101
|
Abstract
Evolution through natural selection can be described as driven by a perpetual conflict of individuals competing for limited resources. Recently, I postulated that the shortage of resources godfathered the evolutionary achievements of the differentiation-apoptosis programming [Rev. Neurosci. 12 (2001) 217]. Unicellular deprivation-induced differentiation into germ cell-like spores can be regarded as the archaic reproduction events which were fueled by the remains of the fratricided cells of the apoptotic fruiting body. Evidence has been accumulated suggesting that conserved through the ages as the evolutionary legacy of the germ-soma conflict, the somatic loss of immortality during the ontogenetic segregation of primordial germ cells recapitulates the archaic fate of the fruiting body. In this heritage, somatic death is a germ cell-triggered event and has been established as evolutionary-fixed default state following asymmetric reproduction in a world of finite resources. Aging, on the other hand, is the stress resistance-dependent phenotype of the somatic resilience that counteracts the germ cell-inflicted death pathway. Thus, aging is a survival response and, in contrast to current beliefs, is antagonistically linked to death that is not imposed by group selection but enforced upon the soma by the selfish genes of the "enemy within". Environmental conditions shape the trade-off solutions as compromise between the conflicting germ-soma interests. Mechanistically, the neuroendocrine system, particularly those components that control energy balance, reproduction and stress responses, orchestrate these events. The reproductive phase is a self-limited process that moulds onset and progress of senescence with germ cell-dependent factors, e.g. gonadal hormones. These degenerate the regulatory pacemakers of the pineal-hypothalamic-pituitary network and its peripheral, e.g. thymic, gonadal and adrenal targets thereby eroding the trophic milieu. The ensuing cellular metabolic stress engenders adaptive adjustments of the glucose-fatty acid cycle, responses that are adequate and thus fitness-boosting under fuel shortage (e.g. during caloric restriction) but become detrimental under fuel abundance. In a Janus-faced capacity, the cellular stress response apparatus expresses both tolerogenic and mutagenic features of the social and asocial deprivation responses [Rev. Neurosci. 12 (2001) 217]. Mediated by the derangement of the energy-Ca(2+)-redox homeostatic triangle, a mosaic of dedifferentiation/apoptosis and mutagenic responses actuates the gradual exhaustion of functional reserves and eventually results in a multitude of aging-related diseases. This scenario reconciles programmed and stochastic features of aging and resolves the major inconsistencies of current theories by linking ultimate and proximate causes of aging. Reproduction, differentiation, apoptosis, stress response and metabolism are merged into a coherent regulatory network that stages aging as a naturally selected, germ cell-triggered and reproductive phase-modulated deprivation response.
Collapse
Affiliation(s)
- Kurt Heininger
- Department of Neurology, Heinrich Heine Universität, Düsseldorf, Germany.
| |
Collapse
|
102
|
Langley E, Pearson M, Faretta M, Bauer UM, Frye RA, Minucci S, Pelicci PG, Kouzarides T. Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence. EMBO J 2002; 21:2383-96. [PMID: 12006491 PMCID: PMC126010 DOI: 10.1093/emboj/21.10.2383] [Citation(s) in RCA: 668] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The yeast Sir2 protein mediates chromatin silencing through an intrinsic NAD-dependent histone deacetylase activity. Sir2 is a conserved protein and was recently shown to regulate lifespan extension both in budding yeast and worms. Here, we show that SIRT1, the human Sir2 homolog, is recruited to the promyelocytic leukemia protein (PML) nuclear bodies of mammalian cells upon overexpression of either PML or oncogenic Ras (Ha-rasV12). SIRT1 binds and deacetylates p53, a component of PML nuclear bodies, and it can repress p53-mediated transactivation. Moreover, we show that SIRT1 and p53 co-localize in nuclear bodies upon PML upregulation. When overexpressed in primary mouse embryo fibroblasts (MEFs), SIRT1 antagonizes PML-induced acetylation of p53 and rescues PML-mediated premature cellular senescence. Taken together, our data establish the SIRT1 deacetylase as a novel negative regulator of p53 function capable of modulating cellular senescence.
Collapse
Affiliation(s)
- Emma Langley
- Wellcome Institute/Cancer Research UK and Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK, European Institute of Oncology, Department of Experimental Oncology, I-20141 Milan, University of Milan, Department of Physiology and Biochemistry and FIRC Institute of Molecular Oncology, I-20100 Milan, Italy and Pittsburgh V.A. Medical Center (132L), Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15240, USA Present address: Novartis, Oncology Department, CH-4002 Basel, Switzerland Corresponding author e-mail:
| | - Mark Pearson
- Wellcome Institute/Cancer Research UK and Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK, European Institute of Oncology, Department of Experimental Oncology, I-20141 Milan, University of Milan, Department of Physiology and Biochemistry and FIRC Institute of Molecular Oncology, I-20100 Milan, Italy and Pittsburgh V.A. Medical Center (132L), Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15240, USA Present address: Novartis, Oncology Department, CH-4002 Basel, Switzerland Corresponding author e-mail:
| | - Mario Faretta
- Wellcome Institute/Cancer Research UK and Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK, European Institute of Oncology, Department of Experimental Oncology, I-20141 Milan, University of Milan, Department of Physiology and Biochemistry and FIRC Institute of Molecular Oncology, I-20100 Milan, Italy and Pittsburgh V.A. Medical Center (132L), Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15240, USA Present address: Novartis, Oncology Department, CH-4002 Basel, Switzerland Corresponding author e-mail:
| | - Uta-Maria Bauer
- Wellcome Institute/Cancer Research UK and Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK, European Institute of Oncology, Department of Experimental Oncology, I-20141 Milan, University of Milan, Department of Physiology and Biochemistry and FIRC Institute of Molecular Oncology, I-20100 Milan, Italy and Pittsburgh V.A. Medical Center (132L), Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15240, USA Present address: Novartis, Oncology Department, CH-4002 Basel, Switzerland Corresponding author e-mail:
| | - Roy A. Frye
- Wellcome Institute/Cancer Research UK and Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK, European Institute of Oncology, Department of Experimental Oncology, I-20141 Milan, University of Milan, Department of Physiology and Biochemistry and FIRC Institute of Molecular Oncology, I-20100 Milan, Italy and Pittsburgh V.A. Medical Center (132L), Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15240, USA Present address: Novartis, Oncology Department, CH-4002 Basel, Switzerland Corresponding author e-mail:
| | - Saverio Minucci
- Wellcome Institute/Cancer Research UK and Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK, European Institute of Oncology, Department of Experimental Oncology, I-20141 Milan, University of Milan, Department of Physiology and Biochemistry and FIRC Institute of Molecular Oncology, I-20100 Milan, Italy and Pittsburgh V.A. Medical Center (132L), Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15240, USA Present address: Novartis, Oncology Department, CH-4002 Basel, Switzerland Corresponding author e-mail:
| | - Pier Giuseppe Pelicci
- Wellcome Institute/Cancer Research UK and Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK, European Institute of Oncology, Department of Experimental Oncology, I-20141 Milan, University of Milan, Department of Physiology and Biochemistry and FIRC Institute of Molecular Oncology, I-20100 Milan, Italy and Pittsburgh V.A. Medical Center (132L), Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15240, USA Present address: Novartis, Oncology Department, CH-4002 Basel, Switzerland Corresponding author e-mail:
| | - Tony Kouzarides
- Wellcome Institute/Cancer Research UK and Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK, European Institute of Oncology, Department of Experimental Oncology, I-20141 Milan, University of Milan, Department of Physiology and Biochemistry and FIRC Institute of Molecular Oncology, I-20100 Milan, Italy and Pittsburgh V.A. Medical Center (132L), Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15240, USA Present address: Novartis, Oncology Department, CH-4002 Basel, Switzerland Corresponding author e-mail:
| |
Collapse
|
103
|
Filesi I, Cardinale A, van der Sar S, Cowell IG, Singh PB, Biocca S. Loss of Heterochromatin Protein 1 (HP1) chromodomain function in mammalian cells by intracellular antibodies causes cell death. J Cell Sci 2002; 115:1803-13. [PMID: 11956312 DOI: 10.1242/jcs.115.9.1803] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The chromodomain (CD) is a highly conserved motif present in a variety of animal and plant proteins, and its probable role is to assemble a variety of macromolecular complexes in chromatin. The importance of the CD to the survival of mammalian cells has been tested. Accordingly, we have ablated CD function using two single-chain intracellular Fv (scFv) fragments directed against non-overlapping epitopes within the HP1 CD motif. The scFv fragments can recognize both CD motifs of HP1 and Polycomb (Pc) in vitro and, when expressed intracellularly, interact with and dislodge the HP1 protein(s) from their heterochromatin localization in vivo. Mouse and human fibroblasts expressing anti-chromodomain scFv fragments show a cell-lethal phenotype and an apoptotic morphology becomes apparent soon after transfection. The mechanism of cell death appears to be p53 independent, and the cells are only partly rescued by incubation with the wide spectrum caspase inhibitor Z-VAD fmk. We conclude that expression of anti-chromodomain intracellular antibodies is sufficient to trigger a p53-independent apoptotic pathway that is only partly dependent on the known Z-VAD-inhibitable caspases, suggesting that CD function is essential for cell survival.
Collapse
Affiliation(s)
- Ilaria Filesi
- Department of Neuroscience, University of Roma Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | | | | | | | | | | |
Collapse
|
104
|
Huang Y. Transcriptional silencing in Saccharomyces cerevisiae and Schizosaccharomyces pombe. Nucleic Acids Res 2002; 30:1465-82. [PMID: 11917007 PMCID: PMC101825 DOI: 10.1093/nar/30.7.1465] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2001] [Revised: 01/28/2002] [Accepted: 01/28/2002] [Indexed: 11/13/2022] Open
Abstract
Transcriptional silencing is a heritable form of gene inactivation that involves the assembly of large regions of DNA into a specialized chromatin structure that inhibits transcription. This phenomenon is responsible for inhibiting transcription at silent mating-type loci, telomeres and rDNA repeats in both budding yeast Saccharomyces cerevisiae and fission yeast Schizosaccharomyces pombe, as well as at centromeres in fission yeast. Although transcriptional silencing in both S.cerevisiae and S.pombe involves modification of chromatin, no apparent amino acid sequence similarities have been reported between the proteins involved in establishment and maintenance of silent chromatin in these two distantly related yeasts. Silencing in S.cerevisiae is mediated by Sir2p-containing complexes, whereas silencing in S.pombe is mediated primarily by Swi6-containing complexes. The Swi6 complexes of S.pombe contain proteins closely related to their counterparts in higher eukaryotes, but have no apparent orthologs in S.cerevisiae. Silencing proteins from both yeasts are also actively involved in other chromosome-related nuclear functions, including DNA repair and the regulation of chromatin structure.
Collapse
|
105
|
Vaziri H, Dessain SK, Ng Eaton E, Imai SI, Frye RA, Pandita TK, Guarente L, Weinberg RA. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 2001; 107:149-59. [PMID: 11672523 DOI: 10.1016/s0092-8674(01)00527-x] [Citation(s) in RCA: 2075] [Impact Index Per Article: 86.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
DNA damage-induced acetylation of p53 protein leads to its activation and either growth arrest or apoptosis. We show here that the protein product of the gene hSIR2(SIRT1), the human homolog of the S. cerevisiae Sir2 protein known to be involved in cell aging and in the response to DNA damage, binds and deacetylates the p53 protein with a specificity for its C-terminal Lys382 residue, modification of which has been implicated in the activation of p53 as a transcription factor. Expression of wild-type hSir2 in human cells reduces the transcriptional activity of p53. In contrast, expression of a catalytically inactive hSir2 protein potentiates p53-dependent apoptosis and radiosensitivity. We propose that hSir2 is involved in the regulation of p53 function via deacetylation.
Collapse
Affiliation(s)
- H Vaziri
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | | | | | | | | | | | | | |
Collapse
|
106
|
Hasty P. The impact energy metabolism and genome maintenance have on longevity and senescence: lessons from yeast to mammals. Mech Ageing Dev 2001; 122:1651-62. [PMID: 11557271 DOI: 10.1016/s0047-6374(01)00294-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The phenomenon that caloric restriction increases life span in a variety of species from yeast to mice has been the focus of much interest. Recent observations suggest that a protein important for heterochromatin formation, Sir2, is central for caloric restriction-induced longevity in lower organisms. Interestingly, Sir2 is also capable of repairing DNA double-strand breaks by nonhomologous end joining which may be important, along with proteins that repair breaks by recombinational repair, for minimizing the age-related deleterious effects of DNA damage induced by oxygen by-products of metabolism. I propose that competition between these two distinct functions could influence longevity and the onset of senescence. In addition, sequence and functional similarities between Sir2 and other chromatin metabolism proteins present the possibility that genetic components for longevity and senescence are conserved from yeast to mammals.
Collapse
Affiliation(s)
- P Hasty
- Department of Molecular Medicine, Institute of Biotechnology, The University of Texas, Health Science Center at San Antonio, San Antonio, TX 78245-3207, USA.
| |
Collapse
|
107
|
Li B, Reese JC. Ssn6-Tup1 regulates RNR3 by positioning nucleosomes and affecting the chromatin structure at the upstream repression sequence. J Biol Chem 2001; 276:33788-97. [PMID: 11448965 DOI: 10.1074/jbc.m104220200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The DNA damage inducible gene ribonucleotide reductase (RNR3) is regulated by a transcriptional repression mechanism by the recruitment of the Ssn6-Tup1 corepressor complex to its promoter by the sequence-specific DNA-binding protein Crt1. Ssn6-Tup1 is reported to represses transcription by interfering with transcription factors, recruiting histone deacetylases, and positioning nucleosomes at the promoter of its target genes. Two of the three mechanisms involve effects on chromatin structure, and therefore, we have delineated the nucleosomal structure of RNR3 in the repressed and derepressed state using multiple nuclease mapping strategies. A regular array of positioned nucleosomes is detected over the repressed RNR3 promoter that extends into the coding sequence. Treating cells with DNA damaging agents or deleting CRT1, SSN6, or TUP1 derepresses RNR3 transcription, and causes a dramatic disruption of nucleosome positioning over its promoter. Furthermore, derepression of RNR3 correlated with changes in nuclease sensitivity within the upstream repression sequence (URS) region. Specifically, the loss of a MNase-hypersensitive site, and the appearance of strong DNase I hypersensitivity, was observed over the URS. Interestingly, we find that the binding of Crt1 to the promoter in the absence of Ssn6 or Tup1 is insufficient for nucleosome positioning or regulating chromatin structure at the URS; thus, these two functions are strictly dependent upon Ssn6-Tup1. We propose that RNR3 is regulated by changes in nucleosome positioning and chromatin structure that are mediated by Ssn6, Tup1, and Crt1.
Collapse
Affiliation(s)
- B Li
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802-4500, USA
| | | |
Collapse
|
108
|
Ziegler M, Oei SL. A cellular survival switch: poly(ADP-ribosyl)ation stimulates DNA repair and silences transcription. Bioessays 2001; 23:543-8. [PMID: 11385634 DOI: 10.1002/bies.1074] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Poly(ADP-ribosyl)ation is a post-translational modification occurring in the nucleus. The most abundant and best-characterized enzyme catalyzing this reaction, poly(ADP-ribose) polymerase 1 (PARP1), participates in fundamental nuclear events. The enzyme functions as molecular "nick sensor". It binds with high affinity to DNA single-strand breaks resulting in the initiation of its catalytic activity. Activated PARP1 promotes base excision repair. In addition, PARP1 modifies several transcription factors and thereby precludes their binding to DNA. We propose that a major function of PARP1 includes the silencing of transcription preventing expression of damaged genes. Concomitant stimulation of DNA repair suggests that PARP1 acts as a switch between transcription and DNA repair. Another PARP-type enzyme, tankyrase, is involved in the regulation of telomere elongation. Tankyrase modifies a telomere-associated protein and thereby prevents it masking telomeric repeats providing access of telomerase for telomere elongation. Therefore, poly(ADP-ribosyl)ation reactions may act as molecular switches in DNA metabolism.
Collapse
Affiliation(s)
- M Ziegler
- Institut für Biochemie, Freie Universität Berlin, Germany.
| | | |
Collapse
|
109
|
Grigoryev SA. Higher-order folding of heterochromatin: Protein bridges span the nucleosome arrays. Biochem Cell Biol 2001. [DOI: 10.1139/o01-030] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In interphase eukaryotic nuclei, chromatin is divided into two morphologically distinct types known as heterochromatin and euchromatin. It has been long suggested that the two types of chromatin differ at the level of higher-order folding. Recent studies have revealed the features of chromatin 3D architecture that distinguish the higher-order folding of repressed and active chromatin and have identified chromosomal proteins and their modifications associated with these structural transitions. This review discusses the molecular and structural determinants of chromatin higher-order folding in relation to mechanism(s) of heterochromatin formation and genetic silencing during cell differentiation and tissue development.Key words: heterochromatin, nucleosome, histone, higher-order folding, chromatin 3D structure.
Collapse
|
110
|
Cox R. Resolving the molecular mechanisms of radiation tumorigenesis: past problems and future prospects. HEALTH PHYSICS 2001; 80:344-348. [PMID: 11281202 DOI: 10.1097/00004032-200104000-00010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Major goals in experimental radiobiology continue to be the resolution of the fundamental mechanisms of cellular radiation response and to gain detailed understanding of the contribution made by these responses to the complex in vivo processes of tumor development. The coupling of this framework of fundamental knowledge to epidemiological measures of risk greatly strengthens the biological basis of radiological protection. A selective overview is provided of recent advances in the understanding of the mechanisms and genetics of radiation tumorigenesis and their possible implications. It is suggested that rapid technical and academic advances in biology greatly expand the opportunities to further refine scientific knowledge on tumor risk after radiation.
Collapse
Affiliation(s)
- R Cox
- Radiation Effects Department, National Radiological Protection Board, Didcot, Oxon, United Kingdom
| |
Collapse
|
111
|
Abstract
The model organism Saccharomyces cerevisiae is providing new insights into the molecular and cellular changes that are related to aging. The yeast protein Sir2p (Silent Information Regulator 2) is a histone deacetylase involved in transcriptional silencing and the control of genomic stability. Recent results have led to the identification of Sir2p as a crucial determinant of yeast life span. Dosage, intracellular localization, and activity of Sir2p all have important effects on yeast longevity. For instance, calorie restriction apparently increases yeast life span by increasing Sir2p activity. Since Sir2p-related proteins have been identified in many prokaryotic and eukaryotic organisms, the fundamental principles derived from the studies in yeast may prove valuable in directing our future research toward an understanding of the mechanisms of aging in higher eukaryotes. BioEssays 23:327-332, 2001.
Collapse
Affiliation(s)
- P A Defossez
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | | | | |
Collapse
|
112
|
Muth V, Nadaud S, Grummt I, Voit R. Acetylation of TAF(I)68, a subunit of TIF-IB/SL1, activates RNA polymerase I transcription. EMBO J 2001; 20:1353-62. [PMID: 11250901 PMCID: PMC145524 DOI: 10.1093/emboj/20.6.1353] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mammalian rRNA genes are preceded by a terminator element that is recognized by the transcription termination factor TTF-I. In exploring the functional significance of the promoter-proximal terminator, we found that TTF-I associates with the p300/CBP-associated factor PCAF, suggesting that TTF-I may target histone acetyltransferase to the rDNA promoter. We demonstrate that PCAF acetylates TAF(I)68, the second largest subunit of the TATA box-binding protein (TBP)-containing factor TIF-IB/SL1, and acetylation enhances binding of TAF(I)68 to the rDNA promoter. Moreover, PCAF stimulates RNA polymerase I (Pol I) transcription in a reconstituted in vitro system. Consistent with acetylation of TIF-IB/SL1 being required for rDNA transcription, the NAD(+)-dependent histone deacetylase mSir2a deacetylates TAF(I)68 and represses Pol I transcription. The results demonstrate that acetylation of the basal Pol I transcription machinery has functional consequences and suggest that reversible acetylation of TIF-IB/SL1 may be an effective means to regulate rDNA transcription in response to external signals.
Collapse
Affiliation(s)
| | - Sophie Nadaud
- Division of Molecular Biology of the Cell II, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
Present address: INSERM U525, Faculté de Médecine, 91 Boulevard de l’Hôpital, 75013 Paris, France Corresponding author e-mail: V.Muth and S.Nadaud contributed equally to this work
| | | | - Renate Voit
- Division of Molecular Biology of the Cell II, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
Present address: INSERM U525, Faculté de Médecine, 91 Boulevard de l’Hôpital, 75013 Paris, France Corresponding author e-mail: V.Muth and S.Nadaud contributed equally to this work
| |
Collapse
|
113
|
Abstract
The past decade has seen an explosive increase in information about regulation of eukaryotic gene transcription, especially for protein-coding genes. The most striking advances in our knowledge of transcriptional regulation involve the chromatin template, the large complexes recruited by transcriptional activators that regulate chromatin structure and the transcription apparatus, the holoenzyme forms of RNA polymerase II involved in initiation and elongation, and the mechanisms that link mRNA processing with its synthesis. We describe here the major advances in these areas, with particular emphasis on the modular complexes associated with RNA polymerase II that are targeted by activators and other regulators of mRNA biosynthesis.
Collapse
Affiliation(s)
- T I Lee
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | |
Collapse
|
114
|
Kobayashi T, Nomura M, Horiuchi T. Identification of DNA cis elements essential for expansion of ribosomal DNA repeats in Saccharomyces cerevisiae. Mol Cell Biol 2001; 21:136-47. [PMID: 11113188 PMCID: PMC88787 DOI: 10.1128/mcb.21.1.136-147.2001] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Saccharomyces cerevisiae carries approximately 150 ribosomal DNA (rDNA) copies in tandem repeats. Each repeat consists of the 35S rRNA gene, the NTS1 spacer, the 5S rRNA gene, and the NTS2 spacer. The FOB1 gene was previously shown to be required for replication fork block (RFB) activity at the RFB site in NTS1, for recombination hot spot (HOT1) activity, and for rDNA repeat expansion and contraction. We have constructed a strain in which the majority of rDNA repeats are deleted, leaving two copies of rDNA covering the 5S-NTS2-35S region and a single intact NTS1, and whose growth is supported by a helper plasmid carrying, in addition to the 5S rRNA gene, the 35S rRNA coding region fused to the GAL7 promoter. This strain carries a fob1 mutation, and an extensive expansion of chromosomal rDNA repeats was demonstrated by introducing the missing FOB1 gene by transformation. Mutational analysis using this system showed that not only the RFB site but also the adjacent approximately 400-bp region in NTS1 (together called the EXP region) are required for the FOB1-dependent repeat expansion. This approximately 400-bp DNA element is not required for the RFB activity or the HOT1 activity and therefore defines a function unique to rDNA repeat expansion (and presumably contraction) separate from HOT1 and RFB activities.
Collapse
Affiliation(s)
- T Kobayashi
- National Institute for Basic Biology, Okazaki 444-8585, Japan.
| | | | | |
Collapse
|
115
|
Tanner KG, Landry J, Sternglanz R, Denu JM. Silent information regulator 2 family of NAD- dependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose. Proc Natl Acad Sci U S A 2000; 97:14178-82. [PMID: 11106374 PMCID: PMC18891 DOI: 10.1073/pnas.250422697] [Citation(s) in RCA: 437] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Conflicting reports have suggested that the silent information regulator 2 (SIR2) protein family employs NAD(+) to ADP-ribosylate histones [Tanny, J. C., Dowd, G. J., Huang, J., Hilz, H. & Moazed, D. (1999) Cell 99, 735-745; Frye, R. A. (1999) Biochem. Biophys. Res. Commun. 260, 273-279], deacetylate histones [Landry, J., Sutton, A., Tafrov, S. T., Heller, R. C., Stebbins, J., Pillus, L. & Sternglanz, R. (2000) Proc. Natl. Acad. Sci. USA 97, 5807-5811; Smith, J. S., Brachmann, C. B., Celic, I., Kenna, M. A., Muhammad, S., Starai, V. J., Avalos, J. L., Escalante-Semerena, J. C., Grubmeyer, C., Wolberger, C. & Boeke, J. D. (2000) Proc. Natl. Acad. Sci. USA 97, 6658-6663], or both [Imai, S., Armstrong, C. M., Kaeberlein, M. & Guarente, L. (2000) Nature (London) 403, 795-800]. Uncovering the true enzymatic function of SIR2 is critical to the basic understanding of its cellular function. Therefore, we set out to authenticate the reaction products and to determine the intrinsic catalytic mechanism. We provide direct evidence that the efficient histone/protein deacetylase reaction is tightly coupled to the formation of a previously unidentified acetyl-ADP-ribose product (1-O-acetyl-ADP ribose). One molecule of NAD(+) and one molecule of acetyl-lysine are readily catalyzed to one molecule of deacetylated lysine, nicotinamide, and 1-O-acetyl-ADP-ribose. A unique reaction mechanism involving the attack of enzyme-bound acetate or the direct attack of acetyl-lysine on an oxocarbenium ADP-ribose intermediate is proposed. We suggest that the reported histone/protein ADP-ribosyltransferase activity is a low-efficiency side reaction that can be explained through the partial uncoupling of the intrinsic deacetylation and acetate transfer to ADP-ribose.
Collapse
Affiliation(s)
- K G Tanner
- Department of Biochemistry and Molecular Biology, Oregon Health Sciences University, Portland, OR 97201-3098, USA
| | | | | | | |
Collapse
|
116
|
Landry J, Slama JT, Sternglanz R. Role of NAD(+) in the deacetylase activity of the SIR2-like proteins. Biochem Biophys Res Commun 2000; 278:685-90. [PMID: 11095969 DOI: 10.1006/bbrc.2000.3854] [Citation(s) in RCA: 195] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this report we describe the role of NAD(+) in the deacetylation reaction catalyzed by the SIR2 family of enzymes. We first show that the products of the reaction detected by HPLC analysis are ADP-ribose, nicotinamide, and a deacetylated peptide substrate. These products are in a 1:1:1 molar ratio, indicating that deacetylation involves the hydrolysis of one NAD(+) to ADP-ribose and nicotinamide for each acetyl group removed. Three results suggest that deacetylation requires an enzyme-ADP-ribose intermediate. First, the enzyme can promote an NAD(+) if nicotinamide exchange reaction that depends on an acetylated substrate. Second, a non-hydrolyzable NAD(+) analog is a competitive inhibitor of the enzyme, and, third, nicotinamide shows product inhibition of deacetylase activity.
Collapse
Affiliation(s)
- J Landry
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, New York, 11794-5215, USA
| | | | | |
Collapse
|
117
|
Abstract
Hereditary breast and ovarian cancer syndromes can be caused by loss-of-function germline mutations in one of two tumour-suppressor genes, BRCA1 and BRCA2 (ref. 1). Each gene product interacts with recombination/DNA repair proteins in pathways that participate in preserving intact chromosome structure. However, it is unclear to what extent such functions specifically suppress breast and ovarian cancer. Here we analyse what is known of BRCA gene function and highlight some unanswered questions in the field.
Collapse
Affiliation(s)
- R Scully
- The Dana-Farber Cancer Institute and the Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
118
|
Yang YH, Chen YH, Zhang CY, Nimmakayalu MA, Ward DC, Weissman S. Cloning and characterization of two mouse genes with homology to the yeast Sir2 gene. Genomics 2000; 69:355-69. [PMID: 11056054 DOI: 10.1006/geno.2000.6360] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The yeast Sir2 gene encodes a protein (Sir2p) that plays an essential role in silencing regulation at mating-type loci, rDNA, and telomeres. Recent studies have also shown that the protein participates in cell cycle regulation, DNA double-strand break repair, meiotic checkpoint control, and histone deacetylation. Overexpression of wildtype Sir2p in yeast resulted in an extended life span but mutant Sir2p shortened the life span, suggesting its function in aging processes. Sir2p is evolutionarily conserved from prokaryotes to higher eukaryotes. However, its function(s) in mammals remains unknown. To investigate Sir2p function(s) in mice, we cloned and characterized two mouse Sir2-like genes. Our results revealed that the two mouse Sir2-like proteins (mSIR2L2 and mSIR2L3) are most similar to the human Sir2-like proteins SIR2L2 and SIR2L3, respectively. Sir2 core domains are highly conserved in the two proteins and yeast Sir2p; however, the intracellular localizations of both mSIR2L2 and mSIR2L3 differ from that of yeast Sir2p and from one another. The two mouse genes have completely different genomic structures but were mapped on the same chromosome. It seems that the two mouse proteins, though they have Sir2 conserved domains, may function differently than yeast Sir2p.
Collapse
Affiliation(s)
- Y H Yang
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut, 06536, USA
| | | | | | | | | | | |
Collapse
|
119
|
Lin SJ, Defossez PA, Guarente L. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 2000; 289:2126-8. [PMID: 11000115 DOI: 10.1126/science.289.5487.2126] [Citation(s) in RCA: 1347] [Impact Index Per Article: 53.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Calorie restriction extends life-span in a wide variety of organisms. Although it has been suggested that calorie restriction may work by reducing the levels of reactive oxygen species produced during respiration, the mechanism by which this regimen slows aging is uncertain. Here, we mimicked calorie restriction in yeast by physiological or genetic means and showed a substantial extension in life-span. This extension was not observed in strains mutant for SIR2 (which encodes the silencing protein Sir2p) or NPT1 (a gene in a pathway in the synthesis of NAD, the oxidized form of nicotinamide adenine dinucleotide). These findings suggest that the increased longevity induced by calorie restriction requires the activation of Sir2p by NAD.
Collapse
Affiliation(s)
- S J Lin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
120
|
Blumental-Perry A, Zenvirth D, Klein S, Onn I, Simchen G. DNA motif associated with meiotic double-strand break regions in Saccharomyces cerevisiae. EMBO Rep 2000; 1:232-8. [PMID: 11256605 PMCID: PMC1083721 DOI: 10.1093/embo-reports/kvd047] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Meiotic recombination in yeast is initiated by DNA double-strand breaks (DSBs) that occur at preferred sites, distributed along the chromosomes. These DSB sites undergo changes in chromatin structure early in meiosis, but their common features at the level of DNA sequence have not been defined until now. Alignment of 1 kb sequences flanking six well-mapped DSBs has allowed us to define a flexible sequence motif, the CoHR profile, which predicts the great majority of meiotic DSB locations. The 50 bp profile contains a poly(A) tract in its centre and may have several gaps of unrelated sequences over a total length of up to 250 bp. The major exceptions to the correlation between CoHRs and preferred DSB sites are at telomeric regions, where DSBs do not occur. The CoHR sequence may provide the basis for understanding meiosis-induced chromatin changes that enable DSBs to occur at defined chromosomal sites.
Collapse
|
121
|
|
122
|
Abstract
Structures visible within the eukaryotic nucleus have fascinated generations of biologists. Recent data show that these structures form in response to gene expression and are highly dynamic in living cells. RNA processing and assembly require many factors but the nucleus apparently lacks any active transport system to deliver these to the RNAs. Instead, processing factors move by diffusion but are concentrated by transient association with functionally related components. At sites of high activity this gives rise to visible structures, with components in dynamic equilibrium with the surrounding nucleoplasm. Processing factors are recruited from this pool by cooperative binding to RNA substrates.
Collapse
Affiliation(s)
- J D Lewis
- Wellcome Trust Centre for Cell Biology, ICMB, King's Buildings, The University of Edinburgh, Edinburgh EH9 3JR, Scotland, UK
| | | |
Collapse
|
123
|
Landry J, Sutton A, Tafrov ST, Heller RC, Stebbins J, Pillus L, Sternglanz R. The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc Natl Acad Sci U S A 2000; 97:5807-11. [PMID: 10811920 PMCID: PMC18515 DOI: 10.1073/pnas.110148297] [Citation(s) in RCA: 748] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Homologs of the chromatin-bound yeast silent information regulator 2 (SIR2) protein are found in organisms from all biological kingdoms. SIR2 itself was originally discovered to influence mating-type control in haploid cells by locus-specific transcriptional silencing. Since then, SIR2 and its homologs have been suggested to play additional roles in suppression of recombination, chromosomal stability, metabolic regulation, meiosis, and aging. Considering the far-ranging nature of these functions, a major experimental goal has been to understand the molecular mechanism(s) by which this family of proteins acts. We report here that members of the SIR2 family catalyze an NAD-nicotinamide exchange reaction that requires the presence of acetylated lysines such as those found in the N termini of histones. Significantly, these enzymes also catalyze histone deacetylation in a reaction that absolutely requires NAD, thereby distinguishing them from previously characterized deacetylases. The enzymes are active on histone substrates that have been acetylated by both chromatin assembly-linked and transcription-related acetyltransferases. Contrary to a recent report, we find no evidence that these proteins ADP-ribosylate histones. Discovery of an intrinsic deacetylation activity for the conserved SIR2 family provides a mechanism for modifying histones and other proteins to regulate transcription and diverse biological processes.
Collapse
Affiliation(s)
- J Landry
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY 11794-5215, USA
| | | | | | | | | | | | | |
Collapse
|