101
|
Pfeiffer T, Morley A. An evolutionary perspective on the Crabtree effect. Front Mol Biosci 2014; 1:17. [PMID: 25988158 PMCID: PMC4429655 DOI: 10.3389/fmolb.2014.00017] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 09/26/2014] [Indexed: 11/24/2022] Open
Abstract
The capability to ferment sugars into ethanol is a key metabolic trait of yeasts. Crabtree-positive yeasts use fermentation even in the presence of oxygen, where they could, in principle, rely on the respiration pathway. This is surprising because fermentation has a much lower ATP yield than respiration (2 ATP vs. approximately 18 ATP per glucose). While genetic events in the evolution of the Crabtree effect have been identified, the selective advantages provided by this trait remain controversial. In this review we analyse explanations for the emergence of the Crabtree effect from an evolutionary and game-theoretical perspective. We argue that an increased rate of ATP production is likely the most important factor behind the emergence of the Crabtree effect.
Collapse
Affiliation(s)
- Thomas Pfeiffer
- New Zealand Institute for Advanced Study, Massey University Auckland, New Zealand
| | - Annabel Morley
- New Zealand Institute for Advanced Study, Massey University Auckland, New Zealand
| |
Collapse
|
102
|
Curtin CD, Pretorius IS. Genomic insights into the evolution of industrial yeast species Brettanomyces bruxellensis. FEMS Yeast Res 2014; 14:997-1005. [PMID: 25142832 DOI: 10.1111/1567-1364.12198] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 08/13/2014] [Indexed: 12/14/2022] Open
Abstract
Brettanomyces bruxellensis, like its wine yeast counterpart Saccharomyces cerevisiae, is intrinsically linked with industrial fermentations. In wine, B. bruxellensis is generally considered to contribute negative influences on wine quality, whereas for some styles of beer, it is an essential contributor. More recently, it has shown some potential for bioethanol production. Our relatively poor understanding of B. bruxellensis biology, at least when compared with S. cerevisiae, is partly due to a lack of laboratory tools. As it is a nonmodel organism, efforts to develop methods for sporulation and transformation have been sporadic and largely unsuccessful. Recent genome sequencing efforts are now providing B. bruxellensis researchers unprecedented access to gene catalogues, the possibility of performing transcriptomic studies and new insights into evolutionary drivers. This review summarises these findings, emphasises the rich data sets already available yet largely unexplored and looks over the horizon at what might be learnt soon through comprehensive population genomics of B. bruxellensis and related species.
Collapse
|
103
|
Jarosz DF, Lancaster AK, Brown JCS, Lindquist S. An evolutionarily conserved prion-like element converts wild fungi from metabolic specialists to generalists. Cell 2014; 158:1072-1082. [PMID: 25171408 PMCID: PMC4424049 DOI: 10.1016/j.cell.2014.07.024] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 04/29/2014] [Accepted: 07/10/2014] [Indexed: 11/25/2022]
Abstract
[GAR(+)] is a protein-based element of inheritance that allows yeast (Saccharomyces cerevisiae) to circumvent a hallmark of their biology: extreme metabolic specialization for glucose fermentation. When glucose is present, yeast will not use other carbon sources. [GAR(+)] allows cells to circumvent this "glucose repression." [GAR(+)] is induced in yeast by a factor secreted by bacteria inhabiting their environment. We report that de novo rates of [GAR(+)] appearance correlate with the yeast's ecological niche. Evolutionarily distant fungi possess similar epigenetic elements that are also induced by bacteria. As expected for a mechanism whose adaptive value originates from the selective pressures of life in biological communities, the ability of bacteria to induce [GAR(+)] and the ability of yeast to respond to bacterial signals have been extinguished repeatedly during the extended monoculture of domestication. Thus, [GAR(+)] is a broadly conserved adaptive strategy that links environmental and social cues to heritable changes in metabolism.
Collapse
Affiliation(s)
- Daniel F Jarosz
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Departments of Chemical and Systems Biology and of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alex K Lancaster
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Center for Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Jessica C S Brown
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Susan Lindquist
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
104
|
Schifferdecker AJ, Dashko S, Ishchuk OP, Piškur J. The wine and beer yeast Dekkera bruxellensis. Yeast 2014; 31:323-32. [PMID: 24932634 PMCID: PMC4257070 DOI: 10.1002/yea.3023] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 04/19/2014] [Accepted: 06/02/2014] [Indexed: 11/26/2022] Open
Abstract
Recently, the non-conventional yeast Dekkera bruxellensis has been gaining more and more attention in the food industry and academic research. This yeast species is a distant relative of Saccharomyces cerevisiae and is especially known for two important characteristics: on the one hand, it is considered to be one of the main spoilage organisms in the wine and bioethanol industry; on the other hand, it is 'indispensable' as a contributor to the flavour profile of Belgium lambic and gueuze beers. Additionally, it adds to the characteristic aromatic properties of some red wines. Recently this yeast has also become a model for the study of yeast evolution. In this review we focus on the recently developed molecular and genetic tools, such as complete genome sequencing and transformation, to study and manipulate this yeast. We also focus on the areas that are particularly well explored in this yeast, such as the synthesis of off-flavours, yeast detection methods, carbon metabolism and evolutionary history. © 2014 The Authors. Yeast published by John Wiley & Sons, Ltd.
Collapse
|
105
|
Dashko S, Zhou N, Compagno C, Piškur J. Why, when, and how did yeast evolve alcoholic fermentation? FEMS Yeast Res 2014; 14:826-32. [PMID: 24824836 PMCID: PMC4262006 DOI: 10.1111/1567-1364.12161] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 05/07/2014] [Accepted: 05/07/2014] [Indexed: 11/28/2022] Open
Abstract
The origin of modern fruits brought to microbial communities an abundant source of rich food based on simple sugars. Yeasts, especially Saccharomyces cerevisiae, usually become the predominant group in these niches. One of the most prominent and unique features and likely a winning trait of these yeasts is their ability to rapidly convert sugars to ethanol at both anaerobic and aerobic conditions. Why, when, and how did yeasts remodel their carbon metabolism to be able to accumulate ethanol under aerobic conditions and at the expense of decreasing biomass production? We hereby review the recent data on the carbon metabolism in Saccharomycetaceae species and attempt to reconstruct the ancient environment, which could promote the evolution of alcoholic fermentation. We speculate that the first step toward the so-called fermentative lifestyle was the exploration of anaerobic niches resulting in an increased metabolic capacity to degrade sugar to ethanol. The strengthened glycolytic flow had in parallel a beneficial effect on the microbial competition outcome and later evolved as a “new” tool promoting the yeast competition ability under aerobic conditions. The basic aerobic alcoholic fermentation ability was subsequently “upgraded” in several lineages by evolving additional regulatory steps, such as glucose repression in the S. cerevisiae clade, to achieve a more precise metabolic control.
Collapse
Affiliation(s)
- Sofia Dashko
- Wine Research Centre, University of Nova Gorica, Vipava, Slovenia; Department of Biology, Lund University, Lund, Sweden
| | | | | | | |
Collapse
|
106
|
Mattanovich D, Sauer M, Gasser B. Yeast biotechnology: teaching the old dog new tricks. Microb Cell Fact 2014; 13:34. [PMID: 24602262 PMCID: PMC3975642 DOI: 10.1186/1475-2859-13-34] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 02/15/2014] [Indexed: 02/07/2023] Open
Abstract
Yeasts are regarded as the first microorganisms used by humans to process food and alcoholic beverages. The technology developed out of these ancient processes has been the basis for modern industrial biotechnology. Yeast biotechnology has gained great interest again in the last decades. Joining the potentials of genomics, metabolic engineering, systems and synthetic biology enables the production of numerous valuable products of primary and secondary metabolism, technical enzymes and biopharmaceutical proteins. An overview of emerging and established substrates and products of yeast biotechnology is provided and discussed in the light of the recent literature.
Collapse
Affiliation(s)
- Diethard Mattanovich
- Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria.
| | | | | |
Collapse
|
107
|
Borneman AR, Zeppel R, Chambers PJ, Curtin CD. Insights into the Dekkera bruxellensis genomic landscape: comparative genomics reveals variations in ploidy and nutrient utilisation potential amongst wine isolates. PLoS Genet 2014; 10:e1004161. [PMID: 24550744 PMCID: PMC3923673 DOI: 10.1371/journal.pgen.1004161] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 12/21/2013] [Indexed: 01/03/2023] Open
Abstract
The yeast Dekkera bruxellensis is a major contaminant of industrial fermentations, such as those used for the production of biofuel and wine, where it outlasts and, under some conditions, outcompetes the major industrial yeast Saccharomyces cerevisiae. In order to investigate the level of inter-strain variation that is present within this economically important species, the genomes of four diverse D. bruxellensis isolates were compared. While each of the four strains was shown to contain a core diploid genome, which is clearly sufficient for survival, two of the four isolates have a third haploid complement of chromosomes. The sequences of these additional haploid genomes were both highly divergent from those comprising the diploid core and divergent between the two triploid strains. Similar to examples in the Saccharomyces spp. clade, where some allotriploids have arisen on the basis of enhanced ability to survive a range of environmental conditions, it is likely these strains are products of two independent hybridisation events that may have involved multiple species or distinct sub-species of Dekkera. Interestingly these triploid strains represent the vast majority (92%) of isolates from across the Australian wine industry, suggesting that the additional set of chromosomes may confer a selective advantage in winery environments that has resulted in these hybrid strains all-but replacing their diploid counterparts in Australian winery settings. In addition to the apparent inter-specific hybridisation events, chromosomal aberrations such as strain-specific insertions and deletions and loss-of-heterozygosity by gene conversion were also commonplace. While these events are likely to have affected many phenotypes across these strains, we have been able to link a specific deletion to the inability to utilise nitrate by some strains of D. bruxellensis, a phenotype that may have direct impacts in the ability for these strains to compete with S. cerevisiae. The yeast D. bruxellensis is of great importance in biofuel and fermented beverage industries, largely as a contaminant and/or spoilage organism. Its lifestyle is not unlike that of the wine/brewing/baking yeast S. cerevisiae, with independent evolutionary pathways having led to this convergence; these species are phylogenetically very distant. Unlike S. cerevisiae, D. bruxellensis is highly intractable in the laboratory; it is difficult to mate and to transform, making even the most basic genetic analysis very difficult. Thus we still have a great deal to learn about this economically important yeast. The latest gene sequencing technologies are, however, providing a means of addressing these limitations. The current manuscript describes a comparative genomics approach to providing insights into inter-strain variations that shape the genomic landscape of D. bruxellensis. Like other industrial yeasts, it has a diploid core genome, but there are also triploid isolates which possess the core diploid complement with an additional, more distantly related, full set of chromosomes. Evidence presented in this paper suggests that this form of triploidy has arisen more than once in the evolutionary history of D. bruxellensis, and it confers a selective advantage for strains of this yeast isolated from wineries.
Collapse
Affiliation(s)
| | - Ryan Zeppel
- The Australian Wine Research Institute, Adelaide, Australia
- University of Adelaide, Adelaide, Australia
| | | | - Chris D. Curtin
- The Australian Wine Research Institute, Adelaide, Australia
- * E-mail:
| |
Collapse
|
108
|
Pereira LF, Lucatti E, Basso LC, de Morais MA. The fermentation of sugarcane molasses by Dekkera bruxellensis and the mobilization of reserve carbohydrates. Antonie van Leeuwenhoek 2013; 105:481-9. [PMID: 24370978 DOI: 10.1007/s10482-013-0100-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 12/12/2013] [Indexed: 01/13/2023]
Abstract
The yeast Dekkera bruxellensis is considered to be very well adapted to industrial environments, in Brazil, USA, Canada and European Countries, when different substrates are used in alcoholic fermentations. Our previous study described its fermentative profile with a sugarcane juice substrate. In this study, we have extended its physiological evaluation to fermentation situations by using sugarcane molasses as a substrate to replicate industrial working conditions. The results have confirmed the previous reports of the low capacity of D. bruxellensis cells to assimilate sucrose, which seems to be the main factor that can cause a bottleneck in its use as fermentative yeast. Furthermore, the cells of D. bruxellensis showed a tendency to deviate most of sugar available for biomass and organic acids (lactic and acetic) compared with Saccharomyces cerevisiae, when calculated on the basis of their respective yields. As well as this, the acetate production from molasses medium by both yeasts was in marked contrast with the previous data on sugarcane juice. Glycerol and ethanol production by D. bruxellensis cells achieved levels of 33 and 53 % of the S. cerevisiae, respectively. However, the ethanol yield was similar for both yeasts. It is worth noting that this yeast did not accumulate trehalose when the intracellular glycogen content was 30 % lower than in S. cerevisiae. The lack of trehalose did not affect yeast viability under fermentation conditions. Thus, the adaptive success of D. bruxellensis under industrial fermentation conditions seems to be unrelated to the production of these reserve carbohydrates.
Collapse
Affiliation(s)
- Luciana Filgueira Pereira
- Interdepartmental Research Group on Metabolic Engineering, Federal University of Pernambuco, Recife, Brazil
| | | | | | | |
Collapse
|
109
|
Galafassi S, Toscano M, Vigentini I, Piškur J, Compagno C. Osmotic stress response in the wine yeast Dekkera bruxellensis. Food Microbiol 2013; 36:316-9. [PMID: 24010612 DOI: 10.1016/j.fm.2013.06.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 06/14/2013] [Accepted: 06/24/2013] [Indexed: 10/26/2022]
|
110
|
Moreno-Cermeño A, Alsina D, Cabiscol E, Tamarit J, Ros J. Metabolic remodeling in frataxin-deficient yeast is mediated by Cth2 and Adr1. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1833:3326-3337. [PMID: 24100161 DOI: 10.1016/j.bbamcr.2013.09.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 09/10/2013] [Accepted: 09/27/2013] [Indexed: 10/26/2022]
Abstract
Frataxin is a mitochondrial protein involved in iron metabolism whose deficiency in humans causes Friedreich ataxia. We performed transcriptomic and proteomic analyses of conditional Yeast Frataxin Homologue (Yfh1) mutants (tetO7-YFH1) to investigate metabolic remodeling upon Yfh1 depletion. These studies revealed that Yfh1 depletion leads to downregulation of many glucose-repressed genes. Most of them were Adr1 targets, a key transcription factor required for growth in non-fermentable carbon sources. Using a GFP-tagged Adr1, we observed that Yfh1 depletion promotes the export of Adr1 from the nucleus to the cytosol without affecting its protein levels. This effect was also observed upon H2O2 treatment, but not by iron overload/starvation, indicating the presence of a regulatory pathway involved in Adr1 export and inactivation upon stress conditions. We also observed that CTH2, a gene involved in the mRNA degradation of several iron-containing enzymes, was induced upon Yfh1 depletion. Accordingly, decreased levels of aconitase and succinate dehydrogenase were observed. Nevertheless, their levels were maintained in a Δcth2 mutant even in the absence of Yfh1. From these results we can conclude that, in addition to altering iron homeostasis, frataxin depletion involves drastic metabolic remodeling governed by Adr1 and Cth2 that finally leads to downregulation of iron-sulfur proteins and other proteins involved in respiratory metabolism.
Collapse
Affiliation(s)
- Armando Moreno-Cermeño
- Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, IRB-Lleida, Universitat de Lleida, Lleida, Spain.
| | - David Alsina
- Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, IRB-Lleida, Universitat de Lleida, Lleida, Spain
| | - Elisa Cabiscol
- Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, IRB-Lleida, Universitat de Lleida, Lleida, Spain
| | - Jordi Tamarit
- Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, IRB-Lleida, Universitat de Lleida, Lleida, Spain
| | - Joaquim Ros
- Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, IRB-Lleida, Universitat de Lleida, Lleida, Spain.
| |
Collapse
|
111
|
Curtin CD, Langhans G, Henschke PA, Grbin PR. Impact of Australian Dekkera bruxellensis strains grown under oxygen-limited conditions on model wine composition and aroma. Food Microbiol 2013; 36:241-7. [DOI: 10.1016/j.fm.2013.06.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 05/17/2013] [Accepted: 06/12/2013] [Indexed: 10/26/2022]
|
112
|
Spor A, Kvitek DJ, Nidelet T, Martin J, Legrand J, Dillmann C, Bourgais A, de Vienne D, Sherlock G, Sicard D. Phenotypic and genotypic convergences are influenced by historical contingency and environment in yeast. Evolution 2013; 68:772-790. [PMID: 24164389 DOI: 10.1111/evo.12302] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 10/14/2013] [Indexed: 12/26/2022]
Abstract
Different organisms have independently and recurrently evolved similar phenotypic traits at different points throughout history. This phenotypic convergence may be caused by genotypic convergence and in addition, constrained by historical contingency. To investigate how convergence may be driven by selection in a particular environment and constrained by history, we analyzed nine life-history traits and four metabolic traits during an experimental evolution of six yeast strains in four different environments. In each of the environments, the population converged toward a different multivariate phenotype. However, the evolution of most traits, including fitness components, was constrained by history. Phenotypic convergence was partly associated with the selection of mutations in genes involved in the same pathway. By further investigating the convergence in one gene, BMH1, mutated in 20% of the evolved populations, we show that both the history and the environment influenced the types of mutations (missense/nonsense), their location within the gene itself, as well as their effects on multiple traits. However, these effects could not be easily predicted from ancestors' phylogeny or past selection. Combined, our data highlight the role of pleiotropy and epistasis in shaping a rugged fitness landscape.
Collapse
Affiliation(s)
- Aymé Spor
- Univ Paris-Sud, UMR de Génétique Végétale, INRA / Univ Paris-Sud / CNRS, Ferme du Moulon, Gif-sur-Yvette, F-91190, France
| | - Daniel J Kvitek
- Department of Genetics, Stanford University, Stanford, CA 94305-5120, USA
| | | | - Juliette Martin
- Université Lyon 1; CNRS, UMR 5086; Bases Moléculaires et Structurales des Systèmes Infectieux, IBCP, 7 passage du, Vercors F-69367, France
| | - Judith Legrand
- Univ Paris-Sud, UMR de Génétique Végétale, INRA / Univ Paris-Sud / CNRS, Ferme du Moulon, Gif-sur-Yvette, F-91190, France
| | - Christine Dillmann
- Univ Paris-Sud, UMR de Génétique Végétale, INRA / Univ Paris-Sud / CNRS, Ferme du Moulon, Gif-sur-Yvette, F-91190, France
| | - Aurélie Bourgais
- CNRS, UMR de Génétique Végétale, INRA / Univ Paris-Sud / CNRS, Ferme du Moulon, Gif-sur-Yvette, F-91190, France
| | - Dominique de Vienne
- Univ Paris-Sud, UMR de Génétique Végétale, INRA / Univ Paris-Sud / CNRS, Ferme du Moulon, Gif-sur-Yvette, F-91190, France
| | - Gavin Sherlock
- Department of Genetics, Stanford University, Stanford, CA 94305-5120, USA
| | - Delphine Sicard
- Univ Paris-Sud, UMR de Génétique Végétale, INRA / Univ Paris-Sud / CNRS, Ferme du Moulon, Gif-sur-Yvette, F-91190, France
| |
Collapse
|
113
|
Hagman A, Säll T, Compagno C, Piskur J. Yeast "make-accumulate-consume" life strategy evolved as a multi-step process that predates the whole genome duplication. PLoS One 2013; 8:e68734. [PMID: 23869229 PMCID: PMC3711898 DOI: 10.1371/journal.pone.0068734] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Accepted: 06/03/2013] [Indexed: 11/19/2022] Open
Abstract
When fruits ripen, microbial communities start a fierce competition for the freely available fruit sugars. Three yeast lineages, including baker’s yeast Saccharomyces cerevisiae, have independently developed the metabolic activity to convert simple sugars into ethanol even under fully aerobic conditions. This fermentation capacity, named Crabtree effect, reduces the cell-biomass production but provides in nature a tool to out-compete other microorganisms. Here, we analyzed over forty Saccharomycetaceae yeasts, covering over 200 million years of the evolutionary history, for their carbon metabolism. The experiments were done under strictly controlled and uniform conditions, which has not been done before. We show that the origin of Crabtree effect in Saccharomycetaceae predates the whole genome duplication and became a settled metabolic trait after the split of the S. cerevisiae and Kluyveromyces lineages, and coincided with the origin of modern fruit bearing plants. Our results suggest that ethanol fermentation evolved progressively, involving several successive molecular events that have gradually remodeled the yeast carbon metabolism. While some of the final evolutionary events, like gene duplications of glucose transporters and glycolytic enzymes, have been deduced, the earliest molecular events initiating Crabtree effect are still to be determined.
Collapse
Affiliation(s)
- Arne Hagman
- Department of Biology, Molecular Cell Biology, Lund University, Lund, Sweden.
| | | | | | | |
Collapse
|
114
|
Meneghin MC, Bassi APG, Codato CB, Reis VR, Ceccato-Antonini SR. Fermentative and growth performances ofDekkera bruxellensisin different batch systems and the effect of initial low cell counts in co-cultures withSaccharomyces cerevisiae. Yeast 2013; 30:295-305. [DOI: 10.1002/yea.2959] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 03/21/2013] [Accepted: 05/01/2013] [Indexed: 11/05/2022] Open
Affiliation(s)
- Maria Cristina Meneghin
- Departamento de Tecnologia Agroindustrial e Sócio-Economia Rural, Centro de Ciências Agrárias; Universidade Federal de São Carlos; Araras; São Paulo State; Brazil; 13600-970
| | - Ana Paula Guarnieri Bassi
- Departamento de Tecnologia Agroindustrial e Sócio-Economia Rural, Centro de Ciências Agrárias; Universidade Federal de São Carlos; Araras; São Paulo State; Brazil; 13600-970
| | - Carolina Brito Codato
- Departamento de Tecnologia Agroindustrial e Sócio-Economia Rural, Centro de Ciências Agrárias; Universidade Federal de São Carlos; Araras; São Paulo State; Brazil; 13600-970
| | - Vanda Renata Reis
- Departamento de Tecnologia Agroindustrial e Sócio-Economia Rural, Centro de Ciências Agrárias; Universidade Federal de São Carlos; Araras; São Paulo State; Brazil; 13600-970
| | - Sandra Regina Ceccato-Antonini
- Departamento de Tecnologia Agroindustrial e Sócio-Economia Rural, Centro de Ciências Agrárias; Universidade Federal de São Carlos; Araras; São Paulo State; Brazil; 13600-970
| |
Collapse
|
115
|
Pais TM, Foulquié-Moreno MR, Hubmann G, Duitama J, Swinnen S, Goovaerts A, Yang Y, Dumortier F, Thevelein JM. Comparative polygenic analysis of maximal ethanol accumulation capacity and tolerance to high ethanol levels of cell proliferation in yeast. PLoS Genet 2013; 9:e1003548. [PMID: 23754966 PMCID: PMC3675000 DOI: 10.1371/journal.pgen.1003548] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 04/23/2013] [Indexed: 01/24/2023] Open
Abstract
The yeast Saccharomyces cerevisiae is able to accumulate ≥17% ethanol (v/v) by fermentation in the absence of cell proliferation. The genetic basis of this unique capacity is unknown. Up to now, all research has focused on tolerance of yeast cell proliferation to high ethanol levels. Comparison of maximal ethanol accumulation capacity and ethanol tolerance of cell proliferation in 68 yeast strains showed a poor correlation, but higher ethanol tolerance of cell proliferation clearly increased the likelihood of superior maximal ethanol accumulation capacity. We have applied pooled-segregant whole-genome sequence analysis to identify the polygenic basis of these two complex traits using segregants from a cross of a haploid derivative of the sake strain CBS1585 and the lab strain BY. From a total of 301 segregants, 22 superior segregants accumulating ≥17% ethanol in small-scale fermentations and 32 superior segregants growing in the presence of 18% ethanol, were separately pooled and sequenced. Plotting SNP variant frequency against chromosomal position revealed eleven and eight Quantitative Trait Loci (QTLs) for the two traits, respectively, and showed that the genetic basis of the two traits is partially different. Fine-mapping and Reciprocal Hemizygosity Analysis identified ADE1, URA3, and KIN3, encoding a protein kinase involved in DNA damage repair, as specific causative genes for maximal ethanol accumulation capacity. These genes, as well as the previously identified MKT1 gene, were not linked in this genetic background to tolerance of cell proliferation to high ethanol levels. The superior KIN3 allele contained two SNPs, which are absent in all yeast strains sequenced up to now. This work provides the first insight in the genetic basis of maximal ethanol accumulation capacity in yeast and reveals for the first time the importance of DNA damage repair in yeast ethanol tolerance. The yeast Saccharomyces cerevisiae is unique in being the most ethanol tolerant organism known. This property lies at the basis of its ecological competitiveness in sugar-rich ecological niches and its use for the production of alcoholic beverages and bioethanol, both of which involve accumulation of high levels of ethanol. Up to now, all research on yeast ethanol tolerance has focused on tolerance of cell proliferation to high ethanol levels. However, the most ecologically and industrially relevant aspect is the capacity of fermenting yeast cells to accumulate high ethanol levels in the absence of cell proliferation. Using QTL mapping by pooled-segregant whole-genome sequence analysis, we show that maximal ethanol accumulation capacity and tolerance of cell proliferation to high ethanol levels have a partially different genetic basis. We identified three specific genes responsible for high ethanol accumulation capacity, of which one gene encodes a protein kinase involved in DNA damage repair. Our work provides the first insight in the genetic basis of maximal ethanol accumulation capacity, shows that it involves different genetic elements compared to tolerance of cell proliferation to high ethanol levels, and reveals for the first time the importance of DNA damage repair in ethanol tolerance.
Collapse
Affiliation(s)
- Thiago M. Pais
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIB, Leuven-Heverlee, Flanders, Belgium
| | - María R. Foulquié-Moreno
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIB, Leuven-Heverlee, Flanders, Belgium
| | - Georg Hubmann
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIB, Leuven-Heverlee, Flanders, Belgium
| | - Jorge Duitama
- Agrobiodiversity Research Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Steve Swinnen
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIB, Leuven-Heverlee, Flanders, Belgium
| | - Annelies Goovaerts
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIB, Leuven-Heverlee, Flanders, Belgium
| | - Yudi Yang
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIB, Leuven-Heverlee, Flanders, Belgium
| | - Françoise Dumortier
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIB, Leuven-Heverlee, Flanders, Belgium
| | - Johan M. Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIB, Leuven-Heverlee, Flanders, Belgium
- * E-mail:
| |
Collapse
|
116
|
Ahmad KM, Ishchuk OP, Hellborg L, Jørgensen G, Skvarc M, Stenderup J, Jørck-Ramberg D, Polakova S, Piškur J. Small chromosomes among Danish Candida glabrata isolates originated through different mechanisms. Antonie van Leeuwenhoek 2013; 104:111-22. [PMID: 23670790 PMCID: PMC3672514 DOI: 10.1007/s10482-013-9931-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 04/30/2013] [Indexed: 11/16/2022]
Abstract
We analyzed 192 strains of the pathogenic yeast Candida glabrata from patients, mainly suffering from systemic infection, at Danish hospitals during 1985–1999. Our analysis showed that these strains were closely related but exhibited large karyotype polymorphism. Nine strains contained small chromosomes, which were smaller than 0.5 Mb. Regarding the year, patient and hospital, these C. glabrata strains had independent origin and the analyzed small chromosomes were structurally not related to each other (i.e. they contained different sets of genes). We suggest that at least two mechanisms could participate in their origin: (i) through a segmental duplication which covered the centromeric region, or (ii) by a translocation event moving a larger chromosome arm to another chromosome that leaves the centromere part with the shorter arm. The first type of small chromosomes carrying duplicated genes exhibited mitotic instability, while the second type, which contained the corresponding genes in only one copy in the genome, was mitotically stable. Apparently, in patients C.glabrata chromosomes are frequently reshuffled resulting in new genetic configurations, including appearance of small chromosomes, and some of these resulting “mutant” strains can have increased fitness in a certain patient “environment”.
Collapse
|
117
|
Galafassi S, Capusoni C, Moktaduzzaman M, Compagno C. Utilization of nitrate abolishes the “Custers effect” in Dekkera bruxellensis and determines a different pattern of fermentation products. ACTA ACUST UNITED AC 2013; 40:297-303. [DOI: 10.1007/s10295-012-1229-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 12/24/2012] [Indexed: 11/24/2022]
Abstract
Abstract
Nitrate is one of the most abundant nitrogen sources in nature. Several yeast species have been shown to be able to assimilate nitrate and nitrite, but the metabolic pathway has been studied in very few of them. Dekkera bruxellensis can use nitrate as sole nitrogen source and this metabolic characteristic can render D. bruxellensis able to overcome S. cerevisiae populations in industrial bioethanol fermentations. In order to better characterize how nitrate utilization affects carbon metabolism and the yields of the fermentation products, we investigated this trait in defined media under well-controlled aerobic and anaerobic conditions. Our experiments showed that in D. bruxellensis, utilization of nitrate determines a different pattern of fermentation products. Acetic acid, instead of ethanol, became in fact the main product of glucose metabolism under aerobic conditions. We have also demonstrated that under anaerobic conditions, nitrate assimilation abolishes the “Custers effect”, in this way improving its fermentative metabolism. This can offer a new strategy, besides aeration, to sustain growth and ethanol production for the employment of this yeast in industrial processes.
Collapse
Affiliation(s)
- Silvia Galafassi
- grid.4708.b 0000000417572822 Department of Food, Environmental and Nutritional Sciences University of Milan Via G. Celoria 2 20133 Milan Italy
| | - Claudia Capusoni
- grid.4708.b 0000000417572822 Department of Food, Environmental and Nutritional Sciences University of Milan Via G. Celoria 2 20133 Milan Italy
| | - Md Moktaduzzaman
- grid.4708.b 0000000417572822 Department of Food, Environmental and Nutritional Sciences University of Milan Via G. Celoria 2 20133 Milan Italy
| | - Concetta Compagno
- grid.4708.b 0000000417572822 Department of Food, Environmental and Nutritional Sciences University of Milan Via G. Celoria 2 20133 Milan Italy
| |
Collapse
|
118
|
Affiliation(s)
- Melissa Ivey
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina 27695
| | - Mara Massel
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina 27695
| | - Trevor G. Phister
- Division of Food Science, Brewing Science Program, School of Biological Sciences, University of Nottingham, Sutton Bonington LE12 5RD, United Kingdom;
| |
Collapse
|
119
|
Leite FCB, Basso TO, Pita WDB, Gombert AK, Simões DA, de Morais MA. Quantitative aerobic physiology of the yeast Dekkera bruxellensis, a major contaminant in bioethanol production plants. FEMS Yeast Res 2012; 13:34-43. [PMID: 23078341 DOI: 10.1111/1567-1364.12007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 08/07/2012] [Accepted: 09/07/2012] [Indexed: 12/01/2022] Open
Abstract
Dekkera bruxellensis has been described as the major contaminant yeast of industrial ethanol production, although little is known about its physiology. The aim of this study was to investigate the growth of this yeast in diverse carbon sources and involved conducting shake-flask and glucose- or sucrose-limited chemostats experiments, and from the chemostat data, the stoichiometry of biomass formation during aerobic growth was established. As a result of the shake-flask experiments with hexoses or disaccharides, the specific growth rates were calculated, and a different behavior in rich and mineral medium was observed concerning to profile of acetate and ethanol production. In C-limited chemostats conditions, the metabolism of this yeast was completely respiratory, and the biomass yields reached values of 0.62 gDW gS(-1) . In addition, glucose pulses were applied to the glucose- or sucrose-limited chemostats. These results showed that D. bruxellensis has a short-term Crabtree effect. While the glucose pulse was at the sucrose-limited chemostat, sucrose accumulated at the reactor, indicating the presence of a glucose repression mechanism in D. bruxellensis.
Collapse
|
120
|
Oud B, Flores CL, Gancedo C, Zhang X, Trueheart J, Daran JM, Pronk JT, van Maris AJA. An internal deletion in MTH1 enables growth on glucose of pyruvate-decarboxylase negative, non-fermentative Saccharomyces cerevisiae. Microb Cell Fact 2012; 11:131. [PMID: 22978798 PMCID: PMC3503853 DOI: 10.1186/1475-2859-11-131] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 09/11/2012] [Indexed: 12/02/2022] Open
Abstract
Background Pyruvate-decarboxylase negative (Pdc-) strains of Saccharomyces cerevisiae combine the robustness and high glycolytic capacity of this yeast with the absence of alcoholic fermentation. This makes Pdc-S. cerevisiae an interesting platform for efficient conversion of glucose towards pyruvate-derived products without formation of ethanol as a by-product. However, Pdc- strains cannot grow on high glucose concentrations and require C2-compounds (ethanol or acetate) for growth under conditions with low glucose concentrations, which hitherto has limited application in industry. Results Genetic analysis of a Pdc- strain previously evolved to overcome these deficiencies revealed a 225bp in-frame internal deletion in MTH1, encoding a transcriptional regulator involved in glucose sensing. This internal deletion contains a phosphorylation site required for degradation, thereby hypothetically resulting in increased stability of the protein. Reverse engineering of this alternative MTH1 allele into a non-evolved Pdc- strain enabled growth on 20 g l-1 glucose and 0.3% (v/v) ethanol at a maximum specific growth rate (0.24 h-1) similar to that of the evolved Pdc- strain (0.23 h-1). Furthermore, the reverse engineered Pdc- strain grew on glucose as sole carbon source, albeit at a lower specific growth rate (0.10 h-1) than the evolved strain (0.20 h-1). The observation that overexpression of the wild-type MTH1 allele also restored growth of Pdc-S. cerevisiae on glucose is consistent with the hypothesis that the internal deletion results in decreased degradation of Mth1. Reduced degradation of Mth1 has been shown to result in deregulation of hexose transport. In Pdc- strains, reduced glucose uptake may prevent intracellular accumulation of pyruvate and/or redox problems, while release of glucose repression due to the MTH1 internal deletion may contribute to alleviation of the C2-compound auxotrophy. Conclusions In this study we have discovered and characterised a mutation in MTH1 enabling Pdc- strains to grow on glucose as the sole carbon source. This successful example of reverse engineering not only increases the understanding of the glucose tolerance of evolved Pdc-S. cerevisiae, but also allows introduction of this portable genetic element into various industrial yeast strains, thereby simplifying metabolic engineering strategies.
Collapse
Affiliation(s)
- Bart Oud
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
121
|
Paczia N, Nilgen A, Lehmann T, Gätgens J, Wiechert W, Noack S. Extensive exometabolome analysis reveals extended overflow metabolism in various microorganisms. Microb Cell Fact 2012; 11:122. [PMID: 22963408 PMCID: PMC3526501 DOI: 10.1186/1475-2859-11-122] [Citation(s) in RCA: 195] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 08/31/2012] [Indexed: 11/16/2022] Open
Abstract
Overflow metabolism is well known for yeast, bacteria and mammalian cells. It typically occurs under glucose excess conditions and is characterized by excretions of by-products such as ethanol, acetate or lactate. This phenomenon, also denoted the short-term Crabtree effect, has been extensively studied over the past few decades, however, its basic regulatory mechanism and functional role in metabolism is still unknown. Here we present a comprehensive quantitative and time-dependent analysis of the exometabolome of Escherichia coli, Corynebacterium glutamicum, Bacillus licheniformis, and Saccharomyces cerevisiae during well-controlled bioreactor cultivations. Most surprisingly, in all cases a great diversity of central metabolic intermediates and amino acids is found in the culture medium with extracellular concentrations varying in the micromolar range. Different hypotheses for these observations are formulated and experimentally tested. As a result, the intermediates in the culture medium during batch growth must originate from passive or active transportation due to a new phenomenon termed “extended” overflow metabolism. Moreover, we provide broad evidence that this could be a common feature of all microorganism species when cultivated under conditions of carbon excess and non-inhibited carbon uptake. In turn, this finding has consequences for metabolite balancing and, particularly, for intracellular metabolite quantification and 13C-metabolic flux analysis.
Collapse
Affiliation(s)
- Nicole Paczia
- Institute of Bio- and Geosciences, Biotechnology, Systems Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | | | | | | | | | | |
Collapse
|
122
|
Blomqvist J, Nogué VS, Gorwa-Grauslund M, Passoth V. Physiological requirements for growth and competitiveness of Dekkera bruxellensis under oxygen-limited or anaerobic conditions. Yeast 2012; 29:265-74. [PMID: 22674754 DOI: 10.1002/yea.2904] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Revised: 03/28/2012] [Accepted: 04/27/2012] [Indexed: 11/07/2022] Open
Abstract
The effect of glucose and oxygen limitation on the growth and fermentation performances of Dekkera bruxellensis was investigated in order to understand which factors favour its propagation in ethanol or wine plants. Although D. bruxellensis has been described as a facultative anaerobe, no growth was observed in mineral medium under complete anaerobiosis while growth was retarded under severe oxygen limitation. In a continuous culture with no gas inflow, glucose was not completely consumed, most probably due to oxygen limitation. When an air/nitrogen mixture (O(2)-content ca. 5%) was sparged to the culture, growth became glucose-limited. In co-cultivations with Saccharomyces cerevisiae, ethanol yields/g consumed sugar were not affected by the co-cultures as compared to the pure cultures. However, different population responses were observed in both systems. In oxygen-limited cultivation, glucose was depleted within 24 h after challenging with S. cerevisiae and both yeast populations were maintained at a stable level. In contrast, the S. cerevisiae population constantly decreased to about 1% of its initial cell number in the sparged glucose-limited fermentation, whereas the D. bruxellensis population remained constant. To identify the requirements of D. bruxellensis for anaerobic growth, the yeast was cultivated in several nitrogen sources and with the addition of amino acids. Yeast extract and most of the supplied amino acids supported anaerobic growth, which points towards a higher nutrient demand for D. bruxellensis compared to S. cerevisiae in anaerobic conditions.
Collapse
Affiliation(s)
- Johanna Blomqvist
- Uppsala BioCentre, Department of Microbiology, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | | | | | | |
Collapse
|
123
|
Curtin C, Kennedy E, Henschke PA. Genotype-dependent sulphite tolerance of Australian Dekkera (Brettanomyces) bruxellensis wine isolates. Lett Appl Microbiol 2012; 55:56-61. [PMID: 22537453 DOI: 10.1111/j.1472-765x.2012.03257.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS The aim of this study was to determine sulphite tolerance for a large number of Dekkera bruxellensis isolates and evaluate the relationship between this phenotype and previously assigned genotype markers. METHODS AND RESULTS A published microplate-based method for evaluation of yeast growth in the presence of sulphite was benchmarked against culturability following sulphite treatment, for the D. bruxellensis type strain (CBS 74) and a reference wine isolate (AWRI 1499). This method was used to estimate maximal sulphite tolerance for 41 D. bruxellensis isolates, which was found to vary over a fivefold range. Significant differences in sulphite tolerance were observed when isolates were grouped according to previously assigned genotypes and ribotypes. CONCLUSIONS Variable sulphite tolerance for the wine spoilage yeast D. bruxellensis can be linked to genotype markers. SIGNIFICANCE AND IMPACT OF THE STUDY Strategies to minimize risk of wine spoilage by D. bruxellensis must take into account at least a threefold range in effective sulphite concentration that is dependent upon the genotype group(s) present. The isolates characterized in this study will be a useful resource for establishing the mechanisms conferring sulphite tolerance for this industrially important yeast species.
Collapse
Affiliation(s)
- C Curtin
- The Australian Wine Research Institute, Glen Osmond, Adelaide, SA, Australia.
| | | | | |
Collapse
|
124
|
Becher PG, Flick G, Rozpędowska E, Schmidt A, Hagman A, Lebreton S, Larsson MC, Hansson BS, Piškur J, Witzgall P, Bengtsson M. Yeast, not fruit volatiles mediate Drosophila melanogaster attraction, oviposition and development. Funct Ecol 2012. [DOI: 10.1111/j.1365-2435.2012.02006.x] [Citation(s) in RCA: 270] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
| | - Gerhard Flick
- University of Applied Sciences; 17033; Neubrandenburg; Germany
| | | | | | - Arne Hagman
- Department of Biology; Lund University; 22362; Lund; Sweden
| | - Sébastien Lebreton
- Chemical Ecology Group; Swedish University of Agricultural Sciences; 23053; Alnarp; Sweden
| | - Mattias C. Larsson
- Chemical Ecology Group; Swedish University of Agricultural Sciences; 23053; Alnarp; Sweden
| | - Bill S. Hansson
- Department of Evolutionary Neuroethology; Max Planck Institute for Chemical Ecology; Hans-Knoell Strasse 8; 07745; Jena; Germany
| | - Jure Piškur
- Department of Biology; Lund University; 22362; Lund; Sweden
| | - Peter Witzgall
- Chemical Ecology Group; Swedish University of Agricultural Sciences; 23053; Alnarp; Sweden
| | - Marie Bengtsson
- Chemical Ecology Group; Swedish University of Agricultural Sciences; 23053; Alnarp; Sweden
| |
Collapse
|
125
|
Piškur J, Ling Z, Marcet-Houben M, Ishchuk OP, Aerts A, LaButti K, Copeland A, Lindquist E, Barry K, Compagno C, Bisson L, Grigoriev IV, Gabaldón T, Phister T. The genome of wine yeast Dekkera bruxellensis provides a tool to explore its food-related properties. Int J Food Microbiol 2012; 157:202-9. [PMID: 22663979 DOI: 10.1016/j.ijfoodmicro.2012.05.008] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 05/06/2012] [Accepted: 05/08/2012] [Indexed: 02/01/2023]
Abstract
The yeast Dekkera/Brettanomyces bruxellensis can cause enormous economic losses in wine industry due to production of phenolic off-flavor compounds. D. bruxellensis is a distant relative of baker's yeast Saccharomyces cerevisiae. Nevertheless, these two yeasts are often found in the same habitats and share several food-related traits, such as production of high ethanol levels and ability to grow without oxygen. In some food products, like lambic beer, D. bruxellensis can importantly contribute to flavor development. We determined the 13.4 Mb genome sequence of the D. bruxellensis strain Y879 (CBS2499) and deduced the genetic background of several "food-relevant" properties and evolutionary history of this yeast. Surprisingly, we find that this yeast is phylogenetically distant to other food-related yeasts and most related to Pichia (Komagataella) pastoris, which is an aerobic poor ethanol producer. We further show that the D. bruxellensis genome does not contain an excess of lineage specific duplicated genes nor a horizontally transferred URA1 gene, two crucial events that promoted the evolution of the food relevant traits in the S. cerevisiae lineage. However, D. bruxellensis has several independently duplicated ADH and ADH-like genes, which are likely responsible for metabolism of alcohols, including ethanol, and also a range of aromatic compounds.
Collapse
Affiliation(s)
- Jure Piškur
- Wine Research Centre, University of Nova Gorica, Nova Gorica, Slovenia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Curtin CD, Borneman AR, Chambers PJ, Pretorius IS. De-novo assembly and analysis of the heterozygous triploid genome of the wine spoilage yeast Dekkera bruxellensis AWRI1499. PLoS One 2012; 7:e33840. [PMID: 22470482 PMCID: PMC3314683 DOI: 10.1371/journal.pone.0033840] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 02/17/2012] [Indexed: 11/18/2022] Open
Abstract
Despite its industrial importance, the yeast species Dekkera (Brettanomyces) bruxellensis has remained poorly understood at the genetic level. In this study we describe whole genome sequencing and analysis for a prevalent wine spoilage strain, AWRI1499. The 12.7 Mb assembly, consisting of 324 contigs in 99 scaffolds (super-contigs) at 26-fold coverage, exhibits a relatively high density of single nucleotide polymorphisms (SNPs). Haplotype sampling for 1.2% of open reading frames suggested that the D. bruxellensis AWRI1499 genome is comprised of a moderately heterozygous diploid genome, in combination with a divergent haploid genome. Gene content analysis revealed enrichment in membrane proteins, particularly transporters, along with oxidoreductase enzymes. Availability of this assembly and annotation provides a resource for further investigation of genomic organization in this species, and functional characterization of genes that may confer important phenotypic traits.
Collapse
Affiliation(s)
- Chris D Curtin
- The Australian Wine Research Institute, Adelaide, Australia.
| | | | | | | |
Collapse
|
127
|
Jiang H, Guo X, Xu L, Gu Z. Rewiring of posttranscriptional RNA regulons: Puf4p in fungi as an example. Mol Biol Evol 2012; 29:2169-76. [PMID: 22438588 DOI: 10.1093/molbev/mss085] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
It has been increasingly clear that changes in gene regulation play important roles in physiological and phenotypic evolution. Rewiring gene-regulatory networks, i.e., alteration of the gene-regulation system for different biological functions, has been demonstrated in various species. Posttranscriptional regulons have prominent roles in coordinating gene expression in a variety of eukaryotes. In this study, using Puf4p in fungi as an example, we demonstrate that posttranscriptional regulatory networks can also be rewired during evolution. Although Puf4p is highly conserved in fungi, targets of the posttranscriptional regulon are functionally diverse among known fungal species. In the Saccharomycotina subdivision, target genes of Puf4p mostly conduct function in the nucleolus; however, in the Pezizomycotina subdivision, they are enriched in the mitochondria. Furthermore, we demonstrate different regulation efficiencies of mitochondrial function by PUF proteins in different fungal clades. Our results indicate that rewiring of posttranscription regulatory networks may be an important way of generating genetic novelties in gene regulation during evolution.
Collapse
Affiliation(s)
- Huifeng Jiang
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | | | | | | |
Collapse
|
128
|
Vigentini I, De Lorenzis G, Picozzi C, Imazio S, Merico A, Galafassi S, Piškur J, Foschino R. Intraspecific variations of Dekkera/Brettanomyces bruxellensis genome studied by capillary electrophoresis separation of the intron splice site profiles. Int J Food Microbiol 2012; 157:6-15. [PMID: 22607811 DOI: 10.1016/j.ijfoodmicro.2012.02.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 02/21/2012] [Accepted: 02/23/2012] [Indexed: 11/24/2022]
Abstract
In enology, "Brett" character refers to the wine spoilage caused by the yeast Dekkera/Brettanomyces bruxellensis and its production of volatile phenolic off-flavours. However, the spoilage potential of this yeast is strain-dependent. Therefore, a rapid and reliable recognition at the strain level is a key point to avoid serious economic losses. The present work provides an operative tool to assess the genetic intraspecific variation in this species through the use of introns as molecular targets. Firstly, the available partial D./B. bruxellensis genome sequence was investigated in order to build primers annealing to introns 5' splice site sequence (ISS). This analysis allowed the detection of a non-random vocabulary flanking the site and, exploiting this feature, the creation of specific probes for strain discrimination. Secondly, the separation of the intron splice site PCR fragments was obtained throughout the set up of a capillary electrophoresis protocol, giving a 94% repeatability threshold in our experimental conditions. The comparison of results obtained with ISS-PCR/CE versus the ones performed by mtDNA RFLP revealed that the former protocol is more discriminating and allowed a reliable identification at strain level. Actually sixty D./B. bruxellensis isolates were recognised as unique strains, showing a level of similarity below 79% and confirming the high genetic polymorphism existing within the species. Two main clusters were grouped at similarity levels of about 46% and 47%, respectively, showing a poor correlation with the geographic area of isolation. Moreover, from the evolutionary point of view, the proposed technique could determine the frequency of the genome rearrangements that can occur in D./B. bruxellesis populations.
Collapse
Affiliation(s)
- Ileana Vigentini
- Dipartimento di Scienze e Tecnologie Alimentari e Microbiologiche, Università degli Studi di Milano, via Celoria 2, 20133, Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
129
|
Huberts DHEW, Niebel B, Heinemann M. A flux-sensing mechanism could regulate the switch between respiration and fermentation. FEMS Yeast Res 2011; 12:118-28. [DOI: 10.1111/j.1567-1364.2011.00767.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 10/28/2011] [Accepted: 11/16/2011] [Indexed: 12/20/2022] Open
Affiliation(s)
- Daphne H. E. W. Huberts
- Molecular Systems Biology; Groningen Biomolecular Sciences and Biotechnology Institute; University of Groningen; Groningen; The Netherlands
| | - Bastian Niebel
- Molecular Systems Biology; Groningen Biomolecular Sciences and Biotechnology Institute; University of Groningen; Groningen; The Netherlands
| | - Matthias Heinemann
- Molecular Systems Biology; Groningen Biomolecular Sciences and Biotechnology Institute; University of Groningen; Groningen; The Netherlands
| |
Collapse
|
130
|
Pereira LF, Bassi APG, Avansini SH, Neto AGB, Brasileiro BTRV, Ceccato-Antonini SR, de Morais MA. The physiological characteristics of the yeast Dekkera bruxellensis in fully fermentative conditions with cell recycling and in mixed cultures with Saccharomyces cerevisiae. Antonie Van Leeuwenhoek 2011; 101:529-39. [PMID: 22041979 DOI: 10.1007/s10482-011-9662-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 10/14/2011] [Indexed: 11/30/2022]
Abstract
The yeast Dekkera bruxellensis plays an important role in industrial fermentation processes, either as a contaminant or as a fermenting yeast. In this study, an analysis has been conducted of the fermentation characteristics of several industrial D. bruxellensis strains collected from distilleries from the Southeast and Northeast of Brazil, compared with Saccharomyces cerevisiae. It was found that all the strains of D. bruxellensis showed a lower fermentative capacity as a result of inefficient sugar assimilation, especially sucrose, under anaerobiosis, which is called the Custer effect. In addition, most of the sugar consumed by D. bruxellensis seemed to be used for biomass production, as was observed by the increase of its cell population during the fermentation recycles. In mixed populations, the surplus of D. bruxellensis over S. cerevisiae population could not be attributed to organic acid production by the first yeast, as previously suggested. Moreover, both yeast species showed similar sensitivity to lactic and acetic acids and were equally resistant to ethanol, when added exogenously to the fermentation medium. Thus, the effects that lead to the employment of D. bruxellensis in an industrial process and its effects on the production of ethanol are multivariate. The difficulty of using this yeast for ethanol production is that it requires the elimination of the Custer effect to allow an increase in the assimilation of sugar under anaerobic conditions.
Collapse
Affiliation(s)
- Luciana Filgueira Pereira
- Interdepartmental Research Group in Metabolic Engineering, Federal University of Pernambuco, Recife, PE, Brazil
| | | | | | | | | | | | | |
Collapse
|
131
|
Meier S, Jensen PR, Duus JØ. Real-time detection of central carbon metabolism in living Escherichia coli and its response to perturbations. FEBS Lett 2011; 585:3133-8. [PMID: 21907715 DOI: 10.1016/j.febslet.2011.08.049] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 08/17/2011] [Accepted: 08/29/2011] [Indexed: 01/23/2023]
Abstract
The direct tracking of cellular reactions in vivo has been facilitated with recent technologies that strongly enhance NMR signals in substrates of interest. This methodology can be used to assay intracellular reactions that occur within seconds to few minutes, as the NMR signal enhancement typically fades on this time scale. Here, we show that the enhancement of (13)C nuclear spin polarization in deuterated glucose allows to directly follow the flux of glucose signal through rather extended reaction networks of central carbon metabolism in living Escherichia coli. Alterations in central carbon metabolism depending on the growth phase or upon chemical perturbations are visualized with minimal data processing by instantaneous observation of cellular reactions.
Collapse
|