101
|
Deficient endocannabinoid signaling in the central amygdala contributes to alcohol dependence-related anxiety-like behavior and excessive alcohol intake. Neuropsychopharmacology 2018; 43:1840-1850. [PMID: 29748627 PMCID: PMC6046053 DOI: 10.1038/s41386-018-0055-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 03/22/2018] [Accepted: 03/22/2018] [Indexed: 01/01/2023]
Abstract
Negative emotional states that are associated with excessive alcohol intake, particularly anxiety-like states, have been linked to opponent processes in the central nucleus of the amygdala (CeA), affecting stress-related transmitters and monoamines. This study extends these observations to include endocannabinoid signaling in alcohol-dependent animals. Rats and mice were exposed to chronic intermittent alcohol with vapor inhalation or liquid diet to induce dependence. In vivo microdialysis was used to estimate interstitial concentrations of endocannabinoids [N-arachidonoylethanolamine (anandamide; AEA) and 2-arachidonoylglycerol (2-AG)] and amino acids (glutamate and GABA) in rat CeA. Additionally, we evaluated the inhibition of endocannabinoids clearance enzymes [monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase] on anxiety-like behavior and alcohol consumption in alcohol-dependent rats and mice. Results revealed that alcohol dependence produced decreases in baseline 2-AG dialysate levels and increases in baseline levels of glutamate and GABA. Acute alcohol abstinence induced an enhancement of these dependence-induced effects and the levels of 2-AG and GABA were restored upon alcohol re-exposure. Additional studies showed that the increased CeA 2-AG levels induced by restraint stress and alcohol self-administration were blunted in alcohol-dependent rats. Pharmacological studies in rats and mice showed that anxiety-like behavior and alcohol consumption were increased in alcohol-dependent animals, and these behavioral effects were attenuated mainly by MAGL inhibitors [MJN110 (10 and 20 mg/kg) in rats and JZL184 (1 and 3 mg/kg) in mice]. The present results suggest a key role for endocannabinoid signaling in motivational neuroadaptations during alcohol dependence, in which a deficiency in CeA 2-AG signaling in alcohol-dependent animals is linked to stress and excessive alcohol consumption.
Collapse
|
102
|
Simone JJ, Baumbach JL, McCormick CM. Sex-specific effects of CB1 receptor antagonism and stress in adolescence on anxiety, corticosterone concentrations, and contextual fear in adulthood in rats. Int J Dev Neurosci 2018; 69:119-131. [PMID: 30063953 DOI: 10.1016/j.ijdevneu.2018.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/23/2018] [Accepted: 07/26/2018] [Indexed: 02/07/2023] Open
Abstract
There is a paucity of research regarding the role of endogenous cannabinoid signalling in adolescence on brain and behaviour development. We previously demonstrated effects of repeated CB1 receptor antagonism in adolescence on socioemotional behaviours and neural protein expression 24-48 h after the last drug administration in female rats, with no effect in males. Here we investigate whether greater effects would be manifested after a lengthier delay. In Experiment 1, male and female rats were administered either 1 mg / kg of the CB1 receptor-selective antagonist AM251, vehicle (VEH), or did not receive injections (NoINJ) daily on postnatal days (PND) 30-44 either alone (no adolescent confinement stress; noACS), or in tandem with 1 h ACS. On PND 70, adolescent AM251 exposure reduced anxiety in an elevated plus maze in males, irrespective of ACS, with no effects in females. On PND 73, there were no group differences in either sex in plasma corticosterone concentrations before or after 30 min of restraint stress, although injection stress resulted in higher baseline concentrations in males. Brains were collected on PND 74, with negligible effects of either AM251 or ACS on protein markers of synaptic plasticity and of the endocannabinoid system in the hippocampus and medial prefrontal cortex. In Experiment 2, rats from both sexes were treated with vehicle or AM251 on PND 30-44 and were tested for contextual fear conditioning and extinction in adulthood. AM251 females had greater fear recall than VEH females 24 h after conditioning, with no group differences in within- or between-session fear extinction. There were no group differences in long-term extinction memory, although AM251 females froze more during a reconditioning trial compared with VEH females. There were no group differences on any of the fear conditioning measures in males. Together, these findings indicate a modest, sex-specific role of CB1 receptor signalling in adolescence on anxiety-like behaviour in males and conditioned fear behaviour in females.
Collapse
Affiliation(s)
- Jonathan J Simone
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1, Canada.
| | - Jennet L Baumbach
- Department of Psychology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1, Canada.
| | - Cheryl M McCormick
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1, Canada; Department of Psychology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1, Canada; Center for Neuroscience, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1, Canada.
| |
Collapse
|
103
|
Role for fatty acid amide hydrolase (FAAH) in the leptin-mediated effects on feeding and energy balance. Proc Natl Acad Sci U S A 2018; 115:7605-7610. [PMID: 29967158 DOI: 10.1073/pnas.1802251115] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Endocannabinoid signaling regulates feeding and metabolic processes and has been linked to obesity development. Several hormonal signals, such as glucocorticoids and ghrelin, regulate feeding and metabolism by engaging the endocannabinoid system. Similarly, studies have suggested that leptin interacts with the endocannabinoid system, yet the mechanism and functional relevance of this interaction remain elusive. Therefore, we explored the interaction between leptin and endocannabinoid signaling with a focus on fatty acid amide hydrolase (FAAH), the primary degradative enzyme for the endocannabinoid N-arachidonoylethanolamine (anandamide; AEA). Mice deficient in leptin exhibited elevated hypothalamic AEA levels and reductions in FAAH activity while leptin administration to WT mice reduced AEA content and increased FAAH activity. Following high fat diet exposure, mice developed resistance to the effects of leptin administration on hypothalamic AEA content and FAAH activity. At a functional level, pharmacological inhibition of FAAH was sufficient to prevent leptin-mediated effects on body weight and food intake. Using a novel knock-in mouse model recapitulating a common human polymorphism (FAAH C385A; rs324420), which reduces FAAH activity, we investigated whether human genetic variance in FAAH affects leptin sensitivity. While WT (CC) mice were sensitive to leptin-induced reductions in food intake and body weight gain, low-expressing FAAH (AA) mice were unresponsive. These data demonstrate that FAAH activity is required for leptin's hypophagic effects and, at a translational level, suggest that a genetic variant in the FAAH gene contributes to differences in leptin sensitivity in human populations.
Collapse
|
104
|
Fidelman S, Mizrachi Zer-Aviv T, Lange R, Hillard CJ, Akirav I. Chronic treatment with URB597 ameliorates post-stress symptoms in a rat model of PTSD. Eur Neuropsychopharmacol 2018. [PMID: 29519609 DOI: 10.1016/j.euroneuro.2018.02.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Activating the endocannabinoid system has become a major focus in the search for novel therapeutics for anxiety and deficits in fear extinction, two defining features of PTSD. We examined whether chronic treatment with the fatty acid amide hydrolase (FAAH) inhibitor URB597 (0.2, 0.3, 0.4 mg/kg, i.p.) or the CB1/2 receptor agonist WIN55,212-2 (0.25, 0.5 mg/kg, i.p.) injected for 3 weeks to rats exposed to the shock and reminders model of PTSD would attenuate post-stress symptoms and affect basolateral amygdala (BLA) and CA1 CB1 receptors. Exposure to shock and reminders enhanced acoustic startle response and impaired extinction. Rats exposed to shock and reminders and chronically treated with URB597 demonstrated normalized startle response and intact extinction kinetics. WIN55,212-2 only affected the startle response. The therapeutic effects of URB597 and WIN55,212-2 were found to be CB1 receptor dependent, as these effects were blocked when a low dose of the CB1 receptor antagonist AM251 (0.3 mg/kg, i.p. for 3 weeks) was co-administered. Moreover, URB597, but not WIN55,212-2, normalized the shock/reminders-induced upregulation in CB1 receptor levels in the BLA and CA1. One hour after the shock, N-arachidonoylethanolamine (AEA) was increased in the BLA and decreased in the CA1. Circulating 2-arachidonoylglycerol (2-AG) concentrations were decreased in shocked rats, with no significant effect in the BLA or CA1. FAAH activity was increased in the CA1 of shocked rats. Chronic cannabinoid treatment with URB597 can ameliorate PTSD-like symptoms suggesting FAAH inhibitors as a potentially effective therapeutic strategy for the treatment of disorders associated with inefficient fear coping.
Collapse
MESH Headings
- Amidohydrolases/antagonists & inhibitors
- Amidohydrolases/metabolism
- Animals
- Arachidonic Acids/blood
- Basolateral Nuclear Complex/metabolism
- Benzamides/administration & dosage
- Benzamides/pharmacology
- Benzoxazines/administration & dosage
- Benzoxazines/pharmacology
- CA1 Region, Hippocampal/metabolism
- Cannabinoid Receptor Antagonists/pharmacology
- Carbamates/administration & dosage
- Carbamates/pharmacology
- Dose-Response Relationship, Drug
- Electric Stimulation
- Endocannabinoids/blood
- Endocannabinoids/metabolism
- Extinction, Psychological/drug effects
- Glycerides/blood
- Male
- Morpholines/administration & dosage
- Morpholines/pharmacology
- Naphthalenes/administration & dosage
- Naphthalenes/pharmacology
- Piperidines/pharmacology
- Polyunsaturated Alkamides
- Pyrazoles/pharmacology
- Rats
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/physiology
- Reflex, Startle/drug effects
- Reflex, Startle/physiology
- Stress Disorders, Post-Traumatic/drug therapy
Collapse
Affiliation(s)
- Sharon Fidelman
- Department of Psychology, University of Haifa, Haifa 3498838, Israel
| | | | - Rachel Lange
- Department of Pharmacology and Toxicology, Neuroscience Research Center, Medical College of Wisconsin, Milwaukee 53226, USA
| | - Cecilia J Hillard
- Department of Pharmacology and Toxicology, Neuroscience Research Center, Medical College of Wisconsin, Milwaukee 53226, USA
| | - Irit Akirav
- Department of Psychology, University of Haifa, Haifa 3498838, Israel.
| |
Collapse
|
105
|
Atsak P, Morena M, Schoenmaker C, Tabak E, Oomen CA, Jamil S, Hill MN, Roozendaal B. Glucocorticoid-endocannabinoid uncoupling mediates fear suppression deficits after early - Life stress. Psychoneuroendocrinology 2018. [PMID: 29524763 DOI: 10.1016/j.psyneuen.2018.02.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Early-life stress (ELS) creates life-long vulnerability to stress-related anxiety disorders through altering stress and fear systems in the brain. The endocannabinoid system has emerged as an important regulator of the stress response through a crosstalk with the glucocorticoid system, yet whether it plays a role in the persistent effects of ELS remains unanswered. By combining, behavioral, pharmacological and biochemical approaches in adult male rats, we examined the impact of ELS on the regulation of endocannabinoid function by stress and glucocorticoids. We employed a postnatal limited-nesting/bedding induced ELS between postnatal days 2-9 in rats. Exposure to postnatal ELS compromised the ability of both acute stress and glucocorticoid administration to mobilize the endocannabinoid ligand 2-arachidonoyl glycerol (2-AG) in the hippocampus of adult male rats. These findings suggest that ELS compromises the coupling of the glucocorticoid and endocannabinoid systems in the hippocampus. Since 2-AG signaling is essential in mediating glucocorticoid-induced suppression of fear recall, we further examined the impact of ELS on the ability of glucocorticoids to suppress fear memory recall. While ELS did not affect normative fear recall, it impaired the ability of glucocorticoids to dampen fear recall. Notably, bypassing glucocorticoids and directly amplifying hippocampal 2-AG signaling with a monoacyl glycerol lipase inhibitor produced a suppression of fear memory recall in animals exposed to ELS. These findings suggest that ELS results in an uncoupling of glucocorticoid-endocannabinoid signaling in the hippocampus, which, in turn, relates to alterations in stress regulation of memory recall. These data provide compelling evidence that ELS-induced deficits in the glucocorticoid-endocannabinoid coupling following stress could predispose susceptibility to stress-related psychopathology.
Collapse
Affiliation(s)
- Piray Atsak
- Department of Cognitive Neuroscience, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN Nijmegen, The Netherlands.
| | - Maria Morena
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Chantal Schoenmaker
- Department of Cognitive Neuroscience, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN Nijmegen, The Netherlands
| | - Emma Tabak
- Department of Cognitive Neuroscience, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN Nijmegen, The Netherlands
| | - Charlotte A Oomen
- Department of Cognitive Neuroscience, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN Nijmegen, The Netherlands
| | - Sara Jamil
- Department of Cognitive Neuroscience, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN Nijmegen, The Netherlands
| | - Matthew N Hill
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Benno Roozendaal
- Department of Cognitive Neuroscience, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN Nijmegen, The Netherlands
| |
Collapse
|
106
|
Chen HJC, Spiers JG, Sernia C, Lavidis NA. Inhibition of Fatty Acid Amide Hydrolase by PF-3845 Alleviates the Nitrergic and Proinflammatory Response in Rat Hippocampus Following Acute Stress. Int J Neuropsychopharmacol 2018; 21:786-795. [PMID: 29579222 PMCID: PMC6070085 DOI: 10.1093/ijnp/pyy033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 03/15/2018] [Accepted: 03/21/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Long-term exposure to stress has been demonstrated to cause neuroinflammation through a sustained overproduction of free radicals, including nitric oxide, via an increased inducible nitric oxide synthase activity. We previously demonstrated that inducible nitric oxide synthase activity and mRNA are significantly upregulated in the rat hippocampus following just 4 hours of restraint stress. Similar to nitric oxide, endocannabinoids are synthesized on demand, with preclinical observations suggesting that cannabinoid receptor agonists and endocannabinoid enhancers inhibit nitrergic activity. Specifically, previous work has shown that enhancement of endocannabinoids via inhibition of fatty acid amide hydrolase with PF-3845 reduced inducible nitric oxide synthase-expressing microglia following traumatic brain injury. However, this describes cannabinoid modulation following physical injury, and therefore the present study aimed to examine the effects of PF-3845 in the modulation of nitrergic and inflammatory-related genes within the hippocampus after acute stress exposure. METHODS Following vehicle or PF-3845 injections (5 mg/kg; i.p.), male Wistar rats were exposed to 0 (control), 60, 240, or 360 minutes of restraint stress after which plasma and dorsal hippocampus were isolated for further biochemical and gene expression analysis. RESULTS The results demonstrate that pretreatment with PF-3845 rapidly ameliorates plasma corticosterone release at 60 minutes of stress. An increase in endocannabinoid signalling also induces an overall attenuation in inducible nitric oxide synthase, tumor necrosis factor-alpha convertase, interleukin-6, cyclooxygenase-2, peroxisome proliferator-activated receptor gamma mRNA, and the transactivation potential of nuclear factor kappa-light-chain-enhancer of activated B cells in the hippocampus. CONCLUSIONS These results suggest that enhanced endocannabinoid levels in the dorsal hippocampus have an overall antinitrosative and antiinflammatory effect following acute stress exposure.
Collapse
Affiliation(s)
- Hsiao-Jou Cortina Chen
- School of Biomedical Sciences, The University of Queensland, St Lucia, Australia,Correspondence: Hsiao-Jou Cortina Chen, PhD, School of Biomedical Sciences, The University of Queensland, St Lucia, 4072, Australia ()
| | - Jereme G Spiers
- MRC Toxicology Unit, University of Leicester, Leicester, United Kingdom
| | - Conrad Sernia
- School of Biomedical Sciences, The University of Queensland, St Lucia, Australia
| | - Nickolas A Lavidis
- School of Biomedical Sciences, The University of Queensland, St Lucia, Australia
| |
Collapse
|
107
|
Hamilton J, Marion M, Figueiredo A, Clavin BH, Deutsch D, Kaczocha M, Haj-Dahmane S, Thanos PK. Fatty acid binding protein deletion prevents stress-induced preference for cocaine and dampens stress-induced corticosterone levels. Synapse 2018; 72:e22031. [PMID: 29457656 DOI: 10.1002/syn.22031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 01/09/2018] [Accepted: 01/31/2018] [Indexed: 01/10/2023]
Abstract
Genetic and pharmacological manipulation of endocannabinoid (eCB) signaling has previously been shown to have an important role on the rewarding properties of drugs of abuse, including cocaine. Recently, fatty acid binding proteins (FABPs) have been proposed as intracellular transporters of the endocannabinoid anandamide (AEA) as well as other bioactive lipids to their catabolic enzyme, fatty acid amide hydrolase (FAAH). The role of these transporters in modulating the brains reward system has yet to be investigated. This study examined the effects of genetic deletion of FABP 5/7 on cocaine preference, as assessed by the Conditioned Place Preference (CPP) paradigm. Male and female wild type (WT) and FABP 5/7 KO mice showed similar acquisition of cocaine CPP, with no differences found in overall locomotor activity. In addition, while male and female WT mice showed stress-induced CPP for cocaine, male and female FABP 5/7 KO mice failed to show a stress-induced preference for the cocaine-paired chamber. Additionally, serum corticosterone levels were analyzed to explore any potential differences in stress response that may be responsible for the lack of stress-induced preference for cocaine. Serum samples were obtained in animals under basal conditions as well as following a 30-min tube restraint stress. Male and female FABP 5/7 KO mice showed reduced corticosterone levels under stress compared to their WT counterparts. The reduction in corticosterone response under stress may mediate that lack of a stress-induced preference for cocaine in the FABP 5/7 KO mice. Thus, the role of FABPs may play an important role in drug-seeking behavior under stressful conditions.
Collapse
Affiliation(s)
- John Hamilton
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Research Institute on Addictions, University at Buffalo, Buffalo, New York
| | - Matthew Marion
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Research Institute on Addictions, University at Buffalo, Buffalo, New York
| | - Antonio Figueiredo
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Research Institute on Addictions, University at Buffalo, Buffalo, New York
| | - Brendan H Clavin
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Research Institute on Addictions, University at Buffalo, Buffalo, New York
| | - Dale Deutsch
- Department of Biochemistry, Stony Brook University, Stony Brook, New York
| | - Martin Kaczocha
- Department of Anesthesiology, Stony Brook University, Stony Brook, New York
| | - Samir Haj-Dahmane
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Research Institute on Addictions, University at Buffalo, Buffalo, New York
| | - Panayotis K Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Research Institute on Addictions, University at Buffalo, Buffalo, New York
| |
Collapse
|
108
|
Meyer HC, Lee FS, Gee DG. The Role of the Endocannabinoid System and Genetic Variation in Adolescent Brain Development. Neuropsychopharmacology 2018; 43:21-33. [PMID: 28685756 PMCID: PMC5719094 DOI: 10.1038/npp.2017.143] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 05/17/2017] [Accepted: 06/23/2017] [Indexed: 12/19/2022]
Abstract
During adolescence, both rodent and human studies have revealed dynamic changes in the developmental trajectories of corticolimbic structures, which are known to contribute to the regulation of fear and anxiety-related behaviors. The endocannabinoid (eCB) system critically regulates stress responsivity and anxiety throughout the life span. Emerging evidence suggests that during adolescence, changes in eCB signaling contribute to the maturation of local and corticolimbic circuit populations of neurons, such as mediating the balance between excitatory and inhibitory neurotransmission within the prefrontal cortex. This function of the eCB system facilitates efficient communication within and between brain regions and serves a central role in establishing complex and adaptive cognitive and behavioral processing. Although these peri-adolescent changes in eCB signaling promote brain development and plasticity, they also render this period a particularly sensitive one for environmental perturbations to these normative fluctuations in eCB signaling, such as stress, potentially leading to altered developmental trajectories of neural circuits governing emotional behaviors. In this review, we focus on the role of eCB signaling on the regulation of stress and anxiety-related behaviors both during and after adolescence. Moreover, we discuss the functional implications of human genetic variation in the eCB system for the risk for anxiety and consequences of stress across development and into adulthood.
Collapse
Affiliation(s)
- Heidi C Meyer
- Department of Psychiatry, Weill Cornell Medical College, New York, NY, USA
| | - Francis S Lee
- Department of Psychiatry, Weill Cornell Medical College, New York, NY, USA
- Sackler Institute for Developmental Psychobiology, Weill Cornell Medical College, New York, NY, USA
| | - Dylan G Gee
- Department of Psychology, Yale University, New Haven, CT, USA
| |
Collapse
|
109
|
Integrating Endocannabinoid Signaling and Cannabinoids into the Biology and Treatment of Posttraumatic Stress Disorder. Neuropsychopharmacology 2018; 43:80-102. [PMID: 28745306 PMCID: PMC5719095 DOI: 10.1038/npp.2017.162] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/17/2017] [Accepted: 07/20/2017] [Indexed: 01/21/2023]
Abstract
Exposure to stress is an undeniable, but in most cases surmountable, part of life. However, in certain individuals, exposure to severe or cumulative stressors can lead to an array of pathological conditions including posttraumatic stress disorder (PTSD), characterized by debilitating trauma-related intrusive thoughts, avoidance behaviors, hyperarousal, as well as depressed mood and anxiety. In the context of the rapidly changing political and legal landscape surrounding use of cannabis products in the USA, there has been a surge of public and research interest in the role of cannabinoids in the regulation of stress-related biological processes and in their potential therapeutic application for stress-related psychopathology. Here we review the current state of knowledge regarding the effects of cannabis and cannabinoids in PTSD and the preclinical and clinical literature on the effects of cannabinoids and endogenous cannabinoid signaling systems in the regulation of biological processes related to the pathogenesis of PTSD. Potential therapeutic implications of the reviewed literature are also discussed. Finally, we propose that a state of endocannabinoid deficiency could represent a stress susceptibility endophenotype predisposing to the development of trauma-related psychopathology and provide biologically plausible support for the self-medication hypotheses used to explain high rates of cannabis use in patients with trauma-related disorders.
Collapse
|
110
|
Dal Lin C, Marinova M, Rubino G, Gola E, Brocca A, Pantano G, Brugnolo L, Sarais C, Cucchini U, Volpe B, Cavalli C, Bellio M, Fiorello E, Scali S, Plebani M, Iliceto S, Tona F. Thoughts modulate the expression of inflammatory genes and may improve the coronary blood flow in patients after a myocardial infarction. J Tradit Complement Med 2018; 8:150-163. [PMID: 29322004 PMCID: PMC5755999 DOI: 10.1016/j.jtcme.2017.04.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Mental stress is one of the main risk factors for cardiovascular disease. Meditation and music listening are two techniques that are able to counteract it through the activation of specific brain areas, eliciting the so-called Relaxing Response (RR). Epidemiological evidence reveals that the RR practice has a beneficial prognostic impact on patients after myocardial infarction. We aimed to study the possible molecular mechanisms of RR underlying these findings. METHODS We enrolled 30 consecutive patients after myocardial infarction and 10 healthy controls. 10 patients were taught to meditate, 10 to appreciate music and 10 did not carry out any intervention and served as controls. After training, and after 60 days of RR practice, we studied the individual variations, before and after the relaxation sessions, of the vital signs, the electrocardiographic and echocardiographic parameters along with coronary flow reserve (CFR) and the carotid's intima media thickness (IMT). Neuro-endocrine-immune (NEI) messengers and the expression of inflammatory genes (p53, Nuclear factor Kappa B (NfKB), and toll like receptor 4 (TLR4)) in circulating peripheral blood mononuclear cells were also all observed. RESULTS The RR results in a reduction of NEI molecules (p < 0.05) and oxidative stress (p < 0.001). The expression of the genes p53, NFkB and TLR4 is reduced after the RR and also at 60 days (p < 0.001). The CFR increases with the relaxation (p < 0.001) and the IMT regressed significantly (p < 0.001) after 6 months of RR practice. CONCLUSIONS The RR helps to advantageously modulate the expression of inflammatory genes through a cascade of NEI messengers improving, over time, microvascular function and the arteriosclerotic process.
Collapse
Affiliation(s)
- Carlo Dal Lin
- Department of Cardiac, Thoracic and Vascular Sciences, Padua University-Hospital, Via Giustiniani 2, 35100 Padua, Italy
| | - Mariela Marinova
- Department of Laboratory Medicine, University-Hospital, Via Giustiniani 2, 35100 Padua, Italy
| | - Giorgio Rubino
- Department of Cardiac, Thoracic and Vascular Sciences, Padua University-Hospital, Via Giustiniani 2, 35100 Padua, Italy
| | - Elisabetta Gola
- Department of Medicine, University-Hospital, Via Giustiniani 2, 35100 Padua, Italy
| | - Alessandra Brocca
- Department of Medicine, University-Hospital, Via Giustiniani 2, 35100 Padua, Italy
| | - Giorgia Pantano
- Department of Laboratory Medicine, University-Hospital, Via Giustiniani 2, 35100 Padua, Italy
| | - Laura Brugnolo
- Department of Laboratory Medicine, University-Hospital, Via Giustiniani 2, 35100 Padua, Italy
| | - Cristiano Sarais
- Department of Cardiac, Thoracic and Vascular Sciences, Padua University-Hospital, Via Giustiniani 2, 35100 Padua, Italy
| | - Umberto Cucchini
- Department of Cardiac, Thoracic and Vascular Sciences, Padua University-Hospital, Via Giustiniani 2, 35100 Padua, Italy
| | - Biancarosa Volpe
- Clinical Psychology, Department of Cardiac, Thoracic and Vascular Sciences, University-Hospital, Via Giustiniani 2, 35100 Padua, Italy
| | - Chiara Cavalli
- Clinical Psychology, Department of Cardiac, Thoracic and Vascular Sciences, University-Hospital, Via Giustiniani 2, 35100 Padua, Italy
| | - Maura Bellio
- Clinical Psychology, Department of Cardiac, Thoracic and Vascular Sciences, University-Hospital, Via Giustiniani 2, 35100 Padua, Italy
| | - Emilia Fiorello
- Clinical Psychology, Department of Cardiac, Thoracic and Vascular Sciences, University-Hospital, Via Giustiniani 2, 35100 Padua, Italy
| | - Sofia Scali
- Clinical Psychology, Department of Cardiac, Thoracic and Vascular Sciences, University-Hospital, Via Giustiniani 2, 35100 Padua, Italy
| | - Mario Plebani
- Department of Laboratory Medicine, University-Hospital, Via Giustiniani 2, 35100 Padua, Italy
| | - Sabino Iliceto
- Department of Cardiac, Thoracic and Vascular Sciences, Padua University-Hospital, Via Giustiniani 2, 35100 Padua, Italy
| | - Francesco Tona
- Department of Cardiac, Thoracic and Vascular Sciences, Padua University-Hospital, Via Giustiniani 2, 35100 Padua, Italy
| |
Collapse
|
111
|
Circulating Endocannabinoids: From Whence Do They Come and Where are They Going? Neuropsychopharmacology 2018; 43:155-172. [PMID: 28653665 PMCID: PMC5719092 DOI: 10.1038/npp.2017.130] [Citation(s) in RCA: 288] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/29/2017] [Accepted: 06/09/2017] [Indexed: 12/15/2022]
Abstract
The goal of this review is to summarize studies in which concentrations of circulating endocannabinoids in humans have been examined in relationship to physiological measurements and pathological status. The roles of endocannabinoids in the regulation of energy intake and storage have been well studied and the data obtained consistently support the hypothesis that endocannabinoid signaling is associated with increased consumption and storage of energy. Physical exercise mobilizes endocannabinoids, which could contribute to refilling of energy stores and also to the analgesic and mood-elevating effects of exercise. Circulating concentrations of 2-arachidonoylglycerol are very significantly circadian and dysregulated when sleep is disrupted. Other conditions under which circulating endocannabinoids are altered include inflammation and pain. A second important role for endocannabinoid signaling is to restore homeostasis following stress. Circulating endocannabinoids are stress-responsive and there is evidence that their concentrations are altered in disorders associated with excessive stress, including post-traumatic stress disorder. Although determination of circulating endocannabinoids can provide important information about the state of endocannabinoid signaling and thus allow for hypotheses to be defined and tested, the large number of physiological factors that contribute to their circulating concentrations makes it difficult to use them in isolation as a biomarker for a specific disorder.
Collapse
|
112
|
Balsevich G, Petrie GN, Hill MN. Endocannabinoids: Effectors of glucocorticoid signaling. Front Neuroendocrinol 2017; 47:86-108. [PMID: 28739508 DOI: 10.1016/j.yfrne.2017.07.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/17/2017] [Accepted: 07/19/2017] [Indexed: 01/17/2023]
Abstract
For decades, there has been speculation regarding the interaction of cannabinoids with glucocorticoid systems. Given the functional redundancy between many of the physiological effects of glucocorticoids and cannabinoids, it was originally speculated that the biological mechanisms of cannabinoids were mediated by direct interactions with glucocorticoid systems. With the discovery of the endocannabinoid system, additional research demonstrated that it was actually the opposite; glucocorticoids recruit endocannabinoid signaling, and that the engagement of endocannabinoid signaling mediated many of the neurobiological and physiological effects of glucocorticoids. With the development of advances in pharmacology and genetics, significant advances in this area have been made, and it is now clear that functional interactions between these systems are critical for a wide array of physiological processes. The current review acts a comprehensive summary of the contemporary state of knowledge regarding the biological interactions between glucocorticoids and endocannabinoids, and their potential role in health and disease.
Collapse
Affiliation(s)
- Georgia Balsevich
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Gavin N Petrie
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Matthew N Hill
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB, Canada; Departments of Cell Biology and Anatomy and Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
113
|
Bedse G, Hartley ND, Neale E, Gaulden A, Patrick T, Kingsley P, Uddin MJ, Plath N, Marnett LJ, Patel S. Functional Redundancy Between Canonical Endocannabinoid Signaling Systems in the Modulation of Anxiety. Biol Psychiatry 2017; 82:488-499. [PMID: 28438413 PMCID: PMC5585044 DOI: 10.1016/j.biopsych.2017.03.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/13/2017] [Accepted: 03/06/2017] [Indexed: 01/22/2023]
Abstract
BACKGROUND Increasing the available repertoire of effective treatments for mood and anxiety disorders represents a critical unmet need. Pharmacological augmentation of endogenous cannabinoid (eCB) signaling has been suggested to represent a novel approach to the treatment of anxiety disorders; however, the functional interactions between two canonical eCB pathways mediated via anandamide (N-arachidonylethanolamine [AEA]) and 2-arachidonoylglycerol (2-AG) in the regulation of anxiety are not well understood. METHODS We utilized pharmacological augmentation and depletion combined with behavioral and electrophysiological approaches to probe the role of 2-AG signaling in the modulation of stress-induced anxiety and the functional redundancy between AEA and 2-AG signaling in the modulation of anxiety-like behaviors in mice. RESULTS Selective 2-AG augmentation reduced anxiety in the light/dark box assay and prevented stress-induced increases in anxiety associated with limbic AEA deficiency. In contrast, acute 2-AG depletion increased anxiety-like behaviors, which was normalized by selective pharmacological augmentation of AEA signaling and via direct cannabinoid receptor 1 stimulation with Δ9-tetrahydrocannabinol. Electrophysiological studies revealed 2-AG modulation of amygdala glutamatergic transmission as a key synaptic correlate of the anxiolytic effects of 2-AG augmentation. CONCLUSIONS Although AEA and 2-AG likely subserve distinct physiological roles, a pharmacological and functional redundancy between these canonical eCB signaling pathways exists in the modulation of anxiety-like behaviors. These data support development of eCB-based treatment approaches for mood and anxiety disorders and suggest a potentially wider therapeutic overlap between AEA and 2-AG augmentation approaches than was previously appreciated.
Collapse
Affiliation(s)
- Gaurav Bedse
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nolan D. Hartley
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA,Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Emily Neale
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Andrew Gaulden
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Toni Patrick
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Philip Kingsley
- Departments of Biochemistry, Chemistry, and Pharmacology, A.B. Hancock Jr. Memorial Laboratory for Cancer Research, Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Md. Jashim Uddin
- Departments of Biochemistry, Chemistry, and Pharmacology, A.B. Hancock Jr. Memorial Laboratory for Cancer Research, Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | - Lawrence J. Marnett
- Departments of Biochemistry, Chemistry, and Pharmacology, A.B. Hancock Jr. Memorial Laboratory for Cancer Research, Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Sachin Patel
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee.
| |
Collapse
|
114
|
Aisenberg N, Serova L, Sabban EL, Akirav I. The effects of enhancing endocannabinoid signaling and blocking corticotrophin releasing factor receptor in the amygdala and hippocampus on the consolidation of a stressful event. Eur Neuropsychopharmacol 2017; 27:913-927. [PMID: 28663121 DOI: 10.1016/j.euroneuro.2017.06.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 04/20/2017] [Accepted: 06/10/2017] [Indexed: 11/18/2022]
Abstract
Current clinical and pre-clinical data suggest that both cannabinoid agents and blockage of CRF through corticotrophin releasing factor receptor type 1 (CRFr1) may offer therapeutic benefits for post-traumatic stress disorder (PTSD). Here we aim to determine whether they are more effective when combined when microinjected into the basolateral amygdala (BLA) or CA1 area of the hippocampus after exposure to a stressful event in the shock/reminders rat model for PTSD. Injection of the fatty acid amide hydrolase (FAAH) inhibitor URB597 after the shock into either the BLA or CA1 facilitated extinction, and attenuated startle response and anxiety-like behavior. These preventive effects of URB597 were found to be mediated by the CB1 receptor. Intra-BLA and intra-CA1 microinjection of the CRFr1 antagonist, CP-154,526 attenuated startle response. When microinjected into the BLA, CP-154,526 also attenuated freezing behavior during exposure to the first reminder and decreased anxiety-like behavior. The combined treatment of URB597 and CP-154,526 was not more effective than the separate treatments. Finally, mRNA levels of CRF, CRFr1 and CB1r were significantly higher in the BLA of rats exposed to shock and reminders compared to non-shocked rats almost one month after the shock. Taken together, the results show that enhancing endocannabinoid signaling in the amygdala and hippocampus produced a more favorable spectrum of effects than those caused by the CRFr1 antagonist. The findings suggest that FAAH inhibitors may be used as a novel treatment for stress-related anxiety disorders.
Collapse
MESH Headings
- Amidohydrolases/antagonists & inhibitors
- Amidohydrolases/metabolism
- Animals
- Anxiety/drug therapy
- Anxiety/metabolism
- Basolateral Nuclear Complex/drug effects
- Basolateral Nuclear Complex/metabolism
- Benzamides/pharmacology
- CA1 Region, Hippocampal/drug effects
- CA1 Region, Hippocampal/metabolism
- Carbamates/pharmacology
- Disease Models, Animal
- Endocannabinoids/metabolism
- Male
- Memory Consolidation/drug effects
- Memory Consolidation/physiology
- Nootropic Agents/pharmacology
- Pyrimidines/pharmacology
- Pyrroles/pharmacology
- RNA, Messenger/metabolism
- Rats, Sprague-Dawley
- Receptor, Cannabinoid, CB1/metabolism
- Receptors, Corticotropin-Releasing Hormone/antagonists & inhibitors
- Receptors, Corticotropin-Releasing Hormone/metabolism
- Reflex, Startle/drug effects
- Reflex, Startle/physiology
- Stress Disorders, Post-Traumatic/drug therapy
- Stress Disorders, Post-Traumatic/metabolism
- Stress, Psychological/drug therapy
- Stress, Psychological/metabolism
Collapse
Affiliation(s)
- Nurit Aisenberg
- Department of Psychology, University of Haifa, Haifa 3498838, Israel
| | - Lidia Serova
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | - Esther L Sabban
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | - Irit Akirav
- Department of Psychology, University of Haifa, Haifa 3498838, Israel.
| |
Collapse
|
115
|
Shoshan N, Akirav I. The effects of cannabinoid receptors activation and glucocorticoid receptors deactivation in the amygdala and hippocampus on the consolidation of a traumatic event. Neurobiol Learn Mem 2017; 144:248-258. [PMID: 28818702 DOI: 10.1016/j.nlm.2017.08.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 08/10/2017] [Accepted: 08/13/2017] [Indexed: 12/26/2022]
Abstract
Ample evidence demonstrates that fear learning contributes significantly to many anxiety pathologies including post-traumatic stress disorder (PTSD). The endocannabinoid (eCB) system may offer therapeutic benefits for PTSD and it is a modulator of the hypothalamic pituitary adrenal (HPA) axis. Here we compared the separated and combined effects of blocking glucocorticoid receptors (GRs) using the GR antagonist RU486 and enhancing CB1r signaling using the CB1/2 receptor agonist WIN55,212-2 in the CA1 and basolateral amygdala (BLA) on the consolidation of traumatic memory. Traumatic memory was formed by exposure to a severe footshock in an inhibitory avoidance apparatus followed by exposure to trauma reminders. Intra-BLA RU486 (10ng/side) and WIN55,212-2 (5μg/side) administered immediately after shock exposure dampened the consolidation of the memory about the traumatic event and attenuated the increase in acoustic startle response in rats exposed to shock and reminders. In the CA1, WIN55,212-2 impaired consolidation and attenuated the increase in acoustic startle response whereas RU486 had no effect. The effects of WIN55,212-2 were found to be mediated by CB1 receptors, but not by GRs. Moreover, post-shock systemic WIN55,212-2 (0.5mg/kg) administration prevented the increase in GRs and CB1 receptor levels in the CA1 and BLA in rats exposed to shock and reminders. The findings suggest that the BLA is a locus of action of cannabinoids and glucocorticoids in modulating consolidation of traumatic memory in a rat model of PTSD. Also, the findings highlight novel targets for the treatment of emotional disorders and PTSD in particular.
Collapse
Affiliation(s)
- Noa Shoshan
- Department of Psychology, University of Haifa, Haifa 3498838, Israel
| | - Irit Akirav
- Department of Psychology, University of Haifa, Haifa 3498838, Israel.
| |
Collapse
|
116
|
Role of beta-catenin and endocannabinoids in the nucleus accumbens in extinction in rats exposed to shock and reminders. Neuroscience 2017. [DOI: 10.1016/j.neuroscience.2017.06.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
117
|
Acute Stress Suppresses Synaptic Inhibition and Increases Anxiety via Endocannabinoid Release in the Basolateral Amygdala. J Neurosci 2017; 36:8461-70. [PMID: 27511017 DOI: 10.1523/jneurosci.2279-15.2016] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 06/25/2016] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED Stress and glucocorticoids stimulate the rapid mobilization of endocannabinoids in the basolateral amygdala (BLA). Cannabinoid receptors in the BLA contribute to anxiogenesis and fear-memory formation. We tested for rapid glucocorticoid-induced endocannabinoid regulation of synaptic inhibition in the rat BLA. Glucocorticoid application to amygdala slices elicited a rapid, nonreversible suppression of spontaneous, but not evoked, GABAergic synaptic currents in BLA principal neurons; the effect was also seen with a membrane-impermeant glucocorticoid, but not with intracellular glucocorticoid application, implicating a membrane-associated glucocorticoid receptor. The glucocorticoid suppression of GABA currents was not blocked by antagonists of nuclear corticosteroid receptors, or by inhibitors of gene transcription or protein synthesis, but was blocked by inhibiting postsynaptic G-protein activity, suggesting a postsynaptic nongenomic steroid signaling mechanism that stimulates the release of a retrograde messenger. The rapid glucocorticoid-induced suppression of inhibition was prevented by blocking CB1 receptors and 2-arachidonoylglycerol (2-AG) synthesis, and it was mimicked and occluded by CB1 receptor agonists, indicating it was mediated by the retrograde release of the endocannabinoid 2-AG. The rapid glucocorticoid effect in BLA neurons in vitro was occluded by prior in vivo acute stress-induced, or prior in vitro glucocorticoid-induced, release of endocannabinoid. Acute stress also caused an increase in anxiety-like behavior that was attenuated by blocking CB1 receptor activation and inhibiting 2-AG synthesis in the BLA. Together, these findings suggest that acute stress causes a long-lasting suppression of synaptic inhibition in BLA neurons via a membrane glucocorticoid receptor-induced release of 2-AG at GABA synapses, which contributes to stress-induced anxiogenesis. SIGNIFICANCE STATEMENT We provide a cellular mechanism in the basolateral amygdala (BLA) for the rapid stress regulation of anxiogenesis in rats. We demonstrate a nongenomic glucocorticoid induction of long-lasting suppression of synaptic inhibition that is mediated by retrograde endocannabinoid release at GABA synapses. The rapid glucocorticoid-induced endocannabinoid suppression of synaptic inhibition is initiated by a membrane-associated glucocorticoid receptor in BLA principal neurons. We show that acute stress increases anxiety-like behavior via an endocannabinoid-dependent mechanism centered in the BLA. The stress-induced endocannabinoid modulation of synaptic transmission in the BLA contributes, therefore, to the stress regulation of anxiety, and may play a role in anxiety disorders of the amygdala.
Collapse
|
118
|
Shoshan N, Segev A, Abush H, Mizrachi Zer-Aviv T, Akirav I. Cannabinoids prevent the differential long-term effects of exposure to severe stress on hippocampal- and amygdala-dependent memory and plasticity. Hippocampus 2017; 27:1093-1109. [DOI: 10.1002/hipo.22755] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 05/22/2017] [Accepted: 06/20/2017] [Indexed: 11/05/2022]
Affiliation(s)
- Noa Shoshan
- Department of Psychology; University of Haifa; Haifa 3498838 Israel
| | - Amir Segev
- Department of Psychology; University of Haifa; Haifa 3498838 Israel
| | - Hila Abush
- Department of Psychology; University of Haifa; Haifa 3498838 Israel
| | | | - Irit Akirav
- Department of Psychology; University of Haifa; Haifa 3498838 Israel
| |
Collapse
|
119
|
Silveira MM, Arnold JC, Laviolette SR, Hillard CJ, Celorrio M, Aymerich MS, Adams WK. Seeing through the smoke: Human and animal studies of cannabis use and endocannabinoid signalling in corticolimbic networks. Neurosci Biobehav Rev 2017; 76:380-395. [PMID: 27639448 PMCID: PMC5350061 DOI: 10.1016/j.neubiorev.2016.09.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 08/02/2016] [Accepted: 09/13/2016] [Indexed: 02/07/2023]
Abstract
Public opinion surrounding the recreational use and therapeutic potential of cannabis is shifting. This review describes new work examining the behavioural and neural effects of cannabis and the endocannabinoid system, highlighting key regions within corticolimbic brain circuits. First, we consider the role of human genetic factors and cannabis strain chemotypic differences in contributing to interindividual variation in the response to cannabinoids, such as THC, and review studies demonstrating that THC-induced impairments in decision-making processes are mediated by actions at prefrontal CB1 receptors. We further describe evidence that signalling through prefrontal or ventral hippocampal CB1 receptors modulates mesolimbic dopamine activity, aberrations of which may contribute to emotional processing deficits in schizophrenia. Lastly, we review studies suggesting that endocannabinoid tone in the amygdala is a critical regulator of anxiety, and report new data showing that FAAH activity is integral to this response. Together, these findings underscore the importance of cannabinoid signalling in the regulation of cognitive and affective behaviours, and encourage further research given their social, political, and therapeutic implications.
Collapse
Affiliation(s)
- Mason M Silveira
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
| | - Jonathon C Arnold
- The Brain and Mind Centre and Discipline of Pharmacology, University of Sydney, Sydney, NSW, Australia
| | - Steven R Laviolette
- Addiction Research Group and Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Cecilia J Hillard
- Department of Pharmacology and Toxicology, Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Marta Celorrio
- Program of Neurosciences, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona 31008, Spain; Department of Biochemistry and Genetics, School of Science, University of Navarra, Pamplona 31008, Spain
| | - María S Aymerich
- Program of Neurosciences, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona 31008, Spain; Department of Biochemistry and Genetics, School of Science, University of Navarra, Pamplona 31008, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona 31008, Spain
| | - Wendy K Adams
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
120
|
Bluett RJ, Báldi R, Haymer A, Gaulden AD, Hartley ND, Parrish WP, Baechle J, Marcus DJ, Mardam-Bey R, Shonesy BC, Uddin MJ, Marnett LJ, Mackie K, Colbran RJ, Winder DG, Patel S. Endocannabinoid signalling modulates susceptibility to traumatic stress exposure. Nat Commun 2017; 8:14782. [PMID: 28348378 PMCID: PMC5379055 DOI: 10.1038/ncomms14782] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 02/02/2017] [Indexed: 12/21/2022] Open
Abstract
Stress is a ubiquitous risk factor for the exacerbation and development of affective disorders including major depression and posttraumatic stress disorder. Understanding the neurobiological mechanisms conferring resilience to the adverse consequences of stress could have broad implications for the treatment and prevention of mood and anxiety disorders. We utilize laboratory mice and their innate inter-individual differences in stress-susceptibility to demonstrate a critical role for the endogenous cannabinoid 2-arachidonoylglycerol (2-AG) in stress-resilience. Specifically, systemic 2-AG augmentation is associated with a stress-resilient phenotype and enhances resilience in previously susceptible mice, while systemic 2-AG depletion or CB1 receptor blockade increases susceptibility in previously resilient mice. Moreover, stress-resilience is associated with increased phasic 2-AG-mediated synaptic suppression at ventral hippocampal-amygdala glutamatergic synapses and amygdala-specific 2-AG depletion impairs successful adaptation to repeated stress. These data indicate amygdala 2-AG signalling mechanisms promote resilience to adverse effects of acute traumatic stress and facilitate adaptation to repeated stress exposure.
Collapse
Affiliation(s)
- Rebecca J. Bluett
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
- The Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Rita Báldi
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Andre Haymer
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Andrew D. Gaulden
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Nolan D. Hartley
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
- The Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Walker P. Parrish
- Department of Molecular Physiology & Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Jordan Baechle
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - David J. Marcus
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
- The Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Ramzi Mardam-Bey
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Brian C. Shonesy
- Department of Molecular Physiology & Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Md. Jashim Uddin
- A.B. Hancock Jr. Memorial Laboratory for Cancer Research and Vanderbilt Institute of Chemical Biology, Nashville, Tennessee 37232, USA
| | - Lawrence J. Marnett
- A.B. Hancock Jr. Memorial Laboratory for Cancer Research and Vanderbilt Institute of Chemical Biology, Nashville, Tennessee 37232, USA
- Departments of Biochemistry, Chemistry and Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Ken Mackie
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana 47405, USA
| | - Roger J. Colbran
- The Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
- Department of Molecular Physiology & Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
- Vanderbilt Kennedy Center for Human Development, Nashville, Tennessee 37232, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Danny G. Winder
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
- The Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
- Department of Molecular Physiology & Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
- Vanderbilt Kennedy Center for Human Development, Nashville, Tennessee 37232, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Sachin Patel
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
- The Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
- Department of Molecular Physiology & Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
- Vanderbilt Kennedy Center for Human Development, Nashville, Tennessee 37232, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee 37232, USA
| |
Collapse
|
121
|
Strewe C, Zeller R, Feuerecker M, Hoerl M, Kumprej I, Crispin A, Johannes B, Debevec T, Mekjavic I, Schelling G, Choukèr A. PlanHab study: assessment of psycho-neuroendocrine function in male subjects during 21 d of normobaric hypoxia and bed rest. Stress 2017; 20:131-139. [PMID: 28166699 DOI: 10.1080/10253890.2017.1292246] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Immobilization and hypoxemia are conditions often seen in patients suffering from severe heart insufficiency or primary pulmonary diseases (e.g. fibrosis, emphysema). In future planned long-duration and exploration class space missions (including habitats on the moon and Mars), healthy individuals will encounter such a combination of reduced physical activity and oxygen tension by way of technical reasons and the reduced gravitational forces. These overall unconventional extraterrestrial conditions can result in yet unknown consequences for the regulation of stress-permissive, psycho-neuroendocrine responses, which warrant appropriate measures in order to mitigate foreseeable risks. The Planetary Habitat Simulation Study (PlanHab) investigated these two space-related conditions: bed rest as model of reduced gravity and normobaric hypoxia, with the aim of examining their influence on psycho-neuroendocrine responses. We hypothesized that both conditions independently increase measures of psychological stress and enhance neuroendocrine markers of stress, and that these effects would be exacerbated by combined treatment. The cross-over study composed of three interventions (NBR, normobaric normoxic horizontal bed rest; HBR, normobaric hypoxic horizontal bed rest; HAMB, normobaric hypoxic ambulatory confinement) with 14 male subjects during three sequential campaigns separated by 4 months. The psychological state was determined through three questionnaires and principal neuroendocrine responses were evaluated by measuring cortisol in saliva, catecholamine in urine, and endocannabinoids in blood. The results revealed no effects after 3 weeks of normobaric hypoxia on psycho-neuroendocrine responses. Conversely, bed rest induced neuroendocrine alterations that were not influenced by hypoxia.
Collapse
Affiliation(s)
- C Strewe
- a Department of Anaesthesiology , Klinikum Großhadern, University of Munich, Stress and Immunology Lab , Munich , Germany
| | - R Zeller
- a Department of Anaesthesiology , Klinikum Großhadern, University of Munich, Stress and Immunology Lab , Munich , Germany
| | - M Feuerecker
- a Department of Anaesthesiology , Klinikum Großhadern, University of Munich, Stress and Immunology Lab , Munich , Germany
| | - M Hoerl
- a Department of Anaesthesiology , Klinikum Großhadern, University of Munich, Stress and Immunology Lab , Munich , Germany
| | - I Kumprej
- a Department of Anaesthesiology , Klinikum Großhadern, University of Munich, Stress and Immunology Lab , Munich , Germany
- b Department of Automation, Biocybernetics and Robotics , Jozef Stefan Institute , Ljubljana , Slovenia
| | - A Crispin
- c Department of Biometry and Epidemiology, Klinikum Großhadern , University of Munich , Munich , Germany
| | - B Johannes
- d Department of Space Physiology , Institute of Aerospace Medicine, German Aerospace Center (DLR) , Cologne , Germany
| | - T Debevec
- b Department of Automation, Biocybernetics and Robotics , Jozef Stefan Institute , Ljubljana , Slovenia
| | - I Mekjavic
- b Department of Automation, Biocybernetics and Robotics , Jozef Stefan Institute , Ljubljana , Slovenia
| | - G Schelling
- a Department of Anaesthesiology , Klinikum Großhadern, University of Munich, Stress and Immunology Lab , Munich , Germany
| | - A Choukèr
- a Department of Anaesthesiology , Klinikum Großhadern, University of Munich, Stress and Immunology Lab , Munich , Germany
| |
Collapse
|
122
|
Endocannabinoid signaling and memory dynamics: A synaptic perspective. Neurobiol Learn Mem 2017; 138:62-77. [DOI: 10.1016/j.nlm.2016.07.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/21/2016] [Accepted: 07/29/2016] [Indexed: 01/26/2023]
|
123
|
Cacciaglia R, Nees F, Grimm O, Ridder S, Pohlack ST, Diener SJ, Liebscher C, Flor H. Trauma exposure relates to heightened stress, altered amygdala morphology and deficient extinction learning: Implications for psychopathology. Psychoneuroendocrinology 2017; 76:19-28. [PMID: 27871027 DOI: 10.1016/j.psyneuen.2016.11.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 11/06/2016] [Accepted: 11/10/2016] [Indexed: 12/13/2022]
Abstract
Stress exposure causes a structural reorganization in neurons of the amygdala. In particular, animal models have repeatedly shown that both acute and chronic stress induce neuronal hypertrophy and volumetric increase in the lateral and basolateral nuclei of amygdala. These effects are visible on the behavioral level, where stress enhances anxiety behaviors and provokes greater fear learning. We assessed stress and anxiety levels in a group of 18 healthy human trauma-exposed individuals (TR group) compared to 18 non-exposed matched controls (HC group), and related these measurements to amygdala volume. Traumas included unexpected adverse experiences such as vehicle accidents or sudden loss of a loved one. As a measure of aversive learning, we implemented a cued fear conditioning paradigm. Additionally, to provide a biological marker of chronic stress, we measured the sensitivity of the hypothalamus-pituitary-adrenal (HPA) axis using a dexamethasone suppression test. Compared to the HC, the TR group showed significantly higher levels of chronic stress, current stress and trait anxiety, as well as increased volume of the left amygdala. Specifically, we observed a focal enlargement in its lateral portion, in line with previous animal data. Compared to HC, the TR group also showed enhanced late acquisition of conditioned fear and deficient extinction learning, as well as salivary cortisol hypo-suppression to dexamethasone. Left amygdala volumes positively correlated with suppressed morning salivary cortisol. Our results indicate differences in trauma-exposed individuals which resemble those previously reported in animals exposed to stress and in patients with post-traumatic stress disorder and depression. These data provide new insights into the mechanisms through which traumatic stress might prompt vulnerability for psychopathology.
Collapse
Affiliation(s)
- Raffaele Cacciaglia
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany; Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Passeig de la vall d'Hebron 171, Barcelona, Catalonia, Spain.
| | - Frauke Nees
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
| | - Oliver Grimm
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital of Frankfurt, Frankfurt, Germany
| | - Stephanie Ridder
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
| | - Sebastian T Pohlack
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
| | - Slawomira J Diener
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
| | - Claudia Liebscher
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
| | - Herta Flor
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany.
| |
Collapse
|
124
|
Clarke DJ, Stuart J, McGregor IS, Arnold JC. Endocannabinoid dysregulation in cognitive and stress-related brain regions in the Nrg1 mouse model of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2017; 72:9-15. [PMID: 27521758 DOI: 10.1016/j.pnpbp.2016.08.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/09/2016] [Accepted: 08/09/2016] [Indexed: 02/06/2023]
Abstract
The endocannabinoid system is dysregulated in schizophrenia. Mice with heterozygous deletion of neuregulin 1 (Nrg1 HET mice) provide a well-characterised animal model of schizophrenia, and display enhanced sensitivity to stress and cannabinoids during adolescence. However, no study has yet determined whether these mice have altered brain endocannabinoid concentrations. Nrg1 application to hippocampal slices decreased 2-arachidonoylglycerol (2-AG) signalling and disrupted long-term depression, a form of synaptic plasticity critical to spatial learning. Therefore we specifically aimed to examine whether Nrg1 HET mice exhibit increased 2-AG concentrations and disruption of spatial learning. As chronic stress influences brain endocannabinoids, we also sought to examine whether Nrg1 deficiency moderates adolescent stress-induced alterations in brain endocannabinoids. Adolescent Nrg1 HET and wild-type (WT) mice were submitted to chronic restraint stress and brain endocannabinoid concentrations were analysed. A separate cohort of WT and Nrg1 HET mice was also assessed for spatial learning performance in the Morris Water Maze. Partial genetic deletion of Nrg1 increased anandamide concentrations in the amygdala and decreased 2-AG concentrations in the hypothalamus. Further, Nrg1 HET mice exhibited increased 2-AG concentrations in the hippocampus and impaired spatial learning performance. Chronic adolescent stress increased anandamide concentrations in the amygdala, however, Nrg1 disruption did not influence this stress-induced change. These results demonstrate for the first time in vivo interplay between Nrg1 and endocannabinoids in the brain. Our results demonstrate that aberrant Nrg1 and endocannabinoid signalling may cooperate in the hippocampus to impair cognition, and that Nrg1 deficiency alters endocannabinoid signalling in brain stress circuitry.
Collapse
Affiliation(s)
- David J Clarke
- Discipline of Pharmacology, School of Medical Science, University of Sydney, Sydney, Australia; Brain and Mind Centre, University of Sydney, Sydney, Australia
| | - Jordyn Stuart
- Lambert Initiative of Cannabinoid Therapeutics, University of Sydney, Sydney, Australia
| | - Iain S McGregor
- Lambert Initiative of Cannabinoid Therapeutics, University of Sydney, Sydney, Australia
| | - Jonathon C Arnold
- Discipline of Pharmacology, School of Medical Science, University of Sydney, Sydney, Australia; Brain and Mind Centre, University of Sydney, Sydney, Australia; Lambert Initiative of Cannabinoid Therapeutics, University of Sydney, Sydney, Australia.
| |
Collapse
|
125
|
|
126
|
Hillard CJ, Beatka M, Sarvaideo J. Endocannabinoid Signaling and the Hypothalamic-Pituitary-Adrenal Axis. Compr Physiol 2016; 7:1-15. [PMID: 28134998 DOI: 10.1002/cphy.c160005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The elucidation of Δ9-tetrahydrocannabinol as the active principal of Cannabis sativa in 1963 initiated a fruitful half-century of scientific discovery, culminating in the identification of the endocannabinoid signaling system, a previously unknown neuromodulatory system. A primary function of the endocannabinoid signaling system is to maintain or recover homeostasis following psychological and physiological threats. We provide a brief introduction to the endocannabinoid signaling system and its role in synaptic plasticity. The majority of the article is devoted to a summary of current knowledge regarding the role of endocannabinoid signaling as both a regulator of endocrine responses to stress and as an effector of glucocorticoid and corticotrophin-releasing hormone signaling in the brain. We summarize data demonstrating that cannabinoid receptor 1 (CB1R) signaling can both inhibit and potentiate the activation of the hypothalamic-pituitary-adrenal axis by stress. We present a hypothesis that the inhibitory arm has high endocannabinoid tone and also serves to enhance recovery to baseline following stress, while the potentiating arm is not tonically active but can be activated by exogenous agonists. We discuss recent findings that corticotropin-releasing hormone in the amygdala enables hypothalamic-pituitary-adrenal axis activation via an increase in the catabolism of the endocannabinoid N-arachidonylethanolamine. We review data supporting the hypotheses that CB1R activation is required for many glucocorticoid effects, particularly feedback inhibition of hypothalamic-pituitary-adrenal axis activation, and that glucocorticoids mobilize the endocannabinoid 2-arachidonoylglycerol. These features of endocannabinoid signaling make it a tantalizing therapeutic target for treatment of stress-related disorders but to date, this promise is largely unrealized. © 2017 American Physiological Society. Compr Physiol 7:1-15, 2017.
Collapse
Affiliation(s)
- Cecilia J Hillard
- Department of Pharmacology and Toxicology, and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Margaret Beatka
- Department of Pharmacology and Toxicology, and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jenna Sarvaideo
- Department of Medicine, and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
127
|
Morena M, Leitl KD, Vecchiarelli HA, Gray JM, Campolongo P, Hill MN. Emotional arousal state influences the ability of amygdalar endocannabinoid signaling to modulate anxiety. Neuropharmacology 2016; 111:59-69. [DOI: 10.1016/j.neuropharm.2016.08.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/26/2016] [Accepted: 08/16/2016] [Indexed: 01/04/2023]
|
128
|
Doenni VM, Gray JM, Song CM, Patel S, Hill MN, Pittman QJ. Deficient adolescent social behavior following early-life inflammation is ameliorated by augmentation of anandamide signaling. Brain Behav Immun 2016; 58:237-247. [PMID: 27453335 PMCID: PMC5461973 DOI: 10.1016/j.bbi.2016.07.152] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 07/15/2016] [Accepted: 07/20/2016] [Indexed: 11/18/2022] Open
Abstract
Early-life inflammation has been shown to exert profound effects on brain development and behavior, including altered emotional behavior, stress responsivity and neurochemical/neuropeptide receptor expression and function. The current study extends this research by examining the impact of inflammation, triggered with the bacterial compound lipopolysaccharide (LPS) on postnatal day (P) 14, on social behavior during adolescence. We investigated the role that the endocannabinoid (eCB) system plays in sociability after early-life LPS. To test this, multiple cohorts of Sprague Dawley rats were injected with LPS on P14. In adolescence, rats were subjected to behavioral testing in a reciprocal social interaction paradigm as well as the open field. We quantified eCB levels in the amygdala of P14 and adolescent animals (anandamide and 2-arachidonoylglycerol) as well as adolescent amygdaloid cannabinoid receptor 1 (CB1) binding site density and the hydrolytic activity of the enzyme fatty acid amide hydrolase (FAAH), which metabolizes the eCB anandamide. Additionally, we examined the impact of FAAH inhibition on alterations in social behavior. Our results indicate that P14 LPS decreases adolescent social behavior (play and social non-play) in males and females at P40. This behavioral alteration is accompanied by decreased CB1 binding, increased anandamide levels and increased FAAH activity. Oral administration of the FAAH inhibitor PF-04457845 (1mg/kg) prior to the social interaction task normalizes LPS-induced alterations in social behavior, while not affecting social behavior in the control group. Infusion of 10ng PF-04457845 into the basolateral amygdala normalized social behavior in LPS injected females. These data suggest that alterations in eCB signaling following postnatal inflammation contribute to impairments in social behavior during adolescence and that inhibition of FAAH could be a novel target for disorders involving social deficits such as social anxiety disorders or autism.
Collapse
Affiliation(s)
- V M Doenni
- Hotchkiss Brain Institute, Cumming School of Medicine, Mathison Center for Mental Health, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; Department of Neuroscience, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada.
| | - J M Gray
- Hotchkiss Brain Institute, Cumming School of Medicine, Mathison Center for Mental Health, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - C M Song
- Hotchkiss Brain Institute, Cumming School of Medicine, Mathison Center for Mental Health, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - S Patel
- Department of Psychiatry, Vanderbilt School of Medicine, Vanderbilt Brain Institute, Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, 1211 Medical Center Dr, Nashville, TN 37232, United States
| | - M N Hill
- Hotchkiss Brain Institute, Cumming School of Medicine, Mathison Center for Mental Health, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Q J Pittman
- Hotchkiss Brain Institute, Cumming School of Medicine, Mathison Center for Mental Health, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
129
|
Cannabinoids and post-traumatic stress disorder: clinical and preclinical evidence for treatment and prevention. Behav Pharmacol 2016; 27:561-9. [DOI: 10.1097/fbp.0000000000000253] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
130
|
Karhson DS, Hardan AY, Parker KJ. Endocannabinoid signaling in social functioning: an RDoC perspective. Transl Psychiatry 2016; 6:e905. [PMID: 27676446 PMCID: PMC5048207 DOI: 10.1038/tp.2016.169] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 07/18/2016] [Indexed: 12/25/2022] Open
Abstract
Core deficits in social functioning are associated with various neuropsychiatric and neurodevelopmental disorders, yet biomarker identification and the development of effective pharmacological interventions has been limited. Recent data suggest the intriguing possibility that endogenous cannabinoids, a class of lipid neuromodulators generally implicated in the regulation of neurotransmitter release, may contribute to species-typical social functioning. Systematic study of the endogenous cannabinoid signaling could, therefore, yield novel approaches to understand the neurobiological underpinnings of atypical social functioning. This article provides a critical review of the major components of the endogenous cannabinoid system (for example, primary receptors and effectors-Δ9-tetrahydrocannabinol, cannabidiol, anandamide and 2-arachidonoylglycerol) and the contributions of cannabinoid signaling to social functioning. Data are evaluated in the context of Research Domain Criteria constructs (for example, anxiety, chronic stress, reward learning, motivation, declarative and working memory, affiliation and attachment, and social communication) to enable interrogation of endogenous cannabinoid signaling in social functioning across diagnostic categories. The empirical evidence reviewed strongly supports the role for dysregulated cannabinoid signaling in the pathophysiology of social functioning deficits observed in brain disorders, such as autism spectrum disorder, schizophrenia, major depressive disorder, posttraumatic stress disorder and bipolar disorder. Moreover, these findings indicate that the endogenous cannabinoid system holds exceptional promise as a biological marker of, and potential treatment target for, neuropsychiatric and neurodevelopmental disorders characterized by impairments in social functioning.
Collapse
Affiliation(s)
- D S Karhson
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - A Y Hardan
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - K J Parker
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
131
|
Spagnolo PA, Ramchandani VA, Schwandt ML, Kwako LE, George DT, Mayo LM, Hillard CJ, Heilig M. FAAH Gene Variation Moderates Stress Response and Symptom Severity in Patients with Posttraumatic Stress Disorder and Comorbid Alcohol Dependence. Alcohol Clin Exp Res 2016; 40:2426-2434. [PMID: 27716956 DOI: 10.1111/acer.13210] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/30/2016] [Indexed: 11/29/2022]
Abstract
BACKGROUND A common single nucleotide polymorphism (C385A) in the human fatty acid amide hydrolase (FAAH) gene has been associated with decreased distress responses in healthy volunteers, but its role in psychiatric disorders remains unknown. Here, we obtained genotypes and carried out a secondary analysis of subjects from a trial of comorbid posttraumatic stress disorder (PTSD) and alcohol dependence (AD). We evaluated the effects of C385A variation on behavioral and biochemical biomarkers of distress responses. METHODS Forty-nine patients with PTSD and AD were admitted for 4 weeks to an experimental medicine unit at the National Institutes of Health Clinical Center. Following detoxification, stress reactivity and peripheral endocannabinoid (eCB) levels were assessed in response to a challenge session using personalized auditory guided imagery. Over the course of the study, subjects were also evaluated for changes in PTSD symptom severity. RESULTS FAAH C385A allele carriers showed a marked increase in serum anandamide levels at baseline and throughout the stress challenge procedure compared with C allele homozygotes, while levels of eCBs primarily metabolized through other enzymatic activity, such as 2-arachidonoylglycerol, did not differ between genotype groups. FAAH C385A carriers also had decreased subjective anxiety responses to the stress challenge. Similar effects of FAAH C385A genotype were found at the level of clinical PTSD symptom severity, in particular in the arousal domain. CONCLUSIONS This is to our knowledge the first study showing that FAAH C385A variation modulates stress responses in subjects with disorders characterized by increased stress reactivity. These findings point to the eCB pathway as a promising target for future antistress therapeutics.
Collapse
Affiliation(s)
- Primavera A Spagnolo
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland
| | - Vijay A Ramchandani
- Section on Human Psychopharmacology, Division of Intramural Clinical and Biomedical Research, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland
| | - Melanie L Schwandt
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland
| | - Laura E Kwako
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland
| | - David T George
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland
| | - Leah M Mayo
- Center for Social and Affective Neuroscience, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Cecilia J Hillard
- Department of Pharmacology and Toxicology, Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Markus Heilig
- Center for Social and Affective Neuroscience, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| |
Collapse
|
132
|
Abstract
In this review, nonassociative learning is advanced as an organizing principle to draw together findings from both sympathetic-adrenal medullary and hypothalamic-pituitary-adrenocortical (HPA) axis responses to chronic intermittent exposure to a variety of stressors. Studies of habituation, facilitation and sensitization of stress effector systems are reviewed and linked to an animal's prior experience with a given stressor, the intensity of the stressor and the appraisal by the animal of its ability to mobilize physiological systems to adapt to the stressor. Brain pathways that regulate physiological and behavioral responses to stress are discussed, especially in light of their regulation of nonassociative processes in chronic intermittent stress. These findings may have special relevance to various psychiatric diseases, including depression and post-traumatic stress disorder (PTSD).
Collapse
Affiliation(s)
- Richard McCarty
- a Department of Psychology , Vanderbilt University , Nashville , TN , USA
| |
Collapse
|
133
|
Interactions Between Anandamide and Corticotropin-Releasing Factor Signaling Modulate Human Amygdala Function and Risk for Anxiety Disorders: An Imaging Genetics Strategy for Modeling Molecular Interactions. Biol Psychiatry 2016; 80:356-62. [PMID: 26923505 PMCID: PMC4935637 DOI: 10.1016/j.biopsych.2015.12.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/22/2015] [Accepted: 12/22/2015] [Indexed: 12/15/2022]
Abstract
BACKGROUND Preclinical models reveal that stress-induced amygdala activity and impairment in fear extinction reflect reductions in anandamide driven by corticotropin-releasing factor receptor type 1 (CRF1) potentiation of the anandamide catabolic enzyme fatty acid amide hydrolase. METHODS Here, we provide clinical translation for the importance of these molecular interactions using an imaging genetics strategy to examine whether interactions between genetic polymorphisms associated with differential anandamide (FAAH rs324420) and CRF1 (CRHR1 rs110402) signaling modulate amygdala function and anxiety disorder diagnosis. RESULTS Analyses revealed that individuals with a genetic background predicting relatively high anandamide and CRF1 signaling exhibited blunted basolateral amygdala habituation, which further mediated increased risk for anxiety disorders among these same individuals. CONCLUSIONS The convergence of preclinical and clinical data suggests that interactions between anandamide and CRF1 represent a fundamental molecular mechanism regulating amygdala function and anxiety. Our results further highlight the potential of imaging genetics to powerfully translate complex preclinical findings to clinically meaningful human phenotypes.
Collapse
|
134
|
Effects of Repeated Stress on Age-Dependent GABAergic Regulation of the Lateral Nucleus of the Amygdala. Neuropsychopharmacology 2016; 41:2309-23. [PMID: 26924679 PMCID: PMC4946062 DOI: 10.1038/npp.2016.33] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 01/25/2016] [Accepted: 02/03/2016] [Indexed: 12/17/2022]
Abstract
The adolescent age is associated with lability of mood and emotion. The onset of depression and anxiety disorders peaks during adolescence and there are differences in symptomology during adolescence. This points to differences in the adolescent neural circuitry that underlies mood and emotion, such as the amygdala. The human adolescent amygdala is more responsive to evocative stimuli, hinting to less local inhibitory regulation of the amygdala, but this has not been explored in adolescents. The amygdala, including the lateral nucleus (LAT) of the basolateral amygdala complex, is sensitive to stress. The amygdala undergoes maturational processes during adolescence, and therefore may be more vulnerable to harmful effects of stress during this time period. However, little is known about the effects of stress on the LAT during adolescence. GABAergic inhibition is a key regulator of LAT activity. Therefore, the purpose of this study was to test whether there are differences in the local GABAergic regulation of the rat adolescent LAT, and differences in its sensitivity to repeated stress. We found that LAT projection neurons are subjected to weaker GABAergic inhibition during adolescence. Repeated stress reduced in vivo endogenous and exogenous GABAergic inhibition of LAT projection neurons in adolescent rats. Furthermore, repeated stress decreased measures of presynaptic GABA function and interneuron activity in adolescent rats. In contrast, repeated stress enhanced glutamatergic drive of LAT projection neurons in adult rats. These results demonstrate age differences in GABAergic regulation of the LAT, and age differences in the mechanism for the effects of repeated stress on LAT neuron activity. These findings provide a substrate for increased mood lability in adolescents, and provide a substrate by which adolescent repeated stress can induce distinct behavioral outcomes and psychiatric symptoms.
Collapse
|
135
|
Holleran KM, Wilson HH, Fetterly TL, Bluett RJ, Centanni SW, Gilfarb RA, Rocco LER, Patel S, Winder DG. Ketamine and MAG Lipase Inhibitor-Dependent Reversal of Evolving Depressive-Like Behavior During Forced Abstinence From Alcohol Drinking. Neuropsychopharmacology 2016; 41:2062-71. [PMID: 26751284 PMCID: PMC4908652 DOI: 10.1038/npp.2016.3] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 01/04/2016] [Accepted: 01/05/2016] [Indexed: 12/15/2022]
Abstract
Although alcoholism and depression are highly comorbid, treatment options that take this into account are lacking, and mouse models of alcohol (ethanol (EtOH)) intake-induced depressive-like behavior have not been well established. Recent studies utilizing contingent EtOH administration through prolonged two-bottle choice access have demonstrated depression-like behavior following EtOH abstinence in singly housed female C57BL/6J mice. In the present study, we found that depression-like behavior in the forced swim test (FST) is revealed only after a protracted (2 weeks), but not acute (24 h), abstinence period. No effect on anxiety-like behavior in the EPM was observed. Further, we found that, once established, the affective disturbance is long-lasting, as we observed significantly enhanced latencies to approach food even 35 days after ethanol withdrawal in the novelty-suppressed feeding test (NSFT). We were able to reverse affective disturbances measured in the NSFT following EtOH abstinence utilizing the N-methyl D-aspartate receptor (NMDAR) antagonist and antidepressant ketamine but not memantine, another NMDAR antagonist. Pretreatment with the monoacylglycerol (MAG) lipase inhibitor JZL-184 also reduced affective disturbances in the NSFT in ethanol withdrawn mice, and this effect was prevented by co-administration of the CB1 inverse agonist rimonabant. Endocannabinoid levels were decreased within the BLA during abstinence compared with during drinking. Finally, we demonstrate that the depressive behaviors observed do not require a sucrose fade and that this drinking paradigm may favor the development of habit-like EtOH consumption. These data could set the stage for developing novel treatment approaches for alcohol-withdrawal-induced mood and anxiety disorders.
Collapse
Affiliation(s)
- Katherine M Holleran
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA,Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA,Neuroscience Program in Substance Abuse, Vanderbilt University, Nashville, TN, USA,Kennedy Center, Vanderbilt University, Nashville, TN, USA
| | - Hadley H Wilson
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Tracy L Fetterly
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA,Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA,Neuroscience Program in Substance Abuse, Vanderbilt University, Nashville, TN, USA,Kennedy Center, Vanderbilt University, Nashville, TN, USA
| | - Rebecca J Bluett
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA,Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Samuel W Centanni
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA,Neuroscience Program in Substance Abuse, Vanderbilt University, Nashville, TN, USA
| | - Rachel A Gilfarb
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Lauren E R Rocco
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Sachin Patel
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA,Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA,Neuroscience Program in Substance Abuse, Vanderbilt University, Nashville, TN, USA,Kennedy Center, Vanderbilt University, Nashville, TN, USA
| | - Danny G Winder
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA,Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA,Neuroscience Program in Substance Abuse, Vanderbilt University, Nashville, TN, USA,Kennedy Center, Vanderbilt University, Nashville, TN, USA,Department of Molecular Physiology and Biophysics, Vanderbilt Brain Institute, Neuroscience Program in Substance Abuse, Kennedy Center, Vanderbilt University, Nashville, TN 37221, USA, Tel: +1 615 322 1462, Fax: +1 615 322 1144, E-mail:
| |
Collapse
|
136
|
Abstract
In this study, we investigated the role of the endocannabinoid system (ECS) in the emotional and cognitive alterations associated with osteoarthritis pain. The monosodium iodoacetate model was used to evaluate the affective and cognitive manifestations of osteoarthritis pain in type 1 (CB1R) and type 2 (CB2R) cannabinoid receptor knockout and wild-type mice and the ability of CB1R (ACEA) and CB2R (JWH133) selective agonists to improve these manifestations during a 3-week time period. The levels of the endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG) were measured in plasma and brain areas involved in the control of these manifestations. Patients with knee osteoarthritis and healthy controls were recruited to evaluate pain, affective, and cognitive symptoms, as well as plasma endocannabinoid levels and cannabinoid receptor gene expression in peripheral blood lymphocytes. The affective manifestations of osteoarthritis were enhanced in CB1R knockout mice and absent in CB2R knockouts. Interestingly, both ACEA and JWH133 ameliorated the nociceptive and affective alterations, whereas ACEA also improved the associated memory impairment. An increase of 2-AG levels in prefrontal cortex and plasma was observed in this mouse model of osteoarthritis. In agreement, an increase of 2-AG plasmatic levels and an upregulation of CB1R and CB2R gene expression in peripheral blood lymphocytes were observed in patients with osteoarthritis compared with healthy subjects. Changes found in these biomarkers of the ECS correlated with pain, affective, and cognitive symptoms in these patients. The ECS plays a crucial role in osteoarthritis and represents an interesting pharmacological target and biomarker of this disease.
Collapse
|
137
|
Lazary J, Eszlari N, Juhasz G, Bagdy G. Genetically reduced FAAH activity may be a risk for the development of anxiety and depression in persons with repetitive childhood trauma. Eur Neuropsychopharmacol 2016; 26:1020-8. [PMID: 27005594 DOI: 10.1016/j.euroneuro.2016.03.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 02/02/2016] [Accepted: 03/02/2016] [Indexed: 11/27/2022]
Abstract
Fatty acid amide hydrolase (FAAH) inhibitors are addressed for promising anxiolytics, but human studies on genetically reduced FAAH activity, stress and affective phenotypes are scarce. We investigated the effect of a functional polymorphism of FAAH (FAAH C385A or rs324420; low FAAH activity and high anandamide concentration are associated with the A allele) together with childhood adversity on the anxious and depressive phenotypes in 858 subjects from the general population. Phenotypes were measured by the Zung Self-Rating Depression Scale (ZSDS), the depression and anxiety subscales of the Brief Symptom Inventory (BSI-DEP, BSI-ANX) and the State-Trait Anxiety scales (STAI-S, STAI-T). Childhood Adversity Questionnaire (CHA) was used to assess early life traumas. Frequency of the A allele was greater among subjects with high ZSDS scores compared to the CC genotype. Furthermore, FAAH C385A and the CHA have shown a robust gene-environment interaction, namely, significantly higher anxiety and depression scores were exhibited by individuals carrying the A allele if they had high CHA scores compared to CC carriers. These data provided preliminary evidence that genetically reduced FAAH activity and repetitive stress in the childhood are associated with increased vulnerability for anxiety and depression in later life. Our results together with earlier experimental data suggest that permanently elevated anandamide level together with early life stress may cause a lifelong damage on stress response probably via the downregulation of CB1R during the neurodevelopment in the brain. It may also point to pharmacogenomic consequences, namely ineffectiveness or adverse effects of FAAH inhibitors in this subpopulation.
Collapse
Affiliation(s)
- Judit Lazary
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary; MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary.
| | - Nora Eszlari
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary; Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Gabriella Juhasz
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary; Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary; MTA-SE-NAP B Genetic Brain Imaging Migraine Research Group, Hungarian Academy of Sciences, Semmelweis University, Hungary
| | - Gyorgy Bagdy
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary; Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| |
Collapse
|
138
|
Endocannabinoid Modulation of Predator Stress-Induced Long-Term Anxiety in Rats. Neuropsychopharmacology 2016; 41:1329-39. [PMID: 26361059 PMCID: PMC4793117 DOI: 10.1038/npp.2015.284] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/17/2015] [Accepted: 08/31/2015] [Indexed: 11/08/2022]
Abstract
Individuals who experience life-threatening psychological trauma are at risk of developing a series of chronic neuropsychiatric pathologies that include generalized anxiety, depression, and drug addiction. The endocannabinoid system has been implicated in the modulation of these responses by regulating the activity of the amygdala and the hypothalamic-pituitary-adrenal axis. However, the relevance of this signaling complex to the long-term consequences of traumatic events is unclear. Here we use an animal model of predatory stress-induced anxiety-like behavior to investigate the role of the endocannabinoid system in the development of persistent anxiety states. Our main finding is that rats exposed to the fox pheromone 2,5-dihydro-2,4,5-trimethylthiazoline (TMT), a life-threatening stimulus for rodents, display a marked and selective increase in the mobilization of the endocannabinoid, 2-arachidonoyl-sn-glycerol (2-AG), in the amygdala. This effect lasts for at least 14 days after the stress has occurred. In addition, systemic or local pharmacological inhibition of monoacylglycerol lipase (MGL)-a lipid hydrolase that degrades 2-AG in presynaptic nerve terminals-elevates 2-AG levels and suppresses the anxiety-like behavior elicited by exposure to TMT. The results suggest that predator threat triggers long-term changes in 2-AG-mediated endocannabinoid signaling in the amygdala, and that pharmacological interventions targeting MGL might provide a therapeutic strategy for the treatment of chronic brain disorders initiated by trauma.
Collapse
|
139
|
Sustained glucocorticoid exposure recruits cortico-limbic CRH signaling to modulate endocannabinoid function. Psychoneuroendocrinology 2016; 66:151-8. [PMID: 26821211 PMCID: PMC4788523 DOI: 10.1016/j.psyneuen.2016.01.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 12/09/2015] [Accepted: 01/05/2016] [Indexed: 12/21/2022]
Abstract
Sustained exposure to stress or corticosteroids is known to cause changes in brain endocannabinoid (eCB) signaling, such that tissue contents of the eCBs N-arachidonylethanolamine (AEA) are generally reduced while 2-arachidonoylglycerol (2-AG) levels increase. These changes in eCB signaling are important for many of the aspects of chronic stress, such as anxiety, reward sensitivity and stress adaptation, yet the mechanisms mediating these changes are not fully understood. We have recently found that the stress-related neuropeptide corticotropin-releasing hormone (CRH), acting through the CRH type 1 receptor (CRHR1), can reduce AEA content by increasing its hydrolysis by the enzyme fatty acid amide hydrolase (FAAH) as well as increase 2-AG contents. As extra-hypothalamic CRH is upregulated by chronic corticosteroid or stress exposure, we hypothesized that increased CRH signaling through CRHR1 contributes to the effects of chronic corticosteroid exposure on the eCB system within the amygdala and prefrontal cortex. Male rats were exposed to 7 days of systemic corticosterone capsules, with or without concurrent exposure to a CRHR1 antagonist, after which we examined eCB content. Consistent with previous studies in the amygdala, sustained corticosterone exposure increases CRH mRNA in the prefrontal cortex. As was shown previously, FAAH activity was increased and AEA contents were reduced within the amygdala and prefrontal cortex following chronic corticosterone exposure. Chronic corticosterone exposure also elevated 2-AG content in the prefrontal cortex but not the amygdala. These corticosteroid-driven changes were all blocked by systemic CRHR1 antagonism. Consistent with these data indicating sustained increases in CRH signaling can mediate the effects of chronic elevations in corticosteroids, CRH overexpressing mice also exhibited increased FAAH-mediated AEA hydrolysis in the amygdala and prefrontal cortex compared to wild type. CRH overexpression increased 2-AG content in the amygdala, but not the prefrontal cortex. These data indicate that chronic elevations in CRH signaling, as is seen following exposure to chronic elevations in corticosterone or stress, drive persistent changes in eCB function. As reductions in AEA signaling mediate the effects of CRH and chronic stress on anxiety, these data provide a mechanism linking these processes.
Collapse
|
140
|
Briassoulis G, Keil MF, Naved B, Liu S, Starost MF, Nesterova M, Gokarn N, Batistatos A, Wu TJ, Stratakis CA. Studies of mice with cyclic AMP-dependent protein kinase (PKA) defects reveal the critical role of PKA's catalytic subunits in anxiety. Behav Brain Res 2016; 307:1-10. [PMID: 26992826 DOI: 10.1016/j.bbr.2016.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 02/23/2016] [Accepted: 03/01/2016] [Indexed: 12/21/2022]
Abstract
Cyclic adenosine mono-phosphate-dependent protein kinase (PKA) is critically involved in the regulation of behavioral responses. Previous studies showed that PKA's main regulatory subunit, R1α, is involved in anxiety-like behaviors. The purpose of this study was to determine how the catalytic subunit, Cα, might affect R1α's function and determine its effects on anxiety-related behaviors. The marble bury (MB) and elevated plus maze (EPM) tests were used to assess anxiety-like behavior and the hotplate test to assess nociception in wild type (WT) mouse, a Prkar1a heterozygote (Prkar1a(+/-)) mouse with haploinsufficiency for the regulatory subunit (R1α), a Prkaca heterozygote (Prkaca(+/-)) mouse with haploinsufficiency for the catalytic subunit (Cα), and a double heterozygote mouse (Prkar1a(+/-)/Prkaca(+/-)) with haploinsufficiency for both R1α and Cα. We then examined specific brain nuclei involved in anxiety. Results of MB test showed a genotype effect, with increased anxiety-like behavior in Prkar1a(+/-) and Prkar1a(+/-)/Prkaca(+/-) compared to WT mice. In the EPM, Prkar1a(+/-) spent significantly less time in the open arms, while Prkaca(+/-) and Prkar1a(+/-)/Prkaca(+/-) mice displayed less exploratory behavior compared to WT mice. The loss of one Prkar1a allele was associated with a significant increase in PKA activity in the basolateral (BLA) and central (CeA) amygdala and ventromedial hypothalamus (VMH) in both Prkar1a(+/-) and Prkar1a(+/-)/Prkaca(+/-) mice. Alterations of PKA activity induced by haploinsufficiency of its main regulatory or most important catalytic subunits result in anxiety-like behaviors. The BLA, CeA, and VMH are implicated in mediating these PKA effects in brain.
Collapse
Affiliation(s)
- George Briassoulis
- Section on Endocrinology and Genetics, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, United States; Department of Pediatric Intensive Care, University of Crete, Heraklion, Greece
| | - Margaret F Keil
- Section on Endocrinology and Genetics, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, United States.
| | - Bilal Naved
- Section on Endocrinology and Genetics, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, United States
| | - Sophie Liu
- Section on Endocrinology and Genetics, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, United States
| | - Matthew F Starost
- Division of Veterinary Resources, Office of Research Services (ORS), Office of the Director (OD), National Institutes of Health, Bethesda, MD 20892, United States
| | - Maria Nesterova
- Section on Endocrinology and Genetics, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, United States
| | - Nirmal Gokarn
- Section on Endocrinology and Genetics, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, United States
| | - Anna Batistatos
- Section on Endocrinology and Genetics, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, United States
| | - T John Wu
- Department of Obstetrics and Gynecology and Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Constantine A Stratakis
- Section on Endocrinology and Genetics, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, United States
| |
Collapse
|
141
|
Zer-Aviv TM, Akirav I. Sex differences in hippocampal response to endocannabinoids after exposure to severe stress. Hippocampus 2016; 26:947-57. [DOI: 10.1002/hipo.22577] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2016] [Indexed: 11/06/2022]
Affiliation(s)
| | - Irit Akirav
- Department of Psychology; University of Haifa; Haifa 3498838 Israel
| |
Collapse
|
142
|
Segev A, Akirav I. Cannabinoids and Glucocorticoids in the Basolateral Amygdala Modulate Hippocampal-Accumbens Plasticity After Stress. Neuropsychopharmacology 2016; 41:1066-79. [PMID: 26289146 PMCID: PMC4748431 DOI: 10.1038/npp.2015.238] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 08/03/2015] [Accepted: 08/04/2015] [Indexed: 01/19/2023]
Abstract
Acute stress results in release of glucocorticoids, which are potent modulators of learning and plasticity. This process is presumably mediated by the basolateral amygdala (BLA) where cannabinoids CB1 receptors have a key role in regulating the hypothalamic-pituitary-adrenal (HPA) axis. Growing attention has been focused on nucleus accumbens (NAc) plasticity, which regulates mood and motivation. The NAc integrates affective and context-dependent input from the BLA and ventral subiculum (vSub), respectively. As our previous data suggest that the CB1/2 receptor agonist WIN55,212-2 (WIN) and glucocorticoid receptor (GR) antagonist RU-38486 (RU) can prevent the effects of stress on emotional memory, we examined whether intra-BLA WIN and RU can reverse the effects of acute stress on NAc plasticity. Bilateral, ipsilateral, and contralateral BLA administration of RU or WIN reversed the stress-induced impairment in vSub-NAc long-term potentiation (LTP) and the decrease in cAMP response element-binding protein (CREB) activity in the NAc. BLA CB1 receptors were found to mediate the preventing effects of WIN on plasticity, but not the preventing effects of RU, after stress. Inactivating the ipsilateral BLA, but not the contralateral BLA, impaired LTP. The possible mechanisms underlying the effects of BLA on NAc plasticity are discussed; the data suggest that BLA-induced changes in the NAc may be mediated through neural pathways in the brain's stress circuit rather than peripheral pathways. The results suggest that glucocorticoid and cannabinoid systems in the BLA can restore normal function of the NAc and hence may have a central role in the treatment of a variety of stress-related disorders.
Collapse
Affiliation(s)
- Amir Segev
- Department of Psychology, University of Haifa, Haifa, Israel
| | - Irit Akirav
- Department of Psychology, University of Haifa, Haifa, Israel,Department of Psychology, University of Haifa, Mt Carmel, Haifa 31905, Israel, Tel: +972 4 8288268, Fax: +972 4 8263157, E-mail:
| |
Collapse
|
143
|
Morgese MG, Tucci P, Mhillaj E, Bove M, Schiavone S, Trabace L, Cuomo V. Lifelong Nutritional Omega-3 Deficiency Evokes Depressive-Like State Through Soluble Beta Amyloid. Mol Neurobiol 2016; 54:2079-2089. [PMID: 26924315 PMCID: PMC5355522 DOI: 10.1007/s12035-016-9809-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/18/2016] [Indexed: 12/20/2022]
Abstract
Recent evidence pointed out that the prevalence of depression has reached epidemic proportions in last decades. This increase has been linked to many environmental factors, among these the influence of dietary factors has gained great attention. In particular, it has been reported that low n-3 polyunsaturated fatty acid (n-3 PUFA) intake in diet is correlated to the development of depressive and anxiety-like symptoms. Furthermore, maternal malnutrition is a widely accepted risk factor for developing mental illness in later adulthood; among others, depression has been strongly associated to this event. On the other hand, we have previously found that acute intracerebral injection of the soluble beta amyloid 1–42 (Aβ1–42) peptide induces a depressive-like behavior in rats, associated to altered hypothalamic–pituitary-adrenal (HPA) axis activation and reduced cortical serotonin and neurotrophin levels. The aim of the present work was to study the effect of pre- and post-natal (5 weeks post-weaning) exposure to diets differently enriched in n-3, n-6, as well as n-6/n-3 PUFA balanced, on immobility time displayed on the forced swimming test (FST), along with neuroendocrine quantification in offspring rats. Results showed that n-6 PUFA-enriched diet increased depressive- and anxiety-like behaviors, as shown by the elevation in the immobility time in the FST test and self-grooming in the open field test. Those effects were accompanied by reduced cortical serotonin, high plasmatic corticosterone and hypothalamic corticotropin-releasing factor levels. Finally, enhanced plasmatic Aβ1–42 levels after n-6 PUFA diet and reduced plasmatic Aβ1–42 levels after n-3 PUFA were found. Taken together, our data indicate that Aβ1–42 might be crucially involved in behavioral alterations found after n-6 rich PUFA diet and strongly endorse the protective role of n-3 and the detrimental effect of improper n-6 PUFA diet consumption.
Collapse
Affiliation(s)
- Maria Grazia Morgese
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy.
| | - Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Emanuela Mhillaj
- Physiology and Pharmacology, La Sapienza, University of Rome, Rome, Italy
| | - Maria Bove
- Physiology and Pharmacology, La Sapienza, University of Rome, Rome, Italy
| | - Stefania Schiavone
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Luigia Trabace
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Vincenzo Cuomo
- Physiology and Pharmacology, La Sapienza, University of Rome, Rome, Italy
| |
Collapse
|
144
|
Lutz B, Marsicano G, Maldonado R, Hillard CJ. The endocannabinoid system in guarding against fear, anxiety and stress. Nat Rev Neurosci 2016; 16:705-18. [PMID: 26585799 DOI: 10.1038/nrn4036] [Citation(s) in RCA: 337] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The endocannabinoid (eCB) system has emerged as a central integrator linking the perception of external and internal stimuli to distinct neurophysiological and behavioural outcomes (such as fear reaction, anxiety and stress-coping), thus allowing an organism to adapt to its changing environment. eCB signalling seems to determine the value of fear-evoking stimuli and to tune appropriate behavioural responses, which are essential for the organism's long-term viability, homeostasis and stress resilience; and dysregulation of eCB signalling can lead to psychiatric disorders. An understanding of the underlying neural cell populations and cellular processes enables the development of therapeutic strategies to mitigate behavioural maladaptation.
Collapse
Affiliation(s)
- Beat Lutz
- Institute of Physiological Chemistry, University Medical Center Mainz, Duesbergweg 6, 55128 Mainz, Germany
| | - Giovanni Marsicano
- Institut national de la santé et de la recherche médicale (INSERM), U862 NeuroCentre Magendie, Group Endocannabinoids and Neuroadaptation, Bordeaux 33077, France.,University of Bordeaux, 146 rue Léo Saignat, Bordeaux 33077, France
| | - Rafael Maldonado
- Laboratori de Neurofarmacologia, Facultat de Ciències de la Salut i de la Vida, Universitat Pompeu Fabra, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Cecilia J Hillard
- Department of Pharmacology and Toxicology, Neuroscience Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, USA
| |
Collapse
|
145
|
Social Stress and Psychosis Risk: Common Neurochemical Substrates? Neuropsychopharmacology 2016; 41:666-74. [PMID: 26346639 PMCID: PMC4707841 DOI: 10.1038/npp.2015.274] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 08/25/2015] [Accepted: 08/26/2015] [Indexed: 12/19/2022]
Abstract
Environmental risk factors have been implicated in the etiology of psychotic disorders, with growing evidence showing the adverse effects of migration, social marginalization, urbanicity, childhood trauma, social defeat, and other adverse experiences on mental health in vulnerable populations. Collectively, social stress may be one mechanism that could link these environmental risk factors. The exact mechanism(s) by which social stress can affect brain function, and in particular the molecular targets involved in psychosis (such as the dopaminergic (DA) system), is (are) not fully understood. In this review, we will discuss the interplay between social environmental risk factors and molecular changes in the human brain; in particular, we will highlight the impact of social stress on three specific neurochemical systems: DA, neuroinflammation/immune, and endocannabinoid (eCB) signaling. We have chosen the latter two molecular pathways based on emerging evidence linking schizophrenia to altered neuroinflammatory processes and cannabis use. We further identify key developmental periods in which social stress interacts with these pathways, suggesting window(s) of opportunities for novel interventions. Taken together, we suggest that they may have a key role in the pathogenesis and disease progression, possibly provide novel treatment options for schizophrenia, and perhaps even prevent it.
Collapse
|
146
|
Ostadhadi S, Haj-Mirzaian A, Nikoui V, Kordjazy N, Dehpour AR. Involvement of opioid system in antidepressant-like effect of the cannabinoid CB1receptor inverse agonist AM-251 after physical stress in mice. Clin Exp Pharmacol Physiol 2016; 43:203-12. [DOI: 10.1111/1440-1681.12518] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 11/05/2015] [Accepted: 11/17/2015] [Indexed: 01/22/2023]
Affiliation(s)
- Sattar Ostadhadi
- Experimental Medicine Research Center; School of Medicine; Tehran University of Medical Sciences; Tehran Iran
- Department of Pharmacology; School of Medicine; Tehran University of Medical Sciences; Tehran Iran
- Brain and Spinal Cord Injury Research Center; Neuroscience Institute; Tehran University of Medical Sciences; Tehran Iran
| | - Arya Haj-Mirzaian
- Experimental Medicine Research Center; School of Medicine; Tehran University of Medical Sciences; Tehran Iran
- Department of Pharmacology; School of Medicine; Tehran University of Medical Sciences; Tehran Iran
| | - Vahid Nikoui
- Experimental Medicine Research Center; School of Medicine; Tehran University of Medical Sciences; Tehran Iran
- Department of Pharmacology; School of Medicine; Tehran University of Medical Sciences; Tehran Iran
| | - Nastaran Kordjazy
- Experimental Medicine Research Center; School of Medicine; Tehran University of Medical Sciences; Tehran Iran
- Department of Pharmacology; School of Medicine; Tehran University of Medical Sciences; Tehran Iran
| | - Ahmad-Reza Dehpour
- Experimental Medicine Research Center; School of Medicine; Tehran University of Medical Sciences; Tehran Iran
- Department of Pharmacology; School of Medicine; Tehran University of Medical Sciences; Tehran Iran
- Brain and Spinal Cord Injury Research Center; Neuroscience Institute; Tehran University of Medical Sciences; Tehran Iran
| |
Collapse
|
147
|
Repeated forced swim stress differentially affects formalin-evoked nociceptive behaviour and the endocannabinoid system in stress normo-responsive and stress hyper-responsive rat strains. Prog Neuropsychopharmacol Biol Psychiatry 2016; 64:181-9. [PMID: 25988529 DOI: 10.1016/j.pnpbp.2015.05.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 05/09/2015] [Accepted: 05/11/2015] [Indexed: 01/18/2023]
Abstract
Repeated exposure to a homotypic stressor such as forced swimming enhances nociceptive responding in rats. However, the influence of genetic background on this stress-induced hyperalgesia is poorly understood. The aim of the present study was to compare the effects of repeated forced swim stress on nociceptive responding in Sprague-Dawley (SD) rats versus the Wistar Kyoto (WKY) rat strain, a genetic background that is susceptible to stress, negative affect and hyperalgesia. Given the well-documented role of the endocannabinoid system in stress and pain, we investigated associated alterations in endocannabinoid signalling in the dorsal horn of the spinal cord and amygdala. In SD rats, repeated forced swim stress for 10 days was associated with enhanced late phase formalin-evoked nociceptive behaviour, compared with naive, non-stressed SD controls. In contrast, WKY rats exposed to 10 days of swim stress displayed reduced late phase formalin-evoked nociceptive behaviour. Swim stress increased levels of monoacylglycerol lipase (MAGL) mRNA in the ipsilateral side of the dorsal spinal cord of SD rats, an effect not observed in WKY rats. In the amygdala, swim stress reduced anandamide (AEA) levels in the contralateral amygdala of SD rats, but not WKY rats. Additional within-strain differences in levels of CB1 receptor and fatty acid amide hydrolase (FAAH) mRNA and levels of 2-arachidonylglycerol (2-AG) were observed between the ipsilateral and contralateral sides of the dorsal horn and/or amygdala. These data indicate that the effects of repeated stress on inflammatory pain-related behaviour are different in two rat strains that differ with respect to stress responsivity and affective state and implicate the endocannabinoid system in the spinal cord and amygdala in these differences.
Collapse
|
148
|
Morena M, Patel S, Bains JS, Hill MN. Neurobiological Interactions Between Stress and the Endocannabinoid System. Neuropsychopharmacology 2016; 41:80-102. [PMID: 26068727 PMCID: PMC4677118 DOI: 10.1038/npp.2015.166] [Citation(s) in RCA: 432] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/20/2015] [Accepted: 05/20/2015] [Indexed: 12/18/2022]
Abstract
Stress affects a constellation of physiological systems in the body and evokes a rapid shift in many neurobehavioral processes. A growing body of work indicates that the endocannabinoid (eCB) system is an integral regulator of the stress response. In the current review, we discuss the evidence to date that demonstrates stress-induced regulation of eCB signaling and the consequential role changes in eCB signaling have with respect to many of the effects of stress. Across a wide array of stress paradigms, studies have generally shown that stress evokes bidirectional changes in the two eCB molecules, anandamide (AEA) and 2-arachidonoyl glycerol (2-AG), with stress exposure reducing AEA levels and increasing 2-AG levels. Additionally, in almost every brain region examined, exposure to chronic stress reliably causes a downregulation or loss of cannabinoid type 1 (CB1) receptors. With respect to the functional role of changes in eCB signaling during stress, studies have demonstrated that the decline in AEA appears to contribute to the manifestation of the stress response, including activation of the hypothalamic-pituitary-adrenal (HPA) axis and increases in anxiety behavior, while the increased 2-AG signaling contributes to termination and adaptation of the HPA axis, as well as potentially contributing to changes in pain perception, memory and synaptic plasticity. More so, translational studies have shown that eCB signaling in humans regulates many of the same domains and appears to be a critical component of stress regulation, and impairments in this system may be involved in the vulnerability to stress-related psychiatric conditions, such as depression and posttraumatic stress disorder. Collectively, these data create a compelling argument that eCB signaling is an important regulatory system in the brain that largely functions to buffer against many of the effects of stress and that dynamic changes in this system contribute to different aspects of the stress response.
Collapse
Affiliation(s)
- Maria Morena
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada,Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB, Canada
| | - Sachin Patel
- Department of Molecular Physiology and Biophysics and Psychiatry, Vanderbilt Brain Institute, Vanderbilt-Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jaideep S Bains
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada,Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Matthew N Hill
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada,Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB, Canada,Departments of Cell Biology and Anatomy and Psychiatry, University of Calgary, Calgary, AB, Canada,Departments of Cell Biology and Anatomy, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N4N1, Canada, Tel: +1 403 220 8466, Fax: +1 403 283 2700, E-mail:
| |
Collapse
|
149
|
Lee TTY, Hill MN, Lee FS. Developmental regulation of fear learning and anxiety behavior by endocannabinoids. GENES, BRAIN, AND BEHAVIOR 2016; 15:108-24. [PMID: 26419643 PMCID: PMC4713313 DOI: 10.1111/gbb.12253] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/03/2015] [Accepted: 09/14/2015] [Indexed: 12/31/2022]
Abstract
The developing brain undergoes substantial maturation into adulthood and the development of specific neural structures occurs on differing timelines. Transient imbalances between developmental trajectories of corticolimbic structures, which are known to contribute to regulation over fear learning and anxiety, can leave an individual susceptible to mental illness, particularly anxiety disorders. There is a substantial body of literature indicating that the endocannabinoid (eCB) system critically regulates stress responsivity and emotional behavior throughout the life span, making this system a novel therapeutic target for stress- and anxiety-related disorders. During early life and adolescence, corticolimbic eCB signaling changes dynamically and coincides with different sensitive periods of fear learning, suggesting that eCB signaling underlies age-specific fear learning responses. Moreover, perturbations to these normative fluctuations in corticolimbic eCB signaling, such as stress or cannabinoid exposure, could serve as a neural substrate contributing to alterations to the normative developmental trajectory of neural structures governing emotional behavior and fear learning. In this review, we first introduce the components of the eCB system and discuss clinical and rodent models showing eCB regulation of fear learning and anxiety in adulthood. Next, we highlight distinct fear learning and regulation profiles throughout development and discuss the ontogeny of the eCB system in the central nervous system, and models of pharmacological augmentation of eCB signaling during development in the context of fear learning and anxiety.
Collapse
Affiliation(s)
- Tiffany T.-Y. Lee
- Dept. of Psychology, University of British Columbia, Vancouver, Canada, V6T 1Z4
| | - Matthew N. Hill
- Hotchkiss Brain Institute and Mathison Center for Mental Health Research and Education, Departments of Cell Biology and Anatomy & Psychiatry, University of Calgary, Calgary AB, Canada T2N4N1
| | - Francis S. Lee
- Department of Psychiatry, Weill Cornell Medical College of Cornell University, 1300 York Avenue, New York, New York 10065, USA
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, 1300 York Avenue, New York, New York 10065, USA
- Sackler Institute for Developmental Psychobiology, Weill Cornell Medical College of Cornell University, 1300 York Avenue, New York, New York 10065, USA
| |
Collapse
|
150
|
Appiah-Kusi E, Leyden E, Parmar S, Mondelli V, McGuire P, Bhattacharyya S. Abnormalities in neuroendocrine stress response in psychosis: the role of endocannabinoids. Psychol Med 2016; 46:27-45. [PMID: 26370602 DOI: 10.1017/s0033291715001786] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The aim of this article is to summarize current evidence regarding alterations in the neuroendocrine stress response system and endocannabinoid system and their relationship in psychotic disorders such as schizophrenia. Exposure to stress is linked to the development of a number of psychiatric disorders including psychosis. However, the precise role of stress in the development of psychosis and the possible mechanisms that might underlie this are not well understood. Recently the cannabinoid hypothesis of schizophrenia has emerged as a potential line of enquiry. Endocannabinoid levels are increased in patients with psychosis compared with healthy volunteers; furthermore, they increase in response to stress, which suggests another potential mechanism for how stress might be a causal factor in the development of psychosis. However, research regarding the links between stress and the endocannabinoid system is in its infancy. Evidence summarized here points to an alteration in the baseline tone and reactivity of the hypothalamic-pituitary-adrenal (HPA) axis as well as in various components of the endocannabinoid system in patients with psychosis. Moreover, the precise nature of the inter-relationship between these two systems is unclear in man, especially their biological relevance in the context of psychosis. Future studies need to simultaneously investigate HPA axis and endocannabinoid alterations both at baseline and following experimental perturbation in healthy individuals and those with psychosis to understand how they interact with each other in health and disease and obtain mechanistic insight as to their relevance to the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- E Appiah-Kusi
- Department of Psychosis Studies,King's College London,Institute of Psychiatry,Psychology & Neuroscience (IoPPN),PO Box 63,De Crespigny Park,Denmark Hill,London SE5 8AF,UK
| | - E Leyden
- Department of Psychosis Studies,King's College London,Institute of Psychiatry,Psychology & Neuroscience (IoPPN),PO Box 63,De Crespigny Park,Denmark Hill,London SE5 8AF,UK
| | - S Parmar
- Department of Psychosis Studies,King's College London,Institute of Psychiatry,Psychology & Neuroscience (IoPPN),PO Box 63,De Crespigny Park,Denmark Hill,London SE5 8AF,UK
| | - V Mondelli
- Department of Psychological Medicine,King's College London,Institute of Psychiatry,Psychology & Neuroscience (IoPPN),PO Box 92,De Crespigny Park,Denmark Hill,London SE5 8AF,UK
| | - P McGuire
- Department of Psychosis Studies,King's College London,Institute of Psychiatry,Psychology & Neuroscience (IoPPN),PO Box 63,De Crespigny Park,Denmark Hill,London SE5 8AF,UK
| | - S Bhattacharyya
- Department of Psychosis Studies,King's College London,Institute of Psychiatry,Psychology & Neuroscience (IoPPN),PO Box 63,De Crespigny Park,Denmark Hill,London SE5 8AF,UK
| |
Collapse
|