101
|
Mehdi Aghaei S, Aasi A, Panchapakesan B. Experimental and Theoretical Advances in MXene-Based Gas Sensors. ACS OMEGA 2021; 6:2450-2461. [PMID: 33553863 PMCID: PMC7859948 DOI: 10.1021/acsomega.0c05766] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/08/2021] [Indexed: 05/12/2023]
Abstract
MXenes, two-dimensional (2D) transition metal carbides and nitrides, have been arousing interest lately in the field of gas sensing thanks to their remarkable features such as graphene-like morphology, metal-comparable conductivity, large surface-to-volume ratio, mechanical flexibility, and great hydrophilic surface functionalities. With tunable etching and synthesis methods, the morphology of the MXenes, the interlayer structures, and functional group ratios on their surfaces were effectively harnessed, enhancing the efficiency of MXene-based gas-sensing devices. MXenes also efficiently form nanohybrids with other nanomaterials, as a practical approach to revamp the sensing performance of the MXene sensors. This Mini-Review summarizes the recent experimental and theoretical reports on the gas-sensing applications of MXenes and their hybrids. It also discusses the challenges and provides probable solutions that can accentuate the future perspective of MXenes in gas sensors.
Collapse
|
102
|
Zhang J, Liu L, Yang Y, Huang Q, Li D, Zeng D. A review on two-dimensional materials for chemiresistive- and FET-type gas sensors. Phys Chem Chem Phys 2021; 23:15420-15439. [PMID: 34263272 DOI: 10.1039/d1cp01890f] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Two-dimensional (2D) materials have shown great potential for gas sensing applications due to their large specific surface areas and strong surface activities. In addition to the commonly reported chemiresistive-type gas sensors, field-effect transistor (FET)-type gas sensors have attracted increased attention due to their miniaturized size, low power consumption, and good compatibility with CMOS technology. In this review, we aim to discuss the recent developments in chemiresistive- and FET-type gas sensors based on 2D materials, including graphene, transition metal dichalcogenides, MXenes, black phosphorene, and other layered materials. Firstly, the device structure and the corresponding fabrication process of the two types of sensors are given, and then the advantages and disadvantages are also discussed. Secondly, the effects of intrinsic and extrinsic factors on the sensing performance of 2D material-based chemiresistive and FET-type gas sensors are also detailed. Subsequently, the current gas-sensing applications of 2D material-based chemiresistive- and FET-type gas sensors are systematically presented. Finally, the future prospects of 2D materials in chemiresistive- and FET-type gas sensing applications as well as the current existing problems are pointed out, which could be helpful for the development of 2D material-based gas sensors with better sensing performance to meet the requirements for practical application.
Collapse
Affiliation(s)
- Jian Zhang
- State Key Laboratory of Materials Processing and Die Mould Technology, Huazhong University of Science and Technology (HUST), No. 1037, Luoyu Road, Wuhan 430074, China. and Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Lei Liu
- State Key Laboratory of Materials Processing and Die Mould Technology, Huazhong University of Science and Technology (HUST), No. 1037, Luoyu Road, Wuhan 430074, China.
| | - Yan Yang
- State Key Laboratory of Materials Processing and Die Mould Technology, Huazhong University of Science and Technology (HUST), No. 1037, Luoyu Road, Wuhan 430074, China.
| | - Qingwu Huang
- State Key Laboratory of Materials Processing and Die Mould Technology, Huazhong University of Science and Technology (HUST), No. 1037, Luoyu Road, Wuhan 430074, China.
| | - Delong Li
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Dawen Zeng
- State Key Laboratory of Materials Processing and Die Mould Technology, Huazhong University of Science and Technology (HUST), No. 1037, Luoyu Road, Wuhan 430074, China.
| |
Collapse
|
103
|
Majhi SM, Mirzaei A, Kim HW, Kim SS, Kim TW. Recent advances in energy-saving chemiresistive gas sensors: A review. NANO ENERGY 2021; 79:105369. [PMID: 32959010 PMCID: PMC7494497 DOI: 10.1016/j.nanoen.2020.105369] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 05/20/2023]
Abstract
With the tremendous advances in technology, gas-sensing devices are being popularly used in many distinct areas, including indoor environments, industries, aviation, and detectors for various toxic domestic gases and vapors. Even though the most popular type of gas sensor, namely, resistive-based gas sensors, have many advantages over other types of gas sensors, their high working temperatures lead to high energy consumption, thereby limiting their practical applications, especially in mobile and portable devices. As possible ways to deal with the high-power consumption of resistance-based sensors, different strategies such as self-heating, MEMS technology, and room-temperature operation using especial morphologies, have been introduced in recent years. In this review, we discuss different types of energy-saving chemisresitive gas sensors including self-heated gas sensors, MEMS based gas sensors, room temperature operated flexible/wearable sensor and their application in the fields of environmental monitoring. At the end, the review will be concluded by providing a summary, challenges, recent trends, and future perspectives.
Collapse
Affiliation(s)
- Sanjit Manohar Majhi
- Division of Materials Science and Engineering, Hanyang University, Seoul, 04763, South Korea
- The Research Institute of Industrial Science, Hanyang University, Seoul, 04763, South Korea
| | - Ali Mirzaei
- Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz, 715557-13876, Iran
| | - Hyoun Woo Kim
- Division of Materials Science and Engineering, Hanyang University, Seoul, 04763, South Korea
- The Research Institute of Industrial Science, Hanyang University, Seoul, 04763, South Korea
| | - Sang Sub Kim
- Department of Materials Science and Engineering, Inha University, Incheon, 22212, South Korea
| | - Tae Whan Kim
- Department of Electronics and Computer Engineering, Hanyang University, Seoul, 04763, South Korea
| |
Collapse
|
104
|
Guo W, Surya SG, Babar V, Ming F, Sharma S, Alshareef HN, Schwingenschlögl U, Salama KN. Selective Toluene Detection with Mo 2CT x MXene at Room Temperature. ACS APPLIED MATERIALS & INTERFACES 2020; 12:57218-57227. [PMID: 33289555 DOI: 10.1021/acsami.0c16302] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
MXenes are a promising class of two-dimensional materials with several potential applications, including energy storage, catalysis, electromagnetic interference shielding, transparent electronics, and sensors. Here, we report a novel Mo2CTx MXene sensor for the successful detection of volatile organic compounds (VOCs). The proposed sensor is a chemiresistive device fabricated on a Si/SiO2 substrate using photolithography. The impact of various MXene process conditions on the performance of the sensor is evaluated. The VOCs, such as toluene, benzene, ethanol, methanol, and acetone, are studied at room temperature with varying concentrations. Under optimized conditions, the sensor demonstrates a detection limit of 220 ppb and a sensitivity of 0.0366 Ω/ppm at a toluene concentration of 140 ppm. It exhibits an excellent selectivity toward toluene against the other VOCs. Ab initio simulations demonstrate selectivity toward toluene in line with the experimental results.
Collapse
Affiliation(s)
- Wenzhe Guo
- Sensors Lab, Advanced Membranes & Porous Materials Center (AMPMC), CEMSE, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Sandeep G Surya
- Sensors Lab, Advanced Membranes & Porous Materials Center (AMPMC), CEMSE, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Vasudeo Babar
- Computational Physics & Materials Science Lab, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Fangwang Ming
- Functional Nanomaterials & Devices Lab, Materials Science and Engineering, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Sitansh Sharma
- Computational Physics & Materials Science Lab, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Husam N Alshareef
- Functional Nanomaterials & Devices Lab, Materials Science and Engineering, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Udo Schwingenschlögl
- Computational Physics & Materials Science Lab, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Khaled N Salama
- Sensors Lab, Advanced Membranes & Porous Materials Center (AMPMC), CEMSE, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
105
|
Li Z, Chen J, Chen L, Guo M, Wu Y, Wei Y, Wang J, Wang X. Hollow Au/Polypyrrole Capsules to Form Porous and Neural Network-Like Nanofibrous Film for Wearable, Super-Rapid, and Ultrasensitive NH 3 Sensor at Room Temperature. ACS APPLIED MATERIALS & INTERFACES 2020; 12:55056-55063. [PMID: 33232105 DOI: 10.1021/acsami.0c15585] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Wearable conducting polymer-based NH3 sensors are highly desirable in real-time environmental monitoring and human health protection but still a challenge for their relatively long response/recovery time and moderate sensitivity at room temperature. Herein, we present an effective route to fulfill this challenge by constructing porous and neural network-like Au/polypyrrole (Au/PPy) electrospun nanofibrous film with hollow capsular units for NH3 sensor. Taking the unique architecture and synergistic effect between Au and PPy, our sensor exhibits not only super-rapid response/recovery time (both ∼7 s), faster than all reported sensors, but also stable and ultrahigh sensitivity (response reaches ∼2.3 for 1 ppm NH3) at room temperature even during repeated deformation. Furthermore, good selectivity has been also achieved. These outstanding properties make our sensor hold great potential in real-time NH3-related disease diagnosis and environmental monitoring at room temperature.
Collapse
Affiliation(s)
- Zhenyu Li
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, School of Materials Science and Engineering, Southwest Petroleum University, Chengdu 610500, Sichuan, China
- Chengdu Evermaterials Co., Ltd., Chengdu, Sichuan 610500, China
| | - Jingyu Chen
- Chengdu Evermaterials Co., Ltd., Chengdu, Sichuan 610500, China
- Institute for Frontier Materials, Deakin University, Locked Bag 2000, Geelong, Victoria 3220, Australia
| | - Li Chen
- School of Pharmacy, Chengdu Medical College, Chengdu, Sichuan 610500, China
| | - Meiling Guo
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, School of Materials Science and Engineering, Southwest Petroleum University, Chengdu 610500, Sichuan, China
| | - Yuanpeng Wu
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, School of Materials Science and Engineering, Southwest Petroleum University, Chengdu 610500, Sichuan, China
- Chengdu Evermaterials Co., Ltd., Chengdu, Sichuan 610500, China
| | - Yen Wei
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jinfeng Wang
- Institute for Frontier Materials, Deakin University, Locked Bag 2000, Geelong, Victoria 3220, Australia
| | - Xungai Wang
- Institute for Frontier Materials, Deakin University, Locked Bag 2000, Geelong, Victoria 3220, Australia
| |
Collapse
|
106
|
Graphene and Perovskite-Based Nanocomposite for Both Electrochemical and Gas Sensor Applications: An Overview. SENSORS 2020; 20:s20236755. [PMID: 33255958 PMCID: PMC7731062 DOI: 10.3390/s20236755] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/18/2020] [Accepted: 11/22/2020] [Indexed: 01/16/2023]
Abstract
Perovskite and graphene-based nanocomposites have attracted much attention and been proven as promising candidates for both gas (H2S and NH3) and electrochemical (H2O2, CH3OH and glucose) sensor applications. In this review, the development of portable sensor devices on the sensitivity, selectivity, cost effectiveness, and electrode stability of chemical and electrochemical applications is summarized. The authors are mainly focused on the common analytes in gas sensors such as hydrogen sulfide, ammonia, and electrochemical sensors including non-enzymatic glucose, hydrazine, dopamine, and hydrogen peroxide. Finally, the article also addressed the stability of composite performance and outlined recent strategies for future sensor perspectives.
Collapse
|
107
|
Nikolic MV, Milovanovic V, Vasiljevic ZZ, Stamenkovic Z. Semiconductor Gas Sensors: Materials, Technology, Design, and Application. SENSORS (BASEL, SWITZERLAND) 2020; 20:E6694. [PMID: 33238459 PMCID: PMC7700484 DOI: 10.3390/s20226694] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/12/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023]
Abstract
This paper presents an overview of semiconductor materials used in gas sensors, their technology, design, and application. Semiconductor materials include metal oxides, conducting polymers, carbon nanotubes, and 2D materials. Metal oxides are most often the first choice due to their ease of fabrication, low cost, high sensitivity, and stability. Some of their disadvantages are low selectivity and high operating temperature. Conducting polymers have the advantage of a low operating temperature and can detect many organic vapors. They are flexible but affected by humidity. Carbon nanotubes are chemically and mechanically stable and are sensitive towards NO and NH3, but need dopants or modifications to sense other gases. Graphene, transition metal chalcogenides, boron nitride, transition metal carbides/nitrides, metal organic frameworks, and metal oxide nanosheets as 2D materials represent gas-sensing materials of the future, especially in medical devices, such as breath sensing. This overview covers the most used semiconducting materials in gas sensing, their synthesis methods and morphology, especially oxide nanostructures, heterostructures, and 2D materials, as well as sensor technology and design, application in advance electronic circuits and systems, and research challenges from the perspective of emerging technologies.
Collapse
Affiliation(s)
- Maria Vesna Nikolic
- Institute for Multidisciplinary Research, University of Belgrade, 11030 Belgrade, Serbia; (M.V.N.); (Z.Z.V.)
| | | | - Zorka Z. Vasiljevic
- Institute for Multidisciplinary Research, University of Belgrade, 11030 Belgrade, Serbia; (M.V.N.); (Z.Z.V.)
| | - Zoran Stamenkovic
- IHP—Leibniz-Institut Für Innovative Mikroelektronik, 15236 Frankfurt (Oder), Germany
| |
Collapse
|
108
|
Lee GS, Yun T, Kim H, Kim IH, Choi J, Lee SH, Lee HJ, Hwang HS, Kim JG, Kim DW, Lee HM, Koo CM, Kim SO. Mussel Inspired Highly Aligned Ti 3C 2T x MXene Film with Synergistic Enhancement of Mechanical Strength and Ambient Stability. ACS NANO 2020; 14:11722-11732. [PMID: 32870655 DOI: 10.1021/acsnano.0c04411] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Two-dimensional (2D) MXene has shown enormous potential in scientific fields, including energy storage and electromagnetic interference (EMI) shielding. Unfortunately, MXene-based material structures generally suffer from mechanical fragility and vulnerability to oxidation. Herein, mussel-inspired dopamine successfully addresses those weaknesses by improving interflake interaction and ordering in MXene assembled films. Dopamine undergoes in situ polymerization and binding at MXene flake surfaces by spontaneous interfacial charge transfer, yielding an ultrathin adhesive layer. Resultant nanocomposites with highly aligned tight layer structures achieve approximately seven times enhanced tensile strength with a simultaneous increase of elongation. Ambient stability of MXene films is also greatly improved by the effective screening of oxygen and moisture. Interestingly, angstrom thick polydopamine further promotes the innate high electrical conductivity and excellent EMI shielding properties of MXene films. This synergistic concurrent enhancement of physical properties proposes MXene/polydopamine hybrids as a general platform for MXene based reliable applications.
Collapse
Affiliation(s)
- Gang San Lee
- National Creative Research Initiative Center for Multi-dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST Institute for Nanocentury, KAIST, Daejeon 34141, Republic of Korea
| | - Taeyeong Yun
- National Creative Research Initiative Center for Multi-dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST Institute for Nanocentury, KAIST, Daejeon 34141, Republic of Korea
| | - Hyerim Kim
- Materials Architecturing Research Centre, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - In Ho Kim
- National Creative Research Initiative Center for Multi-dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST Institute for Nanocentury, KAIST, Daejeon 34141, Republic of Korea
| | - Jungwoo Choi
- Department of Materials Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Sun Hwa Lee
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Ho Jin Lee
- National Creative Research Initiative Center for Multi-dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST Institute for Nanocentury, KAIST, Daejeon 34141, Republic of Korea
| | - Ho Seong Hwang
- National Creative Research Initiative Center for Multi-dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST Institute for Nanocentury, KAIST, Daejeon 34141, Republic of Korea
| | - Jin Goo Kim
- National Creative Research Initiative Center for Multi-dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST Institute for Nanocentury, KAIST, Daejeon 34141, Republic of Korea
| | - Dae-Won Kim
- National Creative Research Initiative Center for Multi-dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST Institute for Nanocentury, KAIST, Daejeon 34141, Republic of Korea
| | - Hyuck Mo Lee
- Department of Materials Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Chong Min Koo
- Materials Architecturing Research Centre, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
- Division of Nano & Information Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Sang Ouk Kim
- National Creative Research Initiative Center for Multi-dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST Institute for Nanocentury, KAIST, Daejeon 34141, Republic of Korea
| |
Collapse
|
109
|
Kirchner EM, Hirsch T. Recent developments in carbon-based two-dimensional materials: synthesis and modification aspects for electrochemical sensors. Mikrochim Acta 2020; 187:441. [PMID: 32656597 PMCID: PMC7354370 DOI: 10.1007/s00604-020-04415-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022]
Abstract
This review (162 references) focuses on two-dimensional carbon materials, which include graphene as well as its allotropes varying in size, number of layers, and defects, for their application in electrochemical sensors. Many preparation methods are known to yield two-dimensional carbon materials which are often simply addressed as graphene, but which show huge variations in their physical and chemical properties and therefore on their sensing performance. The first section briefly reviews the most promising as well as the latest achievements in graphene synthesis based on growth and delamination techniques, such as chemical vapor deposition, liquid phase exfoliation via sonication or mechanical forces, as well as oxidative procedures ranging from chemical to electrochemical exfoliation. Two-dimensional carbon materials are highly attractive to be integrated in a wide field of sensing applications. Here, graphene is examined as recognition layer in electrochemical sensors like field-effect transistors, chemiresistors, impedance-based devices as well as voltammetric and amperometric sensors. The sensor performance is evaluated from the material's perspective of view and revealed the impact of structure and defects of the 2D carbon materials in different transducing technologies. It is concluded that the performance of 2D carbon-based sensors is strongly related to the preparation method in combination with the electrical transduction technique. Future perspectives address challenges to transfer 2D carbon-based sensors from the lab to the market. Graphical abstract Schematic overview from synthesis and modification of two-dimensional carbon materials to sensor application.
Collapse
Affiliation(s)
- Eva-Maria Kirchner
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93040, Regensburg, Germany
| | - Thomas Hirsch
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93040, Regensburg, Germany.
| |
Collapse
|
110
|
Xin M, Li J, Ma Z, Pan L, Shi Y. MXenes and Their Applications in Wearable Sensors. Front Chem 2020; 8:297. [PMID: 32373590 PMCID: PMC7187791 DOI: 10.3389/fchem.2020.00297] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/25/2020] [Indexed: 12/17/2022] Open
Abstract
MXenes, a kind of two-dimensional material of early transition metal carbides and carbonitrides, have emerged as a unique class of layered-structured metallic materials with attractive features, as good conductivity comparable to metals, enhanced ionic conductivity, hydrophilic property derived from their hydroxyl or oxygen-terminated surfaces, and mechanical flexibility. With tunable etching methods, the morphology of MXenes can be effectively controlled to form nanoparticles, single layer, or multi-layer nanosheets, which exhibit large specific surface areas and is favorable for enhancing the sensing performance of MXenes based sensors. Moreover, MXenes are available to form composites with other materials facilely. With structure design, MXenes or its composite show enhanced mechanical flexibility and stretchability, which enabled its wide application in the fields of wearable sensors, energy storage, and electromagnetic shielding. In this review, recent progress in MXenes is summarized, focusing on its application in wearable sensors including pressure/strain sensing, biochemical sensing, temperature, and gas sensing. Furthermore, the main challenges and future research are also discussed.
Collapse
Affiliation(s)
- Ming Xin
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing, China
| | - Jiean Li
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing, China
| | - Zhong Ma
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing, China
| | - Lijia Pan
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing, China
| | - Yi Shi
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing, China
| |
Collapse
|