. Analysis by FTIR does not show substantial incorporation of drug into the polymer. Lastly, bioactivity assays confirmed long-term stability and release of incorporated antibiotics.
Collapse
Affiliation(s)
- Dajan Juric
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44118, USA
| | - Nathan A Rohner
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44118, USA
| | - Horst A von Recum
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44118, USA
| |
Collapse
|
126
|
Ali H, Mukhopadhyay S, Jana NR. Selective electrochemical detection of bisphenol A using a molecularly imprinted polymer nanocomposite. NEW J CHEM 2019. [DOI: 10.1039/c8nj05883k] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A molecularly imprinted nanocomposite with covalently connected polyacrylate, β-cyclodextrin and graphene is synthesized for selective capture and electrochemical detection of bisphenol A.
Collapse
Affiliation(s)
- Haydar Ali
- Centre for Advanced Materials and School of Materials Science
- Indian Association for the Cultivation of Science
- Kolkata-700032
- India
| | - Soumita Mukhopadhyay
- Centre for Advanced Materials and School of Materials Science
- Indian Association for the Cultivation of Science
- Kolkata-700032
- India
| | - Nikhil R. Jana
- Centre for Advanced Materials and School of Materials Science
- Indian Association for the Cultivation of Science
- Kolkata-700032
- India
| |
Collapse
|
127
|
Xu Z, Deng P, Li J, Tang S, Cui Y. Modification of mesoporous silica with molecular imprinting technology: A facile strategy for achieving rapid and specific adsorption. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 94:684-693. [DOI: 10.1016/j.msec.2018.10.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 08/23/2018] [Accepted: 10/05/2018] [Indexed: 12/21/2022]
|
128
|
Włoch M, Datta J. Synthesis and polymerisation techniques of molecularly imprinted polymers. COMPREHENSIVE ANALYTICAL CHEMISTRY 2019. [DOI: 10.1016/bs.coac.2019.05.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
129
|
Zhang HN, Lu Y, Gao WX, Lin YJ, Jin GX. Selective Encapsulation and Separation of Dihalobenzene Isomers with Discrete Heterometallic Macrocages. Chemistry 2018; 24:18913-18921. [DOI: 10.1002/chem.201805383] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Hai-Ning Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry; Fudan University; Shanghai 200433 P.R. China
| | - Ye Lu
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry; Fudan University; Shanghai 200433 P.R. China
| | - Wen-Xi Gao
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry; Fudan University; Shanghai 200433 P.R. China
| | - Yue-Jian Lin
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry; Fudan University; Shanghai 200433 P.R. China
| | - Guo-Xin Jin
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry; Fudan University; Shanghai 200433 P.R. China
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences; Shanghai 200032 P.R. China
| |
Collapse
|
130
|
Wang H, Yuan L, Zhu H, Jin R, Xing J. Comparative study of capsaicin molecularly imprinted polymers prepared by different polymerization methods. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/pola.29281] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Haixiang Wang
- Department of Food Quality and Safety, School of EngineeringChina Pharmaceutical University Nanjing China
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Technology and Business University (BTBU) Beijing China
| | - Lili Yuan
- Department of Food Quality and Safety, School of EngineeringChina Pharmaceutical University Nanjing China
| | - Hua Zhu
- Department of Food Quality and Safety, School of EngineeringChina Pharmaceutical University Nanjing China
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Technology and Business University (BTBU) Beijing China
| | - Risheng Jin
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry Nanjing China
| | - Jiudong Xing
- Department of Food Quality and Safety, School of EngineeringChina Pharmaceutical University Nanjing China
| |
Collapse
|
131
|
Liu XL, Yao HF, Chai MH, He W, Huang YP, Liu ZS. Green Synthesis of Carbon Nanotubes-Reinforced Molecularly Imprinted Polymer Composites for Drug Delivery of Fenbufen. AAPS PharmSciTech 2018; 19:3895-3906. [PMID: 30324359 DOI: 10.1208/s12249-018-1192-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/20/2018] [Indexed: 12/16/2022] Open
Abstract
The facile fabrication of single-walled carbon nanotubes (SWCNTs)-doping molecularly imprinted polymer (MIP) nanocomposite-based binary green porogen system, room-temperature ionic liquids (RTILs), and deep eutectic solvents (DESs) was developed for drug delivery system. With fenbufen (FB) as template molecule, 4-vinylpyridine (4-VP) was used as functional monomer, ethylene glycol dimethacrylate as cross-linking monomer, and 1-butyl-3-methylimidazoliumtetrafluoroborate and choline chloride/ethylene glycol as binary green solvent, in the presence of SWCNTs. The imprinting effect of the SWCNT-MIP composites was optimized by regulation of the amount of SWCNTs, ratio of RTILs and DES, and the composition of DES. Blue shifts of UV bands strongly suggested that interaction between 4-VP and FB can be enhanced due to SWCNT doping in the process of self-assembly. The reinforced imprinted effect of CNT-doping MIP can provide superior controlled release characteristics. Compared with the control MIP prepared without SWCNTs, the imprinting factor of the SWCNT-MIP composites exhibited a twofold increase. In the analysis for the FB release kinetics from all samples, the SWCNT-reinforced MIP produced the lowest value of drug diffusivity. The relative bioavailability of the SWCNT-MIP composites (F %) displayed the highest value of 143.3% compared with the commercial FB tablet, whereas the control MIP and SWCNT-non-MIP composites was only 48.3% and 44.4%, respectively. The results indicated that the SWCNT-MIP nanocomposites developed here have potentials as the controlled-release device.
Collapse
|
132
|
Comparative analysis of atrazine molecularly imprinted polymers using acetonitrile and toluene as solvents. J Appl Polym Sci 2018. [DOI: 10.1002/app.47190] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
133
|
Fan JP, Zhang FY, Yang XM, Zhang XH, Cao YH, Peng HL. Preparation of a novel supermacroporous molecularly imprinted cryogel membrane with a specific ionic liquid for protein recognition and permselectivity. J Appl Polym Sci 2018. [DOI: 10.1002/app.46740] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jie-Ping Fan
- Key Laboratory of Poyang Lake Ecology and Bio-Resource Utilization of Ministry of Education; Nanchang University; Nanchang China
- School of Resource, Environmental and Chemical Engineering; Nanchang University; Nanchang China
| | - Feng-Yan Zhang
- School of Resource, Environmental and Chemical Engineering; Nanchang University; Nanchang China
| | - Xue-Meng Yang
- School of Resource, Environmental and Chemical Engineering; Nanchang University; Nanchang China
| | - Xue-Hong Zhang
- School of Resource, Environmental and Chemical Engineering; Nanchang University; Nanchang China
| | - Ya-Hui Cao
- School of Resource, Environmental and Chemical Engineering; Nanchang University; Nanchang China
| | - Hai-Long Peng
- School of Resource, Environmental and Chemical Engineering; Nanchang University; Nanchang China
- School of Foreign Language; Nanchang University; Nanchang China
| |
Collapse
|
134
|
Yang B, Fu C, Li J, Xu G. Frontiers in highly sensitive molecularly imprinted electrochemical sensors: Challenges and strategies. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.04.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
135
|
You M, Yang S, Tang W, Zhang F, He P. Molecularly imprinted polymers-based electrochemical DNA biosensor for the determination of BRCA-1 amplified by SiO2@Ag. Biosens Bioelectron 2018; 112:72-78. [DOI: 10.1016/j.bios.2018.04.038] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 04/14/2018] [Accepted: 04/17/2018] [Indexed: 11/26/2022]
|
136
|
Zhi K, Wang L, Zhang Y, Jiang Y, Zhang L, Yasin A. Influence of Size and Shape of Silica Supports on the Sol⁻Gel Surface Molecularly Imprinted Polymers for Selective Adsorption of Gossypol. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E777. [PMID: 29751648 PMCID: PMC5978154 DOI: 10.3390/ma11050777] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/08/2018] [Accepted: 05/08/2018] [Indexed: 01/03/2023]
Abstract
The influence of various silica gel supports with different shapes and sizes on the recognition properties of surface molecular imprinted polymers (MIPs) was investigated. MIPs for selective recognition and adsorption of gossypol were synthesized via the sol⁻gel process with a surface imprinting technique on silica gel substrates. 3-aminopropyltriethoxysilane (APTES) and tetraethoxysilane (TEOS) were chosen as the functional monomer and the cross-linker. The morphology and structure of the gossypol-MIPs were characterized using Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and a standard Brunauer⁻Emett⁻Teller (BET) analysis. Results indicated that the surface imprinted polymer layer facilitated the removal and rebinding of the template, and thus, achieved fast binding kinetics. Compared with the MIPs prepared on irregularly shaped silica with a broad particle size distribution, the MIPs using regularly-shaped silica of uniform size showed higher imprinting factor (IF), and the MIP made with a relatively larger sized (60 μm) spherical silica, demonstrated higher adsorption capacity compared to the MIPs made with smaller sized, spherical silica. The MIP prepared with 60 μm spherically shaped silica, featured a fast adsorption kinetic of 10 min, and a saturated adsorption capacity of 204 mg·g−1. The gossypol-MIP had higher selectivity (IF = 2.20) for gossypol over its structurally-similar analogs ellagic acid (IF = 1.13) and quercetin (IF = 1.20). The adsorption data of the MIP correlated well with the pseudo-second-order kinetic model and the Freundlich isotherm model, which implied that chemical adsorption dominated, and that multilayer adsorption occurred. Furthermore, the MIP exhibited an excellent regeneration performance, and the adsorption capacity of the MIP for gossypol only decreased by 6% after six reused cycles, indicating good application potential for selective adsorption of gossypol.
Collapse
Affiliation(s)
- Keke Zhi
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Lulu Wang
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yagang Zhang
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
- Department of Chemical and Environmental Engineering, Xinjiang Institute of Engineering, Urumqi 830026, China.
| | - Yingfang Jiang
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Letao Zhang
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Akram Yasin
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
137
|
Poly(3,6-diamino-9-ethylcarbazole) based molecularly imprinted polymer sensor for ultra-sensitive and selective detection of 17-β-estradiol in biological fluids. Biosens Bioelectron 2018; 104:79-86. [DOI: 10.1016/j.bios.2018.01.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 01/01/2018] [Accepted: 01/03/2018] [Indexed: 01/19/2023]
|
138
|
Dinc M, Basan H, Hummel T, Müller M, Sobek H, Rapp I, Diemant T, Behm RJ, Lindén M, Mizaikoff B. Selective Binding of Inhibitor-Assisted Surface-Imprinted Core/Shell Microbeads in Protein Mixtures. ChemistrySelect 2018. [DOI: 10.1002/slct.201800129] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Mehmet Dinc
- Institute of Analytical and Bioanalytical Chemistry; Ulm University, D-; 89081 Ulm Germany
| | - Hasan Basan
- Department of Analytical Chemistry, Faculty of Pharmacy; Gazi University, TR-; 06330 Etiler-Ankara Turkey
| | - Tim Hummel
- Labor Dr. Merk & Kollegen, D-; 88416 Ochsenhausen Germany
| | - Marlen Müller
- Labor Dr. Merk & Kollegen, D-; 88416 Ochsenhausen Germany
| | - Harald Sobek
- Labor Dr. Merk & Kollegen, D-; 88416 Ochsenhausen Germany
| | - Ingrid Rapp
- Labor Dr. Merk & Kollegen, D-; 88416 Ochsenhausen Germany
| | - Thomas Diemant
- Institute of Surface Chemistry and Catalysis; Ulm University, D-; 89081 Ulm Germany
| | - Rolf Jürgen Behm
- Institute of Surface Chemistry and Catalysis; Ulm University, D-; 89081 Ulm Germany
| | - Mika Lindén
- Institute of Inorganic Chemistry II; Ulm University, D-; 89081 Ulm Germany
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry; Ulm University, D-; 89081 Ulm Germany
| |
Collapse
|
139
|
Wang Y, Wang J, Cheng R, Sun L, Dai X, Yan Y. Synthesis of molecularly imprinted dye-silica nanocomposites with high selectivity and sensitivity: Fluorescent imprinted sensor for rapid and efficient detection of τ-fluvalinate in vodka. J Sep Sci 2018; 41:1880-1887. [PMID: 29389060 DOI: 10.1002/jssc.201701142] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/23/2017] [Accepted: 12/23/2017] [Indexed: 12/22/2022]
Abstract
An imprinted fluorescent sensor was fabricated based on SiO2 nanoparticles encapsulated with a molecularly imprinted polymer containing allyl fluorescein. High fluorine cypermethirin as template molecules, methyl methacrylate as functional monomer, and allyl fluorescein as optical materials synthesized a core-shell fluorescent molecular imprinted sensor, which showed a high and rapid sensitivity and selectivity for the detection of τ-fluvalinate. The sensor presented appreciable sensitivity with a limit of 13.251 nM, rapid detection that reached to equilibrium within 3 min, great linear relationship in the relevant concentration range from 0 to 150 nM, and excellent selectivity over structural analogues. In addition, the fluorescent sensor demonstrated desirable regeneration ability (eight cycling operations). The molecularly imprinted polymers ensured specificity, while the fluorescent dyes provided the stabile sensitivity. Finally, an effective application of the sensor was implemented by the detection of τ-fluvalinate in real samples from vodka. The molecularly imprinted fluorescent sensor showed a promising potential in environmental monitoring and food safety.
Collapse
Affiliation(s)
- Yunyun Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Jixiang Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Rujia Cheng
- School of Material Science and Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Lin Sun
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Xiaohui Dai
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Yongsheng Yan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, P. R. China
| |
Collapse
|
140
|
Iskierko Z, Noworyta K, Sharma PS. Molecular recognition by synthetic receptors: Application in field-effect transistor based chemosensing. Biosens Bioelectron 2018. [PMID: 29525669 DOI: 10.1016/j.bios.2018.02.058] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Molecular recognition, i.e., ability of one molecule to recognize another through weak bonding interactions, is one of the bases of life. It is often implemented to sensing systems of high merits. Preferential recognition of the analyte (guest) by the receptor (host) induces changes in physicochemical properties of the sensing system. These changes are measured by using suitable signal transducers. Because of possibility of miniaturization, fast response, and high sensitivity, field-effect transistors (FETs) are more frequently being used for that purpose. A FET combined with a biological material offers the potential to overcome many challenges approached in sensing. However, low stability of biological materials under measurement conditions is a serious problem. To circumvent this problem, synthetic receptors were integrated with the gate surface of FETs to provide robust performance. In the present critical review, the approach utilized to devise chemosensors integrating synthetic receptors and FET transduction is discussed in detail. The progress in this field was summarized and important outcome was provided.
Collapse
Affiliation(s)
- Zofia Iskierko
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Krzysztof Noworyta
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Piyush Sindhu Sharma
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| |
Collapse
|
141
|
Lin ZT, DeMarr V, Bao J, Wu T. Molecularly Imprinted Polymer-Based Biosensors: For the Early, Rapid Detection of Pathogens, Biomarkers, and Toxins in Clinical, Environmental, or Food Samples. IEEE NANOTECHNOLOGY MAGAZINE 2018. [DOI: 10.1109/mnano.2017.2779718] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zuan-Tao Lin
- Biomedical Engineering, University of Houston, Houston, Texas United States
| | - Victoria DeMarr
- Biomedical Engineering, University of Houston, Houston, Texas United States
| | - Jiming Bao
- Electrical and Computer Engineering, University of Houston, Houston, Texas United States
| | - Tianfu Wu
- Biomedical Engineering, University of Houston, Houston, Texas United States
| |
Collapse
|
142
|
Zheng W, Zhao M, Liu W, Yu S, Niu L, Li G, Li H, Liu W. Electrochemical sensor based on molecularly imprinted polymer/reduced graphene oxide composite for simultaneous determination of uric acid and tyrosine. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.02.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
143
|
Battista E, Scognamiglio PL, Di Luise N, Raucci U, Donati G, Rega N, Netti PA, Causa F. Turn-on fluorescence detection of protein by molecularly imprinted hydrogels based on supramolecular assembly of peptide multi-functional blocks. J Mater Chem B 2018; 6:1207-1215. [PMID: 32254181 DOI: 10.1039/c7tb03107f] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Synthetic receptors for biomacromolecules lack the supramolecular self-assembly behavior typical of biological systems. Here we propose a new method for the preparation of protein imprinted polymers based on the specific interaction of a peptide multi-functional block with a protein target. This peptide block contains a protein-binding peptide domain, a polymerizable moiety at the C-terminus and an environment-sensitive fluorescent molecule at the N-terminus. The method relies on a preliminary step consisting of peptide/protein supramolecular assembly, followed by copolymerization with the most common acrylate monomers (acrylamide, acrylic acid and bis-acrylamide) to produce a protein imprinted hydrogel polymer. Such a peptide block can function as an active assistant recognition element to improve affinity, and guarantees its effective polymerization at the protein/cavity interface, allowing for proper placement of a dye. As a proof of concept, we chose Bovine Serum Albumin (BSA) as the protein target and built the peptide block around a BSA binding dodecapeptide, with an allyl group as the polymerizable moiety and a dansyl molecule as the responsive dye. Compared to conventional approaches these hydrogels showed higher affinity (more than 45%) and imprinted sensitivity (about twenty fold) to the target, with a great BSA selectivity with respect to ovalbumin (α = 1.25) and lysozyme (α = 6.02). Upon protein binding, computational and experimental observations showed a blue shift of the emission peak (down to 440 nm) and an increase of fluorescence emission (twofold) and average lifetime (Δτ = 4.3 ns). Such an approach generates recognition cavities with controlled chemical information and represents an a priori method for self-responsive materials. Provided a specific peptide and minimal optimization conditions are used, such a method could be easily implemented for any protein target.
Collapse
Affiliation(s)
- Edmondo Battista
- Interdisciplinary Research Centre on Biomaterials (CRIB) Università degli studi di Napoli "Federico II", Piazzale Tecchio 80, 80125, Napoli, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
144
|
Chiral Separation in Preparative Scale: A Brief Overview of Membranes as Tools for Enantiomeric Separation. Symmetry (Basel) 2017. [DOI: 10.3390/sym9100206] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
145
|
Liu S, Liu J, Pan J, Luo J, Niu X, Zhang T, Qiu F. Two Are Better than One: Halloysite Nanotubes-Supported Surface Imprinted Nanoparticles Using Synergy of Metal Chelating and Low pK a Boronic Acid Monomers for Highly Specific Luteolin Binding under Neutral Condition. ACS APPLIED MATERIALS & INTERFACES 2017; 9:33191-33202. [PMID: 28885001 DOI: 10.1021/acsami.7b11426] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Surface-imprinted nanoparticles with double recognition (DM-MIPs) are fabricated onto halloysite nanotubes (HNTs) for highly specific separation of natural flavone luteolin (LTL) under neutral condition. Specifically, a two-step strategy via consecutive surface-initiated atom transfer radical polymerization (SI-ATRP) is employed to introduce inherent recognition of molecular imprinting and reversible covalent affinity of boronic acid ligands and immobilized Zn2+ into DM-MIPs. First, Zn2+-immobilized poly(vinyl imidazole) (PVLD) shell based on the HNTs via the first SI-ATRP is prepared to capture LTL by metal chelating. Then HNTs-supported surface imprinted nanoparticles are prepared using low pKa boronic acid monomer 4-(2-acrylamidoethylcarbamoyl)-3-fluorophenylboronic acid (AMC-FPBA) via the second SI-ATRP. Taking advantage of low apparent pKa of AMC-FPBA and large high-affinity binding site density, DM-MIPs possess a promising binding with cis-diol-containing LTL under neutral condition. In static adsorption, DM-MIPs show large LTL loading amount (83.42 mg g-1), fast capture kinetics, remarkable selectivity, and excellent recyclability at pH = 7.0. More importantly, by reducing the pH to 4.0, the loaded TLL can be simply released. As a proof of this concept, a commercially available LTL with 85% purity can be easily enriched and further purified, and the product exhibits the similar antibacterial performance with standard substance.
Collapse
Affiliation(s)
- Shucheng Liu
- School of Chemistry and Chemical Engineering, Jiangsu University , Zhenjiang 212013, China
| | - Jinxin Liu
- School of Chemistry and Chemical Engineering, Jiangsu University , Zhenjiang 212013, China
| | - Jianming Pan
- School of Chemistry and Chemical Engineering, Jiangsu University , Zhenjiang 212013, China
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | - Jialu Luo
- School of Chemistry and Chemical Engineering, Jiangsu University , Zhenjiang 212013, China
| | - Xiangheng Niu
- School of Chemistry and Chemical Engineering, Jiangsu University , Zhenjiang 212013, China
| | - Tao Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University , Zhenjiang 212013, China
| | - Fengxian Qiu
- School of Chemistry and Chemical Engineering, Jiangsu University , Zhenjiang 212013, China
| |
Collapse
|
146
|
Wang HH, Chen XJ, Li WT, Zhou WH, Guo XC, Kang WY, Kou DX, Zhou ZJ, Meng YN, Tian QW, Wu SX. ZnO nanotubes supported molecularly imprinted polymers arrays as sensing materials for electrochemical detection of dopamine. Talanta 2017; 176:573-581. [PMID: 28917792 DOI: 10.1016/j.talanta.2017.08.083] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/25/2017] [Accepted: 08/26/2017] [Indexed: 12/14/2022]
Abstract
In this study, ZnO nanotubes (ZNTs) were prepared onto fluorine-doped tin oxide (FTO) glass and used as supports for MIPs arrays fabrication. Due to the imprinted cavities are always located at both inner and outer surface of ZNTs, these ZNTs supported MIPs arrays have good accessibility towards template and can be used as sensing materials for chemical sensors with high sensitivity, excellent selectivity and fast response. Using K3[Fe(CN)6] as electron probe, the fabricated electrochemical sensor shows two linear dynamic ranges (0.02-5μM and 10-800μM) towards dopamine. This proposed electrochemical sensor has been applied for dopamine determination with satisfied recoveries and precision. More complex human urine samples also confirmed that the proposed method has good accuracy for dopamine determination in real biological samples. These results suggest potential applicability of the proposed method and sensor in important molecule analysis.
Collapse
Affiliation(s)
- Hai-Hui Wang
- The Key Laboratory for Special Functional Materials of MOE, Henan University, Kaifeng 475004, China
| | - Xuan-Jie Chen
- Institute of Chinese Materia Medica, Henan University, Kaifeng 475004, China
| | - Wei-Tian Li
- Institute of Chinese Materia Medica, Henan University, Kaifeng 475004, China
| | - Wen-Hui Zhou
- The Key Laboratory for Special Functional Materials of MOE, Henan University, Kaifeng 475004, China; Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China.
| | - Xiu-Chun Guo
- Institute of Chinese Materia Medica, Henan University, Kaifeng 475004, China.
| | - Wen-Yi Kang
- Institute of Chinese Materia Medica, Henan University, Kaifeng 475004, China
| | - Dong-Xing Kou
- The Key Laboratory for Special Functional Materials of MOE, Henan University, Kaifeng 475004, China
| | - Zheng-Ji Zhou
- The Key Laboratory for Special Functional Materials of MOE, Henan University, Kaifeng 475004, China
| | - Yue-Na Meng
- The Key Laboratory for Special Functional Materials of MOE, Henan University, Kaifeng 475004, China
| | - Qing-Wen Tian
- The Key Laboratory for Special Functional Materials of MOE, Henan University, Kaifeng 475004, China
| | - Si-Xin Wu
- The Key Laboratory for Special Functional Materials of MOE, Henan University, Kaifeng 475004, China; Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| |
Collapse
|
147
|
Dima SO, Panaitescu DM, Orban C, Ghiurea M, Doncea SM, Fierascu RC, Nistor CL, Alexandrescu E, Nicolae CA, Trică B, Moraru A, Oancea F. Bacterial Nanocellulose from Side-Streams of Kombucha Beverages Production: Preparation and Physical-Chemical Properties. Polymers (Basel) 2017; 9:E374. [PMID: 30971046 PMCID: PMC6418918 DOI: 10.3390/polym9080374] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 08/11/2017] [Accepted: 08/14/2017] [Indexed: 12/23/2022] Open
Abstract
We focused on preparing cellulose nanofibrils by purification, separation, and mechanical treatment of Kombucha membranes (KM) resulted as secondary product from beverage production by fermentation of tea broth with symbiotic culture of bacteria and yeast (SCOBY). We purified KM using two alkaline solutions, 1 and 4 M NaOH, which afterwards were subjected to various mechanical treatments. Transmission electron microscopy (TEM), scanning electron microscopy (SEM), dynamic light scattering (DLS), X-ray diffraction (XRD), X-ray fluorescence (XRF), Fourier-transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA) were employed to evaluate the purification degree, the size and aspect of cellulose fibrils after each treatment step, the physical-chemical properties of intermediary and final product, and for comparison with micro-crystalline cellulose from wooden sources. We determined that 1 M NaOH solution leads to approx. 85% purification, while a higher concentration assures almost 97% impurities removal. XRD analysis evidenced an increase in crystallinity from 37% to 87% after purification, the characteristic diffractograms of Iα and Iβ cellulose allomorphs, and a further decrease in crystallinity to 46% after microfluidization, fact correlated with a drastically decrease in fibrils' size. FTIR analysis evidenced the appearance of new chain ends by specific transmission bands at 2941 and 2843cm-1.
Collapse
Affiliation(s)
| | | | - Csongor Orban
- S.C. Corax Bioner CEU S.A., 53 Sarkadi Elek, Miercurea Ciuc 530200, Romania.
| | - Marius Ghiurea
- INCDCP ICECHIM, 202 Splaiul Independentei, Bucharest 060021, Romania.
| | | | | | | | | | | | - Bogdan Trică
- INCDCP ICECHIM, 202 Splaiul Independentei, Bucharest 060021, Romania.
| | - Angela Moraru
- S.C. Laboratoarele Medica Srl, 11 Frasinului Str., Otopeni 075100, Romania.
| | - Florin Oancea
- INCDCP ICECHIM, 202 Splaiul Independentei, Bucharest 060021, Romania.
| |
Collapse
|
148
|
Liu J, Qian T, Wang M, Liu X, Xu N, You Y, Yan C. Molecularly Imprinted Polymer Enables High-Efficiency Recognition and Trapping Lithium Polysulfides for Stable Lithium Sulfur Battery. NANO LETTERS 2017; 17:5064-5070. [PMID: 28691822 DOI: 10.1021/acs.nanolett.7b02332] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Using molecularly imprinted polymer to recognize various target molecules emerges as a fascinating research field. Herein, we applied this strategy for the first time to efficiently recognize and trap long-chain polysulfides (Li2Sx, x = 6-8) in lithium sulfur battery to minimize the polysulfide shuttling between anode and cathode, which enables us to achieve remarkable electrochemical performance including a high specific capacity of 1262 mAh g-1 at 0.2 C and superior capacity retention of over 82.5% after 400 cycles at 1 C. The outstanding performance is attributed to the significantly reduced concentration of long-chain polysulfides in electrolyte as evidenced by in situ UV/vis spectroscopy and Li2S nucleation tests, which were further confirmed by density functional theory calculations. The molecular imprinting is demonstrated as a promising approach to effectively prevent the free diffusion of long-chain polysulfides, providing a new avenue to efficiently recognize and trap lithium polysulfides for high-performance lithium sulfur battery with greatly suppressed shuttle effect.
Collapse
Affiliation(s)
- Jie Liu
- Soochow Institute for Energy and Materials Innovations, College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University , Suzhou 215006, China
| | - Tao Qian
- Soochow Institute for Energy and Materials Innovations, College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University , Suzhou 215006, China
| | - Mengfan Wang
- Soochow Institute for Energy and Materials Innovations, College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University , Suzhou 215006, China
| | - Xuejun Liu
- Soochow Institute for Energy and Materials Innovations, College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University , Suzhou 215006, China
| | - Na Xu
- Soochow Institute for Energy and Materials Innovations, College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University , Suzhou 215006, China
| | - Yizhou You
- Soochow Institute for Energy and Materials Innovations, College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University , Suzhou 215006, China
| | - Chenglin Yan
- Soochow Institute for Energy and Materials Innovations, College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University , Suzhou 215006, China
| |
Collapse
|
149
|
Zhang X, Cui Y, Bai J, Sun Z, Ning B, Li S, Wang J, Peng Y, Gao Z. Novel Biomimic Crystalline Colloidal Array for Fast Detection of Trace Parathion. ACS Sens 2017; 2:1013-1019. [PMID: 28750527 DOI: 10.1021/acssensors.7b00281] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A novel gold doped inverse opal photonic crystal (IO PC) was successfully fabricated with combination of molecularly imprinted technical for the fast determination of parathion. First, a closest silica array arrangement behaved as the 3D photonic crystal precursors to build the opal photonic crystal (O PC). Second, the parathion-containing polymeric solution with gold nanoparticles was drawn into the 3D array cracks. After polymerization, the well-designed O PC was treated with HF solution for the etching of the silica skeleton. Finally, the template parathion was removed and the Au-MIP IO PCs were obtained. The morphology of SiO2 and Au NPs was characterized by transmission electron microscopy (TEM), and the eluted influence of the IO PCs was monitored by scanning electron microscopy (SEM). The cross-linking effect was well optimized according to the best spectrum signal of parathion. The as-synthesized Au-MIP IO PCs displayed the specificity toward parathion and the selectivity to other competitive pesticide molecules. The response time was only 5 min, and the parathion could be well detected from real water samples. The recoveries were between 95.5% and 101.5%.
Collapse
Affiliation(s)
- Xihao Zhang
- Tianjin
Key Laboratory of Risk Assessment and Control Technology for Environment
and Food Safety, Tianjin Institute of Health and Environmental Medicine, Tianjin 300050, P. R. China
| | - Yanguang Cui
- Tianjin
Key Laboratory of Risk Assessment and Control Technology for Environment
and Food Safety, Tianjin Institute of Health and Environmental Medicine, Tianjin 300050, P. R. China
| | - Jialei Bai
- Tianjin
Key Laboratory of Risk Assessment and Control Technology for Environment
and Food Safety, Tianjin Institute of Health and Environmental Medicine, Tianjin 300050, P. R. China
| | - Zhiyong Sun
- No. 11
Hospital
of PLA, Yining 835000, China
| | - Baoan Ning
- Tianjin
Key Laboratory of Risk Assessment and Control Technology for Environment
and Food Safety, Tianjin Institute of Health and Environmental Medicine, Tianjin 300050, P. R. China
| | - Shuang Li
- Tianjin
Key Laboratory of Risk Assessment and Control Technology for Environment
and Food Safety, Tianjin Institute of Health and Environmental Medicine, Tianjin 300050, P. R. China
| | - Jiang Wang
- Tianjin
Key Laboratory of Risk Assessment and Control Technology for Environment
and Food Safety, Tianjin Institute of Health and Environmental Medicine, Tianjin 300050, P. R. China
| | - Yuan Peng
- Tianjin
Key Laboratory of Risk Assessment and Control Technology for Environment
and Food Safety, Tianjin Institute of Health and Environmental Medicine, Tianjin 300050, P. R. China
| | - Zhixian Gao
- Tianjin
Key Laboratory of Risk Assessment and Control Technology for Environment
and Food Safety, Tianjin Institute of Health and Environmental Medicine, Tianjin 300050, P. R. China
| |
Collapse
|
150
|
You M, Yang S, Tang W, Zhang F, He PG. Ultrasensitive Electrochemical Detection of Glycoprotein Based on Boronate Affinity Sandwich Assay and Signal Amplification with Functionalized SiO 2@Au Nanocomposites. ACS APPLIED MATERIALS & INTERFACES 2017; 9:13855-13864. [PMID: 28393516 DOI: 10.1021/acsami.7b00444] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Herein we propose a multiple signal amplification strategy designed for ultrasensitive electrochemical detection of glycoproteins. This approach introduces a new type of boronate-affinity sandwich assay (BASA), which was fabricated by using gold nanoparticles combined with reduced graphene oxide (AuNPs-GO) to modify sensing surface for accelerating electron transfer, the composite of molecularly imprinted polymer (MIP) including 4-vinylphenylboronic acid (VPBA) for specific capturing glycoproteins, and SiO2 nanoparticles carried gold nanoparticles (SiO2@Au) labeled with 6-ferrocenylhexanethiol (FcHT) and 4-mercaptophenylboronic acid (MPBA) (SiO2@Au/FcHT/MPBA) as tracing tag for binding glycoprotein and generating electrochemical signal. As a sandwich-type sensing, the SiO2@Au/FcHT/MPBA was captured by glycoprotein on the surface of imprinting film for further electrochemical detection in 0.1 M PBS (pH 7.4). Using horseradish peroxidase (HRP) as a model glycoprotein, the proposed approach exhibited a wide linear range from 1 pg/mL to 100 ng/mL, with a low detection limit of 0.57 pg/mL. To the best of our knowledge, this is first report of a multiple signal amplification approach based on boronate-affinity molecularly imprinted polymer and SiO2@Au/FcHT/MPBA, exhibiting greatly enhanced sensitivity for glycoprotein detection. Furthermore, the newly constructed BASA based glycoprotein sensor demonstrated HRP detection in real sample, such as human serum, suggesting its promising prospects in clinical diagnostics.
Collapse
Affiliation(s)
- Min You
- College of Chemistry and Molecular Engineering, East China Normal University , 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Shuai Yang
- College of Chemistry and Molecular Engineering, East China Normal University , 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Wanxin Tang
- College of Chemistry and Molecular Engineering, East China Normal University , 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Fan Zhang
- College of Chemistry and Molecular Engineering, East China Normal University , 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Pin-Gang He
- College of Chemistry and Molecular Engineering, East China Normal University , 500 Dongchuan Road, Shanghai 200241, P. R. China
| |
Collapse
|