101
|
Webster WAJ, McFadden GI. From the genome to the phenome: tools to understand the basic biology of Plasmodium falciparum. J Eukaryot Microbiol 2014; 61:655-71. [PMID: 25227912 DOI: 10.1111/jeu.12176] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/01/2014] [Accepted: 09/02/2014] [Indexed: 11/30/2022]
Abstract
Malaria plagues one out of every 30 humans and contributes to almost a million deaths, and the problem could worsen. Our current therapeutic options are compromised by emerging resistance by the parasite to our front line drugs. It is thus imperative to better understand the basic biology of the parasite and develop novel drugs to stem this disease. The most facile approach to analyse a gene's function is to remove it from the genome or inhibit its activity. Although genetic manipulation of the human malaria parasite Plasmodium falciparum is a relatively standard procedure, there is no optimal method to perturb genes essential to the intraerythrocytic development cycle--the part of the life cycle that produces the clinical manifestation of malaria. This is a severe impediment to progress because the phenotype we wish to study is exactly the one that is so elusive. In the absence of any utilitarian way to conditionally delete essential genes, we are prevented from investigating the parasite's most vulnerable points. This review aims to focus on the development of tools identifying essential genes of P. falciparum and our ability to elicit phenotypic mutation.
Collapse
Affiliation(s)
- Wesley A J Webster
- Centre for Regional and Rural Futures, School of Life and Environmental Sciences, Deakin University, Burwood, 3125, Victoria, Australia; Plant Cell Biology Research Centre, School of Botany, University of Melbourne, Melbourne, 3010, Victoria, Australia
| | | |
Collapse
|
102
|
Wagner JC, Platt RJ, Goldfless SJ, Zhang F, Niles JC. Efficient CRISPR-Cas9-mediated genome editing in Plasmodium falciparum. Nat Methods 2014; 11:915-8. [PMID: 25108687 PMCID: PMC4199390 DOI: 10.1038/nmeth.3063] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 07/08/2014] [Indexed: 02/06/2023]
Abstract
Malaria is a major cause of global morbidity and mortality, and new strategies for treating and preventing this disease are needed. Here we show that the Streptococcus pyogenes Cas9 DNA endonuclease and single guide RNAs (sgRNAs) produced using T7 RNA polymerase (T7 RNAP) efficiently edit the Plasmodium falciparum genome. Targeting the genes encoding native knob-associated histidine-rich protein (kahrp) and erythrocyte binding antigen 175 (eba-175), we achieved high (≥ 50-100%) gene disruption frequencies within the usual time frame for generating transgenic parasites.
Collapse
Affiliation(s)
- Jeffrey C. Wagner
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Randall J. Platt
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Stephen J. Goldfless
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Feng Zhang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jacquin C. Niles
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
103
|
Lee MC, Fidock DA. CRISPR-mediated genome editing of Plasmodium falciparum malaria parasites. Genome Med 2014; 6:63. [PMID: 25473431 PMCID: PMC4254425 DOI: 10.1186/s13073-014-0063-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 08/12/2014] [Indexed: 01/05/2023] Open
Abstract
The development of the CRISPR-Cas system is revolutionizing genome editing in a variety of organisms. The system has now been used to manipulate the genome of Plasmodium falciparum, the most lethal malaria-causing species. The ability to generate gene deletions or nucleotide substitutions rapidly and economically promises to accelerate the analysis of novel drug targets and to help elucidate the function of specific genes or gene families, while complementing genome-wide association studies.
Collapse
Affiliation(s)
- Marcus Cs Lee
- Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, NY 10032 USA
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, NY 10032 USA ; Division of Infectious Diseases, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032 USA
| |
Collapse
|
104
|
Cevenini L, Camarda G, Michelini E, Siciliano G, Calabretta MM, Bona R, Kumar TRS, Cara A, Branchini BR, Fidock DA, Roda A, Alano P. Multicolor bioluminescence boosts malaria research: quantitative dual-color assay and single-cell imaging in Plasmodium falciparum parasites. Anal Chem 2014; 86:8814-21. [PMID: 25102353 PMCID: PMC4151787 DOI: 10.1021/ac502098w] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
New
reliable and cost-effective antimalarial drug screening assays
are urgently needed to identify drugs acting on different stages of
the parasite Plasmodium falciparum,
and particularly those responsible for human-to-mosquito transmission,
that is, the P. falciparum gametocytes.
Low Z′ factors, narrow dynamic ranges, and/or
extended assay times are commonly reported in current gametocyte assays
measuring gametocyte-expressed fluorescent or luciferase reporters,
endogenous ATP levels, activity of gametocyte enzymes, or redox-dependent
dye fluorescence. We hereby report on a dual-luciferase gametocyte
assay with immature and mature P. falciparum gametocyte stages expressing red and green-emitting luciferases
from Pyrophorus plagiophthalamus under
the control of the parasite sexual stage-specific pfs16 gene promoter. The assay was validated with reference antimalarial
drugs and allowed to quantitatively and simultaneously measure stage-specific
drug effects on parasites at different developmental stages. The optimized
assay, requiring only 48 h incubation with drugs and using a cost-effective
luminogenic substrate, significantly reduces assay cost and time in
comparison to state-of-the-art analogous assays. The assay had a Z′ factor of 0.71 ± 0.03, and it is suitable
for implementation in 96- and 384-well microplate formats. Moreover,
the use of a nonlysing d-luciferin substrate significantly
improved the reliability of the assay and allowed one to perform,
for the first time, P. falciparum bioluminescence
imaging at single-cell level.
Collapse
Affiliation(s)
- Luca Cevenini
- INBB, Istituto Nazionale di Biostrutture e Biosistemi , 00136 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Moraes Barros RR, Straimer J, Sa JM, Salzman RE, Melendez-Muniz VA, Mu J, Fidock DA, Wellems TE. Editing the Plasmodium vivax genome, using zinc-finger nucleases. J Infect Dis 2014; 211:125-9. [PMID: 25081932 DOI: 10.1093/infdis/jiu423] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Plasmodium vivax is a major cause of malaria morbidity worldwide yet has remained genetically intractable. To stably modify this organism, we used zinc-finger nucleases (ZFNs), which take advantage of homology-directed DNA repair mechanisms at the site of nuclease action. Using ZFNs specific to the gene encoding P. vivax dihydrofolate reductase (pvdhfr), we transfected blood specimens from Saimiri boliviensis monkeys infected with the pyrimethamine (Pyr)-susceptible Chesson strain with a ZFN plasmid carrying a Pyr-resistant mutant pvdhfr sequence. We obtained Pyr-resistant parasites in vivo that carried mutant pvdhfr and additional silent mutations designed to confirm editing. These results herald the era of stable P. vivax genetic modifications.
Collapse
Affiliation(s)
- Roberto R Moraes Barros
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | | | - Juliana M Sa
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Rebecca E Salzman
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Viviana A Melendez-Muniz
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Jianbing Mu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - David A Fidock
- Department of Microbiology and Immunology Division of Infectious Diseases, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York
| | - Thomas E Wellems
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
106
|
Abstract
Malaria parasites are unicellular organisms residing inside the red blood cells, and current methods for editing the parasite genes have been inefficient. The CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats and Cas9 endonuclease-mediated genome editing) system is a new powerful technique for genome editing and has been widely employed to study gene function in various organisms. However, whether this technique can be applied to modify the genomes of malaria parasites has not been determined. In this paper, we demonstrated that Cas9 is able to introduce site-specific DNA double-strand breaks in the Plasmodium yoelii genome that can be repaired through homologous recombination. By supplying engineered homologous repair templates, we generated targeted deletion, reporter knock-in, and nucleotide replacement in multiple parasite genes, achieving up to 100% efficiency in gene deletion and 22 to 45% efficiencies in knock-in and allelic replacement. Our results establish methodologies for introducing desired modifications in the P. yoelii genome with high efficiency and accuracy, which will greatly improve our ability to study gene function of malaria parasites. Importance: Malaria, caused by infection of Plasmodium parasites, remains a world-wide public health burden. Although the genomes of many malaria parasites have been sequenced, we still do not know the functions of approximately half of the genes in the genomes. Studying gene function has become the focus of many studies; however, editing genes in malaria parasite genomes is still inefficient. Here we designed several efficient approaches, based on the CRISPR/Cas9 system, to introduce site-specific DNA double-strand breaks in the Plasmodium yoelii genome that can be repaired through homologous recombination. Using this system, we achieved high efficiencies in gene deletion, reporter tagging, and allelic replacement in multiple parasite genes. This technique for editing the malaria parasite genome will greatly facilitate our ability to elucidate gene function.
Collapse
|
107
|
Genome editing in the human malaria parasite Plasmodium falciparum using the CRISPR-Cas9 system. Nat Biotechnol 2014; 32:819-21. [DOI: 10.1038/nbt.2925] [Citation(s) in RCA: 474] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 05/08/2014] [Indexed: 02/06/2023]
|
108
|
Honma H, Hirai M, Nakamura S, Hakimi H, Kawazu SI, Palacpac NMQ, Hisaeda H, Matsuoka H, Kawai S, Endo H, Yasunaga T, Ohashi J, Mita T, Horii T, Furusawa M, Tanabe K. Generation of rodent malaria parasites with a high mutation rate by destructing proofreading activity of DNA polymerase δ. DNA Res 2014; 21:439-46. [PMID: 24670267 PMCID: PMC4131837 DOI: 10.1093/dnares/dsu009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Plasmodium falciparum malaria imposes a serious public health concern throughout the tropics. Although genetic tools are principally important to fully investigate malaria parasites, currently available forward and reverse tools are fairly limited. It is expected that parasites with a high mutation rate can readily acquire novel phenotypes/traits; however, they remain an untapped tool for malaria biology. Here, we generated a mutator malaria parasite (hereinafter called a ‘malaria mutator’), using site-directed mutagenesis and gene transfection techniques. A mutator Plasmodium berghei line with a defective proofreading 3′ → 5′ exonuclease activity in DNA polymerase δ (referred to as PbMut) and a control P. berghei line with wild-type DNA polymerase δ (referred to as PbCtl) were maintained by weekly passage in ddY mice for 122 weeks. High-throughput genome sequencing analysis revealed that two PbMut lines had 175–178 mutations and a 86- to 90-fold higher mutation rate than that of a PbCtl line. PbMut, PbCtl, and their parent strain, PbWT, showed similar course of infection. Interestingly, PbMut lost the ability to form gametocytes during serial passages. We believe that the malaria mutator system could provide a novel and useful tool to investigate malaria biology.
Collapse
Affiliation(s)
- Hajime Honma
- Laboratory of Malariology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Makoto Hirai
- Department of Parasitology, Graduate School of Medicine, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Shota Nakamura
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hassan Hakimi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro, Hokkaido 080-8555, Japan
| | - Shin-Ichiro Kawazu
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro, Hokkaido 080-8555, Japan
| | - Nirianne M Q Palacpac
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hajime Hisaeda
- Department of Parasitology, Graduate School of Medicine, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Hiroyuki Matsuoka
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
| | - Satoru Kawai
- Laboratory of Tropical Medicine and Parasitology, Institute of International Education and Research, Dokkyo Medical University, Shimotsuga, Tochigi 321-0293, Japan
| | - Hiroyoshi Endo
- Department of International Affairs and Tropical Medicine, Tokyo Women's Medical University School of Medicine, Kawada-cho, Shinjuku, Tokyo 162-8666, Japan
| | - Teruo Yasunaga
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Jun Ohashi
- Faculty of Medicine, University of Tsukuba, Ibaragi 305-8575, Japan
| | - Toshihiro Mita
- Department of International Affairs and Tropical Medicine, Tokyo Women's Medical University School of Medicine, Kawada-cho, Shinjuku, Tokyo 162-8666, Japan Department of Molecular and Cellular Parasitology, Juntendo University School of Medicine, Hongo, Bunkyo, Tokyo 113-8421, Japan
| | - Toshihiro Horii
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Mitsuru Furusawa
- Neo-Morgan Laboratory, Inc., Nogawa, Miyamae, Kawasaki, Kanagawa 216-0001, Japan
| | - Kazuyuki Tanabe
- Laboratory of Malariology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
109
|
Kafsack BFC, Rovira-Graells N, Clark TG, Bancells C, Crowley VM, Campino SG, Williams AE, Drought LG, Kwiatkowski DP, Baker DA, Cortés A, Llinás M. A transcriptional switch underlies commitment to sexual development in malaria parasites. Nature 2014; 507:248-52. [PMID: 24572369 PMCID: PMC4040541 DOI: 10.1038/nature12920] [Citation(s) in RCA: 374] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 11/27/2013] [Indexed: 02/07/2023]
Abstract
The life cycles of many parasites involve transitions between disparate host species, requiring these parasites to go through multiple developmental stages adapted to each of these specialized niches. Transmission of malaria parasites (Plasmodium spp.) from humans to the mosquito vector requires differentiation from asexual stages replicating within red blood cells into non-dividing male and female gametocytes. Although gametocytes were first described in 1880, our understanding of the molecular mechanisms involved in commitment to gametocyte formation is extremely limited, and disrupting this critical developmental transition remains a long-standing goal. Here we show that expression levels of the DNA-binding protein PfAP2-G correlate strongly with levels of gametocyte formation. Using independent forward and reverse genetics approaches, we demonstrate that PfAP2-G function is essential for parasite sexual differentiation. By combining genome-wide PfAP2-G cognate motif occurrence with global transcriptional changes resulting from PfAP2-G ablation, we identify early gametocyte genes as probable targets of PfAP2-G and show that their regulation by PfAP2-G is critical for their wild-type level expression. In the asexual blood-stage parasites pfap2-g appears to be among a set of epigenetically silenced loci prone to spontaneous activation. Stochastic activation presents a simple mechanism for a low baseline of gametocyte production. Overall, these findings identify PfAP2-G as a master regulator of sexual-stage development in malaria parasites and mark the first discovery of a transcriptional switch controlling a differentiation decision in protozoan parasites.
Collapse
Affiliation(s)
- Björn F C Kafsack
- 1] Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA [2] Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA (B.F.C.K.); Department of Molecular Biology and Center for Infectious Disease Dynamics, The Pennsylvania State University, State College, Pennsylvania 16802, USA (V.M.C., M.L.)
| | - Núria Rovira-Graells
- 1] Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Barcelona, 08036 Catalonia, Spain [2] Institute for Research in Biomedicine (IRB), Barcelona, 08028 Catalonia, Spain
| | - Taane G Clark
- 1] Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK [2] Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
| | - Cristina Bancells
- Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Barcelona, 08036 Catalonia, Spain
| | - Valerie M Crowley
- 1] Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA [2] Institute for Research in Biomedicine (IRB), Barcelona, 08028 Catalonia, Spain [3] Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA (B.F.C.K.); Department of Molecular Biology and Center for Infectious Disease Dynamics, The Pennsylvania State University, State College, Pennsylvania 16802, USA (V.M.C., M.L.)
| | - Susana G Campino
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - April E Williams
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Laura G Drought
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
| | - Dominic P Kwiatkowski
- 1] Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK [2] Wellcome Trust Sanger Centre for Human Genetics, Oxford OX3 7BN, UK
| | - David A Baker
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
| | - Alfred Cortés
- 1] Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Barcelona, 08036 Catalonia, Spain [2] Institute for Research in Biomedicine (IRB), Barcelona, 08028 Catalonia, Spain [3] Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, 08010 Catalonia, Spain
| | - Manuel Llinás
- 1] Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA [2] Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA [3] Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA (B.F.C.K.); Department of Molecular Biology and Center for Infectious Disease Dynamics, The Pennsylvania State University, State College, Pennsylvania 16802, USA (V.M.C., M.L.)
| |
Collapse
|
110
|
Grüring C, Moon RW, Lim C, Holder AA, Blackman MJ, Duraisingh MT. Human red blood cell-adapted Plasmodium knowlesi parasites: a new model system for malaria research. Cell Microbiol 2014; 16:612-20. [PMID: 24506567 DOI: 10.1111/cmi.12275] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 01/24/2014] [Accepted: 01/27/2014] [Indexed: 02/06/2023]
Abstract
Plasmodium knowlesi is a simian malaria parasite primarily infecting macaque species in Southeast Asia. Although its capacity to infect humans has been recognized since the early part of the last century, it has recently become evident that human infections are widespread and potentially life threatening. Historically, P. knowlesi has proven to be a powerful tool in early studies of malaria parasites, providing key breakthroughs in understanding many aspects of Plasmodium biology. However, the necessity to grow the parasite either in macaques or in vitro using macaque blood restricted research to laboratories with access to these resources. The recent adaptation of P. knowlesi to grow and proliferate in vitro in human red blood cells (RBCs) is therefore a substantial step towards revitalizing and expanding research on P. knowlesi. Furthermore, the development of a highly efficient transfection system to genetically modify the parasite makes P. knowlesi an ideal model to study parasite biology. In this review, we elaborate on the importance of P. knowlesi in earlier phases of malaria research and highlight the future potential of the newly available human adapted P. knowlesi parasite lines.
Collapse
Affiliation(s)
- Christof Grüring
- Department of Immunology & Infectious Diseases, Harvard School of Public Health, Boston, MA, 02115, USA
| | | | | | | | | | | |
Collapse
|
111
|
Abstract
Current technology enables the production of highly specific genome modifications with excellent efficiency and specificity. Key to this capability are targetable DNA cleavage reagents and cellular DNA repair pathways. The break made by these reagents can produce localized sequence changes through inaccurate nonhomologous end joining (NHEJ), often leading to gene inactivation. Alternatively, user-provided DNA can be used as a template for repair by homologous recombination (HR), leading to the introduction of desired sequence changes. This review describes three classes of targetable cleavage reagents: zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and CRISPR/Cas RNA-guided nucleases (RGNs). As a group, these reagents have been successfully used to modify genomic sequences in a wide variety of cells and organisms, including humans. This review discusses the properties, advantages, and limitations of each system, as well as the specific considerations required for their use in different biological systems.
Collapse
Affiliation(s)
- Dana Carroll
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112;
| |
Collapse
|
112
|
McNamara CW, Lee MCS, Lim CS, Lim SH, Roland J, Simon O, Yeung BKS, Chatterjee AK, McCormack SL, Manary MJ, Zeeman AM, Dechering KJ, Kumar TRS, Henrich PP, Gagaring K, Ibanez M, Kato N, Kuhen KL, Fischli C, Nagle A, Rottmann M, Plouffe DM, Bursulaya B, Meister S, Rameh L, Trappe J, Haasen D, Timmerman M, Sauerwein RW, Suwanarusk R, Russell B, Renia L, Nosten F, Tully DC, Kocken CHM, Glynne RJ, Bodenreider C, Fidock DA, Diagana TT, Winzeler EA. Targeting Plasmodium PI(4)K to eliminate malaria. Nature 2013; 504:248-253. [PMID: 24284631 PMCID: PMC3940870 DOI: 10.1038/nature12782] [Citation(s) in RCA: 307] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 10/15/2013] [Indexed: 02/06/2023]
Abstract
Achieving the goal of malaria elimination will depend on targeting Plasmodium pathways essential across all life stages. Here we identify a lipid kinase, phosphatidylinositol-4-OH kinase (PI(4)K), as the target of imidazopyrazines, a new antimalarial compound class that inhibits the intracellular development of multiple Plasmodium species at each stage of infection in the vertebrate host. Imidazopyrazines demonstrate potent preventive, therapeutic, and transmission-blocking activity in rodent malaria models, are active against blood-stage field isolates of the major human pathogens P. falciparum and P. vivax, and inhibit liver-stage hypnozoites in the simian parasite P. cynomolgi. We show that imidazopyrazines exert their effect through inhibitory interaction with the ATP-binding pocket of PI(4)K, altering the intracellular distribution of phosphatidylinositol-4-phosphate. Collectively, our data define PI(4)K as a key Plasmodium vulnerability, opening up new avenues of target-based discovery to identify drugs with an ideal activity profile for the prevention, treatment and elimination of malaria.
Collapse
Affiliation(s)
- Case W McNamara
- Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA
| | - Marcus CS Lee
- Department of Microbiology & Immunology, Columbia University Medical Center, New York, New York 10032, USA
| | - Chek Shik Lim
- Novartis Institutes for Tropical Disease, 138670 Singapore
| | - Siau Hoi Lim
- Novartis Institutes for Tropical Disease, 138670 Singapore
| | - Jason Roland
- Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA
| | - Oliver Simon
- Novartis Institutes for Tropical Disease, 138670 Singapore
| | - Bryan KS Yeung
- Novartis Institutes for Tropical Disease, 138670 Singapore
| | - Arnab K Chatterjee
- Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA
| | - Susan L McCormack
- Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA
| | - Micah J Manary
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Anne-Marie Zeeman
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | | | - TR Santha Kumar
- Department of Microbiology & Immunology, Columbia University Medical Center, New York, New York 10032, USA
| | - Philipp P Henrich
- Department of Microbiology & Immunology, Columbia University Medical Center, New York, New York 10032, USA
| | - Kerstin Gagaring
- Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA
| | - Maureen Ibanez
- Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA
| | - Nobutaka Kato
- Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA
| | - Kelli L Kuhen
- Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA
| | - Christoph Fischli
- Swiss Tropical and Public Health Institute, CH-4002 Basel, Switzerland
| | - Advait Nagle
- Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA
| | - Matthias Rottmann
- Swiss Tropical and Public Health Institute, CH-4002 Basel, Switzerland
- University of Basel, CH-4003 Basel, Switzerland
| | - David M Plouffe
- Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA
| | - Badry Bursulaya
- Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA
| | - Stephan Meister
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Lucia Rameh
- Department of Medicine, School of Medicine, Boston University, Boston, Massachusetts 02118, USA
| | - Joerg Trappe
- Novartis Institutes for BioMedical Research, CH-4002 Basel, Switzerland
| | - Dorothea Haasen
- Novartis Institutes for BioMedical Research, CH-4002 Basel, Switzerland
| | | | - Robert W Sauerwein
- TropIQ Health Sciences, Nijmegen, The Netherlands
- Department of Medical Microbiology, Radboud University, Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Rossarin Suwanarusk
- Laboratory of Malaria Immunobiology, Singapore Immunology Network, Agency for Science Technology and Research (A*STAR), Biopolis, Singapore
| | - Bruce Russell
- Laboratory of Malaria Immunobiology, Singapore Immunology Network, Agency for Science Technology and Research (A*STAR), Biopolis, Singapore
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore
| | - Laurent Renia
- Laboratory of Malaria Immunobiology, Singapore Immunology Network, Agency for Science Technology and Research (A*STAR), Biopolis, Singapore
| | - Francois Nosten
- Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - David C Tully
- Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA
| | - Clemens HM Kocken
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Richard J Glynne
- Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA
| | | | - David A Fidock
- Department of Microbiology & Immunology, Columbia University Medical Center, New York, New York 10032, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Medical Center, New York, New York 10032, USA
| | | | - Elizabeth A Winzeler
- Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
113
|
Kreidenweiss A, Hopkins AV, Mordmüller B. 2A and the auxin-based degron system facilitate control of protein levels in Plasmodium falciparum. PLoS One 2013; 8:e78661. [PMID: 24236031 PMCID: PMC3827281 DOI: 10.1371/journal.pone.0078661] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 09/23/2013] [Indexed: 11/19/2022] Open
Abstract
Analysis of gene function in Plasmodium falciparum, the most important human malaria parasite, is restricted by the lack of robust and simple reverse genetic tools. Approaches to manipulate protein levels post-translationally are powerful tools to study protein-off effects especially in the haploid malaria parasite where genetic knockouts of essential genes are lethal. We investigated if the auxin-inducible degron system is functional in P. falciparum and found that degron-tagged yellow fluorescent protein levels were efficiently reduced upon addition of auxin which otherwise had no effect on parasite viability. The genetic components required in this conditional approach were co-expressed in P. falciparum by applying the small peptide 2A. 2A is a self-processing peptide from Foot-And-Mouth Disease virus that allows the whole conditional system to be accommodated on a single plasmid vector and ensures stoichiometric expression levels.
Collapse
Affiliation(s)
- Andrea Kreidenweiss
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- * E-mail:
| | - Annika V. Hopkins
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | | |
Collapse
|
114
|
Wagner JC, Goldfless SJ, Ganesan SM, Lee MCS, Fidock DA, Niles JC. An integrated strategy for efficient vector construction and multi-gene expression in Plasmodium falciparum. Malar J 2013; 12:373. [PMID: 24160265 PMCID: PMC3842810 DOI: 10.1186/1475-2875-12-373] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 10/22/2013] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The construction of plasmid vectors for transgene expression in the malaria parasite, Plasmodium falciparum, presents major technical hurdles. Traditional molecular cloning by restriction and ligation often yields deletions and re-arrangements when assembling low-complexity (A + T)-rich parasite DNA. Furthermore, the use of large 5'- and 3'- untranslated regions of DNA sequence (UTRs) to drive transgene transcription limits the number of expression cassettes that can be incorporated into plasmid vectors. METHODS To address these challenges, two high fidelity cloning strategies, namely yeast homologous recombination and the Gibson assembly method, were evaluated for constructing P. falciparum vectors. Additionally, some general rules for reliably using the viral 2A-like peptide to express multiple proteins from a single expression cassette while preserving their proper trafficking to various subcellular compartments were assessed. RESULTS Yeast homologous recombination and Gibson assembly were found to be effective strategies for successfully constructing P. falciparum plasmid vectors. Using these cloning methods, a validated family of expression vectors that provide a flexible starting point for user-specific applications was created. These vectors are also compatible with traditional cloning by restriction and ligation, and contain useful combinations of commonly used features for enhancing plasmid segregation and site-specific integration in P. falciparum. Additionally, application of a 2A-like peptide for the synthesis of multiple proteins from a single expression cassette, and some rules for combinatorially directing proteins to discrete subcellular compartments were established. CONCLUSIONS A set of freely available, sequence-verified and functionally validated parts that offer greater flexibility for constructing P. falciparum vectors having expanded expression capacity is provided.
Collapse
Affiliation(s)
- Jeffrey C Wagner
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Stephen J Goldfless
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Suresh M Ganesan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Marcus CS Lee
- Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Jacquin C Niles
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
115
|
Evidence for pyronaridine as a highly effective partner drug for treatment of artemisinin-resistant malaria in a rodent model. Antimicrob Agents Chemother 2013; 58:183-95. [PMID: 24145526 DOI: 10.1128/aac.01466-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The increasing prevalence in Southeast Asia of Plasmodium falciparum infections with delayed parasite clearance rates, following treatment of malaria patients with the artemisinin derivative artesunate, highlights an urgent need to identify which of the currently available artemisinin-based combination therapies (ACTs) are most suitable to treat populations with emerging artemisinin resistance. Here, we demonstrate that the rodent Plasmodium berghei SANA strain has acquired artemisinin resistance following drug pressure, as defined by reduced parasite clearance and early recrudescence following daily exposure to high doses of artesunate or the active metabolite dihydroartemisinin. Using the SANA strain and the parental drug-sensitive N strain, we have interrogated the antimalarial activity of five ACTs, namely, artemether-lumefantrine, artesunate-amodiaquine, artesunate-mefloquine, dihydroartemisinin-piperaquine, and the newest combination artesunate-pyronaridine. By monitoring parasitemia and outcome for 30 days following initiation of treatment, we found that infections with artemisinin-resistant P. berghei SANA parasites can be successfully treated with artesunate-pyronaridine used at doses that are curative for the parental drug-sensitive N strain. No other partner drug combination was as effective in resolving SANA infections. Of the five partner drugs tested, pyronaridine was also the most effective at suppressing the recrudescence of SANA parasites. These data support the potential benefit of implementing ACTs with pyronaridine in regions affected by artemisinin-resistant malaria.
Collapse
|
116
|
Abstract
Owing to the absence of antiparasitic vaccines and the constant threat of drug resistance, the development of novel antiparasitic chemotherapies remains of major importance for disease control. A better understanding of drug transport (uptake and efflux), drug metabolism and the identification of drug targets, and mechanisms of drug resistance would facilitate the development of more effective therapies. Here, we focus on malaria and African trypanosomiasis. We review existing drugs and drug development, emphasizing high-throughput genomic and genetic approaches, which hold great promise for elucidating antiparasitic mechanisms. We describe the approaches and technologies that have been influential for each parasite and develop new ideas for future research directions, including mode-of-action studies for drug target deconvolution.
Collapse
Affiliation(s)
- David Horn
- Biological Chemistry & Drug Discovery, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Manoj T. Duraisingh
- Harvard School of Public Health, 665 Huntington Avenue, Building 1, Room 715, Boston, Massachusetts 02115, USA
| |
Collapse
|
117
|
Flannery EL, Fidock DA, Winzeler EA. Using genetic methods to define the targets of compounds with antimalarial activity. J Med Chem 2013; 56:7761-71. [PMID: 23927658 DOI: 10.1021/jm400325j] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although phenotypic cellular screening has been used to drive antimalarial drug discovery in recent years, in some cases target-based drug discovery remains more attractive. This is especially true when appropriate high-throughput cellular assays are lacking, as is the case for drug discovery efforts that aim to provide a replacement for primaquine (4-N-(6-methoxyquinolin-8-yl)pentane-1,4-diamine), the only drug that can block Plasmodium transmission to Anopheles mosquitoes and eliminate liver-stage hypnozoites. At present, however, there are no known chemically validated parasite protein targets that are important in all Plasmodium parasite developmental stages and that can be used in traditional biochemical compound screens. We propose that a plethora of novel, chemically validated, cross-stage antimalarial targets still remain to be discovered from the ~5,500 proteins encoded by the Plasmodium genomes. Here we discuss how in vitro evolution of drug-resistant strains of Plasmodium falciparum and subsequent whole-genome analysis can be used to find the targets of some of the many compounds discovered in whole-cell phenotypic screens.
Collapse
Affiliation(s)
- Erika L Flannery
- Department of Pediatrics, University of California, San Diego, School of Medicine , 9500 Gilman Drive 0741, La Jolla, California 92093, United States
| | | | | |
Collapse
|
118
|
Mira-Martínez S, Rovira-Graells N, Crowley VM, Altenhofen LM, Llinás M, Cortés A. Epigenetic switches in clag3 genes mediate blasticidin S resistance in malaria parasites. Cell Microbiol 2013; 15:1913-23. [PMID: 23819786 DOI: 10.1111/cmi.12162] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 06/22/2013] [Accepted: 06/27/2013] [Indexed: 02/06/2023]
Abstract
Malaria parasites induce changes in the permeability of the infected erythrocyte membrane to numerous solutes, including toxic compounds. In Plasmodium falciparum, this is mainly mediated by PSAC, a broad-selectivity channel that requires the product of parasite clag3 genes for its activity. The two paralogous clag3 genes, clag3.1 and clag3.2, can be silenced by epigenetic mechanisms and show mutually exclusive expression. Here we show that resistance to the antibiotic blasticidin S (BSD) is associated with switches in the expression of these genes that result in altered solute uptake. Low concentrations of the drug selected parasites that switched from clag3.2 to clag3.1 expression, implying that expression of one or the other clag3 gene confers different transport efficiency to PSAC for some solutes. Selection with higher BSD concentrations resulted in simultaneous silencing of both clag3 genes, which severely compromises PSAC formation as demonstrated by blocked uptake of other PSAC substrates. Changes in the expression of clag3 genes were not accompanied by large genetic rearrangements or mutations at the clag3 loci or elsewhere in the genome. These results demonstrate that malaria parasites can become resistant to toxic compounds such as drugs by epigenetic switches in the expression of genes necessary for the formation of solute channels.
Collapse
Affiliation(s)
- Sofía Mira-Martínez
- Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Barcelona, Catalonia, Spain
| | | | | | | | | | | |
Collapse
|
119
|
Abstract
Global eradication requires concerted efforts to combat emerging resistance to the potent antimalarial artemisinin.
Collapse
Affiliation(s)
- David A Fidock
- Department of Microbiology and Immunology and Division of Infectious Diseases, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
120
|
|
121
|
Abstract
Genome engineering--the ability to precisely alter the DNA information in living cells--is beginning to transform human genetics and genomics. Advances in tools and methods have enabled genetic modifications ranging from the "scarless" correction of a single base pair to the deletion of entire chromosomes. Targetable nucleases are leading the advances in this field, providing the tools to modify any gene in seemingly any organism with high efficiency. Targeted gene alterations have now been reported in more than 30 diverse species, ending the reign of mice as the exclusive model of mammalian genetics, and targetable nucleases have been used to modify more than 150 human genes and loci. A nuclease has also already entered clinical trials, signaling the beginning of genome engineering as therapy. The recent dramatic increase in the number of investigators using these techniques signifies a transition away from methods development toward a new age of exciting applications.
Collapse
Affiliation(s)
- David J Segal
- Genome Center and Department of Biochemistry and Molecular Medicine, University of California, Davis, California 95616;
| | | |
Collapse
|
122
|
Pino P. From technology to biology: a malaria genetic toolbox for the functional dissection of essential genes. Mol Microbiol 2013; 88:650-4. [DOI: 10.1111/mmi.12232] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Paco Pino
- Department of Microbiology and Molecular Medicine; CMU; Faculty of Medicine; University of Geneva; Rue Michel-Servet 1; CH-1211; Geneva 4; Switzerland
| |
Collapse
|
123
|
Zhu C, Gupta A, Hall VL, Rayla AL, Christensen RG, Dake B, Lakshmanan A, Kuperwasser C, Stormo GD, Wolfe SA. Using defined finger-finger interfaces as units of assembly for constructing zinc-finger nucleases. Nucleic Acids Res 2013; 41:2455-65. [PMID: 23303772 PMCID: PMC3575815 DOI: 10.1093/nar/gks1357] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Zinc-finger nucleases (ZFNs) have been used for genome engineering in a wide variety of organisms; however, it remains challenging to design effective ZFNs for many genomic sequences using publicly available zinc-finger modules. This limitation is in part because of potential finger–finger incompatibility generated on assembly of modules into zinc-finger arrays (ZFAs). Herein, we describe the validation of a new set of two-finger modules that can be used for building ZFAs via conventional assembly methods or a new strategy—finger stitching—that increases the diversity of genomic sequences targetable by ZFNs. Instead of assembling ZFAs based on units of the zinc-finger structural domain, our finger stitching method uses units that span the finger–finger interface to ensure compatibility of neighbouring recognition helices. We tested this approach by generating and characterizing eight ZFAs, and we found their DNA-binding specificities reflected the specificities of the component modules used in their construction. Four pairs of ZFNs incorporating these ZFAs generated targeted lesions in vivo, demonstrating that stitching yields ZFAs with robust recognition properties.
Collapse
Affiliation(s)
- Cong Zhu
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA, USA 01605, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA 01605, Department of Genetics, Washington University School of Medicine, St Louis, MO, USA 63108 and Molecular Oncology Research Institute (MORI), Tufts University School of Medicine, Boston, MA, USA 02111
| | - Ankit Gupta
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA, USA 01605, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA 01605, Department of Genetics, Washington University School of Medicine, St Louis, MO, USA 63108 and Molecular Oncology Research Institute (MORI), Tufts University School of Medicine, Boston, MA, USA 02111
| | - Victoria L. Hall
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA, USA 01605, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA 01605, Department of Genetics, Washington University School of Medicine, St Louis, MO, USA 63108 and Molecular Oncology Research Institute (MORI), Tufts University School of Medicine, Boston, MA, USA 02111
| | - Amy L. Rayla
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA, USA 01605, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA 01605, Department of Genetics, Washington University School of Medicine, St Louis, MO, USA 63108 and Molecular Oncology Research Institute (MORI), Tufts University School of Medicine, Boston, MA, USA 02111
| | - Ryan G. Christensen
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA, USA 01605, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA 01605, Department of Genetics, Washington University School of Medicine, St Louis, MO, USA 63108 and Molecular Oncology Research Institute (MORI), Tufts University School of Medicine, Boston, MA, USA 02111
| | - Benjamin Dake
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA, USA 01605, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA 01605, Department of Genetics, Washington University School of Medicine, St Louis, MO, USA 63108 and Molecular Oncology Research Institute (MORI), Tufts University School of Medicine, Boston, MA, USA 02111
| | - Abirami Lakshmanan
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA, USA 01605, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA 01605, Department of Genetics, Washington University School of Medicine, St Louis, MO, USA 63108 and Molecular Oncology Research Institute (MORI), Tufts University School of Medicine, Boston, MA, USA 02111
| | - Charlotte Kuperwasser
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA, USA 01605, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA 01605, Department of Genetics, Washington University School of Medicine, St Louis, MO, USA 63108 and Molecular Oncology Research Institute (MORI), Tufts University School of Medicine, Boston, MA, USA 02111
| | - Gary D. Stormo
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA, USA 01605, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA 01605, Department of Genetics, Washington University School of Medicine, St Louis, MO, USA 63108 and Molecular Oncology Research Institute (MORI), Tufts University School of Medicine, Boston, MA, USA 02111
| | - Scot A. Wolfe
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA, USA 01605, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA 01605, Department of Genetics, Washington University School of Medicine, St Louis, MO, USA 63108 and Molecular Oncology Research Institute (MORI), Tufts University School of Medicine, Boston, MA, USA 02111
- *To whom correspondence should be addressed. Tel: +1 508 856 3953; Fax: +1 508 856 5460;
| |
Collapse
|
124
|
Külzer S, Petersen W, Baser A, Mandel K, Przyborski JM. Use of self-assembling GFP to determine protein topology and compartmentalisation in the Plasmodium falciparum-infected erythrocyte. Mol Biochem Parasitol 2012; 187:87-90. [PMID: 23271009 DOI: 10.1016/j.molbiopara.2012.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 11/12/2012] [Accepted: 11/21/2012] [Indexed: 11/18/2022]
Abstract
In recent years, and largely supported by the increasing use of transfection technology, much research attention has been given to protein trafficking in the Plasmodium falciparum infected red blood cell. By expression of fluorescent reporter proteins, much information has been gained on both the signals and mechanisms directing proteins to their correct sub-cellular localisation within the parasite and infected host cell. Generally however, verification of the observed fluorescent phenotype is carried out using more traditional techniques such as co-immunofluorescence, protease protection, and cell fractionation followed by Western blot. Here we apply a self-assembling split GFP (saGFP) system and show that this can be used to determine both membrane topology and compartmentalisation using transfection technology alone. As an example, we verify the topology of an ER membrane protein, hDer1-1, and of an exported parasite Hsp40 co-chaperone, PFE55. Additionally, we can demonstrate that this system has the potential to be applied to analysis of organellar proteins.
Collapse
Affiliation(s)
- Simone Külzer
- Department of Parasitology, Faculty of Biology, Philipps University Marburg, Marburg, Germany
| | | | | | | | | |
Collapse
|