101
|
Aghedo AM, Bowman KW, Worden HM, Kulawik SS, Shindell DT, Lamarque JF, Faluvegi G, Parrington M, Jones DBA, Rast S. The vertical distribution of ozone instantaneous radiative forcing from satellite and chemistry climate models. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2010jd014243] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
102
|
Deushi M, Shibata K. Development of a Meteorological Research Institute Chemistry-Climate Model version 2 for the Study of Tropospheric and Stratospheric Chemistry. ACTA ACUST UNITED AC 2011. [DOI: 10.2467/mripapers.62.1] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
103
|
Collins WJ, Sitch S, Boucher O. How vegetation impacts affect climate metrics for ozone precursors. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2010jd014187] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
104
|
Lee D, Pitari G, Grewe V, Gierens K, Penner J, Petzold A, Prather M, Schumann U, Bais A, Berntsen T, Iachetti D, Lim L, Sausen R. Transport impacts on atmosphere and climate: Aviation. ATMOSPHERIC ENVIRONMENT (OXFORD, ENGLAND : 1994) 2010; 44:4678-4734. [PMID: 32288556 PMCID: PMC7110594 DOI: 10.1016/j.atmosenv.2009.06.005] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 05/30/2009] [Accepted: 06/02/2009] [Indexed: 05/04/2023]
Abstract
Aviation alters the composition of the atmosphere globally and can thus drive climate change and ozone depletion. The last major international assessment of these impacts was made by the Intergovernmental Panel on Climate Change (IPCC) in 1999. Here, a comprehensive updated assessment of aviation is provided. Scientific advances since the 1999 assessment have reduced key uncertainties, sharpening the quantitative evaluation, yet the basic conclusions remain the same. The climate impact of aviation is driven by long-term impacts from CO2 emissions and shorter-term impacts from non-CO2 emissions and effects, which include the emissions of water vapour, particles and nitrogen oxides (NO x ). The present-day radiative forcing from aviation (2005) is estimated to be 55 mW m-2 (excluding cirrus cloud enhancement), which represents some 3.5% (range 1.3-10%, 90% likelihood range) of current anthropogenic forcing, or 78 mW m-2 including cirrus cloud enhancement, representing 4.9% of current forcing (range 2-14%, 90% likelihood range). According to two SRES-compatible scenarios, future forcings may increase by factors of 3-4 over 2000 levels, in 2050. The effects of aviation emissions of CO2 on global mean surface temperature last for many hundreds of years (in common with other sources), whilst its non-CO2 effects on temperature last for decades. Much progress has been made in the last ten years on characterizing emissions, although major uncertainties remain over the nature of particles. Emissions of NO x result in production of ozone, a climate warming gas, and the reduction of ambient methane (a cooling effect) although the overall balance is warming, based upon current understanding. These NO x emissions from current subsonic aviation do not appear to deplete stratospheric ozone. Despite the progress made on modelling aviation's impacts on tropospheric chemistry, there remains a significant spread in model results. The knowledge of aviation's impacts on cloudiness has also improved: a limited number of studies have demonstrated an increase in cirrus cloud attributable to aviation although the magnitude varies: however, these trend analyses may be impacted by satellite artefacts. The effect of aviation particles on clouds (with and without contrails) may give rise to either a positive forcing or a negative forcing: the modelling and the underlying processes are highly uncertain, although the overall effect of contrails and enhanced cloudiness is considered to be a positive forcing and could be substantial, compared with other effects. The debate over quantification of aviation impacts has also progressed towards studying potential mitigation and the technological and atmospheric tradeoffs. Current studies are still relatively immature and more work is required to determine optimal technological development paths, which is an aspect that atmospheric science has much to contribute. In terms of alternative fuels, liquid hydrogen represents a possibility and may reduce some of aviation's impacts on climate if the fuel is produced in a carbon-neutral way: such fuel is unlikely to be utilized until a 'hydrogen economy' develops. The introduction of biofuels as a means of reducing CO2 impacts represents a future possibility. However, even over and above land-use concerns and greenhouse gas budget issues, aviation fuels require strict adherence to safety standards and thus require extra processing compared with biofuels destined for other sectors, where the uptake of such fuel may be more beneficial in the first instance.
Collapse
Affiliation(s)
- D.S. Lee
- Dalton Research Institute, Department of Environmental and Geographical Sciences, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK
- Corresponding author. Tel.: +44 161 247 3663.
| | - G. Pitari
- Dipartimento di Fisica, University of L'Aquila, Vio Vetoio Località Coppito, 67100 l'Aquila, Italy
| | - V. Grewe
- Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, D-82234 Wessling, Germany
| | - K. Gierens
- Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, D-82234 Wessling, Germany
| | - J.E. Penner
- Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, 2455 Hayward St., Ann Arbor, MI 48109-2143, USA
| | - A. Petzold
- Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, D-82234 Wessling, Germany
| | - M.J. Prather
- Department of Earth System Science, University of California, Irvine, 3329 Croull Hall, CA 92697-3100, USA
| | - U. Schumann
- Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, D-82234 Wessling, Germany
| | - A. Bais
- Laboratory of Atmospheric Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - T. Berntsen
- Department of Geosciences, University of Oslo, PO Box 1022 Blindern, 0315, Oslo, Norway
| | - D. Iachetti
- Dipartimento di Fisica, University of L'Aquila, Vio Vetoio Località Coppito, 67100 l'Aquila, Italy
| | - L.L. Lim
- Dalton Research Institute, Department of Environmental and Geographical Sciences, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK
| | - R. Sausen
- Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, D-82234 Wessling, Germany
| |
Collapse
|
105
|
Prather MJ, Hsu J. Coupling of Nitrous Oxide and Methane by Global Atmospheric Chemistry. Science 2010; 330:952-4. [DOI: 10.1126/science.1196285] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
106
|
Tarasick DW, Jin JJ, Fioletov VE, Liu G, Thompson AM, Oltmans SJ, Liu J, Sioris CE, Liu X, Cooper OR, Dann T, Thouret V. High-resolution tropospheric ozone fields for INTEX and ARCTAS from IONS ozonesondes. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009jd012918] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
107
|
Bourqui MS, Trépanier PY. Descent of deep stratospheric intrusions during the IONS August 2006 campaign. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009jd013183] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
108
|
Kumar R, Naja M, Venkataramani S, Wild O. Variations in surface ozone at Nainital: A high-altitude site in the central Himalayas. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009jd013715] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
109
|
Vahedpour M, Tozihi M, Nazari F. Mechanistic Study of Ozone-Water Reaction and Their Reaction Products with Gas Phase Elemental Mercury: A Computational Study. CHINESE J CHEM 2010. [DOI: 10.1002/cjoc.201090193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
110
|
Andersson C, Engardt M. European ozone in a future climate: Importance of changes in dry deposition and isoprene emissions. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2008jd011690] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
111
|
Increasing springtime ozone mixing ratios in the free troposphere over western North America. Nature 2010; 463:344-8. [DOI: 10.1038/nature08708] [Citation(s) in RCA: 331] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 11/19/2009] [Indexed: 11/08/2022]
|
112
|
Doherty RM, Heal MR, Wilkinson P, Pattenden S, Vieno M, Armstrong B, Atkinson R, Chalabi Z, Kovats S, Milojevic A, Stevenson DS. Current and future climate- and air pollution-mediated impacts on human health. Environ Health 2009; 8 Suppl 1:S8. [PMID: 20102593 PMCID: PMC2796504 DOI: 10.1186/1476-069x-8-s1-s8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
BACKGROUND We describe a project to quantify the burden of heat and ozone on mortality in the UK, both for the present-day and under future emission scenarios. METHODS Mortality burdens attributable to heat and ozone exposure are estimated by combination of climate-chemistry modelling and epidemiological risk assessment. Weather forecasting models (WRF) are used to simulate the driving meteorology for the EMEP4UK chemistry transport model at 5 km by 5 km horizontal resolution across the UK; the coupled WRF-EMEP4UK model is used to simulate daily surface temperature and ozone concentrations for the years 2003, 2005 and 2006, and for future emission scenarios. The outputs of these models are combined with evidence on the ozone-mortality and heat-mortality relationships derived from epidemiological analyses (time series regressions) of daily mortality in 15 UK conurbations, 1993-2003, to quantify present-day health burdens. RESULTS During the August 2003 heatwave period, elevated ozone concentrations > 200 microg m-3 were measured at sites in London and elsewhere. This and other ozone photochemical episodes cause breaches of the UK air quality objective for ozone. Simulations performed with WRF-EMEP4UK reproduce the August 2003 heatwave temperatures and ozone concentrations. There remains day-to-day variability in the high ozone concentrations during the heatwave period, which on some days may be explained by ozone import from the European continent.Preliminary calculations using extended time series of spatially-resolved WRF-EMEP4UK model output suggest that in the summers (May to September) of 2003, 2005 & 2006 over 6000 deaths were attributable to ozone and around 5000 to heat in England and Wales. The regional variation in these deaths appears greater for heat-related than for ozone-related burdens.Changes in UK health burdens due to a range of future emission scenarios will be quantified. These future emissions scenarios span a range of possible futures from assuming current air quality legislation is fully implemented, to a more optimistic case with maximum feasible reductions, through to a more pessimistic case with continued strong economic growth and minimal implementation of air quality legislation. CONCLUSION Elevated surface ozone concentrations during the 2003 heatwave period led to exceedences of the current UK air quality objective standards. A coupled climate-chemistry model is able to reproduce these temperature and ozone extremes. By combining model simulations of surface temperature and ozone with ozone-heat-mortality relationships derived from an epidemiological regression model, we estimate present-day and future health burdens across the UK. Future air quality legislation may need to consider the risk of increases in future heatwaves.
Collapse
Affiliation(s)
- Ruth M Doherty
- School of GeoSciences, King's Buildings, University of Edinburgh, West Mains Road, Edinburgh, UK
| | - Mathew R Heal
- School of Chemistry, King's Buildings, University of Edinburgh, West Mains Road, Edinburgh, UK
| | - Paul Wilkinson
- PERHU, London School of Hygiene & Tropical Medicine, Keppel Street, London, UK
| | - Sam Pattenden
- PERHU, London School of Hygiene & Tropical Medicine, Keppel Street, London, UK
| | - Massimo Vieno
- School of GeoSciences, King's Buildings, University of Edinburgh, West Mains Road, Edinburgh, UK
| | - Ben Armstrong
- PERHU, London School of Hygiene & Tropical Medicine, Keppel Street, London, UK
| | - Richard Atkinson
- Division of Community Health Sciences, St. George's, University of London, London, UK
| | - Zaid Chalabi
- PERHU, London School of Hygiene & Tropical Medicine, Keppel Street, London, UK
| | - Sari Kovats
- PERHU, London School of Hygiene & Tropical Medicine, Keppel Street, London, UK
| | - Ai Milojevic
- PERHU, London School of Hygiene & Tropical Medicine, Keppel Street, London, UK
| | - David S Stevenson
- School of GeoSciences, King's Buildings, University of Edinburgh, West Mains Road, Edinburgh, UK
| |
Collapse
|
113
|
Lee JD, Moller SJ, Read KA, Lewis AC, Mendes L, Carpenter LJ. Year-round measurements of nitrogen oxides and ozone in the tropical North Atlantic marine boundary layer. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2009jd011878] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
114
|
Lee DS, Fahey DW, Forster PM, Newton PJ, Wit RC, Lim LL, Owen B, Sausen R. Aviation and global climate change in the 21st century. ATMOSPHERIC ENVIRONMENT (OXFORD, ENGLAND : 1994) 2009; 43:3520-3537. [PMID: 32362760 PMCID: PMC7185790 DOI: 10.1016/j.atmosenv.2009.04.024] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 04/07/2009] [Accepted: 04/08/2009] [Indexed: 05/20/2023]
Abstract
Aviation emissions contribute to the radiative forcing (RF) of climate. Of importance are emissions of carbon dioxide (CO2), nitrogen oxides (NO x ), aerosols and their precursors (soot and sulphate), and increased cloudiness in the form of persistent linear contrails and induced-cirrus cloudiness. The recent Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC) quantified aviation's RF contribution for 2005 based upon 2000 operations data. Aviation has grown strongly over the past years, despite world-changing events in the early 2000s; the average annual passenger traffic growth rate was 5.3% yr-1 between 2000 and 2007, resulting in an increase of passenger traffic of 38%. Presented here are updated values of aviation RF for 2005 based upon new operations data that show an increase in traffic of 22.5%, fuel use of 8.4% and total aviation RF of 14% (excluding induced-cirrus enhancement) over the period 2000-2005. The lack of physical process models and adequate observational data for aviation-induced cirrus effects limit confidence in quantifying their RF contribution. Total aviation RF (excluding induced cirrus) in 2005 was ∼55 mW m-2 (23-87 mW m-2, 90% likelihood range), which was 3.5% (range 1.3-10%, 90% likelihood range) of total anthropogenic forcing. Including estimates for aviation-induced cirrus RF increases the total aviation RF in 2005-78 mW m-2 (38-139 mW m-2, 90% likelihood range), which represents 4.9% of total anthropogenic forcing (2-14%, 90% likelihood range). Future scenarios of aviation emissions for 2050 that are consistent with IPCC SRES A1 and B2 scenario assumptions have been presented that show an increase of fuel usage by factors of 2.7-3.9 over 2000. Simplified calculations of total aviation RF in 2050 indicate increases by factors of 3.0-4.0 over the 2000 value, representing 4-4.7% of total RF (excluding induced cirrus). An examination of a range of future technological options shows that substantive reductions in aviation fuel usage are possible only with the introduction of radical technologies. Incorporation of aviation into an emissions trading system offers the potential for overall (i.e., beyond the aviation sector) CO2 emissions reductions. Proposals exist for introduction of such a system at a European level, but no agreement has been reached at a global level.
Collapse
Affiliation(s)
- David S. Lee
- Dalton Research Institute, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester M1 5GD, United Kingdom
- Corresponding author.
| | - David W. Fahey
- NOAA Earth System Research Laboratory, Chemical Sciences Division, Boulder, CO, USA
| | - Piers M. Forster
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Peter J. Newton
- Department for Business, Enterprise and Regulatory Reform, Aviation Directorate, United Kingdom
| | - Ron C.N. Wit
- Natuur en Milieu, Donkerstraat 17, Utrecht, The Netherlands
| | - Ling L. Lim
- Dalton Research Institute, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester M1 5GD, United Kingdom
| | - Bethan Owen
- Dalton Research Institute, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester M1 5GD, United Kingdom
| | - Robert Sausen
- Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
| |
Collapse
|
115
|
Liao H, Zhang Y, Chen WT, Raes F, Seinfeld JH. Effect of chemistry-aerosol-climate coupling on predictions of future climate and future levels of tropospheric ozone and aerosols. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008jd010984] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
116
|
Ito A, Sillman S, Penner JE. Global chemical transport model study of ozone response to changes in chemical kinetics and biogenic volatile organic compounds emissions due to increasing temperatures: Sensitivities to isoprene nitrate chemistry and grid resolution. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008jd011254] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
117
|
|
118
|
Fiore AM, Dentener FJ, Wild O, Cuvelier C, Schultz MG, Hess P, Textor C, Schulz M, Doherty RM, Horowitz LW, MacKenzie IA, Sanderson MG, Shindell DT, Stevenson DS, Szopa S, Van Dingenen R, Zeng G, Atherton C, Bergmann D, Bey I, Carmichael G, Collins WJ, Duncan BN, Faluvegi G, Folberth G, Gauss M, Gong S, Hauglustaine D, Holloway T, Isaksen ISA, Jacob DJ, Jonson JE, Kaminski JW, Keating TJ, Lupu A, Marmer E, Montanaro V, Park RJ, Pitari G, Pringle KJ, Pyle JA, Schroeder S, Vivanco MG, Wind P, Wojcik G, Wu S, Zuber A. Multimodel estimates of intercontinental source-receptor relationships for ozone pollution. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008jd010816] [Citation(s) in RCA: 390] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
119
|
Cooper OR, Eckhardt S, Crawford JH, Brown CC, Cohen RC, Bertram TH, Wooldridge P, Perring A, Brune WH, Ren X, Brunner D, Baughcum SL. Summertime buildup and decay of lightning NOx
and aged thunderstorm outflow above North America. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008jd010293] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- O. R. Cooper
- Cooperative Institute for Research in Environmental Sciences; University of Colorado; Boulder Colorado USA
- Chemical Sciences Division, Earth System Research Laboratory; NOAA; Boulder Colorado USA
| | - S. Eckhardt
- Department of Regional and Global Pollution Issues; Norwegian Institute for Air Research; Kjeller Norway
| | | | - C. C. Brown
- Science System and Applications, Inc.; Hampton Virginia USA
| | - R. C. Cohen
- Department of Chemistry and Department of Earth and Planetary Science; University of California; Berkeley California USA
| | - T. H. Bertram
- Department of Chemistry and Department of Earth and Planetary Science; University of California; Berkeley California USA
| | - P. Wooldridge
- Department of Chemistry and Department of Earth and Planetary Science; University of California; Berkeley California USA
| | - A. Perring
- Department of Chemistry and Department of Earth and Planetary Science; University of California; Berkeley California USA
| | - W. H. Brune
- Department of Meteorology; Pennsylvania State University; University Park Pennsylvania USA
| | - X. Ren
- Department of Meteorology; Pennsylvania State University; University Park Pennsylvania USA
| | - D. Brunner
- Laboratory for Air Pollution/Environmental Technology, Materials Science and Technology; EMPA; Dübendorf Switzerland
| | | |
Collapse
|
120
|
Xie F, Tian W, Chipperfield MP. Radiative effect of ozone change on stratosphere-troposphere exchange. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2008jd009829] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
121
|
Ozone risk for crops and pastures in present and future climates. Naturwissenschaften 2008; 96:173-94. [DOI: 10.1007/s00114-008-0468-7] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 10/29/2008] [Accepted: 11/01/2008] [Indexed: 10/21/2022]
|
122
|
Koumoutsaris S, Bey I, Generoso S, Thouret V. Influence of El Niño–Southern Oscillation on the interannual variability of tropospheric ozone in the northern midlatitudes. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jd009753] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
123
|
Wu S, Mickley LJ, Jacob DJ, Rind D, Streets DG. Effects of 2000–2050 changes in climate and emissions on global tropospheric ozone and the policy-relevant background surface ozone in the United States. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jd009639] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
124
|
Terao Y, Logan JA, Douglass AR, Stolarski RS. Contribution of stratospheric ozone to the interannual variability of tropospheric ozone in the northern extratropics. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2008jd009854] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
125
|
Parrington M, Jones DBA, Bowman KW, Horowitz LW, Thompson AM, Tarasick DW, Witte JC. Estimating the summertime tropospheric ozone distribution over North America through assimilation of observations from the Tropospheric Emission Spectrometer. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jd009341] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
126
|
Cape JN. Surface ozone concentrations and ecosystem health: past trends and a guide to future projections. THE SCIENCE OF THE TOTAL ENVIRONMENT 2008; 400:257-69. [PMID: 18639315 DOI: 10.1016/j.scitotenv.2008.06.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 06/16/2008] [Accepted: 06/16/2008] [Indexed: 05/12/2023]
Abstract
This paper reviews current understanding of the sources and sinks of ozone in the troposphere, recent studies of long-term trends, and the factors which have to be taken into consideration when constructing and interpreting future models of ozone concentration. The factors controlling surface O(3) concentrations are discussed initially to provide a basis for the ensuing discussion, followed by a summary of the evidence for recent trends in ground-level ozone concentrations, i.e. over the past 3 decades, which have shown a significant increase in the annual average in 'background' air typical of the unpolluted northern hemisphere. Closer to precursor sources, although urban winter concentrations have increased, rural peak spring and summer concentrations during ozone 'episodes' have decreased markedly in response to emissions reductions. In order to determine whether such trends are meaningful, the statistical techniques for determining temporal trends are reviewed. The possible causes of long-term trends in ozone are then discussed, with particular reference to the use of chemistry-transport models to interpret past trends. Such models are also used to make predictions of future trends in surface ozone concentrations, but few are comprehensive in integrating future climate changes with changes in land use and in emissions of ozone precursors. Guidance is given on the likely effects of climate/precursor/chemistry interactions so that model predictions can be judged.
Collapse
Affiliation(s)
- J N Cape
- Centre for Ecology & Hydrology, Bush Estate, Penicuik, UK.
| |
Collapse
|
127
|
Nolte CG, Gilliland AB, Hogrefe C, Mickley LJ. Linking global to regional models to assess future climate impacts on surface ozone levels in the United States. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jd008497] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
128
|
Stübi R, Levrat G, Hoegger B, Viatte P, Staehelin J, Schmidlin FJ. In-flight comparison of Brewer-Mast and electrochemical concentration cell ozonesondes. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jd009091] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
129
|
Fiore AM, West JJ, Horowitz LW, Naik V, Schwarzkopf MD. Characterizing the tropospheric ozone response to methane emission controls and the benefits to climate and air quality. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jd009162] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
130
|
Yamaji K, Ohara T, Uno I, Kurokawa JI, Pochanart P, Akimoto H. Future prediction of surface ozone over east Asia using Models-3 Community Multiscale Air Quality Modeling System and Regional Emission Inventory in Asia. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jd008663] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
131
|
Pozzoli L, Bey I, Rast S, Schultz MG, Stier P, Feichter J. Trace gas and aerosol interactions in the fully coupled model of aerosol-chemistry-climate ECHAM5-HAMMOZ: 1. Model description and insights from the spring 2001 TRACE-P experiment. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jd009007] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
132
|
Wu S, Mickley LJ, Leibensperger EM, Jacob DJ, Rind D, Streets DG. Effects of 2000–2050 global change on ozone air quality in the United States. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jd008917] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
133
|
van der A RJ, Eskes HJ, Boersma KF, van Noije TPC, Van Roozendael M, De Smedt I, Peters DHMU, Meijer EW. Trends, seasonal variability and dominant NOxsource derived from a ten year record of NO2measured from space. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jd009021] [Citation(s) in RCA: 288] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
134
|
Unger N, Shindell DT, Koch DM, Streets DG. Air pollution radiative forcing from specific emissions sectors at 2030. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jd008683] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
135
|
|
136
|
Ito A, Sudo K, Akimoto H, Sillman S, Penner JE. Global modeling analysis of tropospheric ozone and its radiative forcing from biomass burning emissions in the twentieth century. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2007jd008745] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
137
|
Hocking WK, Carey-Smith T, Tarasick DW, Argall PS, Strong K, Rochon Y, Zawadzki I, Taylor PA. Detection of stratospheric ozone intrusions by windprofiler radars. Nature 2007; 450:281-4. [DOI: 10.1038/nature06312] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Accepted: 09/24/2007] [Indexed: 11/09/2022]
|
138
|
Shindell DT, Faluvegi G, Bauer SE, Koch DM, Unger N, Menon S, Miller RL, Schmidt GA, Streets DG. Climate response to projected changes in short-lived species under an A1B scenario from 2000–2050 in the GISS climate model. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2007jd008753] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
139
|
Pierce RB, Schaack T, Al-Saadi JA, Fairlie TD, Kittaka C, Lingenfelser G, Natarajan M, Olson J, Soja A, Zapotocny T, Lenzen A, Stobie J, Johnson D, Avery MA, Sachse GW, Thompson A, Cohen R, Dibb JE, Crawford J, Rault D, Martin R, Szykman J, Fishman J. Chemical data assimilation estimates of continental U.S. ozone and nitrogen budgets during the Intercontinental Chemical Transport Experiment–North America. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jd007722] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
140
|
Liu X, Penner JE, Das B, Bergmann D, Rodriguez JM, Strahan S, Wang M, Feng Y. Uncertainties in global aerosol simulations: Assessment using three meteorological data sets. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jd008216] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
141
|
Rind D, Lerner J, Jonas J, McLinden C. Effects of resolution and model physics on tracer transports in the NASA Goddard Institute for Space Studies general circulation models. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jd007476] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
142
|
Cook PA, Savage NH, Turquety S, Carver GD, O'Connor FM, Heckel A, Stewart D, Whalley LK, Parker AE, Schlager H, Singh HB, Avery MA, Sachse GW, Brune W, Richter A, Burrows JP, Purvis R, Lewis AC, Reeves CE, Monks PS, Levine JG, Pyle JA. Forest fire plumes over the North Atlantic: p-TOMCAT model simulations with aircraft and satellite measurements from the ITOP/ICARTT campaign. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jd007563] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Peter A. Cook
- Centre for Atmospheric Science, Department of Chemistry; University of Cambridge; Cambridge UK
| | - Nicholas H. Savage
- Centre for Atmospheric Science, Department of Chemistry; University of Cambridge; Cambridge UK
- Atmospheric Chemistry Modelling Support Unit, National Environment Research Council Centres for Atmospheric Sciences; University of Cambridge; Cambridge UK
| | - Solène Turquety
- Atmospheric Chemistry Modeling Group; Harvard University; Cambridge Massachusetts USA
| | - Glenn D. Carver
- Centre for Atmospheric Science, Department of Chemistry; University of Cambridge; Cambridge UK
- Atmospheric Chemistry Modelling Support Unit, National Environment Research Council Centres for Atmospheric Sciences; University of Cambridge; Cambridge UK
| | - Fiona M. O'Connor
- Centre for Atmospheric Science, Department of Chemistry; University of Cambridge; Cambridge UK
| | - Andreas Heckel
- Institute of Environmental Physics; University of Bremen; Bremen Germany
| | - David Stewart
- School of Environmental Sciences; University of East Anglia; Norwich UK
| | | | - Alex E. Parker
- Department of Chemistry; University of Leicester; Leicester UK
| | - Hans Schlager
- Institut fuer Physik der Atmosphaere; Deutsches Zentrum fuer Luft- und Raumfahrt; Oberpfaffenhofen Germany
| | | | | | | | - William Brune
- Department of Meteorology; Pennsylvania State University; University Park Pennsylvania USA
| | - Andreas Richter
- Institute of Environmental Physics; University of Bremen; Bremen Germany
| | - John P. Burrows
- Institute of Environmental Physics; University of Bremen; Bremen Germany
| | - Ruth Purvis
- Facility of Airborne Atmospheric Measurements; Cranfield UK
| | | | - Claire E. Reeves
- School of Environmental Sciences; University of East Anglia; Norwich UK
| | - Paul S. Monks
- Department of Chemistry; University of Leicester; Leicester UK
| | - James G. Levine
- Centre for Atmospheric Science, Department of Chemistry; University of Cambridge; Cambridge UK
| | - John A. Pyle
- Centre for Atmospheric Science, Department of Chemistry; University of Cambridge; Cambridge UK
- Atmospheric Chemistry Modelling Support Unit, National Environment Research Council Centres for Atmospheric Sciences; University of Cambridge; Cambridge UK
| |
Collapse
|
143
|
Harmens H, Mills G, Emberson LD, Ashmore MR. Implications of climate change for the stomatal flux of ozone: a case study for winter wheat. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2007; 146:763-70. [PMID: 16824657 DOI: 10.1016/j.envpol.2006.05.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Revised: 05/19/2006] [Accepted: 05/23/2006] [Indexed: 05/10/2023]
Abstract
Climate change factors such as elevated CO2 concentrations, warming and changes in precipitation affect the stomatal flux of ozone (O3) into leaves directly or indirectly by altering the stomatal conductance, atmospheric O3 concentrations, frequency and extent of pollution episodes and length of the growing season. Results of a case study for winter wheat indicate that in a future climate the exceedance of the flux-based critical level of O3 might be reduced across Europe, even when taking into account an increase in tropospheric background O3 concentration. In contrast, the exceedance of the concentration-based critical level of O3 will increase with the projected increase in tropospheric background O3 concentration. The influence of climate change should be considered when predicting the future effects of O3 on vegetation. There is a clear need for multi-factorial, open-air experiments to provide more realistic information for O3 flux-effect modelling in a future climate.
Collapse
Affiliation(s)
- Harry Harmens
- Centre for Ecology and Hydrology, Orton Building, Deiniol Road, Bangor, Gwynedd LL57 2UP, UK.
| | | | | | | |
Collapse
|
144
|
Auvray M, Bey I, Llull E, Schultz MG, Rast S. A model investigation of tropospheric ozone chemical tendencies in long-range transported pollution plumes. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jd007137] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
145
|
Wu S, Mickley LJ, Jacob DJ, Logan JA, Yantosca RM, Rind D. Why are there large differences between models in global budgets of tropospheric ozone? ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jd007801] [Citation(s) in RCA: 224] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
146
|
Horowitz LW. Past, present, and future concentrations of tropospheric ozone and aerosols: Methodology, ozone evaluation, and sensitivity to aerosol wet removal. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2005jd006937] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
147
|
Shindell DT, Faluvegi G, Stevenson DS, Krol MC, Emmons LK, Lamarque JF, Pétron G, Dentener FJ, Ellingsen K, Schultz MG, Wild O, Amann M, Atherton CS, Bergmann DJ, Bey I, Butler T, Cofala J, Collins WJ, Derwent RG, Doherty RM, Drevet J, Eskes HJ, Fiore AM, Gauss M, Hauglustaine DA, Horowitz LW, Isaksen ISA, Lawrence MG, Montanaro V, Müller JF, Pitari G, Prather MJ, Pyle JA, Rast S, Rodriguez JM, Sanderson MG, Savage NH, Strahan SE, Sudo K, Szopa S, Unger N, van Noije TPC, Zeng G. Multimodel simulations of carbon monoxide: Comparison with observations and projected near-future changes. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2006jd007100] [Citation(s) in RCA: 228] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
148
|
Ziemke JR, Chandra S, Duncan BN, Froidevaux L, Bhartia PK, Levelt PF, Waters JW. Tropospheric ozone determined from Aura OMI and MLS: Evaluation of measurements and comparison with the Global Modeling Initiative's Chemical Transport Model. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2006jd007089] [Citation(s) in RCA: 253] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
149
|
Doherty RM, Stevenson DS, Johnson CE, Collins WJ, Sanderson MG. Tropospheric ozone and El Niño–Southern Oscillation: Influence of atmospheric dynamics, biomass burning emissions, and future climate change. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2005jd006849] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
150
|
Unger N, Shindell DT, Koch DM, Amann M, Cofala J, Streets DG. Influences of man-made emissions and climate changes on tropospheric ozone, methane, and sulfate at 2030 from a broad range of possible futures. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2005jd006518] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|