101
|
Luoni A, Riva MA. MicroRNAs and psychiatric disorders: From aetiology to treatment. Pharmacol Ther 2016; 167:13-27. [PMID: 27452338 DOI: 10.1016/j.pharmthera.2016.07.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/14/2016] [Indexed: 01/09/2023]
Abstract
The emergence of psychiatric disorders relies on the interaction between genetic vulnerability and environmental adversities. Several studies have demonstrated a crucial role for epigenetics (e.g. DNA methylation, post-translational histone modifications and microRNA-mediated post-transcriptional regulation) in the translation of environmental cues into adult behavioural outcome, which can prove to be harmful thus increasing the risk to develop psychopathology. Within this frame, non-coding RNAs, especially microRNAs, came to light as pivotal regulators of many biological processes occurring in the Central Nervous System, both during the neuronal development as well as in the regulation of adult function, including learning, memory and neuronal plasticity. On these basis, in recent years it has been hypothesised a central role for microRNA modulation and expression regulation in many brain disorders, including neurodegenerative disorders and mental illnesses. Indeed, the aim of the present review is to present the most recent state of the art regarding microRNA involvement in psychiatric disorders. We will first describe the mechanisms that regulate microRNA biogenesis and we will report evidences of microRNA dysregulation in peripheral body fluids, in postmortem brain tissues from patients suffering from psychopathology as well as in animal models. Last, we will discuss the potential to consider microRNAs as putative target for pharmacological intervention, using common psychotropic drugs or more specific tools, with the aim to normalize functions that are disrupted in different psychiatric conditions.
Collapse
Affiliation(s)
- Alessia Luoni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Marco Andrea Riva
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy.
| |
Collapse
|
102
|
Genetic Relationship between Schizophrenia and Nicotine Dependence. Sci Rep 2016; 6:25671. [PMID: 27164557 PMCID: PMC4862382 DOI: 10.1038/srep25671] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 04/20/2016] [Indexed: 12/11/2022] Open
Abstract
It is well known that most schizophrenia patients smoke cigarettes. There are different hypotheses postulating the underlying mechanisms of this comorbidity. We used summary statistics from large meta-analyses of plasma cotinine concentration (COT), Fagerström test for nicotine dependence (FTND) and schizophrenia to examine the genetic relationship between these traits. We found that schizophrenia risk scores calculated at P-value thresholds of 5 × 10−3 and larger predicted FTND and cigarettes smoked per day (CPD), suggesting that genes most significantly associated with schizophrenia were not associated with FTND/CPD, consistent with the self-medication hypothesis. The COT risk scores predicted schizophrenia diagnosis at P-values of 5 × 10−3 and smaller, implying that genes most significantly associated with COT were associated with schizophrenia. These results implicated that schizophrenia and FTND/CPD/COT shared some genetic liability. Based on this shared liability, we identified multiple long non-coding RNAs and RNA binding protein genes (DA376252, BX089737, LOC101927273, LINC01029, LOC101928622, HY157071, DA902558, RBFOX1 and TINCR), protein modification genes (MANBA, UBE2D3, and RANGAP1) and energy production genes (XYLB, MTRF1 and ENOX1) that were associated with both conditions. Further analyses revealed that these shared genes were enriched in calcium signaling, long-term potentiation and neuroactive ligand-receptor interaction pathways that played a critical role in cognitive functions and neuronal plasticity.
Collapse
|
103
|
Gururajan A, Clarke G, Dinan TG, Cryan JF. Molecular biomarkers of depression. Neurosci Biobehav Rev 2016; 64:101-33. [DOI: 10.1016/j.neubiorev.2016.02.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/11/2016] [Accepted: 02/12/2016] [Indexed: 12/22/2022]
|
104
|
Ziats MN, Rennert OM. The Evolving Diagnostic and Genetic Landscapes of Autism Spectrum Disorder. Front Genet 2016; 7:65. [PMID: 27200076 PMCID: PMC4844926 DOI: 10.3389/fgene.2016.00065] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 04/08/2016] [Indexed: 11/24/2022] Open
Abstract
The autism spectrum disorders (ASD) are a heterogeneous set of neurodevelopmental syndromes defined by impairments in verbal and non-verbal communication, restricted social interaction, and the presence of stereotyped patterns of behavior. The prevalence of ASD is rising, and the diagnostic criteria and clinical perspectives on the disorder continue to evolve in parallel. Although the majority of individuals with ASD will not have an identifiable genetic cause, almost 25% of cases have identifiable causative DNA variants. The rapidly improving ability to identify genetic mutations because of advances in next generation sequencing, coupled with previous epidemiological studies demonstrating high heritability of ASD, have led to many recent attempts to identify causative genetic mutations underlying the ASD phenotype. However, although hundreds of mutations have been identified to date, they are either rare variants affecting only a handful of ASD patients, or are common variants in the general population conferring only a small risk for ASD. Furthermore, the genes implicated thus far are heterogeneous in their structure and function, hampering attempts to understand shared molecular mechanisms among all ASD patients; an understanding that is crucial for the development of targeted diagnostics and therapies. However, new work is beginning to suggest that the heterogeneous set of genes implicated in ASD may ultimately converge on a few common pathways. In this review, we discuss the parallel evolution of our diagnostic and genetic understanding of autism spectrum disorders, and highlight recent attempts to infer common biology underlying this complicated syndrome.
Collapse
Affiliation(s)
- Mark N. Ziats
- Laboratory of Clinical and Developmental Genomics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Department of Physiology, Development and Neuroscience, University of CambridgeCambridgeshire, UK
- Medical Scientist Training Program, Baylor College of MedicineHouston, TX, USA
| | - Owen M. Rennert
- Laboratory of Clinical and Developmental Genomics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
105
|
Kraus TFJ, Haider M, Spanner J, Steinmaurer M, Dietinger V, Kretzschmar HA. Altered Long Noncoding RNA Expression Precedes the Course of Parkinson’s Disease—a Preliminary Report. Mol Neurobiol 2016; 54:2869-2877. [DOI: 10.1007/s12035-016-9854-x] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 03/11/2016] [Indexed: 02/06/2023]
|
106
|
Abstract
MicroRNAs (miRNAs) are endogenous, small non-coding RNA molecules that mediate post-transcriptional gene suppression by incomplete matches with their host mRNAs. In the central nervous system, miRNAs that functionally interact with their target genes constitute a flexible, robust and buffered regulatory network, exerting diverse roles in brain evolution and development. However, distinct variation either in hub miRNA expression levels or patterns may initiate and/or progress various adult-onset nerve-related diseases. In this review, we will summarize the current knowledge about the general hallmarks of brain miRNAs that act as vital determinants in increasingly complicated neural activities. We endeavor to provide a constructive insight into the neuroscience research in the quest to comprehend molecular underpinnings of physiological functions and pathological disorders in central nervous system.
Collapse
Affiliation(s)
- Wei Chen
- a Institute of Laboratory Animal Science; Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center; Peking Union Medical Collage (PUMC) ; Beijing , PR China
| | | |
Collapse
|
107
|
Aliperti V, Donizetti A. Long Non-coding RNA in Neurons: New Players in Early Response to BDNF Stimulation. Front Mol Neurosci 2016; 9:15. [PMID: 26973456 PMCID: PMC4773593 DOI: 10.3389/fnmol.2016.00015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 02/18/2016] [Indexed: 12/28/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a neurotrophin family member that is highly expressed and widely distributed in the brain. BDNF is critical for neural survival and plasticity both during development and in adulthood, and dysfunction in its signaling may contribute to a number of neurodegenerative disorders. Deep understanding of the BDNF-activated molecular cascade may thus help to find new biomarkers and therapeutic targets. One interesting direction is related to the early phase of BDNF-dependent gene expression regulation, which is responsible for the activation of selective gene programs that lead to stable functional and structural remodeling of neurons. Immediate-early coding genes activated by BDNF are under investigation, but the involvement of the non-coding RNAs is largely unexplored, especially the long non-coding RNAs (lncRNAs). lncRNAs are emerging as key regulators that can orchestrate different aspects of nervous system development, homeostasis, and plasticity, making them attractive candidate markers and therapeutic targets for brain diseases. We used microarray technology to identify differentially expressed lncRNAs in the immediate response phase of BDNF stimulation in a neuronal cell model. Our observations on the putative functional role of lncRNAs provide clues to their involvement as master regulators of gene expression cascade triggered by BDNF.
Collapse
Affiliation(s)
- Vincenza Aliperti
- Department of Biology, University of Naples Federico II Naples, Italy
| | - Aldo Donizetti
- Department of Biology, University of Naples Federico II Naples, Italy
| |
Collapse
|
108
|
Akula N, Wendland JR, Choi KH, McMahon FJ. An Integrative Genomic Study Implicates the Postsynaptic Density in the Pathogenesis of Bipolar Disorder. Neuropsychopharmacology 2016; 41. [PMID: 26211730 PMCID: PMC4707835 DOI: 10.1038/npp.2015.218] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Genome-wide association studies (GWAS) have identified several common variants associated with bipolar disorder (BD), but the biological meaning of these findings remains unclear. Integrative genomics-the integration of GWAS signals with gene expression data-may illuminate genes and gene networks that have key roles in the pathogenesis of BD. We applied weighted gene co-expression network analysis (WGCNA), which exploits patterns of co-expression among genes, to brain transcriptome data obtained by sequencing of poly-A RNA derived from postmortem dorsolateral prefrontal cortex from people with BD, along with age- and sex-matched controls. WGCNA identified 33 gene modules. Many of the modules corresponded closely to those previously reported in human cortex. Three modules were associated with BD, enriched for genes differentially expressed in BD, and also enriched for signals in prior GWAS of BD. Functional analysis of genes within these modules revealed significant enrichment of several functionally related sets of genes, especially those involved in the postsynaptic density (PSD). These results provide convergent support for the hypothesis that dysregulation of genes involved in the PSD is a key factor in the pathogenesis of BD. If replicated in larger samples, these findings could point toward new therapeutic targets for BD.
Collapse
Affiliation(s)
- Nirmala Akula
- Human Genetics Branch, National Institute of Mental Health Intramural Research Program (NIMH-IRP), National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA,Human Genetics Branch, National Institute of Mental Health Intramural Research Program (NIMH-IRP), National Institutes of Health, US Department of Health and Human Services, Building 35, Room 1A-100, 35 Convent Drive, Bethesda, MD 20892, USA, Tel: +1 301 451 4258, Fax: +1 301 402 7094, E-mail:
| | - Jens R Wendland
- Human Genetics Branch, National Institute of Mental Health Intramural Research Program (NIMH-IRP), National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
| | - Kwang H Choi
- Department of Psychiatry, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Francis J McMahon
- Human Genetics Branch, National Institute of Mental Health Intramural Research Program (NIMH-IRP), National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
| |
Collapse
|
109
|
Barr CL, Misener VL. Decoding the non-coding genome: elucidating genetic risk outside the coding genome. GENES, BRAIN, AND BEHAVIOR 2016; 15:187-204. [PMID: 26515765 PMCID: PMC4833497 DOI: 10.1111/gbb.12269] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/19/2015] [Accepted: 10/28/2015] [Indexed: 12/11/2022]
Abstract
Current evidence emerging from genome-wide association studies indicates that the genetic underpinnings of complex traits are likely attributable to genetic variation that changes gene expression, rather than (or in combination with) variation that changes protein-coding sequences. This is particularly compelling with respect to psychiatric disorders, as genetic changes in regulatory regions may result in differential transcriptional responses to developmental cues and environmental/psychosocial stressors. Until recently, however, the link between transcriptional regulation and psychiatric genetic risk has been understudied. Multiple obstacles have contributed to the paucity of research in this area, including challenges in identifying the positions of remote (distal from the promoter) regulatory elements (e.g. enhancers) and their target genes and the underrepresentation of neural cell types and brain tissues in epigenome projects - the availability of high-quality brain tissues for epigenetic and transcriptome profiling, particularly for the adolescent and developing brain, has been limited. Further challenges have arisen in the prediction and testing of the functional impact of DNA variation with respect to multiple aspects of transcriptional control, including regulatory-element interaction (e.g. between enhancers and promoters), transcription factor binding and DNA methylation. Further, the brain has uncommon DNA-methylation marks with unique genomic distributions not found in other tissues - current evidence suggests the involvement of non-CG methylation and 5-hydroxymethylation in neurodevelopmental processes but much remains unknown. We review here knowledge gaps as well as both technological and resource obstacles that will need to be overcome in order to elucidate the involvement of brain-relevant gene-regulatory variants in genetic risk for psychiatric disorders.
Collapse
Affiliation(s)
- C. L. Barr
- Toronto Western Research Institute, University Health Network, Toronto, ON, Canada
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | - V. L. Misener
- Toronto Western Research Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
110
|
Mechanisms of Long Non-coding RNAs in Mammalian Nervous System Development, Plasticity, Disease, and Evolution. Neuron 2015; 88:861-877. [DOI: 10.1016/j.neuron.2015.09.045] [Citation(s) in RCA: 327] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
111
|
Heyer MP, Kenny PJ. Corticostriatal microRNAs in addiction. Brain Res 2015; 1628:2-16. [DOI: 10.1016/j.brainres.2015.07.047] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 07/11/2015] [Accepted: 07/25/2015] [Indexed: 01/28/2023]
|
112
|
Hecht PM, Ballesteros-Yanez I, Grepo N, Knowles JA, Campbell DB. Noncoding RNA in the transcriptional landscape of human neural progenitor cell differentiation. Front Neurosci 2015; 9:392. [PMID: 26557050 PMCID: PMC4615820 DOI: 10.3389/fnins.2015.00392] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/06/2015] [Indexed: 01/01/2023] Open
Abstract
Increasing evidence suggests that noncoding RNAs play key roles in cellular processes, particularly in the brain. The present study used RNA sequencing to identify the transcriptional landscape of two human neural progenitor cell lines, SK-N-SH and ReNcell CX, as they differentiate into human cortical projection neurons. Protein coding genes were found to account for 54.8 and 57.0% of expressed genes, respectively, and alignment of RNA sequencing reads revealed that only 25.5-28.1% mapped to exonic regions of the genome. Differential expression analysis in the two cell lines identified altered gene expression in both protein coding and noncoding RNAs as they undergo neural differentiation with 222 differentially expressed genes observed in SK-N-SH cells and 19 differentially expressed genes in ReNcell CX. Interestingly, genes showing differential expression in SK-N-SH cells are enriched in genes implicated in autism spectrum disorder, but not in gene sets related to cancer or Alzheimer's disease. Weighted gene co-expression network analysis (WGCNA) was used to detect modules of co-expressed protein coding and noncoding RNAs in SK-N-SH cells and found four modules to be associated with neural differentiation. These modules contain varying levels of noncoding RNAs ranging from 10.7 to 49.7% with gene ontology suggesting roles in numerous cellular processes important for differentiation. These results indicate that noncoding RNAs are highly expressed in human neural progenitor cells and likely hold key regulatory roles in gene networks underlying neural differentiation and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Patrick M Hecht
- Keck School of Medicine, Zilkha Neurogenetic Institute, University of Southern California Los Angeles, CA, USA
| | - Inmaculada Ballesteros-Yanez
- Department of Inorganic, Organic Chemistry and Biochemistry, Faculty of Medicine, CRIB, University of Castile-La Mancha Ciudad Real, Spain
| | - Nicole Grepo
- Keck School of Medicine, Zilkha Neurogenetic Institute, University of Southern California Los Angeles, CA, USA
| | - James A Knowles
- Keck School of Medicine, Zilkha Neurogenetic Institute, University of Southern California Los Angeles, CA, USA ; Department of Psychiatry and the Behavioral Sciences, Keck School of Medicine, University of Southern California Los Angeles, CA, USA
| | - Daniel B Campbell
- Keck School of Medicine, Zilkha Neurogenetic Institute, University of Southern California Los Angeles, CA, USA ; Department of Psychiatry and the Behavioral Sciences, Keck School of Medicine, University of Southern California Los Angeles, CA, USA
| |
Collapse
|
113
|
Wang Y, Zhao X, Ju W, Flory M, Zhong J, Jiang S, Wang P, Dong X, Tao X, Chen Q, Shen C, Zhong M, Yu Y, Brown WT, Zhong N. Genome-wide differential expression of synaptic long noncoding RNAs in autism spectrum disorder. Transl Psychiatry 2015; 5:e660. [PMID: 26485544 PMCID: PMC4930123 DOI: 10.1038/tp.2015.144] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 07/06/2015] [Accepted: 07/27/2015] [Indexed: 12/19/2022] Open
Abstract
A genome-wide differential expression of long noncoding RNAs (lncRNAs) was identified in blood specimens of autism spectrum disorder (ASD). A total of 3929 lncRNAs were found to be differentially expressed in ASD peripheral leukocytes, including 2407 that were upregulated and 1522 that were downregulated. Simultaneously, 2591 messenger RNAs (mRNAs), including 1789 upregulated and 821 downregulated, were also identified in ASD leukocytes. Functional pathway analysis of these lncRNAs revealed neurological pathways of the synaptic vesicle cycling, long-term depression and long-term potentiation to be primarily involved. Thirteen synaptic lncRNAs, including nine upregulated and four downregulated, and 19 synaptic mRNAs, including 12 upregulated and seven downregulated, were identified as being differentially expressed in ASD. Our identification of differential expression of synaptic lncRNAs and mRNAs suggested that synaptic vesicle transportation and cycling are important for the delivery of synaptosomal protein(s) between presynaptic and postsynaptic membranes in ASD. Finding of 19 lncRNAs, which are the antisense, bi-directional and intergenic, of HOX genes may lead us to investigate the role of HOX genes involved in the development of ASD. Discovery of the lncRNAs of SHANK2-AS and BDNF-AS, the natural antisense of genes SHANK2 and BDNF, respectively, indicates that in addition to gene mutations, deregulation of lncRNAs on ASD-causing gene loci presents a new approach for exploring possible epigenetic mechanisms underlying ASD. Our study also opened a new avenue for exploring the use of lncRNA(s) as biomarker(s) for the early detection of ASD.
Collapse
Affiliation(s)
- Y Wang
- Department of Child Health Care, Shanghai
Children's Hospital, Shanghai Jiaotong University,
Shanghai, China
- Chinese Alliance of Translational
Medicine for Maternal and Children's Health, Beijing,
China
| | - X Zhao
- Chinese Alliance of Translational
Medicine for Maternal and Children's Health, Beijing,
China
- Peking University Center of Medical
Genetics, Beijing, China
| | - W Ju
- Department of Human Genetics, New York
State Institute for Basic Research in Developmental Disabilities,
Staten Island, NY, USA
| | - M Flory
- Department of Human Genetics, New York
State Institute for Basic Research in Developmental Disabilities,
Staten Island, NY, USA
| | - J Zhong
- Student volunteer, Hunter College High
School, New York, NY, USA
| | - S Jiang
- Department of Obstetrics and Gynecology,
Nanfang Hospital, Southern Medical University, Guangzhou,
China
| | - P Wang
- Chinese Alliance of Translational
Medicine for Maternal and Children's Health, Beijing,
China
- Peking University Center of Medical
Genetics, Beijing, China
| | - X Dong
- Department of Child Health Care, Shanghai
Children's Hospital, Shanghai Jiaotong University,
Shanghai, China
- Chinese Alliance of Translational
Medicine for Maternal and Children's Health, Beijing,
China
| | - X Tao
- Chinese Alliance of Translational
Medicine for Maternal and Children's Health, Beijing,
China
- Peking University Center of Medical
Genetics, Beijing, China
| | - Q Chen
- Department of Obstetrics and Gynecology,
Nanfang Hospital, Southern Medical University, Guangzhou,
China
| | - C Shen
- Chinese Alliance of Translational
Medicine for Maternal and Children's Health, Beijing,
China
- Peking University Center of Medical
Genetics, Beijing, China
| | - M Zhong
- Department of Obstetrics and Gynecology,
Nanfang Hospital, Southern Medical University, Guangzhou,
China
| | - Y Yu
- Department of Obstetrics and Gynecology,
Nanfang Hospital, Southern Medical University, Guangzhou,
China
| | - W T Brown
- Department of Human Genetics, New York
State Institute for Basic Research in Developmental Disabilities,
Staten Island, NY, USA
| | - N Zhong
- Department of Child Health Care, Shanghai
Children's Hospital, Shanghai Jiaotong University,
Shanghai, China
- Chinese Alliance of Translational
Medicine for Maternal and Children's Health, Beijing,
China
- Peking University Center of Medical
Genetics, Beijing, China
- Department of Human Genetics, New York
State Institute for Basic Research in Developmental Disabilities,
Staten Island, NY, USA
- Department of Obstetrics and Gynecology,
Nanfang Hospital, Southern Medical University, Guangzhou,
China
- March of Dimes Global Network for
Maternal and Infant Health, White Plains, NY,
USA
| |
Collapse
|
114
|
Merelo V, Durand D, Lescallette AR, Vrana KE, Hong LE, Faghihi MA, Bellon A. Associating schizophrenia, long non-coding RNAs and neurostructural dynamics. Front Mol Neurosci 2015; 8:57. [PMID: 26483630 PMCID: PMC4588008 DOI: 10.3389/fnmol.2015.00057] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/10/2015] [Indexed: 01/10/2023] Open
Abstract
Several lines of evidence indicate that schizophrenia has a strong genetic component. But the exact nature and functional role of this genetic component in the pathophysiology of this mental illness remains a mystery. Long non-coding RNAs (lncRNAs) are a recently discovered family of molecules that regulate gene transcription through a variety of means. Consequently, lncRNAs could help us bring together apparent unrelated findings in schizophrenia; namely, genomic deficiencies on one side and neuroimaging, as well as postmortem results on the other. In fact, the most consistent finding in schizophrenia is decreased brain size together with enlarged ventricles. This anomaly appears to originate from shorter and less ramified dendrites and axons. But a decrease in neuronal arborizations cannot explain the complex pathophysiology of this psychotic disorder; however, dynamic changes in neuronal structure present throughout life could. It is well recognized that the structure of developing neurons is extremely plastic. This structural plasticity was thought to stop with brain development. However, breakthrough discoveries have shown that neuronal structure retains some degree of plasticity throughout life. What the neuroscientific field is still trying to understand is how these dynamic changes are regulated and lncRNAs represent promising candidates to fill this knowledge gap. Here, we present evidence that associates specific lncRNAs with schizophrenia. We then discuss the potential role of lncRNAs in neurostructural dynamics. Finally, we explain how dynamic neurostructural modifications present throughout life could, in theory, reconcile apparent unrelated findings in schizophrenia.
Collapse
Affiliation(s)
- Veronica Merelo
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miller School of Medicine Miami, FL, USA
| | - Dante Durand
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miller School of Medicine Miami, FL, USA
| | - Adam R Lescallette
- Penn State Hershey Medical Center, Department of Pharmacology Hershey, PA, USA ; Penn State Hershey Medical Center, Department of Psychiatry Hershey, PA, USA
| | - Kent E Vrana
- Penn State Hershey Medical Center, Department of Pharmacology Hershey, PA, USA
| | - L Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine Baltimore, MD, USA
| | - Mohammad Ali Faghihi
- Center for Therapeutic Innovation, Department of Psychiatry and Behavioral Sciences University of Miami, Miller School of Medicine Miami, FL, USA
| | - Alfredo Bellon
- Penn State Hershey Medical Center, Department of Pharmacology Hershey, PA, USA ; Penn State Hershey Medical Center, Department of Psychiatry Hershey, PA, USA
| |
Collapse
|
115
|
Butler AA, Webb WM, Lubin FD. Regulatory RNAs and control of epigenetic mechanisms: expectations for cognition and cognitive dysfunction. Epigenomics 2015; 8:135-51. [PMID: 26366811 DOI: 10.2217/epi.15.79] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The diverse functions of noncoding RNAs (ncRNAs) can influence virtually every aspect of the transcriptional process including epigenetic regulation of genes. In the CNS, regulatory RNA networks and epigenetic mechanisms have broad relevance to gene transcription changes involved in long-term memory formation and cognition. Thus, it is becoming increasingly clear that multiple classes of ncRNAs impact neuronal development, neuroplasticity, and cognition. Currently, a large gap exists in our knowledge of how ncRNAs facilitate epigenetic processes, and how this phenomenon affects cognitive function. In this review, we discuss recent findings highlighting a provocative role for ncRNAs including lncRNAs and piRNAs in the control of epigenetic mechanisms involved in cognitive function. Furthermore, we discuss the putative roles for these ncRNAs in cognitive disorders such as schizophrenia and Alzheimer's disease.
Collapse
Affiliation(s)
- Anderson A Butler
- Department of Neurobiology, University of Alabama at Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA
| | - William M Webb
- Department of Neurobiology, University of Alabama at Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA
| | - Farah D Lubin
- Department of Neurobiology, University of Alabama at Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA
| |
Collapse
|
116
|
Nishida A, Minegishi M, Takeuchi A, Awano H, Niba ETE, Matsuo M. Neuronal SH-SY5Y cells use the C-dystrophin promoter coupled with exon 78 skipping and display multiple patterns of alternative splicing including two intronic insertion events. Hum Genet 2015; 134:993-1001. [PMID: 26152642 DOI: 10.1007/s00439-015-1581-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 06/27/2015] [Indexed: 01/01/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a progressive muscle wasting disease caused by mutations in the dystrophin gene. One-third of DMD cases are complicated by mental retardation. Here, we used reverse transcription PCR to analyze the pattern of dystrophin transcripts in neuronal SH-SY5Y cells. Among the three alternative promoters/first exons at the 5'-end, only transcripts containing the brain cortex-specific C1 exon could be amplified. The C-transcript appeared as two products: a major product of the expected size and a minor larger product that contained the cryptic exon 1a between exons C1 and 2. At the 3'-end there was complete exon 78 skipping. Together, these findings indicate that SH-SY5Y cells have neuron-specific characteristics with regard to both promoter activation and alternative splicing. We also revealed partial skipping of exons 9 and 71. Four amplified products were obtained from a fragment covering exons 36-41: a strong expected product, two weak products lacking either exon 37 or exon 38, and a second strong larger product with a 568-bp insertion between exons 40 and 41. The inserted sequence matched the 3'-end of intron 40 perfectly. We concluded that a cryptic splice site was activated in SH-SY5Y cells to create the novel, unusually large, exon 41e (751 bp). In total, we identified seven alternative splicing events in neuronal SH-SY5Y cells, and calculated that 32 dystrophin transcripts could be produced. Our results may provide clues in the analysis of transcriptype-phenotype correlations as regards mental retardation in DMD.
Collapse
Affiliation(s)
- Atsushi Nishida
- Department of Medical Rehabilitation, Faculty of Rehabilitation, Kobegakuin University, 518 Arise, Ikawadani, Nishi, Kobe, 651-2180, Japan
| | | | | | | | | | | |
Collapse
|
117
|
Millan MJ. The epigenetic dimension of Alzheimer's disease: causal, consequence, or curiosity? DIALOGUES IN CLINICAL NEUROSCIENCE 2015. [PMID: 25364287 PMCID: PMC4214179 DOI: 10.31887/dcns.2014.16.3/mmillan] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Early-onset, familial Alzheimer's disease (AD) is rare and may be attributed to disease-causinq mutations. By contrast, late onset, sporadic (non-Mendelian) AD is far more prevalent and reflects the interaction of multiple genetic and environmental risk factors, together with the disruption of epigenetic mechanisms controlling gene expression. Accordingly, abnormal patterns of histone acetylation and methylation, as well as anomalies in global and promoter-specific DNA methylation, have been documented in AD patients, together with a deregulation of noncoding RNA. In transgenic mouse models for AD, epigenetic dysfunction is likewise apparent in cerebral tissue, and it has been directly linked to cognitive and behavioral deficits in functional studies. Importantly, epigenetic deregulation interfaces with core pathophysiological processes underlying AD: excess production of Aβ42, aberrant post-translational modification of tau, deficient neurotoxic protein clearance, axonal-synaptic dysfunction, mitochondrial-dependent apoptosis, and cell cycle re-entry. Reciprocally, DNA methylation, histone marks and the levels of diverse species of microRNA are modulated by Aβ42, oxidative stress and neuroinflammation. In conclusion, epigenetic mechanisms are broadly deregulated in AD mainly upstream, but also downstream, of key pathophysiological processes. While some epigenetic shifts oppose the evolution of AD, most appear to drive its progression. Epigenetic changes are of irrefutable importance for AD, but they await further elucidation from the perspectives of pathogenesis, biomarkers and potential treatment.
Collapse
Affiliation(s)
- Mark J Millan
- Pole of Innovation in Neuropsychiatry, Institut de Recherche Servier, Croissy-sur-Seine, France
| |
Collapse
|
118
|
Sjöstedt E, Fagerberg L, Hallström BM, Häggmark A, Mitsios N, Nilsson P, Pontén F, Hökfelt T, Uhlén M, Mulder J. Defining the Human Brain Proteome Using Transcriptomics and Antibody-Based Profiling with a Focus on the Cerebral Cortex. PLoS One 2015; 10:e0130028. [PMID: 26076492 PMCID: PMC4468152 DOI: 10.1371/journal.pone.0130028] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/15/2015] [Indexed: 01/25/2023] Open
Abstract
The mammalian brain is a complex organ composed of many specialized cells, harboring sets of both common, widely distributed, as well as specialized and discretely localized proteins. Here we focus on the human brain, utilizing transcriptomics and public available Human Protein Atlas (HPA) data to analyze brain-enriched (frontal cortex) polyadenylated messenger RNA and long non-coding RNA and generate a genome-wide draft of global and cellular expression patterns of the brain. Based on transcriptomics analysis of altogether 27 tissues, we have estimated that approximately 3% (n=571) of all protein coding genes and 13% (n=87) of the long non-coding genes expressed in the human brain are enriched, having at least five times higher expression levels in brain as compared to any of the other analyzed peripheral tissues. Based on gene ontology analysis and detailed annotation using antibody-based tissue micro array analysis of the corresponding proteins, we found the majority of brain-enriched protein coding genes to be expressed in astrocytes, oligodendrocytes or in neurons with molecular properties linked to synaptic transmission and brain development. Detailed analysis of the transcripts and the genetic landscape of brain-enriched coding and non-coding genes revealed brain-enriched splice variants. Several clusters of neighboring brain-enriched genes were also identified, suggesting regulation of gene expression on the chromatin level. This multi-angle approach uncovered the brain-enriched transcriptome and linked genes to cell types and functions, providing novel insights into the molecular foundation of this highly specialized organ.
Collapse
Affiliation(s)
- Evelina Sjöstedt
- Science for Life Laboratory, School of Biotechnology, KTH-Royal Institute of Technology, Stockholm, Sweden; Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Linn Fagerberg
- Science for Life Laboratory, School of Biotechnology, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Björn M Hallström
- Science for Life Laboratory, School of Biotechnology, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Anna Häggmark
- Science for Life Laboratory, School of Biotechnology, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Nicholas Mitsios
- Science for Life Laboratory, Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Peter Nilsson
- Science for Life Laboratory, School of Biotechnology, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Fredrik Pontén
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Tomas Hökfelt
- Science for Life Laboratory, Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Mathias Uhlén
- Science for Life Laboratory, School of Biotechnology, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Jan Mulder
- Science for Life Laboratory, Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
119
|
Moralli D, Nudel R, Chan MTM, Green CM, Volpi EV, Benítez-Burraco A, Newbury DF, García-Bellido P. Language impairment in a case of a complex chromosomal rearrangement with a breakpoint downstream of FOXP2. Mol Cytogenet 2015; 8:36. [PMID: 26060509 PMCID: PMC4460787 DOI: 10.1186/s13039-015-0148-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/20/2015] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND We report on a young female, who presents with a severe speech and language disorder and a balanced de novo complex chromosomal rearrangement, likely to have resulted from a chromosome 7 pericentromeric inversion, followed by a chromosome 7 and 11 translocation. RESULTS Using molecular cytogenetics, we mapped the four breakpoints to 7p21.1-15.3 (chromosome position: 20,954,043-21,001,537, hg19), 7q31 (chromosome position: 114,528,369-114,556,605, hg19), 7q21.3 (chromosome position: 93,884,065-93,933,453, hg19) and 11p12 (chromosome position: 38,601,145-38,621,572, hg19). These regions contain only non-coding transcripts (ENSG00000232790 on 7p21.1 and TCONS_00013886, TCONS_00013887, TCONS_00014353, TCONS_00013888 on 7q21) indicating that no coding sequences are directly disrupted. The breakpoint on 7q31 mapped 200 kb downstream of FOXP2, a well-known language gene. No splice site or non-synonymous coding variants were found in the FOXP2 coding sequence. We were unable to detect any changes in the expression level of FOXP2 in fibroblast cells derived from the proband, although this may be the result of the low expression level of FOXP2 in these cells. CONCLUSIONS We conclude that the phenotype observed in this patient either arises from a subtle change in FOXP2 regulation due to the disruption of a downstream element controlling its expression, or from the direct disruption of non-coding RNAs.
Collapse
Affiliation(s)
- Daniela Moralli
- />Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Headington, Oxford, OX3 7BN UK
| | - Ron Nudel
- />Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Headington, Oxford, OX3 7BN UK
| | - May T. M. Chan
- />Faculty of Linguistics, Philology and Phonetics, University of Oxford, Walton Street, Oxford, OX1 2HG UK
- />Worcester College, University of Oxford, Oxford, OX1 2HB, UK
| | - Catherine M. Green
- />Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Headington, Oxford, OX3 7BN UK
| | - Emanuela V. Volpi
- />Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Headington, Oxford, OX3 7BN UK
- />Department of Biomedical Sciences, University of Westminster, 115 New Cavendish Street, London, W1W 6UW UK
| | - Antonio Benítez-Burraco
- />Faculty of Modern languages, University of Oxford, 47 Wellington Square, Oxford, OX1 2JF UK
- />Department of Spanish Philology and its Didactics, University of Huelva, Huelva, Spain
| | - Dianne F. Newbury
- />Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Headington, Oxford, OX3 7BN UK
| | - Paloma García-Bellido
- />Faculty of Linguistics, Philology and Phonetics, University of Oxford, Walton Street, Oxford, OX1 2HG UK
- />Faculty of Modern languages, University of Oxford, 47 Wellington Square, Oxford, OX1 2JF UK
| |
Collapse
|
120
|
Condon D, Kennedy SD, Mort BC, Kierzek R, Yildirim I, Turner DH. Stacking in RNA: NMR of Four Tetramers Benchmark Molecular Dynamics. J Chem Theory Comput 2015; 11:2729-2742. [PMID: 26082675 PMCID: PMC4463549 DOI: 10.1021/ct501025q] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Indexed: 12/31/2022]
Abstract
Molecular dynamics (MD) simulations for RNA tetramers r(AAAA), r(CAAU), r(GACC), and r(UUUU) are benchmarked against 1H-1H NOESY distances and 3J scalar couplings to test effects of RNA torsion parametrizations. Four different starting structures were used for r(AAAA), r(CAAU), and r(GACC), while five starting structures were used for r(UUUU). On the basis of X-ray structures, criteria are reported for quantifying stacking. The force fields, AMBER ff99, parmbsc0, parm99χ_Yil, ff10, and parmTor, all predict experimentally unobserved stacks and intercalations, e.g., base 1 stacked between bases 3 and 4, and incorrect χ, ϵ, and sugar pucker populations. The intercalated structures are particularly stable, often lasting several microseconds. Parmbsc0, parm99χ_Yil, and ff10 give similar agreement with NMR, but the best agreement is only 46%. Experimentally unobserved intercalations typically are associated with reduced solvent accessible surface area along with amino and hydroxyl hydrogen bonds to phosphate nonbridging oxygens. Results from an extensive set of MD simulations suggest that recent force field parametrizations improve predictions, but further improvements are necessary to provide reasonable agreement with NMR. In particular, intramolecular stacking and hydrogen bonding interactions may not be well balanced with the TIP3P water model. NMR data and the scoring method presented here provide rigorous benchmarks for future changes in force fields and MD methods.
Collapse
Affiliation(s)
- David
E. Condon
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Scott D. Kennedy
- Department
of Biochemistry and Biophysics, University
of Rochester, Rochester, New York 14642, United States
| | - Brendan C. Mort
- University
of Rochester Center for Integrated Research Computing, Rochester, New York 14627, United States
| | - Ryszard Kierzek
- Institute
of Bioorganic Chemistry, Polish Academy
of Sciences, 60-704 Poznan, Poland
| | - Ilyas Yildirim
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Douglas H. Turner
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
121
|
Slokar G, Hasler G. Human Endogenous Retroviruses as Pathogenic Factors in the Development of Schizophrenia. Front Psychiatry 2015; 6:183. [PMID: 26793126 PMCID: PMC4707225 DOI: 10.3389/fpsyt.2015.00183] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/15/2015] [Indexed: 11/13/2022] Open
Abstract
Schizophrenia is a complex disorder, characterized by the interplay between genetic and environmental factors. Human endogenous retroviruses (HERVs), genetic elements that originated from infections by exogenous retroviruses millions of years ago, comprise ~8% of the human genome. Here, we provide a comprehensive review of accumulating evidence, detailing HERV aberrancies associated with schizophrenia. Studies examining the genome, transcriptome, and proteome of individuals with schizophrenia provide data that support the association of these viral elements with the disorder. Molecular differences can be found within the central nervous system and peripheral tissues. However, additional studies are needed to substantiate the reported link and to address several discrepancies among previous investigations. We further discuss potentially relevant pathogenic mechanisms to the development of schizophrenia.
Collapse
Affiliation(s)
- Gorjan Slokar
- Psychiatric University Hospital, University of Bern , Bern , Switzerland
| | - Gregor Hasler
- Psychiatric University Hospital, University of Bern , Bern , Switzerland
| |
Collapse
|
122
|
Singewald N, Schmuckermair C, Whittle N, Holmes A, Ressler KJ. Pharmacology of cognitive enhancers for exposure-based therapy of fear, anxiety and trauma-related disorders. Pharmacol Ther 2014; 149:150-90. [PMID: 25550231 PMCID: PMC4380664 DOI: 10.1016/j.pharmthera.2014.12.004] [Citation(s) in RCA: 275] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 12/24/2014] [Indexed: 12/20/2022]
Abstract
Pathological fear and anxiety are highly debilitating and, despite considerable advances in psychotherapy and pharmacotherapy they remain insufficiently treated in many patients with PTSD, phobias, panic and other anxiety disorders. Increasing preclinical and clinical evidence indicates that pharmacological treatments including cognitive enhancers, when given as adjuncts to psychotherapeutic approaches [cognitive behavioral therapy including extinction-based exposure therapy] enhance treatment efficacy, while using anxiolytics such as benzodiazepines as adjuncts can undermine long-term treatment success. The purpose of this review is to outline the literature showing how pharmacological interventions targeting neurotransmitter systems including serotonin, dopamine, noradrenaline, histamine, glutamate, GABA, cannabinoids, neuropeptides (oxytocin, neuropeptides Y and S, opioids) and other targets (neurotrophins BDNF and FGF2, glucocorticoids, L-type-calcium channels, epigenetic modifications) as well as their downstream signaling pathways, can augment fear extinction and strengthen extinction memory persistently in preclinical models. Particularly promising approaches are discussed in regard to their effects on specific aspects of fear extinction namely, acquisition, consolidation and retrieval, including long-term protection from return of fear (relapse) phenomena like spontaneous recovery, reinstatement and renewal of fear. We also highlight the promising translational value of the preclinial research and the clinical potential of targeting certain neurochemical systems with, for example d-cycloserine, yohimbine, cortisol, and L-DOPA. The current body of research reveals important new insights into the neurobiology and neurochemistry of fear extinction and holds significant promise for pharmacologically-augmented psychotherapy as an improved approach to treat trauma and anxiety-related disorders in a more efficient and persistent way promoting enhanced symptom remission and recovery.
Collapse
Affiliation(s)
- N Singewald
- Department of Pharmacology and Toxicology, Institute of Pharmacy and CMBI, Leopold-Franzens University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria.
| | - C Schmuckermair
- Department of Pharmacology and Toxicology, Institute of Pharmacy and CMBI, Leopold-Franzens University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - N Whittle
- Department of Pharmacology and Toxicology, Institute of Pharmacy and CMBI, Leopold-Franzens University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - A Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - K J Ressler
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
123
|
Long non-coding RNA normalisers in human brain tissue. J Neural Transm (Vienna) 2014; 122:1045-54. [DOI: 10.1007/s00702-014-1352-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 12/09/2014] [Indexed: 10/24/2022]
|
124
|
Hommers LG, Domschke K, Deckert J. Heterogeneity and individuality: microRNAs in mental disorders. J Neural Transm (Vienna) 2014; 122:79-97. [PMID: 25395183 DOI: 10.1007/s00702-014-1338-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 11/07/2014] [Indexed: 12/21/2022]
Abstract
MicroRNAs are about 22 nucleotide long single-stranded RNA molecules, negatively regulating gene expression of a single gene or a gene network. In neural tissues, they have been implicated in developmental and neuroplasticity-related processes, such as neurogenesis, differentiation, apoptosis and long-term potentiation. Their molecular mode of action is reminiscent of findings of genome-wide association studies in mental disorders, unable to attribute the risk of disease to a specific gene, but rather to multiple genes, gene-networks and gene-environment interaction. As such, microRNAs are an attractive target for research. Here, we review clinical studies conducted in humans on microRNAs in mental disorders with a particular focus on schizophrenia, bipolar disorder, major depressive disorder and anxiety disorders. The majority of clinical studies have focused on schizophrenia. The most robust finding has been reported for rs1625579 located in MIR137HG, which was associated with schizophrenia on a genome-wide level. Concerning bipolar disorder, major depression and anxiety disorders, promising results have been published, but only a considerably smaller number of clinical studies is available and genome-wide association studies did not suggest a direct link to microRNAs so far. Expression of microRNAs as biomarkers of mental disorders and treatment response is currently emerging with preliminary results. Larger-scaled genetic and functional studies along with translational research are needed to enhance our understanding of microRNAs in mental disorders. These studies will aid in disentangling the complex genetic nature of these disorders and possibly contribute to the development of novel, individualized diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Leif G Hommers
- Center of Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, Füchsleinstrasse 15, 97080, Würzburg, Germany,
| | | | | |
Collapse
|
125
|
Stilling RM, Bordenstein SR, Dinan TG, Cryan JF. Friends with social benefits: host-microbe interactions as a driver of brain evolution and development? Front Cell Infect Microbiol 2014; 4:147. [PMID: 25401092 PMCID: PMC4212686 DOI: 10.3389/fcimb.2014.00147] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 10/03/2014] [Indexed: 12/21/2022] Open
Abstract
The tight association of the human body with trillions of colonizing microbes that we observe today is the result of a long evolutionary history. Only very recently have we started to understand how this symbiosis also affects brain function and behavior. In this hypothesis and theory article, we propose how host-microbe associations potentially influenced mammalian brain evolution and development. In particular, we explore the integration of human brain development with evolution, symbiosis, and RNA biology, which together represent a “social triangle” that drives human social behavior and cognition. We argue that, in order to understand how inter-kingdom communication can affect brain adaptation and plasticity, it is inevitable to consider epigenetic mechanisms as important mediators of genome-microbiome interactions on an individual as well as a transgenerational time scale. Finally, we unite these interpretations with the hologenome theory of evolution. Taken together, we propose a tighter integration of neuroscience fields with host-associated microbiology by taking an evolutionary perspective.
Collapse
Affiliation(s)
- Roman M Stilling
- Alimentary Pharmabiotic Centre, University College Cork Cork, Ireland ; Department Anatomy and Neuroscience, University College Cork Cork, Ireland
| | - Seth R Bordenstein
- Departments of Biological Sciences and Pathology, Microbiology, and Immunology, Vanderbilt University Nashville, TN, USA
| | - Timothy G Dinan
- Alimentary Pharmabiotic Centre, University College Cork Cork, Ireland ; Department of Psychiatry, University College Cork Cork, Ireland
| | - John F Cryan
- Alimentary Pharmabiotic Centre, University College Cork Cork, Ireland ; Department Anatomy and Neuroscience, University College Cork Cork, Ireland
| |
Collapse
|
126
|
Clark BS, Blackshaw S. Long non-coding RNA-dependent transcriptional regulation in neuronal development and disease. Front Genet 2014; 5:164. [PMID: 24936207 PMCID: PMC4047558 DOI: 10.3389/fgene.2014.00164] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 05/18/2014] [Indexed: 01/17/2023] Open
Abstract
Comprehensive analysis of the mammalian transcriptome has revealed that long non-coding RNAs (lncRNAs) may make up a large fraction of cellular transcripts. Recent years have seen a surge of studies aimed at functionally characterizing the role of lncRNAs in development and disease. In this review, we discuss new findings implicating lncRNAs in controlling development of the central nervous system (CNS). The evolution of the higher vertebrate brain has been accompanied by an increase in the levels and complexities of lncRNAs expressed within the developing nervous system. Although a limited number of CNS-expressed lncRNAs are now known to modulate the activity of proteins important for neuronal differentiation, the function of the vast majority of neuronal-expressed lncRNAs is still unknown. Topics of intense current interest include the mechanism by which CNS-expressed lncRNAs might function in epigenetic and transcriptional regulation during neuronal development, and how gain and loss of function of individual lncRNAs contribute to neurological diseases.
Collapse
Affiliation(s)
- Brian S Clark
- Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Seth Blackshaw
- Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine Baltimore, MD, USA ; Department of Ophthalmology, Johns Hopkins University School of Medicine Baltimore, MD, USA ; Department of Neurology, Johns Hopkins University School of Medicine Baltimore, MD, USA ; Center for High-Throughput Biology, Johns Hopkins University School of Medicine Baltimore, MD, USA ; Institute for Cell Engineering, Johns Hopkins University School of Medicine Baltimore, MD, USA
| |
Collapse
|
127
|
Cochet-Bissuel M, Lory P, Monteil A. The sodium leak channel, NALCN, in health and disease. Front Cell Neurosci 2014; 8:132. [PMID: 24904279 PMCID: PMC4033012 DOI: 10.3389/fncel.2014.00132] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 04/28/2014] [Indexed: 12/12/2022] Open
Abstract
Ion channels are crucial components of cellular excitability and are involved in many neurological diseases. This review focuses on the sodium leak, G protein-coupled receptors (GPCRs)-activated NALCN channel that is predominantly expressed in neurons where it regulates the resting membrane potential and neuronal excitability. NALCN is part of a complex that includes not only GPCRs, but also UNC-79, UNC-80, NLF-1 and src family of Tyrosine kinases (SFKs). There is growing evidence that the NALCN channelosome critically regulates its ion conduction. Both in mammals and invertebrates, animal models revealed an involvement in many processes such as locomotor behaviors, sensitivity to volatile anesthetics, and respiratory rhythms. There is also evidence that alteration in this NALCN channelosome can cause a wide variety of diseases. Indeed, mutations in the NALCN gene were identified in Infantile Neuroaxonal Dystrophy (INAD) patients, as well as in patients with an Autosomal Recessive Syndrome with severe hypotonia, speech impairment, and cognitive delay. Deletions in NALCN gene were also reported in diseases such as 13q syndrome. In addition, genes encoding NALCN, NLF- 1, UNC-79, and UNC-80 proteins may be susceptibility loci for several diseases including bipolar disorder, schizophrenia, Alzheimer's disease, autism, epilepsy, alcoholism, cardiac diseases and cancer. Although the physiological role of the NALCN channelosome is poorly understood, its involvement in human diseases should foster interest for drug development in the near future. Toward this goal, we review here the current knowledge on the NALCN channelosome in physiology and diseases.
Collapse
Affiliation(s)
- Maud Cochet-Bissuel
- Institut de Génomique Fonctionnelle, CNRS UMR 5203, Universités Montpellier 1&2 Montpellier, France ; INSERM, U 661 Montpellier, France ; LabEx 'Ion Channel Science and Therapeutics' Montpellier, France
| | - Philippe Lory
- Institut de Génomique Fonctionnelle, CNRS UMR 5203, Universités Montpellier 1&2 Montpellier, France ; INSERM, U 661 Montpellier, France ; LabEx 'Ion Channel Science and Therapeutics' Montpellier, France
| | - Arnaud Monteil
- Institut de Génomique Fonctionnelle, CNRS UMR 5203, Universités Montpellier 1&2 Montpellier, France ; INSERM, U 661 Montpellier, France ; LabEx 'Ion Channel Science and Therapeutics' Montpellier, France
| |
Collapse
|
128
|
Guennewig B, Cooper AA. The Central Role of Noncoding RNA in the Brain. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 116:153-94. [DOI: 10.1016/b978-0-12-801105-8.00007-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
129
|
Abstract
The transcriptome changes hugely during development of the brain. Whole genes, alternate exons, and single base pair changes related to RNA editing all show differences between embryonic and mature brain. Collectively, these changes control proteomic diversity as the brain develops. Additionally, there are many changes in noncoding RNAs (miRNA and lncRNA) that interact with mRNA to influence the overall transcriptional landscape. Here, we will discuss what is known about such changes in brain development, particularly focusing on high-throughput approaches and how those can be used to infer mechanisms by which gene expression is controlled in the brain as it matures.
Collapse
Affiliation(s)
- Allissa A Dillman
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA
| | - Mark R Cookson
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA.
| |
Collapse
|
130
|
Pandian GN, Taylor RD, Junetha S, Saha A, Anandhakumar C, Vaijayanthi T, Sugiyama H. Alteration of epigenetic program to recover memory and alleviate neurodegeneration: prospects of multi-target molecules. Biomater Sci 2014; 2:1043-1056. [DOI: 10.1039/c4bm00068d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Next-generation sequence-specific small molecules modulating the epigenetic enzymes (DNMT/HDAC) and signalling factors can precisely turn ‘ON’ the multi-gene network in a neural cell.
Collapse
Affiliation(s)
- Ganesh N. Pandian
- Institute for Integrated Cell-Material Sciences (iCeMS)
- Kyoto University
- Kyoto 606-8502, Japan
| | - Rhys D. Taylor
- Department of Chemistry
- Graduate School of Science
- Kyoto University
- Kyoto 606-8501, Japan
| | - Syed Junetha
- Department of Chemistry
- Graduate School of Science
- Kyoto University
- Kyoto 606-8501, Japan
| | - Abhijit Saha
- Department of Chemistry
- Graduate School of Science
- Kyoto University
- Kyoto 606-8501, Japan
| | - Chandran Anandhakumar
- Department of Chemistry
- Graduate School of Science
- Kyoto University
- Kyoto 606-8501, Japan
| | - Thangavel Vaijayanthi
- Department of Chemistry
- Graduate School of Science
- Kyoto University
- Kyoto 606-8501, Japan
| | - Hiroshi Sugiyama
- Institute for Integrated Cell-Material Sciences (iCeMS)
- Kyoto University
- Kyoto 606-8502, Japan
- Department of Chemistry
- Graduate School of Science
| |
Collapse
|