101
|
Kulashreshtha M, Mehta IS, Kumar P, Rao BJ. Chromosome territory relocation during DNA repair requires nuclear myosin 1 recruitment to chromatin mediated by ϒ-H2AX signaling. Nucleic Acids Res 2016; 44:8272-91. [PMID: 27365048 PMCID: PMC5041470 DOI: 10.1093/nar/gkw573] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 06/03/2016] [Indexed: 11/22/2022] Open
Abstract
During DNA damage response (DDR), certain gene rich chromosome territories (CTs) relocate to newer positions within interphase nuclei and revert to their native locations following repair. Such dynamic relocation of CTs has been observed under various cellular conditions, however, the underlying mechanistic basis of the same has remained largely elusive. In this study, we aim to understand the temporal and molecular details of such crosstalk between DDR signaling and CT relocation dynamics. We demonstrate that signaling at DNA double strand breaks (DSBs) by the phosphorylated histone variant (ϒ-H2AX) is a pre-requisite for damage induced CT relocation, as cells deficient in ϒ-H2AX signaling fail to exhibit such a response. Inhibition of Rad51 or DNA Ligase IV mediated late steps of double strand break repair does not seem to abrogate CT relocation completely. Upon DNA damage, an increase in the levels of chromatin bound motor protein nuclear myosin 1 (NM1) ensues, which appears to be functionally linked to ϒ-H2AX signaling. Importantly, the motor function of NM1 is essential for its recruitment to chromatin and CT relocation following damage. Taking these observations together, we propose that early DDR sensing and signaling result in NM1 recruitment to chromosomes which in turn guides DNA damage induced CT relocation.
Collapse
Affiliation(s)
- Mugdha Kulashreshtha
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India
| | - Ishita S Mehta
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India UM-DAE Centre for Excellence in Basic Sciences, Biological Sciences, Kalina Campus, Santacruz (E), Mumbai, Maharashtra 400098, India
| | - Pradeep Kumar
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India UM-DAE Centre for Excellence in Basic Sciences, Biological Sciences, Kalina Campus, Santacruz (E), Mumbai, Maharashtra 400098, India
| | - Basuthkar J Rao
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India
| |
Collapse
|
102
|
Yamamoto K, Wang J, Sprinzen L, Xu J, Haddock CJ, Li C, Lee BJ, Loredan DG, Jiang W, Vindigni A, Wang D, Rabadan R, Zha S. Kinase-dead ATM protein is highly oncogenic and can be preferentially targeted by Topo-isomerase I inhibitors. eLife 2016; 5. [PMID: 27304073 PMCID: PMC4957979 DOI: 10.7554/elife.14709] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 06/14/2016] [Indexed: 12/20/2022] Open
Abstract
Missense mutations in ATM kinase, a master regulator of DNA damage responses, are found in many cancers, but their impact on ATM function and implications for cancer therapy are largely unknown. Here we report that 72% of cancer-associated ATM mutations are missense mutations that are enriched around the kinase domain. Expression of kinase-dead ATM (Atm(KD/-)) is more oncogenic than loss of ATM (Atm(-/-)) in mouse models, leading to earlier and more frequent lymphomas with Pten deletions. Kinase-dead ATM protein (Atm-KD), but not loss of ATM (Atm-null), prevents replication-dependent removal of Topo-isomerase I-DNA adducts at the step of strand cleavage, leading to severe genomic instability and hypersensitivity to Topo-isomerase I inhibitors. Correspondingly, Topo-isomerase I inhibitors effectively and preferentially eliminate Atm(KD/-), but not Atm-proficientor Atm(-/-) leukemia in animal models. These findings identify ATM kinase-domain missense mutations as a potent oncogenic event and a biomarker for Topo-isomerase I inhibitor based therapy.
Collapse
Affiliation(s)
- Kenta Yamamoto
- Institute for Cancer Genetics, Columbia Unviersity, New York, United States.,Department of Pathology and Cell Biology, Columbia University, New York, United States.,College of Physicians and Surgeons, Columbia University, New York, United States.,Pathobiology and Molecular Medicine Graduate Program, Columbia University, New York, United States
| | - Jiguang Wang
- Department of Biomedical Informatics, Columbia University, New York, United States.,Department of Systems Biology, Columbia University, New York, United States.,College of Physicians & Surgeons, Columbia University, New York, United States
| | - Lisa Sprinzen
- Institute for Cancer Genetics, Columbia Unviersity, New York, United States.,Department of Pathology and Cell Biology, Columbia University, New York, United States.,College of Physicians and Surgeons, Columbia University, New York, United States.,Pathobiology and Molecular Medicine Graduate Program, Columbia University, New York, United States
| | - Jun Xu
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, La Jolla, United States
| | - Christopher J Haddock
- Edward A Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, United States
| | - Chen Li
- Institute for Cancer Genetics, Columbia Unviersity, New York, United States.,Department of Pathology and Cell Biology, Columbia University, New York, United States.,College of Physicians and Surgeons, Columbia University, New York, United States
| | - Brian J Lee
- Institute for Cancer Genetics, Columbia Unviersity, New York, United States.,Department of Pathology and Cell Biology, Columbia University, New York, United States.,College of Physicians and Surgeons, Columbia University, New York, United States
| | - Denis G Loredan
- Institute for Cancer Genetics, Columbia Unviersity, New York, United States.,Department of Pathology and Cell Biology, Columbia University, New York, United States.,College of Physicians and Surgeons, Columbia University, New York, United States
| | - Wenxia Jiang
- Institute for Cancer Genetics, Columbia Unviersity, New York, United States.,Department of Pathology and Cell Biology, Columbia University, New York, United States.,College of Physicians and Surgeons, Columbia University, New York, United States
| | - Alessandro Vindigni
- Edward A Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, United States
| | - Dong Wang
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, La Jolla, United States
| | - Raul Rabadan
- Department of Biomedical Informatics, Columbia University, New York, United States.,Department of Systems Biology, Columbia University, New York, United States.,College of Physicians & Surgeons, Columbia University, New York, United States
| | - Shan Zha
- Institute for Cancer Genetics, Columbia Unviersity, New York, United States.,Department of Pathology and Cell Biology, Columbia University, New York, United States.,College of Physicians and Surgeons, Columbia University, New York, United States.,Division of Pediatric Oncology, Hematology and Stem Cell Transplantation, Columbia University, New York, United States.,Department of Pediatrics, Columbia University, New York, United States.,College of Physicians & Surgeons, Columbia University, New York, United States
| |
Collapse
|
103
|
Mabb AM, Simon JM, King IF, Lee HM, An LK, Philpot BD, Zylka MJ. Topoisomerase 1 Regulates Gene Expression in Neurons through Cleavage Complex-Dependent and -Independent Mechanisms. PLoS One 2016; 11:e0156439. [PMID: 27231886 PMCID: PMC4883752 DOI: 10.1371/journal.pone.0156439] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/14/2016] [Indexed: 11/19/2022] Open
Abstract
Topoisomerase 1 (TOP1) inhibitors, including camptothecin and topotecan, covalently trap TOP1 on DNA, creating cleavage complexes (cc's) that must be resolved before gene transcription and DNA replication can proceed. We previously found that topotecan reduces the expression of long (>100 kb) genes and unsilences the paternal allele of Ube3a in neurons. Here, we sought to evaluate overlap between TOP1cc-dependent and -independent gene regulation in neurons. To do this, we utilized Top1 conditional knockout mice, Top1 knockdown, the CRISPR-Cas9 system to delete Top1, TOP1 catalytic inhibitors that do not generate TOP1cc's, and a TOP1 mutation (T718A) that stabilizes TOP1cc's. We found that topotecan treatment significantly alters the expression of many more genes, including long neuronal genes, immediate early genes, and paternal Ube3a, when compared to Top1 deletion. Our data show that topotecan has a stronger effect on neuronal transcription than Top1 deletion, and identifies TOP1cc-dependent and -independent contributions to gene expression.
Collapse
Affiliation(s)
- Angela M. Mabb
- Department of Cell Biology and Physiology, UNC Neuroscience Center, Carolina Institute for Developmental Disabilities, The University of North Carolina, Chapel Hill, North Carolina, United States of America
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, United States of America
| | - Jeremy M. Simon
- Department of Cell Biology and Physiology, UNC Neuroscience Center, Carolina Institute for Developmental Disabilities, The University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Ian F. King
- Department of Cell Biology and Physiology, UNC Neuroscience Center, Carolina Institute for Developmental Disabilities, The University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Hyeong-Min Lee
- Department of Cell Biology and Physiology, UNC Neuroscience Center, Carolina Institute for Developmental Disabilities, The University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Lin-Kun An
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Benjamin D. Philpot
- Department of Cell Biology and Physiology, UNC Neuroscience Center, Carolina Institute for Developmental Disabilities, The University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Mark J. Zylka
- Department of Cell Biology and Physiology, UNC Neuroscience Center, Carolina Institute for Developmental Disabilities, The University of North Carolina, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
104
|
Tse KH, Herrup K. DNA damage in the oligodendrocyte lineage and its role in brain aging. Mech Ageing Dev 2016; 161:37-50. [PMID: 27235538 DOI: 10.1016/j.mad.2016.05.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/23/2016] [Accepted: 05/25/2016] [Indexed: 11/25/2022]
Abstract
Myelination is a recent evolutionary addition that significantly enhances the speed of transmission in the neural network. Even slight defects in myelin integrity impair performance and enhance the risk of neurological disorders. Indeed, myelin degeneration is an early and well-recognized neuropathology that is age associated, but appears before cognitive decline. Myelin is only formed by fully differentiated oligodendrocytes, but the entire oligodendrocyte lineage are clear targets of the altered chemistry of the aging brain. As in neurons, unrepaired DNA damage accumulates in the postmitotic oligodendrocyte genome during normal aging, and indeed may be one of the upstream causes of cellular aging - a fact well illustrated by myelin co-morbidity in premature aging syndromes arising from deficits in DNA repair enzymes. The clinical and experimental evidence from Alzheimer's disease, progeroid syndromes, ataxia-telangiectasia and other conditions strongly suggest that oligodendrocytes may in fact be uniquely vulnerable to oxidative DNA damage. If this damage remains unrepaired, as is increasingly true in the aging brain, myelin gene transcription and oligodendrocyte differentiation is impaired. Delineating the relationships between early myelin loss and DNA damage in brain aging will offer an additional dimension outside the neurocentric view of neurodegenerative disease.
Collapse
Affiliation(s)
- Kai-Hei Tse
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | - Karl Herrup
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
105
|
Isoeugenol is a selective potentiator of camptothecin cytotoxicity in vertebrate cells lacking TDP1. Sci Rep 2016; 6:26626. [PMID: 27220325 PMCID: PMC4879542 DOI: 10.1038/srep26626] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 05/06/2016] [Indexed: 11/18/2022] Open
Abstract
Camptothecin (CPT), a topoisomerase I (TOP1) inhibitor, exhibits anti-tumor activity against a wide range of tumors. Redundancy of TOP1-mediated repair mechanisms is a major challenge facing the efficiency of TOP1-targetting therapies. This study aims to uncover new TOP1 targeting approaches utilising a selection of natural compounds in the presence or absence of tyrosyl DNA phosphodiesterase I (TDP1); a key TOP1-mediated protein-linked DNA break (PDB) repair enzyme. We identify, isoeugenol, a phenolic ether found in plant essential oils, as a potentiator of CPT cytotoxicity in Tdp1 deficient but not proficient cells. Consistent with our cellular data, isoeugenol did not inhibit Tdp1 enzymatic activity in vitro nor it sensitized cells to the PARP1 inhibitor olaparib. However, biochemical analyses suggest that isoeugenol inhibits TDP2 catalytic activity; a pathway that can compensate for the absence of TDP1. Consistent with this, isoeugenol exacerbated etoposide-induced cytotoxicity, which generates TOP2-mediated PDBs for which TDP2 is required for processing. Together, these findings identify isoeugenol as a potential lead compound for developing TDP2 inhibitors and encourage structure-activity relationship studies to shed more light on its utility in drug discovery programs.
Collapse
|
106
|
Li M, Liu Y. Topoisomerase I in Human Disease Pathogenesis and Treatments. GENOMICS PROTEOMICS & BIOINFORMATICS 2016; 14:166-171. [PMID: 27181710 PMCID: PMC4936607 DOI: 10.1016/j.gpb.2016.02.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 02/17/2016] [Accepted: 02/22/2016] [Indexed: 11/24/2022]
Abstract
Mammalian topoisomerase 1 (TOP1) is an essential enzyme for normal development. TOP1 relaxes supercoiled DNA to remove helical constraints that can otherwise hinder DNA replication and transcription and thus block cell growth. Unfortunately, this exact activity can covalently trap TOP1 on the DNA that could lead to cell death or mutagenesis, a precursor for tumorigenesis. It is therefore important for cells to find a proper balance between the utilization of the TOP1 catalytic activity to maintain DNA topology and the risk of accumulating the toxic DNA damages due to TOP1 trapping that prevents normal cell growth. In an apparent contradiction to the negative attribute of the TOP1 activity to genome stability, the detrimental effect of the TOP1-induced DNA lesions on cell survival has made this enzyme a prime target for cancer therapies to kill fast-growing cancer cells. In addition, cumulative evidence supports a direct role of TOP1 in promoting transcriptional progression independent of its topoisomerase activity. The involvement of TOP1 in transcriptional regulation has recently become a focus in developing potential new treatments for a subtype of autism spectrum disorders. Clearly, the impact of TOP1 on human health is multifold. In this review, we will summarize our current understandings on how TOP1 contributes to human diseases and how its activity is targeted for disease treatments.
Collapse
Affiliation(s)
- Min Li
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010-3000, USA
| | - Yilun Liu
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010-3000, USA.
| |
Collapse
|
107
|
Cristini A, Park JH, Capranico G, Legube G, Favre G, Sordet O. DNA-PK triggers histone ubiquitination and signaling in response to DNA double-strand breaks produced during the repair of transcription-blocking topoisomerase I lesions. Nucleic Acids Res 2016; 44:1161-78. [PMID: 26578593 PMCID: PMC4756817 DOI: 10.1093/nar/gkv1196] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 10/23/2015] [Accepted: 10/26/2015] [Indexed: 12/12/2022] Open
Abstract
Although defective repair of DNA double-strand breaks (DSBs) leads to neurodegenerative diseases, the processes underlying their production and signaling in non-replicating cells are largely unknown. Stabilized topoisomerase I cleavage complexes (Top1cc) by natural compounds or common DNA alterations are transcription-blocking lesions whose repair depends primarily on Top1 proteolysis and excision by tyrosyl-DNA phosphodiesterase-1 (TDP1). We previously reported that stabilized Top1cc produce transcription-dependent DSBs that activate ATM in neurons. Here, we use camptothecin (CPT)-treated serum-starved quiescent cells to induce transcription-blocking Top1cc and show that those DSBs are generated during Top1cc repair from Top1 peptide-linked DNA single-strand breaks generated after Top1 proteolysis and before excision by TDP1. Following DSB induction, ATM activates DNA-PK whose inhibition suppresses H2AX and H2A ubiquitination and the later assembly of activated ATM into nuclear foci. Inhibition of DNA-PK also reduces Top1 ubiquitination and proteolysis as well as resumption of RNA synthesis suggesting that DSB signaling further enhances Top1cc repair. Finally, we show that co-transcriptional DSBs kill quiescent cells. Together, these new findings reveal that DSB production and signaling by transcription-blocking Top1 lesions impact on non-replicating cell fate and provide insights on the molecular pathogenesis of neurodegenerative diseases such as SCAN1 and AT syndromes, which are caused by TDP1 and ATM deficiency, respectively.
Collapse
Affiliation(s)
- Agnese Cristini
- Cancer Research Center of Toulouse, INSERM UMR1037, Toulouse 31037, France
| | - Joon-Hyung Park
- Cancer Research Center of Toulouse, INSERM UMR1037, Toulouse 31037, France
| | - Giovanni Capranico
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy
| | - Gaëlle Legube
- Université de Toulouse, UPS, LBCMCP, 31062 Toulouse, France CNRS, LBCMCP, 31062 Toulouse, France
| | - Gilles Favre
- Cancer Research Center of Toulouse, INSERM UMR1037, Toulouse 31037, France
| | - Olivier Sordet
- Cancer Research Center of Toulouse, INSERM UMR1037, Toulouse 31037, France
| |
Collapse
|
108
|
Chromatin remodeller SMARCA4 recruits topoisomerase 1 and suppresses transcription-associated genomic instability. Nat Commun 2016; 7:10549. [PMID: 26842758 PMCID: PMC4742980 DOI: 10.1038/ncomms10549] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/25/2015] [Indexed: 02/07/2023] Open
Abstract
Topoisomerase 1, an enzyme that relieves superhelical tension, is implicated in transcription-associated mutagenesis and genome instability-associated with neurodegenerative diseases as well as activation-induced cytidine deaminase. From proteomic analysis of TOP1-associated proteins, we identify SMARCA4, an ATP-dependent chromatin remodeller; FACT, a histone chaperone; and H3K4me3, a transcriptionally active chromatin marker. Here we show that SMARCA4 knockdown in a B-cell line decreases TOP1 recruitment to chromatin, and leads to increases in Igh/c-Myc chromosomal translocations, variable and switch region mutations and negative superhelicity, all of which are also observed in response to TOP1 knockdown. In contrast, FACT knockdown inhibits association of TOP1 with H3K4me3, and severely reduces DNA cleavage and Igh/c-Myc translocations, without significant effect on TOP1 recruitment to chromatin. We thus propose that SMARCA4 is involved in the TOP1 recruitment to general chromatin, whereas FACT is required for TOP1 binding to H3K4me3 at non-B DNA containing chromatin for the site-specific cleavage. Topoisomerase 1 (TOP1) relieves superhelical tension when DNA strands are unwound during transcription. Here, Husain et al. report that SMARCA4, an ATP-dependent chromatin remodeller, is associated with TOP1 and suppresses transcription-associated genomic instability.
Collapse
|
109
|
van Waardenburg RC. Tyrosyl-DNA Phosphodiesterase I a critical survival factor for neuronal development and homeostasis. JOURNAL OF NEUROLOGY & NEUROMEDICINE 2016; 1:25-29. [PMID: 27747316 PMCID: PMC5064944 DOI: 10.29245/2572.942x/2016/5.1048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Tyrosyl-DNA phosphodiesterase I (TDP1), like most DNA repair associated proteins, is not essential for cell viability. However, dysfunctioning TDP1 or ATM (ataxia telangiectasia mutated) results in autosomal recessive neuropathology with similar phenotypes, including cerebellar atrophy. Dual inactivation of TDP1 and ATM causes synthetic lethality. A TDP1H493R catalytic mutant is associated with spinocerebellar ataxia with axonal neuropathy (SCAN1), and stabilizes the TDP1 catalytic obligatory enzyme-DNA covalent complex. The ATM kinase activates proteins early on in response to DNA damage. Tdp1-/- and Atm-/- mice exhibit accumulation of DNA topoisomerase I-DNA covalent complexes (TOPO1-cc) explicitly in neuronal tissue during development. TDP1 resolves 3'- and 5'-DNA adducts including trapped TOPO1-cc and TOPO1 protease resistant peptide-DNA complex. ATM appears to regulate the response to TOPO1-cc via a noncanonical function by regulating SUMO/ubiquitin-mediated TOPO1 degradation. In conclusion, TDP1 and ATM are critical factors for neuronal cell viability via two independent but cooperative pathways.
Collapse
|
110
|
Sakasai R, Iwabuchi K. The distinctive cellular responses to DNA strand breaks caused by a DNA topoisomerase I poison in conjunction with DNA replication and RNA transcription. Genes Genet Syst 2015; 90:187-94. [PMID: 26616758 DOI: 10.1266/ggs.15-00023] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Camptothecin (CPT) inhibits DNA topoisomerase I (Top1) through a non-catalytic mechanism that stabilizes the Top1-DNA cleavage complex (Top1cc) and blocks the DNA re-ligation step, resulting in the accumulation in the genome of DNA single-strand breaks (SSBs), which are converted to secondary strand breaks when they collide with the DNA replication and RNA transcription machinery. DNA strand breaks mediated by replication, which have one DNA end, are distinct in repair from the DNA double-strand breaks (DSBs) that have two ends and are caused by ionizing radiation and other agents. In contrast to two-ended DSBs, such one-ended DSBs are preferentially repaired through the homologous recombination pathway. Conversely, the repair of one-ended DSBs by the non-homologous end-joining pathway is harmful for cells and leads to cell death. The choice of repair pathway has a crucial impact on cell fate and influences the efficacy of anticancer drugs such as CPT derivatives. In addition to replication-mediated one-ended DSBs, transcription also generates DNA strand breaks upon collision with the Top1cc. Some reports suggest that transcription-mediated DNA strand breaks correlate with neurodegenerative diseases. However, the details of the repair mechanisms of, and cellular responses to, transcription-mediated DNA strand breaks still remain unclear. In this review, combining our recent results and those of previous reports, we introduce and discuss the responses to CPT-induced DNA damage mediated by DNA replication and RNA transcription.
Collapse
Affiliation(s)
- Ryo Sakasai
- Department of Biochemistry I, Kanazawa Medical University
| | | |
Collapse
|
111
|
Ismail IH, Gagné JP, Genois MM, Strickfaden H, McDonald D, Xu Z, Poirier GG, Masson JY, Hendzel MJ. The RNF138 E3 ligase displaces Ku to promote DNA end resection and regulate DNA repair pathway choice. Nat Cell Biol 2015; 17:1446-57. [PMID: 26502055 DOI: 10.1038/ncb3259] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 09/22/2015] [Indexed: 12/30/2022]
Abstract
DNA double-strand breaks (DSBs) are repaired mainly by non-homologous end joining or homologous recombination (HR). Cell cycle stage and DNA end resection are believed to regulate the commitment to HR repair. Here we identify RNF138 as a ubiquitin E3 ligase that regulates the HR pathway. RNF138 is recruited to DNA damage sites through zinc fingers that have a strong preference for DNA with 5'- or 3'-single-stranded overhangs. RNF138 stimulates DNA end resection and promotes ATR-dependent signalling and DSB repair by HR, thereby contributing to cell survival on exposure to DSB-inducing agents. Finally, we establish that RNF138-dependent Ku removal from DNA breaks is one mechanism whereby RNF138 can promote HR. These results establish RNF138 as an important regulator of DSB repair pathway choice.
Collapse
Affiliation(s)
- Ismail Hassan Ismail
- Departments of Oncology and Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, 11560 University Avenue Edmonton, Alberta T6G 1Z2, Canada.,Biophysics Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | - Jean-Philippe Gagné
- CHU de Québec Research Center, CHUL Pavilion, Oncology Axis, 2705 boul. Laurier Québec city, Québec G1V 4G2, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Québec City, Québec G1V 0A6, Canada
| | - Marie-Michelle Genois
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Québec City, Québec G1V 0A6, Canada.,Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Axis, 9 McMahon Québec City, Québec G1R 2J6, Canada
| | - Hilmar Strickfaden
- Departments of Oncology and Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, 11560 University Avenue Edmonton, Alberta T6G 1Z2, Canada
| | - Darin McDonald
- Departments of Oncology and Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, 11560 University Avenue Edmonton, Alberta T6G 1Z2, Canada
| | - Zhizhong Xu
- Departments of Oncology and Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, 11560 University Avenue Edmonton, Alberta T6G 1Z2, Canada
| | - Guy G Poirier
- CHU de Québec Research Center, CHUL Pavilion, Oncology Axis, 2705 boul. Laurier Québec city, Québec G1V 4G2, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Québec City, Québec G1V 0A6, Canada
| | - Jean-Yves Masson
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Québec City, Québec G1V 0A6, Canada.,Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Axis, 9 McMahon Québec City, Québec G1R 2J6, Canada
| | - Michael J Hendzel
- Departments of Oncology and Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, 11560 University Avenue Edmonton, Alberta T6G 1Z2, Canada
| |
Collapse
|
112
|
Abstract
DNA damage is correlated with and may drive the ageing process. Neurons in the brain are postmitotic and are excluded from many forms of DNA repair; therefore, neurons are vulnerable to various neurodegenerative diseases. The challenges facing the field are to understand how and when neuronal DNA damage accumulates, how this loss of genomic integrity might serve as a 'time keeper' of nerve cell ageing and why this process manifests itself as different diseases in different individuals.
Collapse
Affiliation(s)
- Hei-man Chow
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.,Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Karl Herrup
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
113
|
Shimada M, Dumitrache LC, Russell HR, McKinnon PJ. Polynucleotide kinase-phosphatase enables neurogenesis via multiple DNA repair pathways to maintain genome stability. EMBO J 2015; 34:2465-80. [PMID: 26290337 DOI: 10.15252/embj.201591363] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 07/09/2015] [Indexed: 11/09/2022] Open
Abstract
Polynucleotide kinase-phosphatase (PNKP) is a DNA repair factor possessing both 5'-kinase and 3'-phosphatase activities to modify ends of a DNA break prior to ligation. Recently, decreased PNKP levels were identified as the cause of severe neuropathology present in the human microcephaly with seizures (MCSZ) syndrome. Utilizing novel murine Pnkp alleles that attenuate expression and a T424GfsX48 frame-shift allele identified in MCSZ individuals, we determined how PNKP inactivation impacts neurogenesis. Mice with PNKP inactivation in neural progenitors manifest neurodevelopmental abnormalities and postnatal death. This severe phenotype involved defective base excision repair and non-homologous end-joining, pathways required for repair of both DNA single- and double-strand breaks. Although mice homozygous for the T424GfsX48 allele were lethal embryonically, attenuated PNKP levels (akin to MCSZ) showed general neurodevelopmental defects, including microcephaly, indicating a critical developmental PNKP threshold. Directed postnatal neural inactivation of PNKP affected specific subpopulations including oligodendrocytes, indicating a broad requirement for genome maintenance, both during and after neurogenesis. These data illuminate the basis for selective neural vulnerability in DNA repair deficiency disease.
Collapse
Affiliation(s)
- Mikio Shimada
- Department of Genetics, St Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Helen R Russell
- Department of Genetics, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Peter J McKinnon
- Department of Genetics, St Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
114
|
Abstract
A recent study by Gabel et al. (2015) found that Mecp2, the gene mutated in Rett syndrome, represses long (> 100 kb) genes associated with neuronal physiology and connectivity by binding to methylated CA sites in DNA. This study adds to a growing body of literature implicating gene length and transcriptional mechanisms in neurodevelopmental and neurodegenerative disorders.
Collapse
|
115
|
Abstract
The mammalian CtIP protein and its orthologs in other eukaryotes promote the resection of DNA double-strand breaks and are essential for meiotic recombination. Here we review the current literature supporting the role of CtIP in DNA end processing and the importance of CtIP endonuclease activity in DNA repair. We also examine the regulation of CtIP function by post-translational modifications, and its involvement in transcription- and replication-dependent functions through association with other protein complexes. The tumor suppressor function of CtIP likely is dependent on a combination of these roles in many aspects of DNA metabolism.
Collapse
|
116
|
Gene length matters in neurons. Neuron 2015. [PMID: 25905808 DOI: 10.1016/j.neuron.2015.03.059.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A recent study by Gabel et al. (2015) found that Mecp2, the gene mutated in Rett syndrome, represses long (> 100 kb) genes associated with neuronal physiology and connectivity by binding to methylated CA sites in DNA. This study adds to a growing body of literature implicating gene length and transcriptional mechanisms in neurodevelopmental and neurodegenerative disorders.
Collapse
|
117
|
Ashour ME, Atteya R, El-Khamisy SF. Topoisomerase-mediated chromosomal break repair: an emerging player in many games. Nat Rev Cancer 2015; 15:137-51. [PMID: 25693836 DOI: 10.1038/nrc3892] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The mammalian genome is constantly challenged by exogenous and endogenous threats. Although much is known about the mechanisms that maintain DNA and RNA integrity, we know surprisingly little about the mechanisms that underpin the pathology and tissue specificity of many disorders caused by defective responses to DNA or RNA damage. Of the different types of endogenous damage, protein-linked DNA breaks (PDBs) are emerging as an important player in cancer development and therapy. PDBs can arise during the abortive activity of DNA topoisomerases, a class of enzymes that modulate DNA topology during several chromosomal transactions, such as gene transcription and DNA replication, recombination and repair. In this Review, we discuss the mechanisms underpinning topoisomerase-induced PDB formation and repair with a focus on their role during gene transcription and the development of tissue-specific cancers.
Collapse
Affiliation(s)
- Mohamed E Ashour
- 1] Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK. [2] Center for Genomics, Helmy Institute, Zewail City of Science and Technology, Giza 12588, Egypt
| | - Reham Atteya
- Center for Genomics, Helmy Institute, Zewail City of Science and Technology, Giza 12588, Egypt
| | - Sherif F El-Khamisy
- 1] Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK. [2] Center for Genomics, Helmy Institute, Zewail City of Science and Technology, Giza 12588, Egypt
| |
Collapse
|
118
|
Kakarougkas A, Downs JA, Jeggo PA. The PBAF chromatin remodeling complex represses transcription and promotes rapid repair at DNA double-strand breaks. Mol Cell Oncol 2015; 2:e970072. [PMID: 27308404 PMCID: PMC4905236 DOI: 10.4161/23723548.2014.970072] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 09/08/2014] [Accepted: 09/10/2014] [Indexed: 11/19/2022]
Abstract
Transcription in the vicinity of DNA double-strand breaks (DSBs) is suppressed via a process involving ataxia telangiectasia mutated protein (ATM) and H2AK119 ubiquitylation.(1) We discuss recent findings that components of the Polybromo and Brahma-related gene 1 (BRG1)-associated factor (PBAF) remodeling complex and the polycomb repressive complex (PRC1/2) are also required.(2) Failure to activate transcriptional suppression impedes a rapid DSB repair process.
Collapse
Affiliation(s)
- Andreas Kakarougkas
- Department of Biology; School of Sciences and Engineering; The American University in Cairo ; Cairo, Egypt
| | - Jessica A Downs
- Genome Damage and Stability Center; Life Sciences; University of Sussex ; Brighton, UK
| | - Penny A Jeggo
- Genome Damage and Stability Center; Life Sciences; University of Sussex ; Brighton, UK
| |
Collapse
|
119
|
Liu B, Liu M, Wang J, Zhang X, Wang X, Wang P, Wang H, Li W, Wang Y. DICER-dependent biogenesis of let-7 miRNAs affects human cell response to DNA damage via targeting p21/p27. Nucleic Acids Res 2015; 43:1626-36. [PMID: 25578966 PMCID: PMC4330351 DOI: 10.1093/nar/gku1368] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Recently, it was reported that knockdown of DICER reduced the ATM-dependent DNA damage response and homologous recombination repair (HRR) via decreasing DICER-generated small RNAs at the damage sites. However, we found that knockdown of DICER dramatically increased cell resistance to camptothecin that induced damage required ATM to facilitate HRR. This phenotype is due to a prolonged G1/S transition via decreasing DICER-dependent biogenesis of miRNA let-7, which increased the p21(Waf1/Cip1)/p27(Kip1) levels and resulted in decreasing the HRR efficiency. These results uncover a novel function of DICER in regulating the cell cycle through miRNA biogenesis, thus affecting cell response to DNA damage.
Collapse
Affiliation(s)
- Bailong Liu
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA 30322, USA
| | - Min Liu
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA 30322, USA
| | - Jian Wang
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA 30322, USA
| | - Xiangming Zhang
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA 30322, USA
| | - Xiang Wang
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA 30322, USA
| | - Ping Wang
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA 30322, USA
| | - Hongyan Wang
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA 30322, USA
| | - Wei Li
- Department of Cancer Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Ya Wang
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA 30322, USA
| |
Collapse
|
120
|
Abstract
Topotecan is a topoisomerase 1 (TOP1) inhibitor that is used to treat various forms of cancer. We recently found that topotecan reduces the expression of multiple long genes, including many neuronal genes linked to synapses and autism. However, whether topotecan alters synaptic protein levels and synapse function is currently unknown. Here we report that in primary cortical neurons, topotecan depleted synaptic proteins that are encoded by extremely long genes, including Neurexin-1, Neuroligin-1, Cntnap2, and GABA(A)β3. Topotecan also suppressed spontaneous network activity without affecting resting membrane potential, action potential threshold, or neuron health. Topotecan strongly suppressed inhibitory neurotransmission via pre- and postsynaptic mechanisms and reduced excitatory neurotransmission. The effects on synaptic protein levels and inhibitory neurotransmission were fully reversible upon drug washout. Collectively, our findings suggest that TOP1 controls the levels of multiple synaptic proteins and is required for normal excitatory and inhibitory synaptic transmission.
Collapse
|
121
|
APE1 is dispensable for S-region cleavage but required for its repair in class switch recombination. Proc Natl Acad Sci U S A 2014; 111:17242-7. [PMID: 25404348 DOI: 10.1073/pnas.1420221111] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Activation-induced cytidine deaminase (AID) is essential for antibody diversification, namely somatic hypermutation (SHM) and class switch recombination (CSR). The deficiency of apurinic/apyrimidinic endonuclease 1 (Ape1) in CH12F3-2A B cells reduces CSR to ∼20% of wild-type cells, whereas the effect of APE1 loss on SHM has not been examined. Here we show that, although APE1's endonuclease activity is important for CSR, it is dispensable for SHM as well as IgH/c-myc translocation. Importantly, APE1 deficiency did not show any defect in AID-induced S-region break formation, but blocked both the recruitment of repair protein Ku80 to the S region and the synapse formation between Sμ and Sα. Knockdown of end-processing factors such as meiotic recombination 11 homolog (MRE11) and carboxy-terminal binding protein (CtBP)-interacting protein (CtIP) further reduced the remaining CSR in Ape1-null CH12F3-2A cells. Together, our results show that APE1 is dispensable for SHM and AID-induced DNA breaks and may function as a DNA end-processing enzyme to facilitate the joining of broken ends during CSR.
Collapse
|
122
|
Neuroprotection and repair of 3'-blocking DNA ends by glaikit (gkt) encoding Drosophila tyrosyl-DNA phosphodiesterase 1 (TDP1). Proc Natl Acad Sci U S A 2014; 111:15816-20. [PMID: 25331878 DOI: 10.1073/pnas.1415011111] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Tyrosyl-DNA phosphodiesterase (TDP1) is a phylogenetically conserved enzyme critical for the removal of blocking lesions at the 3' ends of DNA or RNA. This study analyzes the Drosophila TDP1 gene ortholog glaikit (gkt) and its possible role(s) in the repair of endogenous DNA lesions and neuroprotection. To do so, we studied a homozygous PiggyBac insertion (c03958) that disrupts the 5' UTR of gkt. Protein extracts of c03958 flies were defective in hydrolyzing 3'-DNA-tyrosyl residues, demonstrating that gkt is the Drosophila TDP1. Although the mutant is generally healthy and fertile, females exhibit reduced lifespan and diminished climbing ability. This phenotype was rescued by neuronal expression of TDP1. In addition, when c03958 larvae were exposed to bleomycin, an agent that produces oxidative DNA damage, or topoisomerase I-targeted drugs (camptothecin and a noncamptothecin indenoisoquinoline derivative, LMP-776), survivors displayed rough eye patches, which were rescued by neuronal expression of TDP1. Our study establishes that gkt is the Drosophila TDP1 gene, and that it is critical for neuroprotection, normal longevity, and repair of damaged DNA.
Collapse
|
123
|
Shiloh Y. ATM: expanding roles as a chief guardian of genome stability. Exp Cell Res 2014; 329:154-61. [PMID: 25218947 DOI: 10.1016/j.yexcr.2014.09.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 08/19/2014] [Accepted: 09/01/2014] [Indexed: 01/10/2023]
Affiliation(s)
- Yosef Shiloh
- The David and Inez Myers Laboratory for Cancer Research, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
124
|
DNA repair abnormalities leading to ataxia: shared neurological phenotypes and risk factors. Neurogenetics 2014; 15:217-28. [PMID: 25038946 DOI: 10.1007/s10048-014-0415-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 07/11/2014] [Indexed: 02/06/2023]
Abstract
Since identification of mutations in the ATM gene leading to ataxia-telangiectasia, enormous efforts have been devoted to discovering the roles this protein plays in DNA repair as well as other cellular functions. Even before the identification of ATM mutations, it was clear that other diseases with different genomic loci had very similar neurological symptoms. There has been significant progress in understanding why cancer and immunodeficiency occur in ataxia-telangiectasia even though many details remain to be determined, but the field is no closer to determining why the nervous system requires ATM and other DNA repair genes. Even though rodent disease models have similar DNA repair abnormalities as the human diseases, they have no consistent, robust neuropathological phenotype making it difficult to understand the neurological underpinnings of disease. Therefore, it may be useful to reassess the neurological and neuropathological characteristics of ataxia-telangiectasia in human patients to look for potential commonalities in DNA repair diseases that result in ataxia. In doing so, it is clear that ataxia-telangiectasia and similar diseases share neurological features other than merely ataxia, such as length-dependent motor and sensory neuropathies, and that the neuroanatomical localization for these symptoms is understood. Cells affected in ataxia-telangiectasia and similar diseases are some of the largest single nucleated cells in the body. In addition, a subset of these diseases also has extrapyramidal movements and oculomotor apraxia. These neurological and neuropathological similarities may indicate a common DNA repair related pathogenesis with very large cell size as a critical risk factor.
Collapse
|