101
|
Zhang C, Li Y, Liu L, Gong Y, Xie Y, Cao Y. Chemical Structures of Polyphenols That Critically Influence the Toxicity of ZnO Nanoparticles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:1714-1722. [PMID: 29383937 DOI: 10.1021/acs.jafc.8b00368] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Recent studies suggested that phytochemicals as natural antioxidants in food could alleviate nanoparticle (NP) toxicity. This study investigated the combined toxicity of ZnO NPs and a panel of polyphenols. Surprisingly, polyphenols with both high and almost no radical scavenging activities could elicit cytoprotective effects against NP exposure in Caco-2 cells, which were primarily influenced by the positions of the hydroxyl group. Polyphenols with different chemical structures variously influenced the hydrodynamic size, zeta potential, and solubility of ZnO NPs as well as NP-induced intracellular superoxide and Zn ions, which could all contribute to the combined effects. Responses of human endothelial cells appeared to be different from the responses of Caco-2 cells, which may indicate cell-type dependent responses to combined exposure of NPs and phytochemicals. In conclusion, the data from this study suggested a pivotal role of chemical structures of phytochemicals in determining their capacity to affect ZnO NP toxicity.
Collapse
Affiliation(s)
- Cao Zhang
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University , Xiangtan 411105, P.R. China
| | - Yining Li
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University , Xiangtan 411105, P.R. China
| | - Liangliang Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences , Changsha 410205, P.R. China
| | - Yu Gong
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University , Xiangtan 411105, P.R. China
| | - Yixi Xie
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University , Xiangtan 411105, P.R. China
| | - Yi Cao
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University , Xiangtan 411105, P.R. China
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences , Changsha 410205, P.R. China
| |
Collapse
|
102
|
Wąsik P, Redeker C, Dane TG, Seddon AM, Wu H, Briscoe WH. Hierarchical Surface Patterns upon Evaporation of a ZnO Nanofluid Droplet: Effect of Particle Morphology. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:1645-1654. [PMID: 29293357 DOI: 10.1021/acs.langmuir.7b03854] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Surface structures with tailored morphologies can be readily delivered by the evaporation-induced self-assembly process. It has been recently demonstrated that ZnO nanorods could undergo rapid chemical and morphological transformation into 3D complex structures of Zn(OH)2 nanofibers as a droplet of ZnO nanofluid dries on the substrate via a mechanism very different from that observed in the coffee ring effect. Here, we have investigated how the crystallinity and morphology of ZnO nanoparticles would affect the ultimate pattern formation. Three ZnO particles differing in size and shape were used, and their crystal structures were characterized by powder X-ray diffraction (XRD) and transmission electron microscopy (TEM). Their dispersions were prepared by sonication in a mixture of isobutylamine and cyclohexane. Residual surface patterns were created by drop casting a droplet of the nanofluid on a silicon substrate. The residual surface patterns were analyzed by scanning electron microscopy (SEM) and microfocus grazing incidence X-ray diffraction (μGIXRD). Nanofluid droplets of the in-house synthesized ZnO nanoparticles resulted in residual surface patterns consisting of Zn(OH)2 nanofibers. However, when commercially acquired ZnO powders composed of crystals with various shapes and sizes were used as the starting material, Zn(OH)2 fibers were found covered by ZnO crystal residues that did not fully undergo the dissolution and recrystallization process during evaporation. The difference in the solubility of ZnO nanoparticles was linked to the difference in their crystallinity, as assessed using the Scherrer equation analysis of their XRD Bragg peaks. Our results show that the morphology of the ultimate residual pattern from evaporation of ZnO nanofluids can be controlled by varying the crystallinity of the starting ZnO nanoparticles which affects the nanoparticle dissolution process during evaporation.
Collapse
Affiliation(s)
- Patryk Wąsik
- School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, U.K
| | - Christian Redeker
- School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, U.K
| | - Thomas G Dane
- The European Synchrotron (ESRF) 71, Avenue des Martyrs, Grenoble, France
| | | | - Hua Wu
- School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, U.K
| | - Wuge H Briscoe
- School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, U.K
| |
Collapse
|
103
|
Stebounova LV, Gonzalez-Pech NI, Peters TM, Grassian VH. Physicochemical properties of air discharge-generated manganese oxide nanoparticles: Comparison to welding fumes. ENVIRONMENTAL SCIENCE. NANO 2018; 2018:696-707. [PMID: 30519473 PMCID: PMC6275102 DOI: 10.1039/c7en01046j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Exposures to high doses of manganese (Mn) via inhalation, dermal contact or direct consumption can cause adverse health effects. Welding fumes are a major source of manganese containing nanoparticles in occupational settings. Understanding the physicochemical properties of manganese-containing nanoparticles can be a first step in understanding their toxic potential following exposure. In particular, here we compare the size, morphology and Mn oxidation states of Mn oxide nanoparticles generated in the laboratory by arc discharge to those from welding collected in heavy vehicle manufacturing. Fresh nanoparticles collected at the exit of the spark discharge generation chamber consisted of individual or small aggregates of primary particles. These nanoparticles were allowed to age in a chamber to form chain-like aggregates of primary particles with morphologies very similar to welding fumes. The primary particles were a mixture of hausmannite (Mn3O4), bixbyite (Mn2O3) and manganosite (MnO) phases, whereas aged samples revealed a more amorphous structure. Both Mn2+ and Mn3+, as in double valence stoichiometry present in Mn3O4, and Mn3+, as in Mn2O3 and MnOOH, were detected by X-ray photoelectron spectroscopy on the surface of the nanoparticles in the laboratory nanoparticles and welding fumes. Dissolution studies conducted for these two Mn samples (aged and fresh fume) reveal different release kinetics of Mn ions in artificial lysosomal fluid (pH 4.5) and very limited dissolution in Gamble's solution (pH 7.4). Taken together, these data suggest several important considerations for understanding the health effects of welding fumes. First, the method of particle generation affects the crystallinity and phase of the oxide. Second, welding fumes consist of multiple oxidation states whether they are amorphous or crystalline or occur as isolated nanoparticles or agglomerates. Third, although the dissolution behavior depends on conditions used for nanoparticle generation, the dissolution of Mn oxide nanoparticles in the lysosome may promote Mn ions translocation into various organs causing toxic effects.
Collapse
Affiliation(s)
- Larissa V Stebounova
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA
| | | | - Thomas M Peters
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA
| | - Vicki H Grassian
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA
- Scripps Institution of Oceanography and Department of Nanoengineering, University of California, La Jolla, CA
| |
Collapse
|
104
|
Fang X, Jiang L, Gong Y, Li J, Liu L, Cao Y. The presence of oleate stabilized ZnO nanoparticles (NPs) and reduced the toxicity of aged NPs to Caco-2 and HepG2 cells. Chem Biol Interact 2017; 278:40-47. [PMID: 28987328 DOI: 10.1016/j.cbi.2017.10.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/18/2017] [Accepted: 10/03/2017] [Indexed: 01/30/2023]
Abstract
The presence of food components may alter the colloidal aspects and toxicity of nanoparticles (NPs). In this study, the toxicity of ZnO NPs to Caco-2 and HepG2 cells was assessed, with the emphasis on the interactions between ZnO NPs and oleate (OA). The presence of OA increased UV-Vis spectra and hydrodynamic sizes, decreased Zeta potential, and markedly reduced the release of Zn ions from the dissolution of ZnO NPs, which combined indicated that OA could coat ZnO NPs and stabilize ZnO NPs. Exposure to ZnO NPs significantly induced cytotoxicity to Caco-2 and HepG2 cells, associated with increased intracellular Zn ions but not superoxide. When OA was added to the freshly prepared ZnO NP suspensions, the cytotoxicity, intracellular Zn ions and superoxide induced by ZnO NPs were not significantly affected. However, when ZnO NPs were aged for 24 h with the presence of OA, the cytotoxicity of ZnO NPs to Caco-2 and HepG2 cells was significantly reduced, associated with a reduction of intracellular Zn ions. The results from this study suggested that the presence of OA could increase colloidal stability of ZnO NPs and consequently reduce the toxicity of ZnO NPs after aging associated with reduced accumulation of intracellular Zn ions.
Collapse
Affiliation(s)
- Xin Fang
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Leying Jiang
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Yu Gong
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Juan Li
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Liangliang Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, PR China.
| | - Yi Cao
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China; Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, PR China.
| |
Collapse
|
105
|
Topuz B, Yurttas AS, Altunsoy A. Preparation of Al2O3 Supports for Thin Membrane Fabrication. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2017. [DOI: 10.18596/jotcsa.351708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
106
|
Amde M, Liu JF, Tan ZQ, Bekana D. Transformation and bioavailability of metal oxide nanoparticles in aquatic and terrestrial environments. A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 230:250-267. [PMID: 28662490 DOI: 10.1016/j.envpol.2017.06.064] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 06/09/2017] [Accepted: 06/19/2017] [Indexed: 05/24/2023]
Abstract
Metal oxide nanoparticles (MeO-NPs) are among the most consumed NPs and also have wide applications in various areas which increased their release into the environmental system. Aquatic (water and sediments) and terrestrial compartments are predicted to be the destination of the released MeO-NPs. In these compartments, the particles are subjected to various dynamic processes such as physical, chemical and biological processes, and undergo transformations which drive them away from their pristine state. These transformation pathways can have strong implications for the fate, transport, persistence, bioavailability and toxic-effects of the NPs. In this critical review, we provide the state-of-the-knowledge on the transformation processes and bioavailability of MeO-NPs in the environment, which is the topic of interest to researchers. We also recommend future research directions in the area which will support future risk assessments by enhancing our knowledge of the transformation and bioavailability of MeO-NPs.
Collapse
Affiliation(s)
- Meseret Amde
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing-Fu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhi-Qiang Tan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Deribachew Bekana
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
107
|
Transformation of CuO Nanoparticles in the Aquatic Environment: Influence of pH, Electrolytes and Natural Organic Matter. NANOMATERIALS 2017; 7:nano7100326. [PMID: 29036921 PMCID: PMC5666491 DOI: 10.3390/nano7100326] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 10/11/2017] [Accepted: 10/11/2017] [Indexed: 11/19/2022]
Abstract
Many studies have shown the effect of solution chemistry on the environmental behavior of metal-based nanoparticles (NPs), except CuO NPs. Here, we investigated the agglomeration, sedimentation, dissolution, and speciation of CuO NPs by varying pH, ionic strength, ionic valence, and natural organic matter (NOM). The results showed that as the pH moved away from 6, the size of CuO agglomerates decreased, along with the enhanced NP suspension stabilization, due to the increase of electrostatic repulsive force. Increasing ionic strength and valence intensified the agglomeration and sedimentation of CuO NPs because of the compression of electrical double layers. The presence of humic acid and citric acid enhanced the dispersion and stabilization of CuO NP suspension, but l-cysteine showed a different impact. Decreasing pH, increasing ionic strength and all NOM improved the dissolution of CuO NPs, but the divalent electrolyte (CaCl2) inhibited the Cu2+ release from CuO NPs compared to the monovalent electrolyte (NaCl). In addition, X-ray absorption near edge structure (XANES) analysis demonstrated that the presence of l-cysteine transformed more than 30% of CuO NPs to Cu(I)-cysteine by coordinating with thiol group. This study can give us an in-depth understanding on the environmental behavior and fate of CuO NPs in the aquatic environment.
Collapse
|
108
|
Shalini D, Senthilkumar S, Rajaguru P. Effect of size and shape on toxicity of zinc oxide (ZnO) nanomaterials in human peripheral blood lymphocytes. Toxicol Mech Methods 2017; 28:87-94. [DOI: 10.1080/15376516.2017.1366609] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- D. Shalini
- Department of Biotechnology, Anna University-BIT Campus, Tiruchirappalli, India
| | - S. Senthilkumar
- Department of Biotechnology, Anna University-BIT Campus, Tiruchirappalli, India
| | - P. Rajaguru
- Department of Biotechnology, Anna University-BIT Campus, Tiruchirappalli, India
| |
Collapse
|
109
|
Yang H, Wang C, Liu C, Chen H, Wu Y, Han J, Jia Z, Lin W, Zhang D, Li W, Yuan W, Guo H, Li H, Yang G, Kong D, Zhu D, Takashima K, Ruan L, Nie J, Li X, Zheng Y. Evolution of the degradation mechanism of pure zinc stent in the one-year study of rabbit abdominal aorta model. Biomaterials 2017; 145:92-105. [PMID: 28858721 DOI: 10.1016/j.biomaterials.2017.08.022] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/09/2017] [Accepted: 08/14/2017] [Indexed: 01/01/2023]
Abstract
In the present study, pure zinc stents were implanted into the abdominal aorta of rabbits for 12 months. Multiscale analysis including micro-CT, scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM) and histological stainings was performed to reveal the fundamental degradation mechanism of the pure zinc stent and its biocompatibility. The pure zinc stent was able to maintain mechanical integrity for 6 months and degraded 41.75 ± 29.72% of stent volume after 12 months implantation. No severe inflammation, platelet aggregation, thrombosis formation or obvious intimal hyperplasia was observed at all time points after implantation. The degradation of the zinc stent played a beneficial role in the artery remodeling and healing process. The evolution of the degradation mechanism of pure zinc stents with time was revealed as follows: Before endothelialization, dynamic blood flow dominated the degradation of pure zinc stent, creating a uniform corrosion mode; After endothelialization, the degradation of pure zinc stent depended on the diffusion of water molecules, hydrophilic solutes and ions which led to localized corrosion. Zinc phosphate generated in blood flow transformed into zinc oxide and small amounts of calcium phosphate during the conversion of degradation microenvironment. The favorable physiological degradation behavior makes zinc a promising candidate for future stent applications.
Collapse
Affiliation(s)
- Hongtao Yang
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Cong Wang
- Department of Interventional Radiology and Vascular Surgery, Peking University Third Hospital, Beijing, 100191, China
| | - Chaoqiang Liu
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China
| | - Houwen Chen
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China
| | - Yifan Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Jintao Han
- Department of Interventional Radiology and Vascular Surgery, Peking University Third Hospital, Beijing, 100191, China
| | - Zichang Jia
- Department of Interventional Radiology and Vascular Surgery, Peking University Third Hospital, Beijing, 100191, China
| | - Wenjiao Lin
- R&D Center, Lifetech Scientific (Shenzhen) Co Ltd, Shenzhen, 518057, China
| | - Deyuan Zhang
- R&D Center, Lifetech Scientific (Shenzhen) Co Ltd, Shenzhen, 518057, China
| | - Wenting Li
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Wei Yuan
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Hui Guo
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Huafang Li
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Guangxin Yang
- Department of Interventional Radiology and Vascular Surgery, Peking University Third Hospital, Beijing, 100191, China
| | - Deling Kong
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Donghui Zhu
- Department of Biomedical Engineering, College of Engineering, University of North Texas, Denton, TX 76207, USA
| | - Kazuki Takashima
- Department of Mechanical Engineering and Materials Science, Faculty of Engineering, Kumamoto University, 2-39-1 Kurokami, Kumamoto, 860-8555, Japan
| | - Liqun Ruan
- Department of Mechanical Systems Engineering, Graduate School of Science and Technology, Kumamoto University, Kurokami 2-39-1, Kumamoto-shi, 860-8555, Japan
| | - Jianfeng Nie
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China; Department of Materials Science and Engineering, Monash University, Victoria, 3800, Australia.
| | - Xuan Li
- Department of Interventional Radiology and Vascular Surgery, Peking University Third Hospital, Beijing, 100191, China.
| | - Yufeng Zheng
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, China; International Research Organization for Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-Ku, Kumamoto 860-8555, Japan.
| |
Collapse
|
110
|
Eixenberger JE, Anders CB, Hermann RJ, Brown RJ, Reddy KM, Punnoose A, Wingett DG. Rapid Dissolution of ZnO Nanoparticles Induced by Biological Buffers Significantly Impacts Cytotoxicity. Chem Res Toxicol 2017; 30:1641-1651. [PMID: 28693316 DOI: 10.1021/acs.chemrestox.7b00136] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Zinc oxide nanoparticles (nZnO) are one of the most highly produced nanomaterials and are used in numerous applications including cosmetics and sunscreens despite reports demonstrating their cytotoxicity. Dissolution is viewed as one of the main sources of nanoparticle (NP) toxicity; however, dissolution studies can be time-intensive to perform and complicated by issues such as particle separation from solution. Our work attempts to overcome some of these challenges by utilizing new methods using UV/vis and fluorescence spectroscopy to quantitatively assess nZnO dissolution in various biologically relevant solutions. All biological buffers tested induce rapid dissolution of nZnO. These buffers, including HEPES, MOPS, and PIPES, are commonly used in cell culture media, cellular imaging solutions, and to maintain physiological pH. Additional studies using X-ray diffraction, FT-IR, X-ray photoelectron spectroscopy, ICP-MS, and TEM were performed to understand how the inclusion of these nonessential media components impacts the behavior of nZnO in RPMI media. From these assessments, we demonstrate that HEPES causes increased dissolution kinetics, boosts the conversion of nZnO into zinc phosphate/carbonate, and, interestingly, alters the structural morphology of the complex precipitates formed with nZnO in cell culture conditions. Cell viability experiments demonstrated that the inclusion of these buffers significantly decrease the viability of Jurkat leukemic cells when challenged with nZnO. This work demonstrates that biologically relevant buffering systems dramatically impact the dynamics of nZnO including dissolution kinetics, morphology, complex precipitate formation, and toxicity profiles.
Collapse
Affiliation(s)
- Josh E Eixenberger
- Biomolecular Sciences Graduate Program, ‡Department of Physics, §Biomolecular Research Center, and ⊥Department of Biological Sciences, Boise State University , Boise, Idaho 83725, United States
| | - Catherine B Anders
- Biomolecular Sciences Graduate Program, ‡Department of Physics, §Biomolecular Research Center, and ⊥Department of Biological Sciences, Boise State University , Boise, Idaho 83725, United States
| | - Rebecca J Hermann
- Biomolecular Sciences Graduate Program, ‡Department of Physics, §Biomolecular Research Center, and ⊥Department of Biological Sciences, Boise State University , Boise, Idaho 83725, United States
| | - Raquel J Brown
- Biomolecular Sciences Graduate Program, ‡Department of Physics, §Biomolecular Research Center, and ⊥Department of Biological Sciences, Boise State University , Boise, Idaho 83725, United States
| | - Kongara M Reddy
- Biomolecular Sciences Graduate Program, ‡Department of Physics, §Biomolecular Research Center, and ⊥Department of Biological Sciences, Boise State University , Boise, Idaho 83725, United States
| | - Alex Punnoose
- Biomolecular Sciences Graduate Program, ‡Department of Physics, §Biomolecular Research Center, and ⊥Department of Biological Sciences, Boise State University , Boise, Idaho 83725, United States
| | - Denise G Wingett
- Biomolecular Sciences Graduate Program, ‡Department of Physics, §Biomolecular Research Center, and ⊥Department of Biological Sciences, Boise State University , Boise, Idaho 83725, United States
| |
Collapse
|
111
|
Sathe P, Laxman K, Myint MTZ, Dobretsov S, Richter J, Dutta J. Bioinspired nanocoatings for biofouling prevention by photocatalytic redox reactions. Sci Rep 2017; 7:3624. [PMID: 28620218 PMCID: PMC5472575 DOI: 10.1038/s41598-017-03636-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 05/02/2017] [Indexed: 12/13/2022] Open
Abstract
Aquaculture is a billion dollar industry and biofouling of aquaculture installations has heavy economic penalties. The natural antifouling (AF) defence mechanism of some seaweed that inhibits biofouling by production of reactive oxygen species (ROS) inspired us to mimic this process by fabricating ZnO photocatalytic nanocoating. AF activity of fishing nets modified with ZnO nanocoating was compared with uncoated nets (control) and nets painted with copper-based AF paint. One month experiment in tropical waters showed that nanocoatings reduce abundances of microfouling organisms by 3-fold compared to the control and had higher antifouling performance over AF paint. Metagenomic analysis of prokaryotic and eukaryotic fouling organisms using next generation sequencing platform proved that nanocoatings compared to AF paint were not selectively enriching communities with the resistant and pathogenic species. The proposed bio-inspired nanocoating is an important contribution towards environmentally friendly AF technologies for aquaculture.
Collapse
Affiliation(s)
- Priyanka Sathe
- Department of Marine Science & Fisheries, College of Agricultural & Marine Sciences, Sultan Qaboos University, P.O. Box 34, Al Khoud, 123, Sultanate of Oman
- Chair in Nanotechnology, Water Research Center, Sultan Qaboos University, P.O. Box 17, Al Khoud, 123, Sultanate of Oman
| | - Karthik Laxman
- Functional Materials Division, Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Isafjordsgatan 22, SE-164 40, Kista Stockholm, Sweden
| | - Myo Tay Zar Myint
- Department of Physics, College of Science, Sultan Qaboos University, PO Box 36, Al Khoudh, Muscat, 123, Sultanate of Oman
| | - Sergey Dobretsov
- Department of Marine Science & Fisheries, College of Agricultural & Marine Sciences, Sultan Qaboos University, P.O. Box 34, Al Khoud, 123, Sultanate of Oman.
- Center of Excellence in Marine Biotechnology, Sultan Qaboos University, P.O. Box, 50 Al Khoud, 123, Sultanate of Oman.
| | - Jutta Richter
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Ammerländer Heerstraße 114, 26129, Oldenburg, Germany
| | - Joydeep Dutta
- Functional Materials Division, Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Isafjordsgatan 22, SE-164 40, Kista Stockholm, Sweden.
| |
Collapse
|
112
|
Wan B, Yan Y, Tang Y, Bai Y, Liu F, Tan W, Huang Q, Feng X. Effects of polyphosphates and orthophosphate on the dissolution and transformation of ZnO nanoparticles. CHEMOSPHERE 2017; 176:255-265. [PMID: 28273533 DOI: 10.1016/j.chemosphere.2017.02.134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 02/11/2017] [Accepted: 02/25/2017] [Indexed: 06/06/2023]
Abstract
The fate and toxicity of zinc oxide nanoparticles (ZnO NPs) in nature are affected by solution chemistry such as pH, anions, and natural organic matter (NOM). Inorganic polyphosphates are environmentally ubiquitous phosphorus (P) species that may change the speciation and environmental fate of ZnO NPs. In this study, the interactions of polyphosphates with ZnO NPs and the impacts on ZnO NP dissolution and transformation were investigated and compared with orthophosphate (P1). The results revealed that pyrophosphate (P2), tripolyphosphate (P3), and hexametaphosphate (P6) enhanced whereas P1 inhibited the dissolution of ZnO NPs. In addition, P1, P2, and P3 promoted the transformation of ZnO NPs into zinc phosphate (Zn-P) precipitates via interactions with dissolved Zn2+. However, P6-promoted ZnO NP dissolution was through the formation of soluble Zn-P complexes due to the strong capability of P6 to chelate with Zn2+. The transformation of ZnO NPs in the presence of P3 was affected by reaction time, pH, and P/Zn molar ratio. P3 first formed inner-sphere surface complexes on ZnO NPs, which gradually transformed into crystalline Zn2HP3O10(H2O)6 precipitates. This study provided a new perspective for understanding the reactivity of various forms of inorganic phosphate species with ZnO NPs in the natural environment.
Collapse
Affiliation(s)
- Biao Wan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yupeng Yan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuanzhi Tang
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, 311 Ferst Dr, Atlanta, GA 30324-0340, USA
| | - Yuge Bai
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fan Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenfeng Tan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiaoyun Huang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xionghan Feng
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
113
|
Michaelis M, Fischer C, Colombi Ciacchi L, Luttge A. Variability of Zinc Oxide Dissolution Rates. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:4297-4305. [PMID: 28318244 DOI: 10.1021/acs.est.6b05732] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Zinc oxide (ZnO) is of widespread use for numerous applications, including many in the cosmetic industry. Thus, ZnO particles are quite likely to enter the environment. ZnO may be harmful because of the release of cytotoxic Zn2+ ions during dissolution reactions. Here, we analyze the dissolution kinetics of the polar zinc-terminated (000-1) and nonpolar (10-10) crystal surfaces in ultrapure water to examine the impact of the crystal defects on dissolution. By using a complementary approach of atomic force microscopy and vertical scanning interferometry, we quantify the difference in reaction rate between the crystal faces, the overall range of rate variability, and the rate components that combine to an overall rate. The mean dissolution rate of the (000-1) crystal surface is more than 4 times that of the (10-10) surface. By using the rate spectrum analysis, we observed an overall dissolution rate variability of more than 1 order of magnitude. The rate components and the range of dissolution rate are important input parameters in reactive transport models for the prediction of potential release of Zn2+ into the environment.
Collapse
Affiliation(s)
- Monika Michaelis
- Hybrid Materials Interfaces Group, Faculty of Production Engineering, Bremen Center for Computational Materials Science (BCCMS), and Center for Environmental Research and Sustainable Technology (UFT), University of Bremen , Am Fallturm 1, 28359 Bremen, Germany
| | - Cornelius Fischer
- Marum & Fachbereich Geowissenschaften, Universität Bremen , Klagenfurter Straße, 28359 Bremen, Germany
| | - Lucio Colombi Ciacchi
- Hybrid Materials Interfaces Group, Faculty of Production Engineering, Bremen Center for Computational Materials Science (BCCMS), and Center for Environmental Research and Sustainable Technology (UFT), University of Bremen , Am Fallturm 1, 28359 Bremen, Germany
- MAPEX Center for Materials and Processes, University of Bremen , 28359 Bremen, Germany
| | - Andreas Luttge
- Marum & Fachbereich Geowissenschaften, Universität Bremen , Klagenfurter Straße, 28359 Bremen, Germany
- MAPEX Center for Materials and Processes, University of Bremen , 28359 Bremen, Germany
- Earth Science Department, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
114
|
Arciniegas-Grijalba PA, Patiño-Portela MC, Mosquera-Sánchez LP, Guerrero-Vargas JA, Rodríguez-Páez JE. ZnO nanoparticles (ZnO-NPs) and their antifungal activity against coffee fungus Erythricium salmonicolor. APPLIED NANOSCIENCE 2017. [DOI: 10.1007/s13204-017-0561-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
115
|
Xiaoli F, Junrong W, Xuan L, Yanli Z, Limin W, Jia L, Longquan S. Prenatal exposure to nanosized zinc oxide in rats: neurotoxicity and postnatal impaired learning and memory ability. Nanomedicine (Lond) 2017; 12:777-795. [PMID: 28322126 DOI: 10.2217/nnm-2016-0397] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
AIM To examine the neurotoxicity of prenatal exposure to ZnO nanoparticles on rat offspring. MATERIALS & METHODS Pregnant Sprague-Dawley rats were exposed to ZnO nanoparticles (NPs) by gavage. Toxicity was assessed including zinc biodistribution, cerebral histopathology, antioxidant status and learning and memory capability. RESULTS A significantly elevated concentration of zinc was detected in offspring brains. Transmission electron microscope observations showed abnormal neuron ultrastructures. Histopathologic changes such as decreased proliferation and higher apoptotic death were observed. An obvious imbalanced antioxidant status occurred in brains. Adult experimental offspring exhibited impaired learning and memory behavior in the Morris water maze test compared with control groups. CONCLUSION These adverse effects on offspring brain may cause impaired learning and memory capabilities in adulthood, particularly in female rats.
Collapse
Affiliation(s)
- Feng Xiaoli
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wu Junrong
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Lai Xuan
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhang Yanli
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wei Limin
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Liu Jia
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Shao Longquan
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
116
|
Gao X, Spielman-Sun E, Rodrigues SM, Casman EA, Lowry GV. Time and Nanoparticle Concentration Affect the Extractability of Cu from CuO NP-Amended Soil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:2226-2234. [PMID: 28106997 DOI: 10.1021/acs.est.6b04705] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We assess the effect of CuO nanoparticle (NP) concentration and soil aging time on the extractability of Cu from a standard sandy soil (Lufa 2.1). The soil was dosed with CuO NPs or Cu(NO3)2 at 10 mg/kg or 100 mg/kg of total added Cu, and then extracted using either 0.01 M CaCl2 or 0.005 M diethylenetriaminepentaacetic acid (DTPA) (pH 7.6) extraction fluid at selected times over 31 days. For the high dose of CuO NPs, the amount of DTPA-extractable Cu in soil increased from 3 wt % immediately after mixing to 38 wt % after 31 days. In contrast, the extractability of Cu(NO3)2 was highest initially, decreasing with time. The increase in extractability was attributed to dissolution of CuO NPs in the soil. This was confirmed with synchrotron X-ray absorption near edge structure measurements. The CuO NP dissolution kinetics were modeled by a first-order dissolution model. Our findings indicate that dissolution, concentration, and aging time are important factors that influence Cu extractability in CuO NP-amended soil and suggest that a time-dependent series of extractions could be developed as a functional assay to determine the dissolution rate constant.
Collapse
Affiliation(s)
- Xiaoyu Gao
- Department of Civil and Environmental Engineering, Carnegie Mellon University , Pittsburgh, Pennsylvania 15213, United States
- Center for Environmental Implications of NanoTechnology (CEINT), Carnegie Mellon University , Pittsburgh, Pennsylvania 15213, United States
| | - Eleanor Spielman-Sun
- Department of Civil and Environmental Engineering, Carnegie Mellon University , Pittsburgh, Pennsylvania 15213, United States
- Center for Environmental Implications of NanoTechnology (CEINT), Carnegie Mellon University , Pittsburgh, Pennsylvania 15213, United States
| | - Sónia M Rodrigues
- Centre for Environmental and Marine Studies (CESAM), Department of Chemistry, Universidade de Aveiro , 3810-193 Aveiro, Portugal
| | - Elizabeth A Casman
- Center for Environmental Implications of NanoTechnology (CEINT), Carnegie Mellon University , Pittsburgh, Pennsylvania 15213, United States
- Department of Engineering and Public Policy, Carnegie Mellon University , Pittsburgh, Pennsylvania 15213, United States
| | - Gregory V Lowry
- Department of Civil and Environmental Engineering, Carnegie Mellon University , Pittsburgh, Pennsylvania 15213, United States
- Center for Environmental Implications of NanoTechnology (CEINT), Carnegie Mellon University , Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
117
|
Jia J, Li F, Zhai S, Zhou H, Liu S, Jiang G, Yan B. Susceptibility of Overweight Mice to Liver Injury as a Result of the ZnO Nanoparticle-Enhanced Liver Deposition of Pb 2. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:1775-1784. [PMID: 28068759 DOI: 10.1021/acs.est.6b05200] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The prevalence of the applications of nanomaterials in consumer products and water treatment facilities increases the chance that humans will be exposed to both nanoparticles and environmental pollutants such as heavy metals. Co-exposure to nanoparticles and heavy metals may adversely affect human health, especially in susceptible populations such as overweight subjects. To evaluate the impact of such co-exposures, we orally administered zinc oxide nanoparticles (ZNPs; 14 or 58 nm) and/or Pb(Ac)2 at tolerable doses to both healthy overweight and healthy normal weight mice. The ZNPs enhanced the deposition of Pb in all major organs in the overweight mice compared with that in the normal mice. As a result, higher levels of hepatic reactive oxygen species, pro-inflammatory cytokines, and liver injury were observed in the overweight mice but not in the normal weight mice. Our findings underscore a potentially enhanced risk of nanoparticle/heavy metal co-exposure in the susceptible overweight population.
Collapse
Affiliation(s)
- Jianbo Jia
- School of Chemistry and Chemical Engineering, Shandong University , Jinan 250100, P. R. China
| | - Feifei Li
- School of Chemistry and Chemical Engineering, Shandong University , Jinan 250100, P. R. China
| | - Shumei Zhai
- School of Chemistry and Chemical Engineering, Shandong University , Jinan 250100, P. R. China
| | - Hongyu Zhou
- School of Environment, Jinan University , Guangzhou 510632, P. R. China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, P. R. China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, P. R. China
| | - Bing Yan
- School of Chemistry and Chemical Engineering, Shandong University , Jinan 250100, P. R. China
- School of Environment, Jinan University , Guangzhou 510632, P. R. China
| |
Collapse
|
118
|
Behavior and Potential Impacts of Metal-Based Engineered Nanoparticles in Aquatic Environments. NANOMATERIALS 2017; 7:nano7010021. [PMID: 28336855 PMCID: PMC5295211 DOI: 10.3390/nano7010021] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/07/2017] [Accepted: 01/17/2017] [Indexed: 01/29/2023]
Abstract
The specific properties of metal-based nanoparticles (NPs) have not only led to rapidly increasing applications in various industrial and commercial products, but also caused environmental concerns due to the inevitable release of NPs and their unpredictable biological/ecological impacts. This review discusses the environmental behavior of metal-based NPs with an in-depth analysis of the mechanisms and kinetics. The focus is on knowledge gaps in the interaction of NPs with aquatic organisms, which can influence the fate, transport and toxicity of NPs in the aquatic environment. Aggregation transforms NPs into micrometer-sized clusters in the aqueous environment, whereas dissolution also alters the size distribution and surface reactivity of metal-based NPs. A unique toxicity mechanism of metal-based NPs is related to the generation of reactive oxygen species (ROS) and the subsequent ROS-induced oxidative stress. Furthermore, aggregation, dissolution and ROS generation could influence each other and also be influenced by many factors, including the sizes, shapes and surface charge of NPs, as well as the pH, ionic strength, natural organic matter and experimental conditions. Bioaccumulation of NPs in single organism species, such as aquatic plants, zooplankton, fish and benthos, is summarized and compared. Moreover, the trophic transfer and/or biomagnification of metal-based NPs in an aquatic ecosystem are discussed. In addition, genetic effects could result from direct or indirect interactions between DNA and NPs. Finally, several challenges facing us are put forward in the review.
Collapse
|
119
|
Peng YH, Tsai YC, Hsiung CE, Lin YH, Shih YH. Influence of water chemistry on the environmental behaviors of commercial ZnO nanoparticles in various water and wastewater samples. JOURNAL OF HAZARDOUS MATERIALS 2017; 322:348-356. [PMID: 27773444 DOI: 10.1016/j.jhazmat.2016.10.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 09/29/2016] [Accepted: 10/01/2016] [Indexed: 05/21/2023]
Abstract
Zinc oxide nanoparticles (ZnO NPs) are widely used nanomaterials and their environmental impacts have received increasing attention. The fate and toxicity of ZnO NPs in the environment are determined by their stability and dissolution. In this study, the influence of water chemistry on aggregation, sedimentation, and dissolution of ZnO NPs was investigated. The stabilized ZnO NPs aggregated and precipitated when the aqueous pH closed to their zero point of charge (pHzpc). Counter-ions neutralized the surface charge of NPs and promoted their destabilization. However, a high concentration of counter-ion (SO42-, >10meq/L) made the NPs more stable because of the inverted surface potential. The stability of ZnO NPs was maintained by high concentration of Suwannee River humic acid (SRHA, 10mg/L) even the concentration of electrolytes was high. The influence of water chemistry on the stability and dissolution of ZnO NPs was further demonstrated in different wastewaters. In one wastewater sample, ZnO NPs was unexpectedly stable and with a high dissolution, which was due to the effects of pH value, organic matter concentration, as well as the concentration of counter ions. Our findings facilitate the predictions of the fate of stabilized ZnO NPs in the environment.
Collapse
Affiliation(s)
- Yu-Huei Peng
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan, ROC
| | - Yi-Chun Tsai
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan, ROC
| | - Chia-En Hsiung
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan, ROC
| | - Yi-Hsuan Lin
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan, ROC
| | - Yang-Hsin Shih
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan, ROC.
| |
Collapse
|
120
|
Zhou Q, Wen JZ, Zhao P, Anderson WA. Synthesis of Vertically-Aligned Zinc Oxide Nanowires and Their Application as a Photocatalyst. NANOMATERIALS (BASEL, SWITZERLAND) 2017; 7:E9. [PMID: 28336843 PMCID: PMC5295199 DOI: 10.3390/nano7010009] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 12/23/2016] [Accepted: 12/29/2016] [Indexed: 11/16/2022]
Abstract
Vertically aligned zinc oxide (ZnO) nanowires were hydrothermally synthesized on a glass substrate with the assistance of a pre-coated ZnO seeding layer. The crystalline structure, morphology and transmission spectrum of the as-synthesized sample were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), and ultraviolet-visible (UV-Vis) spectrophotometry, respectively, indicating a wurzite ZnO material of approximately 100 nm wire diameter and absorbance at 425 nm and lower wavelengths. The photocatalytic activity of the sample was tested via the degradation of methyl orange in aqueous solution under UV-A irradiation. The synthesized nanowires showed a high photocatalytic activity, which increased up to 90% degradation in 2 h as pH was increased to 12. It was shown that the photocatalytic activity of the nanowires was proportional to the length to diameter ratio of the nanowires, which was in turn controlled by the growth time and grain size of the seed layer. Estimates suggest that diffusion into the regions between nanowires may be significantly hindered. Finally, the reusability of the prepared ZnO nanowire samples was also investigated, with results showing that the nanowires still showed 97% of its original photoactivity after ten cycles of use.
Collapse
Affiliation(s)
- Qiong Zhou
- Department of Mechanical & Mechatronics Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| | - John Z Wen
- Department of Mechanical & Mechatronics Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| | - Pei Zhao
- Department of Mechanical & Mechatronics Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| | - William A Anderson
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
121
|
Moise S, Céspedes E, Soukup D, Byrne JM, El Haj AJ, Telling ND. The cellular magnetic response and biocompatibility of biogenic zinc- and cobalt-doped magnetite nanoparticles. Sci Rep 2017; 7:39922. [PMID: 28045082 PMCID: PMC5206667 DOI: 10.1038/srep39922] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/28/2016] [Indexed: 12/18/2022] Open
Abstract
The magnetic moment and anisotropy of magnetite nanoparticles can be optimised by doping with transition metal cations, enabling their properties to be tuned for different biomedical applications. In this study, we assessed the suitability of bacterially synthesized zinc- and cobalt-doped magnetite nanoparticles for biomedical applications. To do this we measured cellular viability and activity in primary human bone marrow-derived mesenchymal stem cells and human osteosarcoma-derived cells. Using AC susceptibility we studied doping induced changes in the magnetic response of the nanoparticles both as stable aqueous suspensions and when associated with cells. Our findings show that the magnetic response of the particles was altered after cellular interaction with a reduction in their mobility. In particular, the strongest AC susceptibility signal measured in vitro was from cells containing high-moment zinc-doped particles, whilst no signal was observed in cells containing the high-anisotropy cobalt-doped particles. For both particle types we found that the moderate dopant levels required for optimum magnetic properties did not alter their cytotoxicity or affect osteogenic differentiation of the stem cells. Thus, despite the known cytotoxicity of cobalt and zinc ions, these results suggest that iron oxide nanoparticles can be doped to sufficiently tailor their magnetic properties without compromising cellular biocompatibility.
Collapse
Affiliation(s)
- Sandhya Moise
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
- Institute for Science and Technology in Medicine (ISTM), Keele University, Stoke-on-Trent ST4 7QB, United Kingdom
| | - Eva Céspedes
- Institute for Science and Technology in Medicine (ISTM), Keele University, Stoke-on-Trent ST4 7QB, United Kingdom
- IMDEA Nanociencia, Ciudad Universitaria de Cantoblanco, Madrid 28049, Spain
| | - Dalibor Soukup
- Institute for Science and Technology in Medicine (ISTM), Keele University, Stoke-on-Trent ST4 7QB, United Kingdom
| | - James M. Byrne
- Centre for Applied Geoscience (ZAG), University of Tuebingen, Tuebingen 72076, Germany
| | - Alicia J. El Haj
- Institute for Science and Technology in Medicine (ISTM), Keele University, Stoke-on-Trent ST4 7QB, United Kingdom
| | - Neil D. Telling
- Institute for Science and Technology in Medicine (ISTM), Keele University, Stoke-on-Trent ST4 7QB, United Kingdom
| |
Collapse
|
122
|
Tokumasu K, Harada M, Okada T. Freezing‐Facilitated Dehydration Allowing Deposition of ZnO from Aqueous Electrolyte. Chemphyschem 2017; 18:329-333. [DOI: 10.1002/cphc.201601192] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Kouki Tokumasu
- Department of Chemistry Tokyo Institute of Technology Meguro-ku Tokyo 152–8551 Japan
| | - Makoto Harada
- Department of Chemistry Tokyo Institute of Technology Meguro-ku Tokyo 152–8551 Japan
| | - Tetsuo Okada
- Department of Chemistry Tokyo Institute of Technology Meguro-ku Tokyo 152–8551 Japan
| |
Collapse
|
123
|
Avramescu ML, Rasmussen PE, Chénier M, Gardner HD. Influence of pH, particle size and crystal form on dissolution behaviour of engineered nanomaterials. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:1553-1564. [PMID: 27785722 PMCID: PMC5306302 DOI: 10.1007/s11356-016-7932-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 10/17/2016] [Indexed: 05/22/2023]
Abstract
Solubility is a critical component of physicochemical characterisation of engineered nanomaterials (ENMs) and an important parameter in their risk assessments. Standard testing methodologies are needed to estimate the dissolution behaviour and biodurability (half-life) of ENMs in biological fluids. The effect of pH, particle size and crystal form on dissolution behaviour of zinc metal, ZnO and TiO2 was investigated using a simple 2 h solubility assay at body temperature (37 °C) and two pH conditions (1.5 and 7) to approximately frame the pH range found in human body fluids. Time series dissolution experiments were then conducted to determine rate constants and half-lives. Dissolution characteristics of investigated ENMs were compared with those of their bulk analogues for both pH conditions. Two crystal forms of TiO2 were considered: anatase and rutile. For all compounds studied, and at both pH conditions, the short solubility assays and the time series experiments consistently showed that biodurability of the bulk analogues was equal to or greater than biodurability of the corresponding nanomaterials. The results showed that particle size and crystal form of inorganic ENMs were important properties that influenced dissolution behaviour and biodurability. All ENMs and bulk analogues displayed significantly higher solubility at low pH than at neutral pH. In the context of classification and read-across approaches, the pH of the dissolution medium was the key parameter. The main implication is that pH and temperature should be specified in solubility testing when evaluating ENM dissolution in human body fluids, even for preliminary (tier 1) screening.
Collapse
Affiliation(s)
- M-L Avramescu
- Environmental Health Science and Research Bureau, HECSB, Health Canada, 50 Colombine Driveway, Tunney's Pasture 0803C, Ottawa, ON, K1A 0K9, Canada
| | - P E Rasmussen
- Environmental Health Science and Research Bureau, HECSB, Health Canada, 50 Colombine Driveway, Tunney's Pasture 0803C, Ottawa, ON, K1A 0K9, Canada.
- Earth and Environmental Sciences Department, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
| | - M Chénier
- Environmental Health Science and Research Bureau, HECSB, Health Canada, 50 Colombine Driveway, Tunney's Pasture 0803C, Ottawa, ON, K1A 0K9, Canada
| | - H D Gardner
- Environmental Health Science and Research Bureau, HECSB, Health Canada, 50 Colombine Driveway, Tunney's Pasture 0803C, Ottawa, ON, K1A 0K9, Canada
- Earth and Environmental Sciences Department, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| |
Collapse
|
124
|
TORBATI S, KHATAEE A, SAADI S. Comparative phytotoxicity of undoped and Er-doped ZnO nanoparticles onLemna minor L.: changes in plant physiological responses. Turk J Biol 2017. [DOI: 10.3906/biy-1611-27] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
125
|
Lee JA, Kim MK, Song JH, Jo MR, Yu J, Kim KM, Kim YR, Oh JM, Choi SJ. Biokinetics of food additive silica nanoparticles and their interactions with food components. Colloids Surf B Biointerfaces 2016; 150:384-392. [PMID: 27842933 DOI: 10.1016/j.colsurfb.2016.11.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/31/2016] [Accepted: 11/01/2016] [Indexed: 11/16/2022]
Abstract
Nanomaterials have been widely utilized in the food industry in production, packaging, sensors, nutrient delivery systems, and food additives. However, research on the interactions between food-grade nanoparticles and biomolecules as well as their potential toxicity is limited. In the present study, the in vivo solubility, oral absorption, tissue distribution, and excretion kinetics of one of the most extensively used food additives, silica (SiO2) were evaluated with respect to particle size (nano vs bulk) following single-dose oral administration to rats. Intestinal transport mechanism was investigated using a 3D culture system, in vitro model of human intestinal follicle-associated epithelium (FAE). The effect of the presence of food components, such as sugar and protein, on the oral absorption of nanoparticles was also evaluated with focus on their interactions. The results obtained demonstrated that the oral absorption of nanoparticles (3.94±0.38%) was greater than that of bulk materials (2.95±0.37%), possibly due to intestinal transport by microfold (M) cells. On the other hand, particle size was found to have no significant effect on in vivo dissolution property, biodistribution, or excretion kinetics. Oral absorption profile of silica nanoparticles was highly dependent on the presence of sugar or protein, showing rapid absorption rate in glucose, presumably due to their surface interaction on nanoparticles. These findings will be useful for predicting the potential toxicity of food-grade nanoparticles and for understanding biological interactions.
Collapse
Affiliation(s)
- Jeong-A Lee
- Department of Applied Food System, Major of Food Science and Technology, Seoul Women's University, Seoul 01797, Republic of Korea
| | - Mi-Kyung Kim
- Department of Applied Food System, Major of Food Science and Technology, Seoul Women's University, Seoul 01797, Republic of Korea
| | - Jae Ho Song
- Department of Chemistry and Medical Chemistry, College of Science and Technology, Yonsei University, Wonju, Gangwondo 26493, Republic of Korea
| | - Mi-Rae Jo
- Department of Applied Food System, Major of Food Science and Technology, Seoul Women's University, Seoul 01797, Republic of Korea
| | - Jin Yu
- Department of Applied Food System, Major of Food Science and Technology, Seoul Women's University, Seoul 01797, Republic of Korea
| | - Kyoung-Min Kim
- Department of Chemistry and Medical Chemistry, College of Science and Technology, Yonsei University, Wonju, Gangwondo 26493, Republic of Korea
| | - Young-Rok Kim
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea.
| | - Jae-Min Oh
- Department of Chemistry and Medical Chemistry, College of Science and Technology, Yonsei University, Wonju, Gangwondo 26493, Republic of Korea.
| | - Soo-Jin Choi
- Department of Applied Food System, Major of Food Science and Technology, Seoul Women's University, Seoul 01797, Republic of Korea.
| |
Collapse
|
126
|
Kim S, Chae Y, Kang Y, An YJ, Yoon Y. Assessing the toxicity and the dissolution rate of zinc oxide nanoparticles using a dual-color Escherichia coli whole-cell bioreporter. CHEMOSPHERE 2016; 163:429-437. [PMID: 27565310 DOI: 10.1016/j.chemosphere.2016.08.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/26/2016] [Accepted: 08/05/2016] [Indexed: 06/06/2023]
Abstract
Particle toxicity and metal ions from the dissolution of metallic nanoparticles (NPs) can have environmentally toxic effects. Among the diverse metallic NPs, four types of zinc oxide NPs (ZnO-NPs)-two spherical (diameters <50 nm and <100 nm) and two wire (50 nm × 300 nm and 90 nm × 1000 nm) shaped-were examined using dual-color whole-cell bioreporters (WCBs) to elucidate the relationships among size, shape, and toxicity. The amount of Zn(II) ions dissolved from NPs was determined by measuring mCherry expression because the presence of Zn(II) ions induced the expression of mCherry from pZnt-mCherry in dual-color WCBs. The overall toxic effects were assessed by measuring Escherichia coli cell growth. The toxic effect on cell growth was determined by measuring the expression of eGFP from the dual-color WCBs to avoid interferences in the signal acquisition caused by inseparable NPs. The novel approach demonstrated here used dual-color WCBs to simultaneously assess the toxicity of ZnONPs on E. coli and the dissolution rates of ZnO-NPs. Toxicity varied depending upon the size and shape of the ZnONPs. The dissolution rate did not vary significantly according to size and shape; smaller sizes and wire shapes showed higher toxicity. Therefore, the physical properties of ZnONPs play a role in the overall toxic effect as well as dissolved Zn(II) ions.
Collapse
Affiliation(s)
- Sunghoon Kim
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Yooeun Chae
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Yerin Kang
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Youn-Joo An
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Youngdae Yoon
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea.
| |
Collapse
|
127
|
Yang L, Kuang H, Liu Y, Xu H, Aguilar ZP, Xiong Y, Wei H. Mechanism of enhanced antibacterial activity of ultra-fine ZnO in phosphate buffer solution with various organic acids. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 218:863-869. [PMID: 27524254 DOI: 10.1016/j.envpol.2016.08.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 07/31/2016] [Accepted: 08/04/2016] [Indexed: 06/06/2023]
Abstract
Ultra-fine-ZnO showed low toxicity in complex water matrix containing multiple components such as PBS buffer and the toxic mechanism of ultra-fine-ZnO has not been clearly elucidated. In present study, enhanced antibacterial activity of 200 nm diameter ultra-fine-ZnO in PBS buffer against Bacillus cereus and Escherichia coli were observed in the presence of several organic acids in comparison with ultra-fine-ZnO in PBS buffer alone. These findings indicated that the toxic effects of the ultra-fine-ZnO was dependent on the concentration of released Zn2+ which was affected by organic acids. The production of reactive oxygen species (ROS) did not responsible to the toxic mechanism of ultra-fine-ZnO which was tested using the antioxidant N-Acetylcysteine (NAC). Indeed, ultra-fine-ZnO induced bacteria cell membrane leakages and cell morphology damages that eventually led to cell death, which were confirmed using propidium monoazide (PMA) in combination with PCR and scanning electron microscopy (SEM). All data gathered herein suggested that released Zn2+ played a major role in the microbial toxicity of ultra-fine-ZnO.
Collapse
Affiliation(s)
- Lin Yang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Huijuan Kuang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yingxia Liu
- Center of Analysis and Testing of Nanchang University, Nanchang 330047, China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | | | - Yonghua Xiong
- Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Hua Wei
- Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
128
|
Wilke CM, Tong T, Gaillard JF, Gray KA. Attenuation of Microbial Stress Due to Nano-Ag and Nano-TiO 2 Interactions under Dark Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:11302-11310. [PMID: 27635658 DOI: 10.1021/acs.est.6b02271] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Engineered nanomaterials (ENMs) are incorporated into thousands of commercial products, and their release into environmental systems creates complex mixtures with unknown toxicological outcomes. To explore this scenario, we probe the chemical and toxicological interactions of nanosilver (n-Ag) and nanotitania (n-TiO2) in Lake Michigan water, a natural aqueous medium, under dark conditions. We find that the presence of n-Ag induces a stress response in Escherichia coli, as indicated by a decrease in ATP production observed at low concentrations (in the μg L-1 range), with levels that are environmentally relevant. However, when n-Ag and n-TiO2 are present together in a mixture, n-TiO2 attenuates the toxicity of n-Ag at and below 20 μg L-1 by adsorbing Ag+(aq). We observe, however, that toxic stress cannot be explained by dissolved silver concentrations alone and, therefore, must also depend on silver associated with the nanoscale fraction. Although the attenuating effect of n-TiO2 on n-Ag's toxicity is limited, this study emphasizes the importance of probing the toxicity of ENM mixtures under environmental conditions to assess how chemical interactions between nanoparticles change the toxicological effects of single ENMs in unexpected ways.
Collapse
Affiliation(s)
- Carolyn M Wilke
- Department of Civil and Environmental Engineering, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Tiezheng Tong
- Department of Civil and Environmental Engineering, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Jean-François Gaillard
- Department of Civil and Environmental Engineering, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Kimberly A Gray
- Department of Civil and Environmental Engineering, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
129
|
Kocsis K, Niedermaier M, Bernardi J, Berger T, Diwald O. Changing interfaces: Photoluminescent ZnO nanoparticle powders in different aqueous environments. SURFACE SCIENCE 2016; 652:253-260. [PMID: 32903287 PMCID: PMC7116034 DOI: 10.1016/j.susc.2016.02.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We transformed vapor phase grown ZnO nanoparticle powders into aqueous ZnO nanoparticle dispersions and studied the impact of associated microstructure and interface property changes on their spectroscopic properties. With photoluminescence (PL) spectroscopy, we probed oxygen interstitials O i 2 - in the near surface region and tracked their specific PL emission response at hvEM = 2.1 eV during the controlled conversion of the solid-vacuum into the solid-liquid interface. While oxygen adsorption via the gas phase does affect the intensity of the PL emission bands, the O2 contact with ZnO nanoparticles across the solid-liquid interface does not. Moreover, we found that the near band edge emission feature at hvEM = 3.2 eV gains relative intensity with regard to the PL emission features in the visible light region. Searching for potential PL indicators that are specific to early stages of particle dissolution, we addressed for aqueous ZnO nanoparticle dispersions the effect of formic acid adsorption. In the absence of related spectroscopic features, we were able to consistently track ZnO nanoparticle dissolution and the concomitant formation of sol- vated Zinc formate species by means of PL and FT-IR spectroscopy, dynamic light scattering, and zeta potential measurements. For a more consistent and robust assessment of nanoparticle properties in different continuous phases, we discuss characterization challenges and potential pitfalls that arise upon replacing the solid-gas with the solid-liquid interface.
Collapse
Affiliation(s)
- Krisztina Kocsis
- Department of Chemistry and Physics of Materials, Paris Lodron University of Salzburg, Hellbrunnerstrasse 34/III, A - 5020, Salzburg, Austria
| | - Matthias Niedermaier
- Department of Chemistry and Physics of Materials, Paris Lodron University of Salzburg, Hellbrunnerstrasse 34/III, A - 5020, Salzburg, Austria
| | - Johannes Bernardi
- University Service Center for Transmission Electron Microscopy (USTEM), TU Wien, Wiedner Hauptstrasse 8-10, A-1040 Vienna, Austria
| | - Thomas Berger
- Department of Chemistry and Physics of Materials, Paris Lodron University of Salzburg, Hellbrunnerstrasse 34/III, A - 5020, Salzburg, Austria
| | - Oliver Diwald
- Department of Chemistry and Physics of Materials, Paris Lodron University of Salzburg, Hellbrunnerstrasse 34/III, A - 5020, Salzburg, Austria
| |
Collapse
|
130
|
Wang N, Tong T, Xie M, Gaillard JF. Lifetime and dissolution kinetics of zinc oxide nanoparticles in aqueous media. NANOTECHNOLOGY 2016; 27:324001. [PMID: 27348603 DOI: 10.1088/0957-4484/27/32/324001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We have assessed the persistence and lifetime of ZnO nanoparticles (ZnO-NPs) by performing dissolution experiments in three different aqueous media. These experiments were performed at ZnO-NP concentration levels close to the solubility of zincite (∼8 μM or 650 μg l(-1) of ZnO)-a concentration that is orders of magnitude higher than current estimated relevant environmental concentrations. The kinetics were followed by voltammetry, while maintaining the pH at about 7.5 using a CO2/N2 gas mixture to remove di-oxygen interference. Our results show that, under these conditions, ZnO-NPs readily dissolve with a lifetime expectancy that does not exceed 90 min. Water chemistry, especially the presence of dissolved organic matter (DOM), plays an important role in ZnO-NP dissolution. Dissolution rates significantly increase in the presence of strong chelating agents, EDTA and L-cysteine, while the addition of polymeric DOM, such as sodium alginate, has the opposite effect. Our results suggest that ZnO-NPs are unlikely to persist in natural aqueous media and that the toxicity should be primarily related to the released Zn(2+) ions rather than effects commonly associated to the presence of nanoparticles.
Collapse
Affiliation(s)
- Ning Wang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, People's Republic of China. Northwestern University, Department of Civil and Environmental Engineering, 2145 Sheridan Road, Evanston, IL 60208-3109, USA
| | | | | | | |
Collapse
|
131
|
Bhuvaneshwari M, Iswarya V, Nagarajan R, Chandrasekaran N, Mukherjee A. Acute toxicity and accumulation of ZnO NPs in Ceriodaphnia dubia: Relative contributions of dissolved ions and particles. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 177:494-502. [PMID: 27424101 DOI: 10.1016/j.aquatox.2016.07.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/01/2016] [Accepted: 07/04/2016] [Indexed: 06/06/2023]
Abstract
Although the ecotoxicological effects of various metal oxide nanoparticles on aquatic organisms are being actively studied, the contributions of particles and dissolved ions towards toxicity are still not well understood. The current study aims to assess the contribution of ZnO NP(particle) and ZnO NP(ion) to the overall toxicity and accumulation of ZnO NP(total) in Ceriodaphnia dubia. The aggregation and dissolution kinetics were studied for three different sizes (50nm, 100nm and bulk) of ZnO particles at 0.05, 0.12, 0.25 and 0.5mg/L concentrations in the sterile lake water medium at 6, 12, 24, and 48h intervals. The 48h LC50 of ZnO NP(total) was found to be 0.431, 0.605 and 0.701mg/L for 50, 100nm and bulk particles exposure. However, LC50 of Zn(ion) was found to be 1.048, 1.343 and 2.046mg/L for dissolved ions from different sizes (50nm, 100nm, and bulk) of ZnO particles. At LC50 concentration, the accumulation of 90-95% was noted for the NP(particles) across the sizes employed, while only about 4-5% contribution was from the NP(ion) to the overall accumulation NP(total). The relative contribution of ZnO NP(ion) to overall toxicity and accumulation was found to be lesser than that of ZnO NP(particles) across the sizes used in the study.
Collapse
Affiliation(s)
- M Bhuvaneshwari
- Centre for Nanobiotechnology, VIT University, Vellore 632014, India
| | - V Iswarya
- Centre for Nanobiotechnology, VIT University, Vellore 632014, India
| | - R Nagarajan
- Department of Chemical Engineering, IIT Madras, India
| | - N Chandrasekaran
- Centre for Nanobiotechnology, VIT University, Vellore 632014, India
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, VIT University, Vellore 632014, India.
| |
Collapse
|
132
|
Song W, Tang X, Li Y, Sun Y, Kong J, Qingguang R. In situ detection of the Zn(2+) release process of ZnO NPs in tumour cells by confocal laser scanning fluorescence microscopy. IET Nanobiotechnol 2016; 10:178-83. [PMID: 27463786 DOI: 10.1049/iet-nbt.2015.0031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The use of zinc oxide (ZnO) nanoparticles (NPs) for cancer is not yet clear for human clinical applications, which is primarily due to the lack of a better understanding of the action mechanisms and cellular consequences of the direct exposure of cells to these NPs. In this work, the authors have selected zinquin ethyl ester, a Zn(2+)-specific fluorescent molecular probe, to efficiently differentiate ZnO NPs and Zn(2+), and combined with confocal laser scanning microscopy (CLSM) to in situ study the Zn(2+) release process of ZnO NPs in cancer cell system through detecting the change of Zn(2+) level over time. During the experiments, the authors have designed the test group ZnO-2 in addition to assess the influence of a long-term storage on the characteristics of ZnO NPs in aqueous solution, and the Zn(2+) release process of ZnO NPs in cancer cell system. After three-month storage at room temperature, the release process became earlier and faster, which was consistent with previous results of transmission electron microscope, UV-Vis and PL spectra. It is a good detection method that combination of Zn(2+)-specific fluorescent molecular probe and CLSM, which will be helpful for ZnO NPs using in clinical research.
Collapse
Affiliation(s)
- Wenshuang Song
- Center of Analysis and Measurement, Fudan University, Shanghai, People's Republic of China
| | - Xiaoling Tang
- Center of Analysis and Measurement, Fudan University, Shanghai, People's Republic of China
| | - Yong Li
- Center of Analysis and Measurement, Fudan University, Shanghai, People's Republic of China
| | - Yang Sun
- Center of Analysis and Measurement, Fudan University, Shanghai, People's Republic of China
| | - Jilie Kong
- Departments of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Ren Qingguang
- Center of Analysis and Measurement, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
133
|
Guo S, Xu J, Xie M, Huang W, Yuan E, Liu Y, Fan L, Cheng S, Liu S, Wang F, Yuan B, Dong W, Zhang X, Huang W, Zhou X. Degradable Zinc-Phosphate-Based Hierarchical Nanosubstrates for Capture and Release of Circulating Tumor Cells. ACS APPLIED MATERIALS & INTERFACES 2016; 8:15917-15925. [PMID: 27265681 DOI: 10.1021/acsami.6b04002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Circulating tumor cells (CTCs) play a significant role in cancer diagnosis and personalized therapy, and it is still a significant challenge to efficiently capture and gently release CTCs from clinical samples for downstream manipulation and molecular analysis. Many CTC devices incorporating various nanostructures have been developed for CTC isolation with sufficient capture efficiency, however, fabricating such nanostructured substrates often requires elaborate design and complicated procedures. Here we fabricate a degradable zinc-phosphate-based hierarchical nanosubstrate (HZnPNS), and we demonstrate its excellent CTC-capture performance along with effective cell-release capability for downstream molecular analysis. This transparent hierarchical architecture prepared by a low-temperature hydrothermal method, enables substantially enhanced capture efficiency and convenient imaging. Biocompatible sodium citrate could rapidly dissolve the architecture at room temperature, allowing that 88 ± 4% of captured cells are gently released with a high viability of 92 ± 1%. Furthermore, antiepithelial cell adhesion molecule antibody functionalized HZnPNS (anti-EpCAM/HZnPNS) was successfully applied to isolate CTCs from whole blood samples of cancer patients, as well as release CTCs for global DNA methylation analysis, indicating it will serve as a simple and reliable alternative platform for CTC detection.
Collapse
Affiliation(s)
- Shan Guo
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies of Wuhan University, Wuhan University , Wuhan 430072, China
| | - Jiaquan Xu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, China
| | - Min Xie
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, China
| | - Wei Huang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, China
| | - Erfeng Yuan
- Zhongnan Hospital, Wuhan University , Wuhan 430072, China
| | - Ya Liu
- Renmin Hospital of Wuhan University , Wuhan 430060, China
| | - Liping Fan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, China
| | - Shibo Cheng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, China
| | - Songmei Liu
- Zhongnan Hospital, Wuhan University , Wuhan 430072, China
| | - Fubing Wang
- Zhongnan Hospital, Wuhan University , Wuhan 430072, China
| | - Bifeng Yuan
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies of Wuhan University, Wuhan University , Wuhan 430072, China
| | - Weiguo Dong
- Renmin Hospital of Wuhan University , Wuhan 430060, China
| | - Xiaolian Zhang
- State Key Laboratory of Virology, Department of Immunology, School of Medicine, Wuhan University , Wuhan 430072, China
| | - Weihua Huang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies of Wuhan University, Wuhan University , Wuhan 430072, China
| |
Collapse
|
134
|
García-Hevia L, Valiente R, Martín-Rodríguez R, Renero-Lecuna C, González J, Rodríguez-Fernández L, Aguado F, Villegas JC, Fanarraga ML. Nano-ZnO leads to tubulin macrotube assembly and actin bundling, triggering cytoskeletal catastrophe and cell necrosis. NANOSCALE 2016; 8:10963-10973. [PMID: 27228212 DOI: 10.1039/c6nr00391e] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Zinc is a crucial element in biology that plays chief catalytic, structural and protein regulatory roles. Excess cytoplasmic zinc is toxic to cells so there are cell-entry and intracellular buffering mechanisms that control intracellular zinc availability. Tubulin and actin are two zinc-scavenging proteins that are essential components of the cellular cytoskeleton implicated in cell division, migration and cellular architecture maintenance. Here we demonstrate how exposure to different ZnO nanostructures, namely ZnO commercial nanoparticles and custom-made ZnO nanowires, produce acute cytotoxic effects in human keratinocytes (HaCat) and epithelial cells (HeLa) triggering a dose-dependent cell retraction and collapse. We show how engulfed ZnO nanoparticles dissolve intracellularly, triggering actin filament bundling and structural changes in microtubules, transforming these highly dynamic 25 nm diameter polymers into rigid macrotubes of tubulin, severely affecting cell proliferation and survival. Our results demonstrate that nano-ZnO causes acute cytoskeletal collapse that triggers necrosis, followed by a late reactive oxygen species (ROS)-dependent apoptotic process.
Collapse
Affiliation(s)
- Lorena García-Hevia
- Grupo de Nanomedicina-IDIVAL, Facultad de Medicina, Herrera Oria s/n, 39011 Santander, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Feng X, Yan Y, Wan B, Li W, Jaisi DP, Zheng L, Zhang J, Liu F. Enhanced Dissolution and Transformation of ZnO Nanoparticles: The Role of Inositol Hexakisphosphate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:5651-5660. [PMID: 27159895 DOI: 10.1021/acs.est.6b00268] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The toxicity, reactivity, and behavior of zinc oxide (ZnO) nanoparticles (NPs) released in the environment are highly dependent on environmental conditions. Myo-inositol hexakisphosphate (IHP), a common organic phosphate, may interact with NPs and generate new transformation products. In this study, the role of IHP in mediating the dissolution and transformation of ZnO NPs was investigated in the laboratory kinetic experiments using powder X-ray diffraction, attenuated total reflectance Fourier transform infrared spectroscopy, (31)P nuclear magnetic resonance spectroscopy, high-resolution transmission electronic microscopy, and synchrotron-based extended X-ray absorption fine structure spectroscopy. The results indicate that IHP shows a dissolution-precipitation effect, which is different from citrate and EDTA that only enhances Zn dissolution. The enhanced dissolution and transformation of ZnO NPs by IHP (<0.5 h) is found to be strikingly faster than that induced by inorganic phosphate (Pi, > 3.0 h) at pH 7.0, and the reaction rate increases with decreasing pH and increasing IHP concentration. Multitechnique analyses reveal that interaction of ZnO NPs with IHP induces rapid transformation of ZnO NPs into zinc phytate complexes initially and poorly crystalline zinc phytate-like (Zn-IHP) phase finally. Additionally, ZnO NPs preferentially react with IHP and transform to Zn-IHP when Pi and IHP concurrently coexist in a system. Overall, results from this study contribute to an improved understanding of the role of organic phosphates (e.g., IHP) in the speciation and structural transformation of ZnO NPs, which can be leveraged for remediation of ZnO-polluted water and soils.
Collapse
Affiliation(s)
- Xionghan Feng
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University , Wuhan 430070, People's Republic of China
| | - Yupeng Yan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University , Wuhan 430070, People's Republic of China
| | - Biao Wan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University , Wuhan 430070, People's Republic of China
| | - Wei Li
- Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University , Nanjing 210093, People's Republic of China
| | - Deb P Jaisi
- Department of Plant and Soil Sciences, University of Delaware , Newark, Delaware 19716, United States
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100039, China
| | - Jing Zhang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100039, China
| | - Fan Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University , Wuhan 430070, People's Republic of China
| |
Collapse
|
136
|
Chen X, O'Halloran J, Jansen MAK. The toxicity of zinc oxide nanoparticles to Lemna minor (L.) is predominantly caused by dissolved Zn. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 174:46-53. [PMID: 26918949 DOI: 10.1016/j.aquatox.2016.02.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/16/2016] [Accepted: 02/17/2016] [Indexed: 06/05/2023]
Abstract
Nano-ZnO particles have been reported to be toxic to many aquatic organisms, although it is debated whether this is caused by nanoparticles per sé, or rather dissolved Zn. This study investigated the role of dissolved Zn in nano-ZnO toxicity to Lemna minor. The technical approach was based on modulating nano-ZnO dissolution by either modifying the pH of the growth medium and/or surface coating of nano-ZnO, and measuring resulting impacts on L. minor growth and physiology. Results show rapid and total dissolution of nano-ZnO in the medium (pH 4.5). Quantitatively similar toxic effects were found when L. minor was exposed to nano-ZnO or the "dissolved Zn equivalent of dissolved nano-ZnO". The conclusion that nano-ZnO toxicity is primarily caused by dissolved Zn was further supported by the observation that phytotoxicity was absent on medium with higher pH-values (>7), where dissolution of nano-ZnO almost ceased. Similarly, the reduced toxicity of coated nano-ZnO, which displays a slower Zn dissolution, is also consistent with a major role for dissolved Zn in nano-ZnO toxicity.
Collapse
Affiliation(s)
- Xiaolin Chen
- School of Biological, Earth and Environmental Sciences, University College Cork, Enterprise Centre, Distillery Field, North Mall, Cork, Ireland.
| | - John O'Halloran
- School of Biological, Earth and Environmental Sciences, University College Cork, Enterprise Centre, Distillery Field, North Mall, Cork, Ireland; Environmental Research Institute, University College Cork, Cork, Ireland
| | - Marcel A K Jansen
- School of Biological, Earth and Environmental Sciences, University College Cork, Enterprise Centre, Distillery Field, North Mall, Cork, Ireland; Environmental Research Institute, University College Cork, Cork, Ireland
| |
Collapse
|
137
|
Han Y, Hwang G, Kim D, Bradford SA, Lee B, Eom I, Kim PJ, Choi SQ, Kim H. Transport, retention, and long-term release behavior of ZnO nanoparticle aggregates in saturated quartz sand: Role of solution pH and biofilm coating. WATER RESEARCH 2016; 90:247-257. [PMID: 26741396 DOI: 10.1016/j.watres.2015.12.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/21/2015] [Accepted: 12/06/2015] [Indexed: 06/05/2023]
Abstract
The transport, retention, and long-term release of zinc oxide nanoparticle aggregates (denoted below as ZnO-NPs) were investigated in saturated, bare and biofilm (Pseudomonas putida) coated sand packed columns. Almost complete retention of ZnO-NPs occurred in bare and biofilm coated sand when the influent solution pH was 9 and the ionic strength (IS) was 0.1 or 10 mM NaCl, and the retention profiles were always hyper-exponential. Increasing the solution IS and biofilm coating produced enhanced retention of ZnO-NPs near the column inlet. The enhanced NPs retention at high IS was attributed to more favorable NP-silica and NP-NP interactions; this was consistent with the interaction energy calculations. Meanwhile, the greater NPs retention in the presence of biofilm was attributed to larger roughness heights which alter the mass transfer rate, the interaction energy profile, and lever arms associated with the torque balance; e.g., scanning electron and atomic force microscopy was used to determine roughness heights of 33.4 nm and 97.8 nm for bare sand and biofilm-coated sand, respectively. Interactions between NPs and extracellular polymeric substances may have also contributed to enhanced NP retention in biofilm-coated sand at low IS. The long-term release of retained ZnO-NPs was subsequently investigated by continuously injecting NP-free solution at pH 6, 9, or 10 and keeping the IS constant at 10 mM. The amount and rate of retained ZnO-NP removal was strongly dependent on the solution pH. Specifically, almost complete removal of retained ZnO-NPs was observed after 627 pore volumes when the solution pH was 6, whereas much less Zn was recovered when the eluting solution pH was buffered to pH = 9 and especially 10. This long-term removal was attributed to pH-dependent dissolution of retained ZnO-NPs because: (i) the solubility of ZnO-NPs increases with decreasing pH; and (ii) ZnO-NPs were not detected in the effluent. The presence of biofilm also decreased the initial rate and amount of dissolution and the subsequent transport of Zn(2+) due to the strong Zn(2+) re-adsorption to the biofilm. Our study indicates that dissolution will eventually lead to the complete removal of retained ZnO-NPs and the transport of toxic Zn(2+) ions in groundwater environments with pH ranges of 5-9.
Collapse
Affiliation(s)
- Yosep Han
- Department of Mineral Resources and Energy Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756, Republic of Korea
| | - Gukhwa Hwang
- Department of Mineral Resources and Energy Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756, Republic of Korea
| | - Donghyun Kim
- Department of Mineral Resources and Energy Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756, Republic of Korea
| | | | - Byoungcheun Lee
- Risk Assessment Division, National Institute of Environmental Research, Hwangyeong-ro 42, Seo-gu, Incheon 404-708, Republic of Korea
| | - Igchun Eom
- Risk Assessment Division, National Institute of Environmental Research, Hwangyeong-ro 42, Seo-gu, Incheon 404-708, Republic of Korea
| | - Pil Je Kim
- Risk Assessment Division, National Institute of Environmental Research, Hwangyeong-ro 42, Seo-gu, Incheon 404-708, Republic of Korea
| | - Siyoung Q Choi
- Department of Chemical and Biomolecular Engineering, KAIST, Daejeon 305-701, Republic of Korea
| | - Hyunjung Kim
- Department of Mineral Resources and Energy Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756, Republic of Korea.
| |
Collapse
|
138
|
Petkova P, Francesko A, Perelshtein I, Gedanken A, Tzanov T. Simultaneous sonochemical-enzymatic coating of medical textiles with antibacterial ZnO nanoparticles. ULTRASONICS SONOCHEMISTRY 2016; 29:244-250. [PMID: 26585004 DOI: 10.1016/j.ultsonch.2015.09.021] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 09/25/2015] [Accepted: 09/29/2015] [Indexed: 06/05/2023]
Abstract
The antimicrobial finishing is a must for production of medical textiles, aiming at reducing the bioburden in clinical wards and consequently decreasing the risk of hospital-acquired infections. This work reports for the first time on a simultaneous sonochemical/enzymatic process for durable antibacterial coating of cotton with zinc oxide nanoparticles (ZnO NPs). The novel technology goes beyond the "stepwise" concept we proposed recently for enzymatic pre-activation of the fabrics and subsequent sonochemical nano-coating, and is designed to produce "ready-to-use" antibacterial medical textiles in a single step. A multilayer coating of uniformly dispersed NPs was obtained in the process. The enzymatic treatment provides better adhesion of the ZnO NPs and, as a consequence, enhanced coating stability during exploitation. The NPs-coated cotton fabrics inhibited the growth of the medically relevant Staphylococcus aureus and Escherichia coli respectively by 67% and 100%. The antibacterial efficiency of these textile materials resisted the intensive laundry regimes used in hospitals, though only 33% of the initially deposited NPs remained firmly fixed onto the fabrics after multiple washings.
Collapse
Affiliation(s)
- Petya Petkova
- Group of Molecular and Industrial Biotechnology, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, 08222 Terrassa, Spain
| | - Antonio Francesko
- Group of Molecular and Industrial Biotechnology, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, 08222 Terrassa, Spain
| | - Ilana Perelshtein
- Department of Chemistry, Kanbar Laboratory for Nanomaterials, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Aharon Gedanken
- Department of Chemistry, Kanbar Laboratory for Nanomaterials, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel; The Department of Materials Science & Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Tzanko Tzanov
- Group of Molecular and Industrial Biotechnology, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, 08222 Terrassa, Spain.
| |
Collapse
|
139
|
Liu J, Feng X, Wei L, Chen L, Song B, Shao L. The toxicology of ion-shedding zinc oxide nanoparticles. Crit Rev Toxicol 2016; 46:348-84. [DOI: 10.3109/10408444.2015.1137864] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
140
|
Pati R, Das I, Mehta RK, Sahu R, Sonawane A. Zinc-Oxide Nanoparticles Exhibit Genotoxic, Clastogenic, Cytotoxic and Actin Depolymerization Effects by Inducing Oxidative Stress Responses in Macrophages and Adult Mice. Toxicol Sci 2016; 150:454-72. [PMID: 26794139 DOI: 10.1093/toxsci/kfw010] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Zinc oxide nanoparticles (ZnO-NPs) have wide biological applications, which have raised serious concerns about their impact on the health and environment. Although, various studies have shown ZnO-NP toxicity on different cells underin vitroconditions, sufficient information is lacking regarding toxicity and underlying mechanisms underin vivoconditions. In this work, we investigated genotoxic, clastogenic, and cytotoxic effects of ZnO-NPs on macrophages and in adult mice. ZnO-NP-treated mice showed signs of toxicity such as loss in body weight, passive behavior and reduced survival. Further mechanistic studies revealed that administration of higher dose caused severe DNA damage in peripheral blood and bone marrow cells as evident by the formation of COMET tail, micronuclei, chromosomal fragmentation, and phosphorylation of H2A histone family member X. Moreover, ZnO-NPs inhibited DNA repair mechanism by downregulating the expression offen-1andpolBproteins. Histopathological examinations showed severe inflammation and damage to liver, lungs, and kidneys. Cell viability and wound healing assays revealed that ZnO-NPs killed macrophages in a dose-dependent manner, caused severe wounds and inhibited cellular migration by irreversible actin depolymerization and degradation. Reduction in the viability of macrophages was due to the arrest of the cell cycle at the G0/G1 phase, inhibition of superoxide dismutase and catalase and eventually reactive oxygen species. Furthermore, treatment with an antioxidant drug N-acetyl cysteine significantly reduced the ZnO-NP induced genotoxicity bothin vitroandin vivo Altogether, this study gives detailed pathological insights of ZnO-NP that impair cellular functions, thus will enable to arbitrate their biological applications.
Collapse
Affiliation(s)
| | | | | | - Rojalin Sahu
- School of Applied Sciences, Campus-3, KIIT University, Bhubaneswar 751024, Orissa, India
| | | |
Collapse
|
141
|
Laycock A, Diez-Ortiz M, Larner F, Dybowska A, Spurgeon D, Valsami-Jones E, Rehkämper M, Svendsen C. Earthworm Uptake Routes and Rates of Ionic Zn and ZnO Nanoparticles at Realistic Concentrations, Traced Using Stable Isotope Labeling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:412-419. [PMID: 26588002 DOI: 10.1021/acs.est.5b03413] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The environmental behavior of ZnO nanoparticles (NPs), their availability to, uptake pathways by, and biokinetics in the earthworm Lumbricus rubellus were investigated using stable isotope labeling. Zinc isotopically enriched to 99.5% in (68)Zn ((68)Zn-E) was used to prepare (68)ZnO NPs and a dissolved phase of (68)Zn for comparison. These materials enabled tracing of environmentally relevant (below background) NP additions to soil of only 5 mg (68)Zn-E kg(-1). Uptake routes were isolated by introducing earthworms with sealed and unsealed mouthparts into test soils for up to 72 h. The Zn isotope compositions of the soils, pore waters and earthworms were then determined using multiple collector inductively coupled plasma mass spectrometry. Detection and quantification of (68)Zn-E in earthworm tissue was possible after only 4 h of dermal exposure, when the uptake of (68)Zn-E had increased the total Zn tissue concentration by 0.03‰. The results demonstrate that at these realistic exposure concentrations there is no distinguishable difference between the uptake of the two forms of Zn by the earthworm L. rubellus, with the dietary pathway accounting for ∼95% of total uptake. This stands in contrast to comparable studies where high dosing levels were used and dermal uptake is dominant.
Collapse
Affiliation(s)
- Adam Laycock
- Department of Earth Science & Engineering, Imperial College London , London SW7 2AZ, England
- Earth Sciences, Natural History Museum , Cromwell Road, London SW7 5BD, England
| | - Maria Diez-Ortiz
- Centre for Ecology and Hydrology , Wallingford, Oxfordshire OX10 8BB, England
- Leitat Technology Centre , C/de la Innovació 2, 08225 Terrassa, Barcelona, Spain
| | - Fiona Larner
- Department of Earth Science & Engineering, Imperial College London , London SW7 2AZ, England
- Department of Earth Sciences, University of Oxford , South Parks Road, Oxford OX1 3AN, England
| | - Agnieszka Dybowska
- Earth Sciences, Natural History Museum , Cromwell Road, London SW7 5BD, England
| | - David Spurgeon
- Centre for Ecology and Hydrology , Wallingford, Oxfordshire OX10 8BB, England
| | - Eugenia Valsami-Jones
- Earth Sciences, Natural History Museum , Cromwell Road, London SW7 5BD, England
- School of Geography, Earth and Environmental Sciences, University of Birmingham , Edgbaston, Birmingham, B15 2TT, England
| | - Mark Rehkämper
- Department of Earth Science & Engineering, Imperial College London , London SW7 2AZ, England
- Earth Sciences, Natural History Museum , Cromwell Road, London SW7 5BD, England
| | - Claus Svendsen
- Centre for Ecology and Hydrology , Wallingford, Oxfordshire OX10 8BB, England
| |
Collapse
|
142
|
Shi L, Sun D, Wang Y, Tan Y, Li J, Yan S, Fan R, Tsubaki N. Formic acid-assisted synthesis of highly efficient Cu/ZnO catalysts: effect of HCOOH/Cu molar ratios. Catal Sci Technol 2016. [DOI: 10.1039/c5cy02010g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metallic Cu/ZnO catalysts were directly prepared by a formic acid-assisted solid-state combustion method without further reduction.
Collapse
Affiliation(s)
- Lei Shi
- Department of Applied Chemistry
- Shenyang University of Chemical Technology
- Shenyang 110142
- PR China
- Department of Applied Chemistry
| | - Dong Sun
- Department of Applied Chemistry
- Shenyang University of Chemical Technology
- Shenyang 110142
- PR China
| | - Yuxin Wang
- Department of Applied Chemistry
- Shenyang University of Chemical Technology
- Shenyang 110142
- PR China
| | - Yisheng Tan
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan 030001
- China
| | - Jie Li
- Department of Applied Chemistry
- School of Engineering
- University of Toyama
- Toyama
- Japan
| | - Shirun Yan
- Dept. of Chemistry
- Fudan University
- Shanghai
- China
| | | | - Noritatsu Tsubaki
- Department of Applied Chemistry
- School of Engineering
- University of Toyama
- Toyama
- Japan
| |
Collapse
|
143
|
Kuang H, Yang L, Shah NP, Aguilar ZP, Wang L, Xu H, Wei H. Synergistic in vitro and in vivo antimicrobial effect of a mixture of ZnO nanoparticles and Lactobacillus fermentation liquor. Appl Microbiol Biotechnol 2015; 100:3757-66. [PMID: 26695158 DOI: 10.1007/s00253-015-7221-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/25/2015] [Accepted: 11/28/2015] [Indexed: 10/22/2022]
|
144
|
Imani R, Drašler B, Kononenko V, Romih T, Eleršič K, Jelenc J, Junkar I, Remškar M, Drobne D, Kralj-Iglič V, Iglič A. Growth of a Novel Nanostructured ZnO Urchin: Control of Cytotoxicity and Dissolution of the ZnO Urchin. NANOSCALE RESEARCH LETTERS 2015; 10:441. [PMID: 26573932 PMCID: PMC4646880 DOI: 10.1186/s11671-015-1145-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 11/05/2015] [Indexed: 06/05/2023]
Abstract
The applications of zinc oxide (ZnO) nanowires (NWs) in implantable wireless devices, such as diagnostic nanobiosensors and nanobiogenerators, have recently attracted enormous attention due to their unique properties. However, for these implantable nanodevices, the biocompatibility and the ability to control the behaviour of cells in contact with ZnO NWs are demanded for the success of these implantable devices, but to date, only a few contrasting results from their biocompatibility can be found. There is a need for more research about the biocompatibility of ZnO nanostructures and the adhesion and viability of cells on the surface of ZnO nanostructures. Here, we introduce synthesis of a new nature-inspired nanostructured ZnO urchin, with the dimensions of the ZnO urchin's acicula being controllable. To examine the biocompatibility and behaviour of cells in contact with the ZnO urchin, the Madin-Darby canine kidney (MDCK) epithelial cell line was chosen as an in vitro experimental model. The results of the viability assay indicated that, compared to control, the number of viable cells attached to the surface of the ZnO urchin and its surrounding area were reduced. The measurements of the Zn contents of cell media confirmed ZnO dissolution, which suggests that the ZnO dissolution in cell culture medium could lead to cytotoxicity. A purposeful reduction of ZnO cytotoxicity was achieved by surface coating of the ZnO urchin with poly(vinylidene fluorid-co-hexafluoropropylene) (PVDF-HFP), which changed the material matrix to slow the Zn ion release and consequently reduce the cytotoxicity of the ZnO urchin without reducing its functionality.
Collapse
Affiliation(s)
- Roghayeh Imani
- Laboratory of Biophysics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, Ljubljana, SI-1000, Slovenia.
- Laboratory of Clinical Biophysics, Faculty of Health Sciences, University of Ljubljana, Ljubljana, SI-1000, Slovenia.
| | - Barbara Drašler
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, SI-1000, Ljubljana, Slovenia.
| | - Veno Kononenko
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, SI-1000, Ljubljana, Slovenia.
| | - Tea Romih
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, SI-1000, Ljubljana, Slovenia.
| | - Kristina Eleršič
- Department of Surface Engineering and Optoelectronics, Jožef Stefan Institute, Jamova 39, Ljubljana, SI-1000, Slovenia.
| | - Janez Jelenc
- Solid State Physics Department, Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia.
| | - Ita Junkar
- Department of Surface Engineering and Optoelectronics, Jožef Stefan Institute, Jamova 39, Ljubljana, SI-1000, Slovenia.
| | - Maja Remškar
- Solid State Physics Department, Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia.
| | - Damjana Drobne
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, SI-1000, Ljubljana, Slovenia.
| | - Veronika Kralj-Iglič
- Laboratory of Clinical Biophysics, Faculty of Health Sciences, University of Ljubljana, Ljubljana, SI-1000, Slovenia.
| | - Aleš Iglič
- Laboratory of Biophysics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, Ljubljana, SI-1000, Slovenia.
| |
Collapse
|
145
|
Pham ALT, Johnson C, Manley D, Hsu-Kim H. Influence of Sulfide Nanoparticles on Dissolved Mercury and Zinc Quantification by Diffusive Gradient in Thin-Film Passive Samplers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:12897-903. [PMID: 26414810 PMCID: PMC4782790 DOI: 10.1021/acs.est.5b02774] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Diffusive gradient in thin-film (DGT) passive samplers are frequently used to monitor the concentrations of metals such as mercury and zinc in sediments and other aquatic environments. The application of these samplers generally presumes that they quantify only the dissolved fraction and not particle-bound metal species that are too large to migrate into the sampler. However, metals associated with very small nanoparticles (smaller than the pore size of DGT samplers) can be abundant in certain environments, yet the implications of these nanoparticles for DGT measurements are unclear. The objective of this study was to determine how the performance of the DGT sampler is affected by the presence of nanoparticulate species of Hg and Zn. DGT samplers were exposed to solutions containing known amounts of dissolved Hg(II) and nanoparticulate HgS (or dissolved Zn(II) and nanoparticulate ZnS). The amounts of Hg and Zn accumulated onto the DGT samplers were quantified over hours to days, and the rates of diffusion of the dissolved metal (i.e., the effective diffusion coefficient D) into the sampler's diffusion layer were calculated and compared for solutions containing varying concentrations of nanoparticles. The results suggested that the nanoparticles deposited on the surface of the samplers might have acted as sorbents, slowing the migration of the dissolved species into the samplers. The consequence was that the DGT sampler data underestimated the dissolved metal concentration in the solution. In addition, X-ray absorption spectroscopy was employed to determine the speciation of the Hg accumulated on the sampler binding layer, and the results indicated that HgS nanoparticles did not appear to directly contribute to the DGT measurement. Overall, our findings suggest that the deployment of DGT samplers in settings where nanoparticles are relevant (e.g., sediments) may result in DGT data that incorrectly estimated the dissolved metal concentrations. Models for metal uptake into the sampler may need to be reconsidered.
Collapse
Affiliation(s)
- Anh Le-Tuan Pham
- Department of Civil and Environmental Engineering, Duke University, Durham, North Carolina 27503, United States
| | - Carol Johnson
- Department of Civil and Environmental Engineering, Duke University, Durham, North Carolina 27503, United States
| | - Devon Manley
- Department of Civil and Environmental Engineering, Duke University, Durham, North Carolina 27503, United States
| | - Heileen Hsu-Kim
- Department of Civil and Environmental Engineering, Duke University, Durham, North Carolina 27503, United States
| |
Collapse
|
146
|
Peng YH, Tso CP, Tsai YC, Zhuang CM, Shih YH. The effect of electrolytes on the aggregation kinetics of three different ZnO nanoparticles in water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 530-531:183-190. [PMID: 26042532 DOI: 10.1016/j.scitotenv.2015.05.059] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 05/15/2015] [Accepted: 05/15/2015] [Indexed: 06/04/2023]
Abstract
Nanoscale ZnO particles are receiving increasing attention because they are widely used in commercial products, but they do have potentially hazardous effects. The aggregation behavior of ZnO nanoparticles (NPs) in the environment contributes to the real risk assessment of nano-toxicity, and the real size of the nano-aggregates should be investigated. In this study, the influences of electrolytes on the stabilities of three ZnO NPs were compared: the commercial powder (NP1), the lab synthesized suspension (NP2) and the commercial suspension (NP3). The initial particle size of NP2 and NP3 in water was at a nanoscale whilst NP1 tended to form microscale aggregates. The capping reagents helped to retain their suspension. The stability of ZnO NPs depends on their zeta potential under specific pH value, ionic types and ionic strength. In general, neutralization plays a major role in aggregation. The effect of divalent counter-ions on ZnO NP aggregation was more than that of monovalent ones. The stabilities of NP2 and NP3 were confirmed by the large critical coagulation concentration (CCC) values of these particles. The experimental results also fit the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. The aggregation of different ZnO NPs is relevant to their basic properties and is influenced by electrolytes, which decreases the possibility of the penetration of NPs into cells to cause toxicity in the environment. An understanding of the basic properties of NPs is crucial for assessing their fate in the environment as well as for setting up usage regulation and treatment strategy.
Collapse
Affiliation(s)
- Yu-Huei Peng
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan, ROC
| | - Chih-Ping Tso
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan, ROC
| | - Yi-Chun Tsai
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan, ROC
| | - Cheng-Ming Zhuang
- Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung 402, Taiwan, ROC
| | - Yang-Hsin Shih
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan, ROC.
| |
Collapse
|
147
|
Jiang C, Aiken GR, Hsu-Kim H. Effects of Natural Organic Matter Properties on the Dissolution Kinetics of Zinc Oxide Nanoparticles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:11476-11484. [PMID: 26355264 DOI: 10.1021/acs.est.5b02406] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The dissolution of zinc oxide (ZnO) nanoparticles (NPs) is a key step of controlling their environmental fate, bioavailability, and toxicity. Rates of dissolution often depend upon factors such as interactions of NPs with natural organic matter (NOM). We examined the effects of 16 different NOM isolates on the dissolution kinetics of ZnO NPs in buffered potassium chloride solution using anodic stripping voltammetry to directly measure dissolved zinc concentrations. The observed dissolution rate constants (kobs) and dissolved zinc concentrations at equilibrium increased linearly with NOM concentration (from 0 to 40 mg C L(-1)) for Suwannee River humic and fulvic acids and Pony Lake fulvic acid. When dissolution rates were compared for the 16 NOM isolates, kobs was positively correlated with certain properties of NOM, including specific ultraviolet absorbance (SUVA), aromatic and carbonyl carbon contents, and molecular weight. Dissolution rate constants were negatively correlated to hydrogen/carbon ratio and aliphatic carbon content. The observed correlations indicate that aromatic carbon content is a key factor in determining the rate of NOM-promoted dissolution of ZnO NPs. The findings of this study facilitate a better understanding of the fate of ZnO NPs in organic-rich aquatic environments and highlight SUVA as a facile and useful indicator of NOM interactions with metal-based nanoparticles.
Collapse
Affiliation(s)
- Chuanjia Jiang
- Department of Civil and Environmental Engineering, Duke University , Durham, North Carolina 27708, United States
| | - George R Aiken
- U.S. Geological Survey, Boulder, Colorado 80303, United States
| | - Heileen Hsu-Kim
- Department of Civil and Environmental Engineering, Duke University , Durham, North Carolina 27708, United States
| |
Collapse
|
148
|
Huangfu X, Jiang J, Ma J, Wang Y, Liu Y, Lu X, Zhang X, Cheng H. Reduction-induced aggregation and/or dissolution of MnO2 colloids by organics. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2015.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
149
|
Wang MM, Wang YC, Wang XN, Liu Y, Zhang H, Zhang JW, Huang Q, Chen SP, Hei TK, Wu LJ, Xu A. Mutagenicity of ZnO nanoparticles in mammalian cells: Role of physicochemical transformations under the aging process. Nanotoxicology 2015; 9:972-82. [PMID: 25676621 DOI: 10.3109/17435390.2014.992816] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Zinc oxide nanoparticles (ZnO NPs) potentially undergo physicochemical transformation in the environment, which may lead to unexpected environmental and health risks. The "aging" process is essential for better understanding the toxicity and fate of NPs in the environment. However, the mutagenic effects of aged ZnO NPs are still unexplored. The present study focused on investigating the physicochemical transformation during aging process and clarifying the mutagenicity of naturally aged ZnO NPs in human-hamster hybrid (AL) cells. It was found that ZnO NPs underwent sophisticated physicochemical transformations with aging regardless of original morphology or size, such as the microstructural changes, the formation of hydrozincite (Zn5(CO3)2(OH)6) and the release of free zinc ions. Interestingly, the aged ZnO NPs were investigated to be able to result in much lower cytotoxicity while relatively high degree mutation than fresh ZnO NPs. With characterization of the soluble and insoluble fractions of aged ZnO NPs suspension, together with the control measurements using metal chelator (TPEN) and endocytosis inhibitor (Nystatin), it was revealed that the release of zinc ions and nanoparticle uptake made significantly different contributions to the mutagenicity of fresh and aged ZnO NPs. This study clearly demonstrated that the physicochemical transformation of ZnO NPs with aging plays important and comprehensive roles in the ZnO NPs-induced mutagenicity in mammalian cells.
Collapse
Affiliation(s)
- Mei M Wang
- a Key Laboratory of Ion Beam Bioengineering , Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province , Hefei , Anhui , PR China
| | - Yi C Wang
- a Key Laboratory of Ion Beam Bioengineering , Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province , Hefei , Anhui , PR China
| | - Xi N Wang
- a Key Laboratory of Ion Beam Bioengineering , Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province , Hefei , Anhui , PR China
| | - Yun Liu
- a Key Laboratory of Ion Beam Bioengineering , Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province , Hefei , Anhui , PR China
| | - Hong Zhang
- a Key Laboratory of Ion Beam Bioengineering , Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province , Hefei , Anhui , PR China
| | - Jian W Zhang
- b School of Physical Sciences, University of Science and Technology of China , PR China , and
| | - Qing Huang
- a Key Laboratory of Ion Beam Bioengineering , Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province , Hefei , Anhui , PR China
| | - Shao P Chen
- a Key Laboratory of Ion Beam Bioengineering , Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province , Hefei , Anhui , PR China
| | - Tom K Hei
- c Department of Radiation Oncology , Center for Radiological Research, College of Physicians and Surgeons, Columbia University , NY , USA
| | - Li J Wu
- a Key Laboratory of Ion Beam Bioengineering , Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province , Hefei , Anhui , PR China
| | - An Xu
- a Key Laboratory of Ion Beam Bioengineering , Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province , Hefei , Anhui , PR China
| |
Collapse
|
150
|
Sruthi S, Mohanan P. Investigation on cellular interactions of astrocytes with zinc oxide nanoparticles using rat C6 cell lines. Colloids Surf B Biointerfaces 2015; 133:1-11. [DOI: 10.1016/j.colsurfb.2015.05.041] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 05/20/2015] [Accepted: 05/22/2015] [Indexed: 01/20/2023]
|