101
|
Gao B, Meng W, Feng X, Du H. Regenerable Dihydrophenanthridine via Borane-Catalyzed Hydrogenation for the Asymmetric Transfer Hydrogenation of Benzoxazinones. Org Lett 2022; 24:3955-3959. [PMID: 35622929 DOI: 10.1021/acs.orglett.2c01314] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The highly enantioselective transfer hydrogenation of benzoxazinones with chiral phosphoric acids under H2 was successfully achieved, where boranes promoted the hydrogenation of phenanthridine for the regeneration of dihydrophenanthridine as the hydrogen donor. A variety of dihydrobenzoxazinones were obtained in high yields with up to 99% ee. The current work provides a promising solution to unreactive substrates for frustrated Lewis pair-catalyzed asymmetric hydrogenation.
Collapse
Affiliation(s)
- Bochao Gao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Meng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangqing Feng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haifeng Du
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
102
|
Chen H, Xiong C, Moon J, Ivanov AS, Lin W, Wang T, Fu J, Jiang DE, Wu Z, Yang Z, Dai S. Defect-Regulated Frustrated-Lewis-Pair Behavior of Boron Nitride in Ambient Pressure Hydrogen Activation. J Am Chem Soc 2022; 144:10688-10693. [PMID: 35588497 DOI: 10.1021/jacs.2c00343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The construction of heterogeneous frustrated Lewis pairs (FLPs) with performance comparable to or surpassing the homogeneous counterparts in H2 activation is a long-standing challenge. Herein, sterically hindered Lewis acid ("B" center) and Lewis base ("N" center) sites were anchored within the rigid lattice of highly crystalline hexagonal boron nitride (h-BN) scaffolds. The active sites were created via precision defect regulation during the molten-salt-involved (NaNH2 and NaBH4) h-BN construction procedure. The as-afforded h-BN scaffolds achieved highly efficient H2/D2 activation and dissociation under ambient pressure via FLP-like behavior, and attractive catalytic efficiency in hydrogenation reactions surpassing the current heterogeneous analogues.
Collapse
Affiliation(s)
- Hao Chen
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, Tennessee 37996, United States.,College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Chuanye Xiong
- Department of Chemistry, University of California, Riverside, California 92521, United States.,Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Jisue Moon
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Alexander S Ivanov
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Wenwen Lin
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Tao Wang
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jie Fu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - De-En Jiang
- Department of Chemistry, University of California, Riverside, California 92521, United States.,Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Zili Wu
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Zhenzhen Yang
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Sheng Dai
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, Tennessee 37996, United States.,Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
103
|
Han C, Meng W, Feng X, Du H. Asymmetric Intramolecular Hydroalkoxylation of 2‐Vinylbenzyl Alcohols with Chiral Boro‐Phosphates. Angew Chem Int Ed Engl 2022; 61:e202200100. [DOI: 10.1002/anie.202200100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Caifang Han
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Wei Meng
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xiangqing Feng
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Haifeng Du
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
104
|
Ishida N, Ito M, Murakami M. Thermal Metathesis of C–C Single Bonds Induced by Steric Frustration. CHEM LETT 2022. [DOI: 10.1246/cl.220208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Naoki Ishida
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510
| | - Misato Ito
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510
| | - Masahiro Murakami
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510
| |
Collapse
|
105
|
Yu K, Feng X, Du H. Asymmetric hydrogenation of TIPS-protected oximes with chiral boranes. Org Biomol Chem 2022; 20:3708-3711. [PMID: 35439808 DOI: 10.1039/d2ob00602b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An enantioselective metal-free hydrogenation of TIPS-protected oximes has been successfully realized for the first time by using chiral borane catalysts derived from chiral dienes and Piers' borane. A variety of hydroxylamine derivatives were afforded in 84-99% yields with 33-68% ees.
Collapse
Affiliation(s)
- Kuai Yu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,College of Chemistry and Material Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, P. R. China
| | - Xiangqing Feng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haifeng Du
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
106
|
Chatelain L, Breton JB, Arrigoni F, Schollhammer P, Zampella G. Geometrical influence on the non-biomimetic heterolytic splitting of H 2 by bio-inspired [FeFe]-hydrogenase complexes: a rare example of inverted frustrated Lewis pair based reactivity. Chem Sci 2022; 13:4863-4873. [PMID: 35655865 PMCID: PMC9067592 DOI: 10.1039/d1sc06975f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/13/2022] [Indexed: 11/28/2022] Open
Abstract
Despite the high levels of interest in the synthesis of bio-inspired [FeFe]-hydrogenase complexes, H2 oxidation, which is one specific aspect of hydrogenase enzymatic activity, is not observed for most reported complexes. To attempt H-H bond cleavage, two disubstituted diiron dithiolate complexes in the form of [Fe2(μ-pdt)L2(CO)4] (L: PMe3, dmpe) have been used to play the non-biomimetic role of a Lewis base, with frustrated Lewis pairs (FLPs) formed in the presence of B(C6F5)3 Lewis acid. These unprecedented FLPs, based on the bimetallic Lewis base partner, allow the heterolytic splitting of the H2 molecule, forming a protonated diiron cation and hydrido-borate anion. The substitution, symmetrical or asymmetrical, of two phosphine ligands at the diiron dithiolate core induces a strong difference in the H2 bond cleavage abilities, with the FLP based on the first complex being more efficient than the second. DFT investigations examined the different mechanistic pathways involving each accessible isomer and rationalized the experimental findings. One of the main DFT results highlights that the iron site acting as a Lewis base for the asymmetrical complex is the {Fe(CO)3} subunit, which is less electron-rich than the {FeL(CO)2} site of the symmetrical complex, diminishing the reactivity towards H2. Calculations relating to the different mechanistic pathways revealed the presence of a terminal hydride intermediate at the apical site of a rotated {Fe(CO)3} site, which is experimentally observed, and a semi-bridging hydride intermediate from H2 activation at the Fe-Fe site; these are responsible for a favourable back-reaction, reducing the conversion yield observed in the case of the asymmetrical complex. The use of two equivalents of Lewis acid allows for more complete and faster H2 bond cleavage due to the encapsulation of the hydrido-borate species by a second borane, favouring the reactivity of each FLP, in agreement with DFT calculations.
Collapse
Affiliation(s)
- Lucile Chatelain
- UMR CNRS 6521 Chimie, Electrochimie Moléculaires et Chimie Analytique, Université de Bretagne Occidentale, UFR Sciences et Techniques 6 Avenue Victor le Gorgeu, CS 93837 Brest-Cedex 3 29238 France
| | - Jean-Baptiste Breton
- UMR CNRS 6521 Chimie, Electrochimie Moléculaires et Chimie Analytique, Université de Bretagne Occidentale, UFR Sciences et Techniques 6 Avenue Victor le Gorgeu, CS 93837 Brest-Cedex 3 29238 France
| | - Federica Arrigoni
- Department of Biotechnology and Bioscience, University of Milano-Bicocca Piazza della Scienza 2 20126 Milan Italy
| | - Philippe Schollhammer
- UMR CNRS 6521 Chimie, Electrochimie Moléculaires et Chimie Analytique, Université de Bretagne Occidentale, UFR Sciences et Techniques 6 Avenue Victor le Gorgeu, CS 93837 Brest-Cedex 3 29238 France
| | - Giuseppe Zampella
- Department of Biotechnology and Bioscience, University of Milano-Bicocca Piazza della Scienza 2 20126 Milan Italy
| |
Collapse
|
107
|
Fernández I. Understanding the reactivity of frustrated Lewis pairs with the help of the activation strain model-energy decomposition analysis method. Chem Commun (Camb) 2022; 58:4931-4940. [PMID: 35322823 DOI: 10.1039/d2cc00233g] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This Feature article presents recent representative applications of the combination of the Activation Strain Model of reactivity and the Energy Decomposition Analysis methods to understand the reactivity of Frustrated Lewis Pairs (FLPs). This approach has been helpful to not only gain a deeper quantitative insight into the factors controlling the cooperative action between the Lewis acid/base partners but also to rationally design highly active systems for different bond activation reactions. Issues such as the influence of the nature of the FLP antagonists or the substituents directly attached to them on the reactivity are covered herein, which are crucial for the future development of this fascinating family of compounds.
Collapse
Affiliation(s)
- Israel Fernández
- Departamento de Química Orgánica I and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040-Madrid, Spain.
| |
Collapse
|
108
|
Jupp AR. Evidence for the encounter complex in frustrated Lewis pair chemistry. Dalton Trans 2022; 51:10681-10689. [PMID: 35412552 DOI: 10.1039/d2dt00655c] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Frustrated Lewis Pairs (FLPs) are combinations of bulky Lewis acids and bases that can carry out small-molecule activation and catalysis. Mechanistically, the reaction of the acid, base and substrate involves the collision of three distinct molecules, and so the pre-association of the acid and base to form an encounter complex has been proposed. This article will examine the evidence for the formation of this encounter complex, focusing on the archetypal main-group combinations P(tBu)3/B(C6F5)3 and PMes3/B(C6F5)3 (Mes = mesityl), and includes quantum chemical calculations, molecular dynamics simulations, NMR spectroscopic measurements and neutron scattering. Furthermore, the recent discovery that the associated acid and base can absorb a photon to promote single-electron transfer has enabled the encounter complex to also be studied by UV-Vis spectroscopy, EPR spectroscopy, transient absorption spectroscopy, and resonance Raman spectroscopy. These data all support the notion that the encounter complex is only weakly held together and in low concentration in solution. The insights that these studies provide underpin the exciting transformations that can be promoted by FLPs. Finally, some observations and unanswered questions are provided to prompt further study in this field.
Collapse
Affiliation(s)
- Andrew R Jupp
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, West Midlands, B15 2TT, UK.
| |
Collapse
|
109
|
Horton TAR, Wang M, Shaver MP. Polymeric frustrated Lewis pairs in CO 2/cyclic ether coupling catalysis. Chem Sci 2022; 13:3845-3850. [PMID: 35432910 PMCID: PMC8966658 DOI: 10.1039/d2sc00894g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/08/2022] [Indexed: 11/21/2022] Open
Abstract
Frustrated Lewis pairs (FLPs) are now ubiquitous as metal-free catalysts in an array of different chemical transformations. In this paper we show that this reactivity can be transferred to a polymeric system, offering advantageous opportunities at the interface between catalysis and stimuli-responsive materials. Formation of cyclic carbonates from cyclic ethers using CO2 as a C1 feedstock continues to be dominated by metal-based systems. When paired with a suitable nucleophile, discrete aryl or alkyl boranes have shown significant promise as metal-free Lewis acidic alternatives, although catalyst reuse remains illusive. Herein, we leverage the reactivity of FLPs in a polymeric system to promote CO2/cyclic ether coupling catalysis that can be tuned for the desired epoxide or oxetane substrate. Moreover, these macromolecular FLPs can be reused across multiple reaction cycles, further increasing their appeal over analogous small molecule systems.
Collapse
Affiliation(s)
- Thomas A R Horton
- Department of Materials, School of Natural Sciences, The University of Manchester Manchester UK
- Sustainable Materials Innovation Hub, Royce Hub Building, The University of Manchester Oxford Road Manchester UK
| | - Meng Wang
- Department of Materials, School of Natural Sciences, The University of Manchester Manchester UK
- Sustainable Materials Innovation Hub, Royce Hub Building, The University of Manchester Oxford Road Manchester UK
| | - Michael P Shaver
- Department of Materials, School of Natural Sciences, The University of Manchester Manchester UK
- Sustainable Materials Innovation Hub, Royce Hub Building, The University of Manchester Oxford Road Manchester UK
| |
Collapse
|
110
|
Sarkar P, Das S, Pati SK. Recent Advances in Group 14 and 15 Lewis Acids for Frustrated Lewis Pair Chemistry. Chem Asian J 2022; 17:e202200148. [PMID: 35320614 DOI: 10.1002/asia.202200148] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/22/2022] [Indexed: 11/10/2022]
Abstract
Frustrated Lewis pairs (FLP) which rely on the cooperative action of Lewis acids and Lewis bases, played a prominent role in the advancement of main-group catalysis. While the early days of FLP chemistry witnessed the dominance of boranes, there is a growing body of reports on alternative Lewis acids derived from groups 14 and 15. This short review focuses on the discovery of such non-boron candidates reported since 2015.
Collapse
Affiliation(s)
- Pallavi Sarkar
- Jawaharlal Nehru Centre for Advanced Scientific Research, Theoretical Sciences Unit, INDIA
| | - Shubhajit Das
- Jawaharlal Nehru Centre for Advanced Scientific Research, New Chemstry Unit, INDIA
| | - Swapan K Pati
- JNCASR, Theoretical Sciences Unit and New Chemistry Unit, Jakkur Campus, 560064, Bangalore, INDIA
| |
Collapse
|
111
|
Asymmetric Intramolecular Hydroalkoxylation of 2‐Vinylbenzyl Alcohols with Chiral Boro‐Phosphates. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
112
|
Abstract
Borenium ions are strong Lewis acids because of the positive charge on boron. While their high reactivity had long restricted their role in organic synthesis to stoichiometric reagents, in the past ten years the introduction of suitable supporting ligands, such as N-heterocyclic carbenes, has enabled them to function as competent catalysts for various organic transformations involving the activation of strong covalent bonds, such as H-H, Si-H, B-H, C-H and C-C bonds. This review provides an overview of the recent advances in borenium-catalysed reactions with emphasis on catalyst synthesis, methodology development and mechanistic insight.
Collapse
Affiliation(s)
- Xinyue Tan
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Songhu Road 2005, Shanghai, 200438, P. R. China.
| | - Huadong Wang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Songhu Road 2005, Shanghai, 200438, P. R. China.
| |
Collapse
|
113
|
Zou W, Gao L, Cao J, Li Z, Li G, Wang G, Li S. Mechanistic Insight into Hydroboration of Imines from Combined Computational and Experimental Studies. Chemistry 2022; 28:e202104004. [PMID: 35018677 DOI: 10.1002/chem.202104004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Indexed: 12/15/2022]
Abstract
Boron Lewis acid-catalyzed and catalyst-free hydroboration reactions of imines are attractive due to the mild reaction conditions. In this work, the mechanistic details of the hydroboration reactions of two different kinds of imines with pinacolborane (HBpin) are investigated by combining density functional theory calculations and some experimental studies. For the hydroboration reaction of N-(α-methylbenzylidene)aniline catalyzed by tris[3,5-bis(trifluoromethyl)phenyl]borane (BArF 3 ), our calculations show that the reaction proceeds through a boron Lewis acid-promoted hydride transfer mechanism rather than the classical Lewis acid activation mechanism. For the catalyst- and solvent-free hydroboration reaction of imine, N-benzylideneaniline, our calculations and experimental studies indicate that this reaction is difficult to occur under the reaction conditions reported previously. With a combination of computational and experimental studies, we have established that the commercially available BH3 ⋅ SMe2 can serve as an efficient catalyst for the hydroboration reactions of N-benzylideneaniline and similar imines. The hydroboration reactions catalyzed by BH3 ⋅ SMe2 are most likely to proceed through a hydroboration/B-H/B-N σ-bond metathesis pathway, which is very different from that of the reaction catalyzed by BArF 3 .
Collapse
Affiliation(s)
- Wentian Zou
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Liuzhou Gao
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jia Cao
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Zhenxing Li
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Guoao Li
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Guoqiang Wang
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Shuhua Li
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
114
|
Activation of Small Molecules and Hydrogenation of CO2 Catalyzed by Frustrated Lewis Pairs. Catalysts 2022. [DOI: 10.3390/catal12020201] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The chemistry of frustrated Lewis pair (FLP) is widely explored in the activation of small molecules, the hydrogenation of CO2, and unsaturated organic species. A survey of several experimental works on the activation of small molecules by FLPs and the related mechanistic insights into their reactivity from electronic structure theory calculation are provided in the present review, along with the catalytic hydrogenation of CO2. The mechanistic insight into H2 activation is thoroughly discussed, which may provide a guideline to design more efficient FLP for H2 activation. FLPs can activate other small molecules like, CO, NO, CO2, SO2, N2O, alkenes, alkynes, etc. by cooperative action of the Lewis centers of FLPs, as revealed by several computational analyses. The activation barrier of H2 and other small molecules by the FLP can be decreased by utilizing the aromaticity criterion in the FLP as demonstrated by the nucleus independent chemical shift (NICS) analysis. The term boron-ligand cooperation (BLC), which is analogous to the metal-ligand cooperation (MLC), is invoked to describe a distinct class of reactivity of some specific FLPs towards H2 activation.
Collapse
|
115
|
Dai Y, Meng W, Feng X, Du H. Chiral FLP-catalyzed asymmetric hydrogenation of 3-fluorinated chromones. Chem Commun (Camb) 2022; 58:1558-1560. [PMID: 35014638 DOI: 10.1039/d1cc06964k] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The asymmetric hydrogenation of fluorinated olefins is an efficient pathway towards the synthesis of chiral fluorine-containing compounds. This paper described metal-free asymmetric hydrogenation of 3-fluorinated chromones with the use of readily available achiral borane and chiral oxazoline as an FLP catalyst for the first time. A variety of optically active 3-fluorochroman-4-ones were obtained in high yields with up to 88% ee.
Collapse
Affiliation(s)
- Yun Dai
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Meng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangqing Feng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haifeng Du
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
116
|
Affiliation(s)
- Shiori Fujimori
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748 Garching bei München, Germany
| | - Shigeyoshi Inoue
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748 Garching bei München, Germany
| |
Collapse
|
117
|
In Situ Ruthenium Catalyst Modification for the Conversion of Furfural to 1,2-Pentanediol. NANOMATERIALS 2022; 12:nano12030328. [PMID: 35159673 PMCID: PMC8840484 DOI: 10.3390/nano12030328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 12/12/2022]
Abstract
Exploiting biomass to synthesise compounds that may replace fossil-based ones is of high interest in order to reduce dependence on non-renewable resources. 1,2-pentanediol and 1,5-pentanediol can be produced from furfural, furfuryl alcohol or tetrahydrofurfuryl alcohol following a metal catalysed hydrogenation/C-O cleavage procedure. Colloidal ruthenium nanoparticles stabilized with polyvinylpyrrolidone in situ modified with different organic compounds are able to produce 1,2-pentanediol directly from furfural in a 36% of selectivity at 125 °C under 20 bar of H2 pressure.
Collapse
|
118
|
. D, Sharma YB, Pant S, Dhaked DK, Guru MM. Borane-Catalyzed Dehydrogenative C‒C Bond Formation of Indoles with N-Tosylhydrazones: An Experimental and Computational Study. Org Chem Front 2022. [DOI: 10.1039/d2qo00552b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel dehydrogenative C‒C bond formation of indoles and N-tosylhydrazones to di(indolyl)methanes (DIMs) has been demonstrated using tris(pentafluorophenyl)borane as catalyst. A wide range of functional groups can be tolerated under...
Collapse
|
119
|
Guan Y, Chang K, Sun Q, Xu X. Progress in Rare-Earth Metal-Based Lewis Pair Chemistry. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202112008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
120
|
Qu ZW, Zhu H, Streubel R, Grimme S. Catalyst-free CO2 Hydrogenation with BH3NH3 in Water: DFT Mechanistic Insights. Phys Chem Chem Phys 2022; 24:14159-14164. [DOI: 10.1039/d2cp00590e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Extensive DFT calculations show that BH3NH3 may transfer dihydrogen to CO2 rather than HCO3- in water over a barrier of 25.9 kcal/mol, followed by faster hydride transfer from borate anions...
Collapse
|