101
|
Cordero GA, Liu H, Wimalanathan K, Weber R, Quinteros K, Janzen FJ. Gene network variation and alternative paths to convergent evolution in turtles. Evol Dev 2018; 20:172-185. [DOI: 10.1111/ede.12264] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Gerardo A. Cordero
- Department of Ecology, Evolution, and Organismal BiologyIowa State UniversityAmesIowa
| | - Haibo Liu
- Program in Bioinformatics and Computational BiologyIowa State UniversityAmesIowa
| | | | - Rachel Weber
- Department of Ecology, Evolution, and Organismal BiologyIowa State UniversityAmesIowa
| | - Kevin Quinteros
- Department of Ecology, Evolution, and Organismal BiologyIowa State UniversityAmesIowa
| | - Fredric J. Janzen
- Department of Ecology, Evolution, and Organismal BiologyIowa State UniversityAmesIowa
| |
Collapse
|
102
|
Evaluating the bromodomain protein BRD1 as a therapeutic target in rheumatoid arthritis. Sci Rep 2018; 8:11125. [PMID: 30042400 PMCID: PMC6057939 DOI: 10.1038/s41598-018-29127-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 07/05/2018] [Indexed: 12/28/2022] Open
Abstract
Targeting epigenetic reader proteins by small molecule inhibitors represents a new therapeutic concept in autoimmune diseases such as rheumatoid arthritis (RA). Although inhibitors targeting bromodomain protein 1 (BRD1) are in development, the function of BRD1 has hardly been studied. We investigated the therapeutic potential of BRD1 inhibition in joint-resident cells in RA, synovial fibroblasts (SF) and macrophages. The proliferation of SF was decreased upon BRD1 silencing, accompanied by the downregulation of genes involved in cell cycle regulation. Silencing of BRD1 in SF decreased the basal expression of MMP1 but increased TNF-α- and LPS-induced levels of MMP3, IL6 and IL8. In monocyte-derived macrophages (MDM), silencing of BRD1 decreased the LPS-induced expression of TNF-α, but did not significantly affect basal and the TNF-α- and LPS-induced expression of IL6 and IL8. Our data point to a cell type- and a stimulus-specific function of BRD1. Inhibiting BRD1 could have potential beneficial effects in RA via decreasing the proliferation of SF. Anti-inflammatory effects were limited and only observed in MDM.
Collapse
|
103
|
Abstract
PURPOSE OF REVIEW Stroma is a broad term referring to the connective tissue matrix in which other cells reside. It is composed of diverse cell types with functions such as extracellular matrix maintenance, blood and lymph vessel development, and effector cell recruitment. The tissue microenvironment is determined by the molecular characteristics and relative abundances of different stromal cells such as fibroblasts, endothelial cells, pericytes, and mesenchymal precursor cells. Stromal cell heterogeneity is explained by embryonic developmental lineage, stages of differentiation to other cell types, and activation states. Interaction between immune and stromal cell types is critical to wound healing, cancer, and a wide range of inflammatory diseases. Here, we review recent studies of inflammatory diseases that use functional genomics and single-cell technologies to identify and characterize stromal cell types associated with pathogenesis. RECENT FINDINGS High dimensional strategies using mRNA sequencing, mass cytometry, and fluorescence activated cell-sorting with fresh primary tissue samples are producing detailed views of what is happening in diseased tissue in rheumatoid arthritis, inflammatory bowel disease, and cancer. Fibroblasts positive for CD90 (Thy-1) are enriched in the synovium of rheumatoid arthritis patients. Single-cell RNA-seq studies will lead to more discoveries about the stroma in the near future. SUMMARY Stromal cells form the microenvironment of inflamed and diseased tissues. Functional genomics is producing an increasingly detailed view of subsets of stromal cells with pathogenic functions in rheumatic diseases and cancer. Future genomics studies will discover disease mechanisms by perturbing molecular pathways with chemokines and therapies known to affect patient outcomes. Functional genomics studies with large sample sizes of patient tissues will identify patient subsets with different disease phenotypes or treatment responses.
Collapse
|
104
|
Mandelin AM, Homan PJ, Shaffer AM, Cuda CM, Dominguez ST, Bacalao E, Carns M, Hinchcliff M, Lee J, Aren K, Thakrar A, Montgomery AB, Bridges SL, Bathon JM, Atkinson JP, Fox DA, Matteson EL, Buckley CD, Pitzalis C, Parks D, Hughes LB, Geraldino-Pardilla L, Ike R, Phillips K, Wright K, Filer A, Kelly S, Ruderman EM, Morgan V, Abdala-Valencia H, Misharin AV, Budinger GS, Bartom ET, Pope RM, Perlman H, Winter DR. Transcriptional Profiling of Synovial Macrophages Using Minimally Invasive Ultrasound-Guided Synovial Biopsies in Rheumatoid Arthritis. Arthritis Rheumatol 2018; 70:841-854. [PMID: 29439295 DOI: 10.1002/art.40453] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 02/08/2018] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Currently, there are no reliable biomarkers for predicting therapeutic response in patients with rheumatoid arthritis (RA). The synovium may unlock critical information for determining efficacy, since a reduction in the numbers of sublining synovial macrophages remains the most reproducible biomarker. Thus, a clinically actionable method for the collection of synovial tissue, which can be analyzed using high-throughput strategies, must become a reality. This study was undertaken to assess the feasibility of utilizing synovial biopsies as a precision medicine-based approach for patients with RA. METHODS Rheumatologists at 6 US academic sites were trained in minimally invasive ultrasound-guided synovial tissue biopsy. Biopsy specimens obtained from patients with RA and synovial tissue from patients with osteoarthritis (OA) were subjected to histologic analysis, fluorescence-activated cell sorting, and RNA sequencing (RNA-seq). An optimized protocol for digesting synovial tissue was developed to generate high-quality RNA-seq libraries from isolated macrophage populations. Associations were determined between macrophage transcriptional profiles and clinical parameters in RA patients. RESULTS Patients with RA reported minimal adverse effects in response to synovial biopsy. Comparable RNA quality was observed from synovial tissue and isolated macrophages between patients with RA and patients with OA. Whole tissue samples from patients with RA demonstrated a high degree of transcriptional heterogeneity. In contrast, the transcriptional profile of isolated RA synovial macrophages highlighted different subpopulations of patients and identified 6 novel transcriptional modules that were associated with disease activity and therapy. CONCLUSION Performance of synovial tissue biopsies by rheumatologists in the US is feasible and generates high-quality samples for research. Through the use of cutting-edge technologies to analyze synovial biopsy specimens in conjunction with corresponding clinical information, a precision medicine-based approach for patients with RA is attainable.
Collapse
Affiliation(s)
- Arthur M Mandelin
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Philip J Homan
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | - Carla M Cuda
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | - Emily Bacalao
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Mary Carns
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | - Jungwha Lee
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Kathleen Aren
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Anjali Thakrar
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Anna B Montgomery
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | | | - John P Atkinson
- Washington University School of Medicine, St. Louis, Missouri
| | - David A Fox
- University of Michigan School of Medicine, Ann Arbor
| | - Eric L Matteson
- Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Christopher D Buckley
- University of Birmingham Research Laboratories, Queen Elizabeth Hospital Birmingham, Birmingham, UK
| | - Costantino Pitzalis
- William Harvey Research Institute and Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Deborah Parks
- Washington University School of Medicine, St. Louis, Missouri
| | | | | | - Robert Ike
- University of Michigan School of Medicine, Ann Arbor
| | | | - Kerry Wright
- Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Andrew Filer
- University of Birmingham Research Laboratories, Queen Elizabeth Hospital Birmingham, Birmingham, UK
| | - Stephen Kelly
- William Harvey Research Institute and Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Eric M Ruderman
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Vince Morgan
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | | | - G Scott Budinger
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | - Richard M Pope
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Harris Perlman
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Deborah R Winter
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
105
|
You S, Koh JH, Leng L, Kim WU, Bucala R. The Tumor-Like Phenotype of Rheumatoid Synovium: Molecular Profiling and Prospects for Precision Medicine. Arthritis Rheumatol 2018; 70:637-652. [PMID: 29287304 PMCID: PMC5920713 DOI: 10.1002/art.40406] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 12/19/2017] [Indexed: 12/13/2022]
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by destructive hyperplasia of the synovium. Fibroblast-like synoviocytes (FLS) are a major component of synovial pannus and actively participate in the pathologic progression of RA. How rheumatoid FLS acquire and sustain such a uniquely aggressive phenotype remains poorly understood. We describe the current state of knowledge of the molecular alterations in rheumatoid FLS at the genomic, epigenomic, transcriptomic, proteomic, and metabolomic levels, which offers a means to reconstruct the pathways leading to rheumatoid pannus. Such data provide new pathologic insight and suggest means to more sensitively assess disease activity and response to therapy, as well as support new avenues for therapeutic development.
Collapse
Affiliation(s)
- Sungyong You
- Department of Surgery and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jung Hee Koh
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, The Catholic University of Korea; Seoul, Korea
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary’s hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Lin Leng
- Department of Medicine, Section of Rheumatology, Yale University School of Medicine, New Haven, CT
| | - Wan-Uk Kim
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, The Catholic University of Korea; Seoul, Korea
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary’s hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Richard Bucala
- Department of Medicine, Section of Rheumatology, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
106
|
Smolen JS, Aletaha D, Barton A, Burmester GR, Emery P, Firestein GS, Kavanaugh A, McInnes IB, Solomon DH, Strand V, Yamamoto K. Rheumatoid arthritis. Nat Rev Dis Primers 2018; 4:18001. [PMID: 29417936 DOI: 10.1038/nrdp.2018.1] [Citation(s) in RCA: 1516] [Impact Index Per Article: 216.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic, inflammatory, autoimmune disease that primarily affects the joints and is associated with autoantibodies that target various molecules including modified self-epitopes. The identification of novel autoantibodies has improved diagnostic accuracy, and newly developed classification criteria facilitate the recognition and study of the disease early in its course. New clinical assessment tools are able to better characterize disease activity states, which are correlated with progression of damage and disability, and permit improved follow-up. In addition, better understanding of the pathogenesis of RA through recognition of key cells and cytokines has led to the development of targeted disease-modifying antirheumatic drugs. Altogether, the improved understanding of the pathogenetic processes involved, rational use of established drugs and development of new drugs and reliable assessment tools have drastically altered the lives of individuals with RA over the past 2 decades. Current strategies strive for early referral, early diagnosis and early start of effective therapy aimed at remission or, at the least, low disease activity, with rapid adaptation of treatment if this target is not reached. This treat-to-target approach prevents progression of joint damage and optimizes physical functioning, work and social participation. In this Primer, we discuss the epidemiology, pathophysiology, diagnosis and management of RA.
Collapse
Affiliation(s)
- Josef S Smolen
- Division of Rheumatology, Department of Medicine 3, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Daniel Aletaha
- Division of Rheumatology, Department of Medicine 3, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Anne Barton
- Arthritis Research UK Centre for Genetics and Genomics and NIHR Manchester Biomedical Research Centre, Manchester Academic Health Sciences Centre, The University of Manchester and Central Manchester Foundation Trust, Manchester, UK
| | - Gerd R Burmester
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Paul Emery
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Chapel Allerton Hospital, Leeds, UK.,NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Gary S Firestein
- Division of Rheumatology, Allergy and Immunology, University of California-San Diego School of Medicine, La Jolla, CA, USA
| | - Arthur Kavanaugh
- Division of Rheumatology, Allergy and Immunology, University of California-San Diego School of Medicine, La Jolla, CA, USA
| | - Iain B McInnes
- Institute of Infection Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Daniel H Solomon
- Division of Rheumatology, Brigham and Women's Hospital, Boston, MA, USA
| | - Vibeke Strand
- Division of Immunology and Rheumatology, Stanford University, Palo Alto, CA, USA
| | - Kazuhiko Yamamoto
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| |
Collapse
|
107
|
Alivernini S, Tolusso B, Ferraccioli G, Gremese E, Kurowska-Stolarska M, McInnes IB. Driving chronicity in rheumatoid arthritis: perpetuating role of myeloid cells. Clin Exp Immunol 2018; 193:13-23. [PMID: 29315512 PMCID: PMC6038003 DOI: 10.1111/cei.13098] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/19/2017] [Accepted: 12/28/2017] [Indexed: 12/11/2022] Open
Abstract
Acute inflammation is a complex and tightly regulated homeostatic process that includes leucocyte migration from the vasculature into tissues to eliminate the pathogen/injury, followed by a pro‐resolving response promoting tissue repair. However, if inflammation is uncontrolled as in chronic diseases such as rheumatoid arthritis (RA), it leads to tissue damage and disability. Synovial tissue inflammation in RA patients is maintained by sustained activation of multiple inflammatory positive‐feedback regulatory pathways in a variety of cells, including myeloid cells. In this review, we will highlight recent evidence uncovering biological mechanisms contributing to the aberrant activation of myeloid cells that contributes to perpetuation of inflammation in RA, and discuss emerging data on anti‐inflammatory mediators contributing to sustained remission that may inform a novel category of therapeutic targets.
Collapse
Affiliation(s)
- S Alivernini
- Institute of Rheumatology, Fondazione Policlinico Universitario A. Gemelli - Catholic University of the Sacred Heart, Rome, Italy
| | - B Tolusso
- Institute of Rheumatology, Fondazione Policlinico Universitario A. Gemelli - Catholic University of the Sacred Heart, Rome, Italy
| | - G Ferraccioli
- Institute of Rheumatology, Fondazione Policlinico Universitario A. Gemelli - Catholic University of the Sacred Heart, Rome, Italy
| | - E Gremese
- Institute of Rheumatology, Fondazione Policlinico Universitario A. Gemelli - Catholic University of the Sacred Heart, Rome, Italy
| | - M Kurowska-Stolarska
- Institute of Infection, Immunity and Inflammation, University of Glasgow.,Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), Glasgow, UK
| | - I B McInnes
- Institute of Infection, Immunity and Inflammation, University of Glasgow.,Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), Glasgow, UK
| |
Collapse
|
108
|
FIRESTEIN GARYS. PATHOGENESIS OF RHEUMATOID ARTHRITIS: THE INTERSECTION OF GENETICS AND EPIGENETICS. TRANSACTIONS OF THE AMERICAN CLINICAL AND CLIMATOLOGICAL ASSOCIATION 2018; 129:171-182. [PMID: 30166712 PMCID: PMC6116585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Rheumatoid arthritis is a synovial inflammatory disease marked by joint infiltration by immune cells and damage to the extracellular matrix. Although genetics plays a critical role in heritability and its pathogenesis, the relative lack of disease concordance in identical twins suggests that noncoding influences can affect risk and severity. Environmental stress, which can be reflected in the genome as altered epigenetic marks, also contributes to gene regulation and contributes to disease mechanisms. Studies on DNA methylation suggest that synovial cells, most notably fibroblast-like synoviocytes, are imprinted in rheumatoid arthritis with epigenetic marks and subsequently assume an aggressive phenotype. Even more interesting, the synoviocyte marks are not only disease specific but can vary depending on the joint of origin. Understanding the epigenetic landscape using unbiased methods can potentially identify nonobvious pathways and genes that that are responsible for synovial inflammation as well as the diversity of responses to targeted agents. The information can also be leveraged to identify novel therapeutic approaches.
Collapse
Affiliation(s)
- GARY S. FIRESTEIN
- Correspondence and reprint requests: Gary S. Firestein, MD, UCSD School of Medicine,
9500 Gilman Drive, La Jolla, California 92093858-822-0591
| |
Collapse
|
109
|
Bergstra SA, Chopra A, Saluja M, Vega-Morales D, Govind N, Huizinga TWJ, van der Helm-van Mil A. Evaluation of the joint distribution at disease presentation of patients with rheumatoid arthritis: a large study across continents. RMD Open 2017; 3:e000568. [PMID: 29299341 PMCID: PMC5729295 DOI: 10.1136/rmdopen-2017-000568] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/20/2017] [Accepted: 11/26/2017] [Indexed: 11/12/2022] Open
Abstract
Background Genetic and environmental risk factors for rheumatoid arthritis (RA) are population dependent and may affect disease expression. Therefore, we studied tender and swollen joint involvement in patients newly diagnosed with RA in four countries and performed a subanalysis within countries to assess whether the influence of autoantibody positivity affected disease expression. Methods Patients with symptom duration <2 years fulfilling the American College of Rheumatology/European League Against Rheumatism 2010 RA classification criteria were selected from METEOR (Measurement of Efficacy of Treatment in the Era of Outcome in Rheumatology), an international observational database, and the Dutch Leiden Early Arthritis Clinic. Indian (n=947), Mexican (n=141), South African (n=164) and Dutch (n=947) autoantibody-positive and negative patients with RA, matched by symptom duration, were studied for swollen and tender joint distribution. Results Between countries, the reported distribution of swollen joint distribution differed, with more knee synovitis in Mexico, South Africa and India compared with the Netherlands (37%, 36%, 30% and 13%) and more elbow (29%, 23%, 7%, 7%) and shoulder synovitis (21%, 11%, 0%, 1%) in Mexico and South Africa compared with India and the Netherlands. Since the number of autoantibody-negative patients in Mexico and South Africa was limited, Indian and Dutch autoantibody-positive and negative patients with RA were compared. The number of swollen and tender joints was higher in autoantibody-negative patients, but the overall distribution of involved joints was similar. Conclusion Joint involvement at diagnosis does not differ between autoantibody-positive and negative patients with RA in India and the Netherlands. However, joint involvement is reported differently across countries. More research is needed whether these differences are cultural and/or pathogenetic.
Collapse
Affiliation(s)
- Sytske Anne Bergstra
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Arvind Chopra
- Department of Rheumatology, Center for Rheumatic Diseases, Pune, India
| | - Manjit Saluja
- Department of Rheumatology, Center for Rheumatic Diseases, Pune, India
| | - David Vega-Morales
- Department of Rheumatology, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon, Mexico
| | - Nimmisha Govind
- Department of Rheumatology, University of the Witwatersrand, Johannesburg, South Africa
| | - Tom W J Huizinga
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
110
|
Abstract
Stromal cells like synovial fibroblasts gained great interest over the years, since it has become clear that they strongly influence their environment and neighbouring cells. The current review describes the role of synovial fibroblasts as cells of the innate immune system and expands on their involvement in inflammation and cartilage destruction in rheumatoid arthritis (RA). Furthermore, epigenetic changes in RA synovial fibroblasts and studies that focused on the identification of different subsets of synovial fibroblasts are discussed.
Collapse
Affiliation(s)
- Caroline Ospelt
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital and University of Zurich, Zurich, Switzerland
| |
Collapse
|
111
|
Ballestar E, Li T. New insights into the epigenetics of inflammatory rheumatic diseases. Nat Rev Rheumatol 2017; 13:593-605. [DOI: 10.1038/nrrheum.2017.147] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
112
|
Le Rossignol S, Ketheesan N, Haleagrahara N. Redox-sensitive transcription factors play a significant role in the development of rheumatoid arthritis. Int Rev Immunol 2017; 37:129-143. [PMID: 28898138 DOI: 10.1080/08830185.2017.1363198] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease which is associated with significant morbidity. Redox sensitive transcription factors including NF-κB, HIF, AP-1, and Nrf2 are intimately involved in the pathogenesis of RA. The treatment of this disease is limited by the elusive nature of the pathogenesis of RA. NF-κB is crucial for the maturation of immune cells as well as production of TNFα and MMPs, which escalate RA. HIF is essential for activation of inflammatory cells, angiogenesis and pannus formation in RA. AP-1 regulates cytokine and MMP production as well as synovial hyperplasia which are key processes in RA. Nrf2 is involved with chondrogenesis, osteoblastogenesis, prostaglandin secretion and ROS production in RA. Targeting two or more of these transcription factors may result in increased efficacy than either therapy in isolation. This review will highlight the control specific mediators on these transcription factors, the subsequent effect of these transcription factors once activated, and then mesh this with the pathogenesis of RA. The elucidation of key transcription factor regulation in the pathogenesis of RA may highlight the novel therapy interventions which may prove to have a greater efficacy than those therapies currently available.
Collapse
Affiliation(s)
- Scott Le Rossignol
- a College of Medicine and Dentistry , James Cook University Townsville , Queensland , Australia
| | - Natkunam Ketheesan
- b Biomedicine, College of Public Health, Medical and Veterinary Sciences , James Cook University , Townsville , Queensland , Australia.,c Australian Institute of Tropical Health and Medicine , James Cook University , Townsville , Queensland , Australia
| | - Nagaraja Haleagrahara
- b Biomedicine, College of Public Health, Medical and Veterinary Sciences , James Cook University , Townsville , Queensland , Australia.,c Australian Institute of Tropical Health and Medicine , James Cook University , Townsville , Queensland , Australia
| |
Collapse
|
113
|
Choi IY, Karpus ON, Turner JD, Hardie D, Marshall JL, de Hair MJH, Maijer KI, Tak PP, Raza K, Hamann J, Buckley CD, Gerlag DM, Filer A. Stromal cell markers are differentially expressed in the synovial tissue of patients with early arthritis. PLoS One 2017; 12:e0182751. [PMID: 28793332 PMCID: PMC5549962 DOI: 10.1371/journal.pone.0182751] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 07/23/2017] [Indexed: 12/28/2022] Open
Abstract
Introduction Previous studies have shown increased expression of stromal markers in synovial tissue (ST) of patients with established rheumatoid arthritis (RA). Here, ST expression of stromal markers in early arthritis in relationship to diagnosis and prognostic outcome was studied. Methods ST from 56 patients included in two different early arthritis cohorts and 7 non-inflammatory controls was analysed using immunofluorescence to detect stromal markers CD55, CD248, fibroblast activation protein (FAP) and podoplanin. Diagnostic classification (gout, psoriatic arthritis, unclassified arthritis (UA), parvovirus associated arthritis, reactive arthritis and RA), disease outcome (resolving vs persistent) and clinical variables were determined at baseline and after follow-up, and related to the expression of stromal markers. Results We observed expression of all stromal markers in ST of early arthritis patients, independent of diagnosis or prognostic outcome. Synovial expression of FAP was significantly higher in patients developing early RA compared to other diagnostic groups and non-inflammatory controls. In RA FAP protein was expressed in both lining and sublining layers. Podoplanin expression was higher in all early inflammatory arthritis patients than controls, but did not differentiate diagnostic outcomes. Stromal marker expression was not associated with prognostic outcomes of disease persistence or resolution. There was no association with clinical or sonographic variables. Conclusions Stromal cell markers CD55, CD248, FAP and podoplanin are expressed in ST in the earliest stage of arthritis. Baseline expression of FAP is higher in early synovitis patients who fulfil classification criteria for RA over time. These results suggest that significant fibroblast activation occurs in RA in the early window of disease.
Collapse
Affiliation(s)
- Ivy Y. Choi
- Division of Clinical Immunology and Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Olga N. Karpus
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Jason D. Turner
- Rheumatology Research Group, Institute of Inflammation and Ageing, The University of Birmingham, United Kingdom
| | - Debbie Hardie
- Rheumatology Research Group, Institute of Inflammation and Ageing, The University of Birmingham, United Kingdom
| | - Jennifer L. Marshall
- Rheumatology Research Group, Institute of Inflammation and Ageing, The University of Birmingham, United Kingdom
| | - Maria J. H. de Hair
- Division of Clinical Immunology and Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Karen I. Maijer
- Division of Clinical Immunology and Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Paul P. Tak
- Division of Clinical Immunology and Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Karim Raza
- Rheumatology Research Group, Institute of Inflammation and Ageing, The University of Birmingham, United Kingdom
- Sandwell and West Birmingham Hospitals NHS Trust, Birmingham, United Kingdom
| | - Jörg Hamann
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Christopher D. Buckley
- Rheumatology Research Group, Institute of Inflammation and Ageing, The University of Birmingham, United Kingdom
| | - Danielle M. Gerlag
- Division of Clinical Immunology and Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- * E-mail: (DMG); (AF)
| | - Andrew Filer
- Rheumatology Research Group, Institute of Inflammation and Ageing, The University of Birmingham, United Kingdom
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
- * E-mail: (DMG); (AF)
| |
Collapse
|
114
|
|
115
|
Klein K, Frank-Bertoncelj M, Karouzakis E, Gay RE, Kolling C, Ciurea A, Bostanci N, Belibasakis GN, Lin LL, Distler O, Gay S, Ospelt C. The epigenetic architecture at gene promoters determines cell type-specific LPS tolerance. J Autoimmun 2017; 83:122-133. [PMID: 28701277 DOI: 10.1016/j.jaut.2017.07.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/27/2017] [Accepted: 07/01/2017] [Indexed: 01/11/2023]
Abstract
Synovial fibroblasts (SF) drive inflammation and joint destruction in chronic arthritis. Here we show that SF possess a distinct type of LPS tolerance compared to macrophages and other types of fibroblasts. In SF and dermal fibroblasts, genes that were non-tolerizable after repeated LPS stimulation included pro-inflammatory cytokines, chemokines and matrix metalloproteinases, whereas anti-viral genes were tolerizable. In macrophages, all measured genes were tolerizable, whereas in gingival and foreskin fibroblasts these genes were non-tolerizable. Repeated stimulation of SF with LPS resulted in loss of activating histone marks only in promoters of tolerizable genes. The epigenetic landscape at promoters of tolerizable genes was similar in unstimulated SF and monocytes, whereas the basal configuration of histone marks profoundly differed in genes that were non-tolerizable in SF only. Our data suggest that the epigenetic configuration at gene promoters regulates cell-specific LPS-induced responses and primes SF to sustain their inflammatory response in chronic arthritis.
Collapse
Affiliation(s)
- Kerstin Klein
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, Switzerland.
| | - Mojca Frank-Bertoncelj
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, Switzerland.
| | - Emmanuel Karouzakis
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, Switzerland.
| | - Renate E Gay
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, Switzerland.
| | | | - Adrian Ciurea
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, Switzerland.
| | - Nagihan Bostanci
- Department of Dental Medicine, Karolinska Institute, Huddinge, Sweden; Center of Dental Medicine, University of Zurich, Switzerland.
| | - Georgios N Belibasakis
- Department of Dental Medicine, Karolinska Institute, Huddinge, Sweden; Center of Dental Medicine, University of Zurich, Switzerland.
| | - Lih-Ling Lin
- Inflammation and Immunology Research Unit, Pfizer, Cambridge, MA, USA.
| | - Oliver Distler
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, Switzerland.
| | - Steffen Gay
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, Switzerland.
| | - Caroline Ospelt
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, Switzerland.
| |
Collapse
|
116
|
Ntougkos E, Chouvardas P, Roumelioti F, Ospelt C, Frank-Bertoncelj M, Filer A, Buckley CD, Gay S, Nikolaou C, Kollias G. Genomic Responses of Mouse Synovial Fibroblasts During Tumor Necrosis Factor-Driven Arthritogenesis Greatly Mimic Those in Human Rheumatoid Arthritis. Arthritis Rheumatol 2017; 69:1588-1600. [PMID: 28409894 DOI: 10.1002/art.40128] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/11/2017] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Aberrant activation of synovial fibroblasts is a key determinant in the pathogenesis of rheumatoid arthritis (RA). The aims of this study were to produce a map of gene expression and epigenetic changes occurring in this cell type during disease progression in the human tumor necrosis factor (TNF)-transgenic model of arthritis and to identify commonalities with human synovial fibroblasts. METHODS We used deep sequencing to probe the transcriptome, the methylome, and the chromatin landscape of cultured mouse arthritogenic synovial fibroblasts at 3 stages of disease, as well as synovial fibroblasts stimulated with human TNF. We performed bioinformatics analyses at the gene, pathway, and network levels, compared mouse and human data, and validated selected genes in both species. RESULTS We found that synovial fibroblast arthritogenicity was reflected in distinct dynamic patterns of transcriptional dysregulation, which was especially enriched in pathways of the innate immune response and mesenchymal differentiation. A functionally representative subset of these changes was associated with methylation, mostly in gene bodies. The arthritogenic state involved highly active promoters, which were marked by histone H3K4 trimethylation. There was significant overlap between the mouse and human data at the level of dysregulated genes and to an even greater extent at the level of pathways. CONCLUSION This study is the first systematic examination of the pathogenic changes that occur in mouse synovial fibroblasts during progressive TNF-driven arthritogenesis. Significant correlations with the respective human RA synovial fibroblast data further validate the human TNF-transgenic mouse as a reliable model of the human disease. The resource of data generated in this work may serve as a framework for the discovery of novel pathogenic mechanisms and disease biomarkers.
Collapse
Affiliation(s)
| | - Panagiotis Chouvardas
- BSRC Alexander Fleming, Vari, Greece, and National and Kapodistrian University of Athens, Athens, Greece
| | - Fani Roumelioti
- BSRC Alexander Fleming, Vari, Greece, and National and Kapodistrian University of Athens, Athens, Greece
| | | | | | | | | | - Steffen Gay
- University Hospital of Zurich, Zurich, Switzerland
| | | | - George Kollias
- BSRC Alexander Fleming, Vari, Greece, and National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
117
|
Müller-Ladner U, Neumann E. Editorial: Tumor Necrosis Factor-Transgenic Mice: Close Enough to Human Epigenetics? Arthritis Rheumatol 2017; 69:1512-1516. [DOI: 10.1002/art.40125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 04/11/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Ulf Müller-Ladner
- Justus Liebig University Giessen, Kerckhoff Klinik; Bad Nauheim Germany
| | - Elena Neumann
- Justus Liebig University Giessen, Kerckhoff Klinik; Bad Nauheim Germany
| |
Collapse
|
118
|
Abstract
Rheumatic diseases follow a characteristic anatomical pattern of joint and organ involvement. This Review explores three interconnected mechanisms that might be involved in the predilection of specific joints for developing specific forms of arthritis: site-specific local cell types that drive disease; systemic triggers that affect local cell types; and site-specific exogenous factors, such as focal mechanical stress, that activate cells locally. The embryonic development of limbs and joints is also relevant to the propensity of certain joints to develop arthritis. Additionally, location-specific homeostasis and disease occurs in skin and blood vessels, thereby extending the concept of site-specificity in human diseases beyond rheumatology. Acknowledging the importance of site-specific parameters increases the complexity of current disease paradigms and brings us closer to understanding why particular disease processes manifest at a particular location.
Collapse
|
119
|
Frank-Bertoncelj M, Klein K, Gay S. Interplay between genetic and epigenetic mechanisms in rheumatoid arthritis. Epigenomics 2017; 9:493-504. [PMID: 28322583 DOI: 10.2217/epi-2016-0142] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Genetic and environmental factors contribute to the risk for rheumatoid arthritis (RA), with epigenetics serving as a possible interface through which risk factors contribute to RA. High-throughput technologies for interrogating genome and epigenome, and the availability of genetic and epigenetic datasets across a diversity of cell types, enable the identification of candidate causal genetic variants for RA to study their function in core RA processes. To date, RA risk variants were studied in the immune cells but not joint resident cells, for example, synovial fibroblasts. Synovial fibroblasts from different joints are distinct, anatomically specialized cells, defined by joint-specific transcriptomes, epigenomes and phenotypes. Cell type-specific analysis of epigenetic changes, together with genetic fine mapping and interrogation of chromatin 3D interactions may identify new disease relevant pathways, potential therapeutic targets and biomarkers for RA progression or therapy response.
Collapse
Affiliation(s)
| | - Kerstin Klein
- Center of Experimental Rheumatology, University Hospital Zurich, Switzerland
| | - Steffen Gay
- Center of Experimental Rheumatology, University Hospital Zurich, Switzerland
| |
Collapse
|