101
|
Paparoditis P, Vastermark A, Le AJ, Fuerst JA, Saier MH. Bioinformatic analyses of integral membrane transport proteins encoded within the genome of the planctomycetes species, Rhodopirellula baltica. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1838:193-215. [PMID: 23969110 PMCID: PMC3905805 DOI: 10.1016/j.bbamem.2013.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 08/08/2013] [Accepted: 08/09/2013] [Indexed: 02/04/2023]
Abstract
Rhodopirellula baltica (R. baltica) is a Planctomycete, known to have intracellular membranes. Because of its unusual cell structure and ecological significance, we have conducted comprehensive analyses of its transmembrane transport proteins. The complete proteome of R. baltica was screened against the Transporter Classification Database (TCDB) to identify recognizable integral membrane transport proteins. 342 proteins were identified with a high degree of confidence, and these fell into several different classes. R. baltica encodes in its genome channels (12%), secondary carriers (33%), and primary active transport proteins (41%) in addition to classes represented in smaller numbers. Relative to most non-marine bacteria, R. baltica possesses a larger number of sodium-dependent symporters but fewer proton-dependent symporters, and it has dimethylsulfoxide (DMSO) and trimethyl-amine-oxide (TMAO) reductases, consistent with its Na(+)-rich marine environment. R. baltica also possesses a Na(+)-translocating NADH:quinone dehydrogenase (Na(+)-NDH), a Na(+) efflux decarboxylase, two Na(+)-exporting ABC pumps, two Na(+)-translocating F-type ATPases, two Na(+):H(+) antiporters and two K(+):H(+) antiporters. Flagellar motility probably depends on the sodium electrochemical gradient. Surprisingly, R. baltica also has a complete set of H(+)-translocating electron transport complexes similar to those present in α-proteobacteria and eukaryotic mitochondria. The transport proteins identified proved to be typical of the bacterial domain with little or no indication of the presence of eukaryotic-type transporters. However, novel functionally uncharacterized multispanning membrane proteins were identified, some of which are found only in Rhodopirellula species, but others of which are widely distributed in bacteria. The analyses lead to predictions regarding the physiology, ecology and evolution of R. baltica.
Collapse
Affiliation(s)
- Philipp Paparoditis
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116
| | - Ake Vastermark
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116
| | - Andrew J. Le
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116
| | - John A. Fuerst
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116
| | - Milton H. Saier
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116
| |
Collapse
|
102
|
Abstract
Molecular bioenergetics deals with the construction, function and regulation of the powerhouses of life. The present overview sketches scenes and actors, farsighted goals and daring hypotheses, meticulous tool-making, painstaking benchwork, lucky discovery, serious scepticism, emphatic believing and strong characters with weak and others with hard arguments, told from a personal, admittedly limited, perspective. Bioenergetics will blossom further with the search focused on both where there is bright light for ever-finer detail and the obvious dark spots for surprise and discovery.
Collapse
|
103
|
MacGregor BJ, Biddle JF, Harbort C, Matthysse AG, Teske A. Sulfide oxidation, nitrate respiration, carbon acquisition, and electron transport pathways suggested by the draft genome of a single orange Guaymas Basin Beggiatoa (Cand. Maribeggiatoa) sp. filament. Mar Genomics 2013; 11:53-65. [PMID: 24012537 DOI: 10.1016/j.margen.2013.08.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 08/12/2013] [Accepted: 08/12/2013] [Indexed: 12/27/2022]
Abstract
A near-complete draft genome has been obtained for a single vacuolated orange Beggiatoa (Cand. Maribeggiatoa) filament from a Guaymas Basin seafloor microbial mat, the third relatively complete sequence for the Beggiatoaceae. Possible pathways for sulfide oxidation; nitrate respiration; inorganic carbon fixation by both Type II RuBisCO and the reductive tricarboxylic acid cycle; acetate and possibly formate uptake; and energy-generating electron transport via both oxidative phosphorylation and the Rnf complex are discussed here. A role in nitrite reduction is suggested for an abundant orange cytochrome produced by the Guaymas strain; this has a possible homolog in Beggiatoa (Cand. Isobeggiatoa) sp. PS, isolated from marine harbor sediment, but not Beggiatoa alba B18LD, isolated from a freshwater rice field ditch. Inferred phylogenies for the Calvin-Benson-Bassham (CBB) cycle and the reductive (rTCA) and oxidative (TCA) tricarboxylic acid cycles suggest that genes encoding succinate dehydrogenase and enzymes for carboxylation and/or decarboxylation steps (including RuBisCO) may have been introduced to (or exported from) one or more of the three genomes by horizontal transfer, sometimes by different routes. Sequences from the two marine strains are generally more similar to each other than to sequences from the freshwater strain, except in the case of RuBisCO: only the Guaymas strain encodes a Type II enzyme, which (where studied) discriminates less against oxygen than do Type I RuBisCOs. Genes subject to horizontal transfer may represent key steps for adaptation to factors such as oxygen and carbon dioxide concentration, organic carbon availability, and environmental variability.
Collapse
Affiliation(s)
- Barbara J MacGregor
- Department of Marine Sciences, University of North Carolina - Chapel Hill, Chapel Hill, NC 27599, USA.
| | | | | | | | | |
Collapse
|
104
|
Abstract
Secretion of effectors across bacterial membranes is usually mediated by large multisubunit complexes. In most cases, the secreted effectors are virulent factors normally associated to pathogenic diseases. The biogenesis of these secretion systems and the transport of the effectors are processes that require energy. This energy could be directly obtained by using the proton motive force, but in most cases the energy associated to these processes is derived from ATP hydrolysis. Here, a description of the machineries involved in generating the energy required for system biogenesis and substrate transport by type II, III and IV secretion systems is provided, with special emphasis on highlighting the structural similarities and evolutionary relationships among the secretion ATPases.
Collapse
Affiliation(s)
- Alejandro Peña
- Departamento de Biología Molecular, Universidad de Cantabria, UC-CSIC-SODERCAN, Santander, Spain
| | | |
Collapse
|
105
|
Sousa FL, Thiergart T, Landan G, Nelson-Sathi S, Pereira IAC, Allen JF, Lane N, Martin WF. Early bioenergetic evolution. Philos Trans R Soc Lond B Biol Sci 2013; 368:20130088. [PMID: 23754820 PMCID: PMC3685469 DOI: 10.1098/rstb.2013.0088] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Life is the harnessing of chemical energy in such a way that the energy-harnessing device makes a copy of itself. This paper outlines an energetically feasible path from a particular inorganic setting for the origin of life to the first free-living cells. The sources of energy available to early organic synthesis, early evolving systems and early cells stand in the foreground, as do the possible mechanisms of their conversion into harnessable chemical energy for synthetic reactions. With regard to the possible temporal sequence of events, we focus on: (i) alkaline hydrothermal vents as the far-from-equilibrium setting, (ii) the Wood-Ljungdahl (acetyl-CoA) pathway as the route that could have underpinned carbon assimilation for these processes, (iii) biochemical divergence, within the naturally formed inorganic compartments at a hydrothermal mound, of geochemically confined replicating entities with a complexity below that of free-living prokaryotes, and (iv) acetogenesis and methanogenesis as the ancestral forms of carbon and energy metabolism in the first free-living ancestors of the eubacteria and archaebacteria, respectively. In terms of the main evolutionary transitions in early bioenergetic evolution, we focus on: (i) thioester-dependent substrate-level phosphorylations, (ii) harnessing of naturally existing proton gradients at the vent-ocean interface via the ATP synthase, (iii) harnessing of Na(+) gradients generated by H(+)/Na(+) antiporters, (iv) flavin-based bifurcation-dependent gradient generation, and finally (v) quinone-based (and Q-cycle-dependent) proton gradient generation. Of those five transitions, the first four are posited to have taken place at the vent. Ultimately, all of these bioenergetic processes depend, even today, upon CO2 reduction with low-potential ferredoxin (Fd), generated either chemosynthetically or photosynthetically, suggesting a reaction of the type 'reduced iron → reduced carbon' at the beginning of bioenergetic evolution.
Collapse
Affiliation(s)
- Filipa L. Sousa
- Institute of Molecular Evolution, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Thorsten Thiergart
- Institute of Molecular Evolution, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Giddy Landan
- Institute of Genomic Microbiology, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Shijulal Nelson-Sathi
- Institute of Molecular Evolution, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Inês A. C. Pereira
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - John F. Allen
- School of Biological and Chemical Sciences, Queen Mary, University of London, London, UK
- Research Department of Genetics, Evolution and Environment, University College London, Gower Street, London, UK
| | - Nick Lane
- Research Department of Genetics, Evolution and Environment, University College London, Gower Street, London, UK
| | - William F. Martin
- Institute of Molecular Evolution, University of Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
106
|
Hilbers F, Eggers R, Pradela K, Friedrich K, Herkenhoff-Hesselmann B, Becker E, Deckers-Hebestreit G. Subunit δ is the key player for assembly of the H(+)-translocating unit of Escherichia coli F(O)F1 ATP synthase. J Biol Chem 2013; 288:25880-25894. [PMID: 23864656 DOI: 10.1074/jbc.m113.484675] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ATP synthase (F(O)F1) of Escherichia coli couples the translocation of protons across the cytoplasmic membrane to the synthesis or hydrolysis of ATP. This nanomotor is composed of the rotor c10γε and the stator ab2α3β3δ. To study the assembly of this multimeric enzyme complex consisting of membrane-integral as well as peripheral hydrophilic subunits, we combined nearest neighbor analyses by intermolecular disulfide bond formation or purification of partially assembled F(O)F1 complexes by affinity chromatography with the use of mutants synthesizing different sets of F(O)F1 subunits. Together with a time-delayed in vivo assembly system, the results demonstrate that F(O)F1 is assembled in a modular way via subcomplexes, thereby preventing the formation of a functional H(+)-translocating unit as intermediate product. Surprisingly, during the biogenesis of F(O)F1, F1 subunit δ is the key player in generating stable F(O). Subunit δ serves as clamp between ab2 and c10α3β3γε and guarantees that the open H(+) channel is concomitantly assembled within coupled F(O)F1 to maintain the low membrane proton permeability essential for viability, a general prerequisite for the assembly of multimeric H(+)-translocating enzymes.
Collapse
Affiliation(s)
- Florian Hilbers
- From the Department of Microbiology, University of Osnabrück, Barbarastrasse 11, D-49069 Osnabrück, Germany
| | - Ruth Eggers
- From the Department of Microbiology, University of Osnabrück, Barbarastrasse 11, D-49069 Osnabrück, Germany
| | - Kamila Pradela
- From the Department of Microbiology, University of Osnabrück, Barbarastrasse 11, D-49069 Osnabrück, Germany
| | - Kathleen Friedrich
- From the Department of Microbiology, University of Osnabrück, Barbarastrasse 11, D-49069 Osnabrück, Germany
| | | | - Elisabeth Becker
- From the Department of Microbiology, University of Osnabrück, Barbarastrasse 11, D-49069 Osnabrück, Germany
| | - Gabriele Deckers-Hebestreit
- From the Department of Microbiology, University of Osnabrück, Barbarastrasse 11, D-49069 Osnabrück, Germany.
| |
Collapse
|
107
|
Primary endosymbiosis events date to the later Proterozoic with cross-calibrated phylogenetic dating of duplicated ATPase proteins. Proc Natl Acad Sci U S A 2013; 110:12355-60. [PMID: 23776247 DOI: 10.1073/pnas.1305813110] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Chloroplasts and mitochondria descended from bacterial ancestors, but the dating of these primary endosymbiosis events remains very uncertain, despite their importance for our understanding of the evolution of both bacteria and eukaryotes. All phylogenetic dating in the Proterozoic and before is difficult: Significant debates surround potential fossil calibration points based on the interpretation of the Precambrian microbial fossil record, and strict molecular clock methods cannot be expected to yield accurate dates over such vast timescales because of strong heterogeneity in rates. Even with more sophisticated relaxed-clock analyses, nodes that are distant from fossil calibrations will have a very high uncertainty in dating. However, endosymbiosis events and gene duplications provide some additional information that has never been exploited in dating; namely, that certain nodes on a gene tree must represent the same events, and thus must have the same or very similar dates, even if the exact date is uncertain. We devised techniques to exploit this information: cross-calibration, in which node date calibrations are reused across a phylogeny, and cross-bracing, in which node date calibrations are formally linked in a hierarchical Bayesian model. We apply these methods to proteins with ancient duplications that have remained associated and originated from plastid and mitochondrial endosymbionts: the α and β subunits of ATP synthase and its relatives, and the elongation factor thermo unstable. The methods yield reductions in dating uncertainty of 14-26% while only using date calibrations derived from phylogenetically unambiguous Phanerozoic fossils of multicellular plants and animals. Our results suggest that primary plastid endosymbiosis occurred ∼900 Mya and mitochondrial endosymbiosis occurred ∼1,200 Mya.
Collapse
|
108
|
Kishikawa JI, Ibuki T, Nakamura S, Nakanishi A, Minamino T, Miyata T, Namba K, Konno H, Ueno H, Imada K, Yokoyama K. Common evolutionary origin for the rotor domain of rotary ATPases and flagellar protein export apparatus. PLoS One 2013; 8:e64695. [PMID: 23724081 PMCID: PMC3665681 DOI: 10.1371/journal.pone.0064695] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 04/17/2013] [Indexed: 02/02/2023] Open
Abstract
The V1- and F1- rotary ATPases contain a rotor that rotates against a catalytic A3B3 or α3β3 stator. The rotor F1-γ or V1-DF is composed of both anti-parallel coiled coil and globular-loop parts. The bacterial flagellar type III export apparatus contains a V1/F1-like ATPase ring structure composed of FliI6 homo-hexamer and FliJ which adopts an anti-parallel coiled coil structure without the globular-loop part. Here we report that FliJ of Salmonella enterica serovar Typhimurium shows a rotor like function in Thermus thermophilus A3B3 based on both biochemical and structural analysis. Single molecular analysis indicates that an anti-parallel coiled-coil structure protein (FliJ structure protein) functions as a rotor in A3B3. A rotary ATPase possessing an F1-γ-like protein generated by fusion of the D and F subunits of V1 rotates, suggesting F1-γ could be the result of a fusion of the genes encoding two separate rotor subunits. Together with sequence comparison among the globular part proteins, the data strongly suggest that the rotor domains of the rotary ATPases and the flagellar export apparatus share a common evolutionary origin.
Collapse
Affiliation(s)
- Jun-ichi Kishikawa
- Department of Molecular Biosciences, Kyoto Sangyo University, Motoyama Kamigamo, Kita-ku, Kyoto, Japan
| | - Tatsuya Ibuki
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Shuichi Nakamura
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Astuko Nakanishi
- Department of Molecular Biosciences, Kyoto Sangyo University, Motoyama Kamigamo, Kita-ku, Kyoto, Japan
| | - Tohru Minamino
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Tomoko Miyata
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
- Riken Quantitative Biology Center, Osaka, Japan
| | - Hiroki Konno
- Imaging Research Division, Bio-AFM Frontier Research Center, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Hiroshi Ueno
- Department of Physics, Faculty of Science and Engineering, Chuo University, Bunkyo-ku, Tokyo, Japan
| | - Katsumi Imada
- Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
- * E-mail: (KI); (KY)
| | - Ken Yokoyama
- Department of Molecular Biosciences, Kyoto Sangyo University, Motoyama Kamigamo, Kita-ku, Kyoto, Japan
- * E-mail: (KI); (KY)
| |
Collapse
|
109
|
Telegina TA, Kolesnikov MP, Vechtomova YL, Buglak AA, Kritsky MS. Abiotic photophosphorylation model based on abiogenic flavin and pteridine pigments. J Mol Evol 2013; 76:332-42. [PMID: 23689512 DOI: 10.1007/s00239-013-9562-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 04/26/2013] [Indexed: 10/26/2022]
Abstract
A model for abiotic photophosphorylation of adenosine diphosphate by orthophosphate with the formation of adenosine triphosphate was studied. The model was based on the photochemical activity of the abiogenic conjugates of pigments with the polymeric material formed after thermolysis of amino acid mixtures. The pigments formed showed different fluorescence parameters depending on the composition of the mixture of amino acid precursors. Thermolysis of the mixture of glutamic acid, glycine, and lysine (8:3:1) resulted in a predominant formation of a pigment fraction which had the fluorescence maximum at 525 nm and the excitation band maxima at 260, 375, and 450 nm and was identified as flavin. When glycine in the initial mixture was replaced with alanine, a product formed whose fluorescence parameters were typical to pteridines (excitation maximum at 350 nm, emission maximum at 440 nm). When irradiated with the quasi-monochromatic light (over the range 325-525 nm), microspheres in which flavin pigments were prevailing showed a maximum photophosphorylating activity at 375 and 450 nm, and pteridine-containing chromoproteinoid microspheres were most active at 350 nm. The positions and the relative height of maxima in the action spectra correlate with those in the excitation spectra of the pigments, which point to the involvement of abiogenic flavins and pteridines in photophosphorylation.
Collapse
Affiliation(s)
- Taisiya A Telegina
- A. N. Bach Institute of Biochemistry, Russian Academy of Sciences, 33-2, Leninsky Prospekt, Moscow, 119071, Russia.
| | | | | | | | | |
Collapse
|
110
|
Abstract
Harnessing energy as ion gradients across membranes is as universal as the genetic code. We leverage new insights into anaerobe metabolism to propose geochemical origins that account for the ubiquity of chemiosmotic coupling, and Na(+)/H(+) transporters in particular. Natural proton gradients acting across thin FeS walls within alkaline hydrothermal vents could drive carbon assimilation, leading to the emergence of protocells within vent pores. Protocell membranes that were initially leaky would eventually become less permeable, forcing cells dependent on natural H(+) gradients to pump Na(+) ions. Our hypothesis accounts for the Na(+)/H(+) promiscuity of bioenergetic proteins, as well as the deep divergence between bacteria and archaea.
Collapse
|
111
|
Arai S, Saijo S, Suzuki K, Mizutani K, Kakinuma Y, Ishizuka-Katsura Y, Ohsawa N, Terada T, Shirouzu M, Yokoyama S, Iwata S, Yamato I, Murata T. Rotation mechanism of Enterococcus hirae V1-ATPase based on asymmetric crystal structures. Nature 2013; 493:703-7. [PMID: 23334411 DOI: 10.1038/nature11778] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 11/08/2012] [Indexed: 11/09/2022]
Abstract
In various cellular membrane systems, vacuolar ATPases (V-ATPases) function as proton pumps, which are involved in many processes such as bone resorption and cancer metastasis, and these membrane proteins represent attractive drug targets for osteoporosis and cancer. The hydrophilic V(1) portion is known as a rotary motor, in which a central axis DF complex rotates inside a hexagonally arranged catalytic A(3)B(3) complex using ATP hydrolysis energy, but the molecular mechanism is not well defined owing to a lack of high-resolution structural information. We previously reported on the in vitro expression, purification and reconstitution of Enterococcus hirae V(1)-ATPase from the A(3)B(3) and DF complexes. Here we report the asymmetric structures of the nucleotide-free (2.8 Å) and nucleotide-bound (3.4 Å) A(3)B(3) complex that demonstrate conformational changes induced by nucleotide binding, suggesting a binding order in the right-handed rotational orientation in a cooperative manner. The crystal structures of the nucleotide-free (2.2 Å) and nucleotide-bound (2.7 Å) V(1)-ATPase are also reported. The more tightly packed nucleotide-binding site seems to be induced by DF binding, and ATP hydrolysis seems to be stimulated by the approach of a conserved arginine residue. To our knowledge, these asymmetric structures represent the first high-resolution view of the rotational mechanism of V(1)-ATPase.
Collapse
Affiliation(s)
- Satoshi Arai
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Dibrova DV, Chudetsky MY, Galperin MY, Koonin EV, Mulkidjanian AY. The role of energy in the emergence of biology from chemistry. ORIGINS LIFE EVOL B 2012; 42:459-68. [PMID: 23100130 PMCID: PMC3974900 DOI: 10.1007/s11084-012-9308-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Any scenario of the transition from chemistry to biology should include an "energy module" because life can exist only when supported by energy flow(s). We addressed the problem of primordial energetics by combining physico-chemical considerations with phylogenomic analysis. We propose that the first replicators could use abiotically formed, exceptionally photostable activated cyclic nucleotides both as building blocks and as the main energy source. Nucleoside triphosphates could replace cyclic nucleotides as the principal energy-rich compounds at the stage of the first cells, presumably because the metal chelates of nucleoside triphosphates penetrated membranes much better than the respective metal complexes of nucleoside monophosphates. The ability to exploit natural energy flows for biogenic production of energy-rich molecules could evolve only gradually, after the emergence of sophisticated enzymes and ion-tight membranes. We argue that, in the course of evolution, sodium-dependent membrane energetics preceded the proton-based energetics which evolved independently in bacteria and archaea.
Collapse
Affiliation(s)
- Daria V. Dibrova
- School of Physics, University of Osnabrück, D-49069 Osnabrück, Germany
- School of Bioengineering and Bioinformatics, Moscow State University, Moscow 119992, Russia
| | - Michail Y. Chudetsky
- Institute of Oil and Gas Problems, Russian Academy of Sciences, Gubkina 3, Moscow, 119991 Russia
| | - Michael Y. Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Armen Y. Mulkidjanian
- School of Physics, University of Osnabrück, D-49069 Osnabrück, Germany
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119992, Russia
| |
Collapse
|
113
|
Abby SS, Rocha EPC. The non-flagellar type III secretion system evolved from the bacterial flagellum and diversified into host-cell adapted systems. PLoS Genet 2012; 8:e1002983. [PMID: 23028376 PMCID: PMC3459982 DOI: 10.1371/journal.pgen.1002983] [Citation(s) in RCA: 202] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 08/09/2012] [Indexed: 12/20/2022] Open
Abstract
Type 3 secretion systems (T3SSs) are essential components of two complex bacterial machineries: the flagellum, which drives cell motility, and the non-flagellar T3SS (NF-T3SS), which delivers effectors into eukaryotic cells. Yet the origin, specialization, and diversification of these machineries remained unclear. We developed computational tools to identify homologous components of the two systems and to discriminate between them. Our analysis of >1,000 genomes identified 921 T3SSs, including 222 NF-T3SSs. Phylogenomic and comparative analyses of these systems argue that the NF-T3SS arose from an exaptation of the flagellum, i.e. the recruitment of part of the flagellum structure for the evolution of the new protein delivery function. This reconstructed chronology of the exaptation process proceeded in at least two steps. An intermediate ancestral form of NF-T3SS, whose descendants still exist in Myxococcales, lacked elements that are essential for motility and included a subset of NF-T3SS features. We argue that this ancestral version was involved in protein translocation. A second major step in the evolution of NF-T3SSs occurred via recruitment of secretins to the NF-T3SS, an event that occurred at least three times from different systems. In rhizobiales, a partial homologous gene replacement of the secretin resulted in two genes of complementary function. Acquisition of a secretin was followed by the rapid adaptation of the resulting NF-T3SSs to multiple, distinct eukaryotic cell envelopes where they became key in parasitic and mutualistic associations between prokaryotes and eukaryotes. Our work elucidates major steps of the evolutionary scenario leading to extant NF-T3SSs. It demonstrates how molecular evolution can convert one complex molecular machine into a second, equally complex machine by successive deletions, innovations, and recruitment from other molecular systems.
Collapse
Affiliation(s)
- Sophie S Abby
- Département Génomes et Génétique, Institut Pasteur, Microbial Evolutionary Genomics, Paris, France.
| | | |
Collapse
|
114
|
|
115
|
Béven L, Charenton C, Dautant A, Bouyssou G, Labroussaa F, Sköllermo A, Persson A, Blanchard A, Sirand-Pugnet P. Specific evolution of F1-like ATPases in mycoplasmas. PLoS One 2012; 7:e38793. [PMID: 22685606 PMCID: PMC3369863 DOI: 10.1371/journal.pone.0038793] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 05/10/2012] [Indexed: 01/22/2023] Open
Abstract
F(1)F(0) ATPases have been identified in most bacteria, including mycoplasmas which have very small genomes associated with a host-dependent lifestyle. In addition to the typical operon of eight genes encoding genuine F(1)F(0) ATPase (Type 1), we identified related clusters of seven genes in many mycoplasma species. Four of the encoded proteins have predicted structures similar to the α, β, γ and ε subunits of F(1) ATPases and could form an F(1)-like ATPase. The other three proteins display no similarity to any other known proteins. Two of these proteins are probably located in the membrane, as they have three and twelve predicted transmembrane helices. Phylogenomic studies identified two types of F(1)-like ATPase clusters, Type 2 and Type 3, characterized by a rapid evolution of sequences with the conservation of structural features. Clusters encoding Type 2 and Type 3 ATPases were assumed to originate from the Hominis group of mycoplasmas. We suggest that Type 3 ATPase clusters may spread to other phylogenetic groups by horizontal gene transfer between mycoplasmas in the same host, based on phylogeny and genomic context. Functional analyses in the ruminant pathogen Mycoplasma mycoides subsp. mycoides showed that the Type 3 cluster genes were organized into an operon. Proteomic analyses demonstrated that the seven encoded proteins were produced during growth in axenic media. Mutagenesis and complementation studies demonstrated an association of the Type 3 cluster with a major ATPase activity of membrane fractions. Thus, despite their tendency toward genome reduction, mycoplasmas have evolved and exchanged specific F(1)-like ATPases with no known equivalent in other bacteria. We propose a model, in which the F(1)-like structure is associated with a hypothetical X(0) sector located in the membrane of mycoplasma cells.
Collapse
Affiliation(s)
- Laure Béven
- University Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France
- INRA, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France
| | - Claire Charenton
- University Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France
- INRA, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France
| | - Alain Dautant
- University Bordeaux, IBGC, UMR 5095, Bordeaux, France
- CNRS, IBGC, UMR 5095, Bordeaux, France
| | - Guillaume Bouyssou
- University Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France
- INRA, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France
| | - Fabien Labroussaa
- University Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France
- INRA, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France
| | - Anna Sköllermo
- Department of Proteomics, School of Biotechnology, KTH-Royal Institute of Technology, AlbaNova University Center, Stockholm, Sweden
| | - Anja Persson
- Department of Proteomics, School of Biotechnology, KTH-Royal Institute of Technology, AlbaNova University Center, Stockholm, Sweden
| | - Alain Blanchard
- University Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France
- INRA, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France
| | - Pascal Sirand-Pugnet
- University Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France
- INRA, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France
- * E-mail:
| |
Collapse
|
116
|
Finnigan GC, Hanson-Smith V, Stevens TH, Thornton JW. Evolution of increased complexity in a molecular machine. Nature 2012; 481:360-4. [PMID: 22230956 DOI: 10.1038/nature10724] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 11/21/2011] [Indexed: 11/09/2022]
Abstract
Many cellular processes are carried out by molecular 'machines'-assemblies of multiple differentiated proteins that physically interact to execute biological functions. Despite much speculation, strong evidence of the mechanisms by which these assemblies evolved is lacking. Here we use ancestral gene resurrection and manipulative genetic experiments to determine how the complexity of an essential molecular machine--the hexameric transmembrane ring of the eukaryotic V-ATPase proton pump--increased hundreds of millions of years ago. We show that the ring of Fungi, which is composed of three paralogous proteins, evolved from a more ancient two-paralogue complex because of a gene duplication that was followed by loss in each daughter copy of specific interfaces by which it interacts with other ring proteins. These losses were complementary, so both copies became obligate components with restricted spatial roles in the complex. Reintroducing a single historical mutation from each paralogue lineage into the resurrected ancestral proteins is sufficient to recapitulate their asymmetric degeneration and trigger the requirement for the more elaborate three-component ring. Our experiments show that increased complexity in an essential molecular machine evolved because of simple, high-probability evolutionary processes, without the apparent evolution of novel functions. They point to a plausible mechanism for the evolution of complexity in other multi-paralogue protein complexes.
Collapse
Affiliation(s)
- Gregory C Finnigan
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, USA
| | | | | | | |
Collapse
|
117
|
Assembly Factors of Human Mitochondrial Respiratory Chain Complexes: Physiology and Pathophysiology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 748:65-106. [DOI: 10.1007/978-1-4614-3573-0_4] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
118
|
Cabezon E, Lanza VF, Arechaga I. Membrane-associated nanomotors for macromolecular transport. Curr Opin Biotechnol 2011; 23:537-44. [PMID: 22189002 DOI: 10.1016/j.copbio.2011.11.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 11/18/2011] [Accepted: 11/25/2011] [Indexed: 11/19/2022]
Abstract
Nature has endowed cells with powerful nanomotors to accomplish intricate mechanical tasks, such as the macromolecular transport across membranes occurring in cell division, bacterial conjugation, and in a wide variety of secretion systems. These biological motors couple the chemical energy provided by ATP hydrolysis to the mechanical work needed to transport DNA and/or protein effectors. Here, we review what is known about the molecular mechanisms of these membrane-associated machines. Sequence and structural comparison between these ATPases reveal that they share a similar motor domain, suggesting a common evolutionary ancestor. Learning how these machines operate will lead the design of nanotechnology devices with unique applications in medicine and engineering.
Collapse
Affiliation(s)
- Elena Cabezon
- Departamento de Biología Molecular, Universidad de Cantabria, and Instituto de Biomedicina y Biotecnología de Cantabria, UC-SODERCAN-CSIC, C. Herrera Oria s/n, 39011 Santander, Spain.
| | | | | |
Collapse
|
119
|
Affiliation(s)
- Wolfgang Junge
- Division of Biophysics, University of Osnabrück, 49069 Osnabrück, Germany.
| | | |
Collapse
|
120
|
Abstract
The rotary ATPase family of membrane protein complexes may have only three members, but each one plays a fundamental role in biological energy conversion. The F₁F(o)-ATPase (F-ATPase) couples ATP synthesis to the electrochemical membrane potential in bacteria, mitochondria and chloroplasts, while the vacuolar H⁺-ATPase (V-ATPase) operates as an ATP-driven proton pump in eukaryotic membranes. In different species of archaea and bacteria, the A₁A(o)-ATPase (A-ATPase) can function as either an ATP synthase or an ion pump. All three of these multi-subunit complexes are rotary molecular motors, sharing a fundamentally similar mechanism in which rotational movement drives the energy conversion process. By analogy to macroscopic systems, individual subunits can be assigned to rotor, axle or stator functions. Recently, three-dimensional reconstructions from electron microscopy and single particle image processing have led to a significant step forward in understanding of the overall architecture of all three forms of these complexes and have allowed the organisation of subunits within the rotor and stator parts of the motors to be more clearly mapped out. This review describes the emerging consensus regarding the organisation of the rotor and stator components of V-, A- and F-ATPases, examining core similarities that point to a common evolutionary origin, and highlighting key differences. In particular, it discusses how newly revealed variation in the complexity of the inter-domain connections may impact on the mechanics and regulation of these molecular machines.
Collapse
Affiliation(s)
- Stephen P Muench
- Institute of Membrane and Systems Biology, Faculty of Biological Sciences, The University of Leeds, Leeds, West Yorks, LS2 9JT, UK
| | | | | |
Collapse
|
121
|
Martins A, Machado L, Costa S, Cerca P, Spengler G, Viveiros M, Amaral L. Role of calcium in the efflux system of Escherichia coli. Int J Antimicrob Agents 2011; 37:410-4. [PMID: 21419607 DOI: 10.1016/j.ijantimicag.2011.01.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 01/11/2011] [Accepted: 01/13/2011] [Indexed: 10/18/2022]
Abstract
Efflux of antibiotics by Escherichia coli AG100 is performed by a variety of efflux pumps, ensuring survival of the bacterium in widely diverse media. At pH 5, efflux is independent of metabolic energy during the period of time the assay is conducted; at pH 8 it is totally dependent upon metabolic energy. Because calcium ions (Ca(2+)) are important for membrane transport channels and the activity of ATPases that provide energy functions, the role of Ca(2+) in the extrusion of an efflux pump substrate under conditions that challenge the bacterium was investigated. Real-time accumulation and efflux of ethidium bromide (EtBr) by E. coli K-12 AG100 strain [argE3 thi-1 rpsL xyl mtl Δ(gal-uvrB) supE44] was determined by a semi-automated fluorometric method in the presence and absence of Ca(2+) and agents that are known to inhibit access of calcium to enzymes that provide energy. Chlorpromazine (CPZ), an inhibitor of calcium binding to proteins (calcium-dependent enzymes), and ethylene diamine tetra-acetic acid (EDTA), a chelator of Ca(2+), increased accumulation and efflux of EtBr at pH 8 but not at pH 5. Ca(2+) reverses these effects when the assay is conducted at pH 8. In conclusion, the activity of the efflux pump system of E. coli is dependent upon metabolic energy at pH 8. Because at pH 8 hydrolysis of ATP is favoured and contributes protons for activation of the AcrAB-TolC efflux pump, CPZ is suspected of having its effects on accumulation/efflux of EtBr by indirectly affecting ATPase activity that is dependent upon Ca(2+).
Collapse
Affiliation(s)
- Ana Martins
- Unit of Mycobacteriology, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira 96, 1349-008 Lisbon, Portugal
| | | | | | | | | | | | | |
Collapse
|
122
|
Modular assembly of yeast mitochondrial ATP synthase. EMBO J 2011; 30:920-30. [PMID: 21266956 DOI: 10.1038/emboj.2010.364] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 12/16/2010] [Indexed: 11/08/2022] Open
Abstract
The mitochondrial ATP synthase (F(1)-F(0) complex) of Saccharomces cerevisiae is a composite of different structural and functional units that jointly couple ATP synthesis and hydrolysis to proton transfer across the inner membrane. In organello, pulse labelling and pulse-chase experiments have enabled us to track the mitochondrially encoded Atp6p, Atp8p and Atp9p subunits of F(0) and to identify different assembly intermediates into which they are assimilated. Surprisingly, these core subunits of F(0) segregated into two different assembly intermediates one of which is composed of Atp6p, Atp8p, at least two stator subunits, and the Atp10p chaperone while the second consists of the F(1) ATPase and Atp9p ring. These studies show that assembly of the ATP synthase is not a single linear process, as previously thought, but rather involves two separate but coordinately regulated pathways that converge at the end stage.
Collapse
|
123
|
Abstract
Energy conversion of sunlight by photosynthetic organisms has changed Earth and life on it. Photosynthesis arose early in Earth's history, and the earliest forms of photosynthetic life were almost certainly anoxygenic (non-oxygen evolving). The invention of oxygenic photosynthesis and the subsequent rise of atmospheric oxygen approximately 2.4 billion years ago revolutionized the energetic and enzymatic fundamentals of life. The repercussions of this revolution are manifested in novel biosynthetic pathways of photosynthetic cofactors and the modification of electron carriers, pigments, and existing and alternative modes of photosynthetic carbon fixation. The evolutionary history of photosynthetic organisms is further complicated by lateral gene transfer that involved photosynthetic components as well as by endosymbiotic events. An expanding wealth of genetic information, together with biochemical, biophysical, and physiological data, reveals a mosaic of photosynthetic features. In combination, these data provide an increasingly robust framework to formulate and evaluate hypotheses concerning the origin and evolution of photosynthesis.
Collapse
|
124
|
Yu J, Moffitt J, Hetherington CL, Bustamante C, Oster G. Mechanochemistry of a Viral DNA Packaging Motor. J Mol Biol 2010; 400:186-203. [PMID: 20452360 DOI: 10.1016/j.jmb.2010.05.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 04/30/2010] [Accepted: 05/02/2010] [Indexed: 01/29/2023]
|
125
|
Lane N, Allen JF, Martin W. How did LUCA make a living? Chemiosmosis in the origin of life. Bioessays 2010; 32:271-80. [PMID: 20108228 DOI: 10.1002/bies.200900131] [Citation(s) in RCA: 186] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Despite thermodynamic, bioenergetic and phylogenetic failings, the 81-year-old concept of primordial soup remains central to mainstream thinking on the origin of life. But soup is homogeneous in pH and redox potential, and so has no capacity for energy coupling by chemiosmosis. Thermodynamic constraints make chemiosmosis strictly necessary for carbon and energy metabolism in all free-living chemotrophs, and presumably the first free-living cells too. Proton gradients form naturally at alkaline hydrothermal vents and are viewed as central to the origin of life. Here we consider how the earliest cells might have harnessed a geochemically created proton-motive force and then learned to make their own, a transition that was necessary for their escape from the vents. Synthesis of ATP by chemiosmosis today involves generation of an ion gradient by means of vectorial electron transfer from a donor to an acceptor. We argue that the first donor was hydrogen and the first acceptor CO2.
Collapse
Affiliation(s)
- Nick Lane
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | | | | |
Collapse
|
126
|
Dibrova DV, Galperin MY, Mulkidjanian AY. Characterization of the N-ATPase, a distinct, laterally transferred Na+-translocating form of the bacterial F-type membrane ATPase. Bioinformatics 2010; 26:1473-6. [PMID: 20472544 PMCID: PMC2881411 DOI: 10.1093/bioinformatics/btq234] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 04/16/2010] [Accepted: 04/21/2010] [Indexed: 11/29/2022] Open
Abstract
UNLABELLED An analysis of the distribution of the Na(+)-translocating ATPases/ATP synthases among microbial genomes identified an atypical form of the F(1)F(o)-type ATPase that is present in the archaea Methanosarcina barkeri and M. acetivorans, in a number of phylogenetically diverse marine and halotolerant bacteria and in pathogens Burkholderia spp. In complete genomes, representatives of this form (referred to here as N-ATPase) are always present as second copies, in addition to the typical proton-translocating ATP synthases. The N-ATPase is encoded by a highly conserved atpDCQRBEFAG operon and its subunits cluster separately from the equivalent subunits of the typical F-type ATPases. N-ATPase c subunits carry a full set of sodium-binding residues, indicating that most of these enzymes are Na(+)-translocating ATPases that likely confer on their hosts the ability to extrude Na(+) ions. Other distinctive properties of the N-ATPase operons include the absence of the delta subunit from its cytoplasmic sector and the presence of two additional membrane subunits, AtpQ (formerly gene 1) and AtpR (formerly gene X). We argue that N-ATPases are an early-diverging branch of membrane ATPases that, similarly to the eukaryotic V-type ATPases, do not synthesize ATP. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Daria V Dibrova
- School of Physics, University of Osnabrück, D-49069 Osnabrück, Germany
| | | | | |
Collapse
|
127
|
The assembly of F1FO-ATP synthase is disrupted upon interference of RNA editing in Trypanosoma brucei. Int J Parasitol 2010; 40:45-54. [DOI: 10.1016/j.ijpara.2009.07.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 06/18/2009] [Accepted: 07/07/2009] [Indexed: 11/20/2022]
|
128
|
Olendzenski L, Gogarten JP. Evolution of genes and organisms: the tree/web of life in light of horizontal gene transfer. Ann N Y Acad Sci 2009; 1178:137-45. [PMID: 19845634 DOI: 10.1111/j.1749-6632.2009.04998.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gene exchange necessitates expanding the model of the tree of life, impacts the notion of organismal and molecular most recent common ancestors, and provides examples of natural selection working at multiple levels. Gene exchange, whether by horizontal gene transfer (HGT), hybridization of species, or symbiosis, modifies the organismal tree of life into a web. Darwin suggested the tree of life was like a coral, where living surface branches were supported by masses of dead branches. In phylogenetic trees, organismal or molecular lineages coalesce back to a lucky universal ancestor whose descendents are found in current lineages and which coexisted with other, now-extinct lineages. HGT complicates the reconstruction of a universal ancestor; genes in a genome can have different evolutionary histories, and even infrequent gene transfer will cause different molecular lineages to coalesce to molecular ancestors that existed in different organismal lineages and at different times. HGT, as well as symbiosis, provides a mechanism for integrating and expanding the organizational level on which natural selection acts, contributing to selection at the group and community level.
Collapse
|
129
|
Abstract
It is proposed that the precellular stage of biological evolution unraveled within networks of inorganic compartments that harbored a diverse mix of virus‐like genetic elements. This stage of evolution might makes up the Last Universal Cellular Ancestor (LUCA) that more appropriately could be denoted Last Universal Cellular Ancestral State (LUCAS). Such a scenario recapitulates the ideas of J. B. S. Haldane sketched in his classic 1928 essay. However, unlike in Haldane's day, considerable support for this scenario exits today: lack of homology between core DNA replication system components in archaea and bacteria, distinct membrane chemistries and enzymes of lipid biosynthesis in archaea and bacteria, spread of several viral hallmark genes among diverse groups of viruses, and the extant archaeal and bacterial chromosomes appear to be shaped by accretion of diverse, smaller replicons. Under the viral model of precellular evolution, the key components of cells originated as components of virus‐like entities. The two surviving types of cellular life forms, archaea and bacteria, might have emerged from the LUCAS independently, along with, probably, numerous forms now extinct.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| |
Collapse
|
130
|
Substrate interactions and promiscuity in a viral DNA packaging motor. Nature 2009; 461:669-73. [PMID: 19794496 PMCID: PMC2769991 DOI: 10.1038/nature08443] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Accepted: 08/20/2009] [Indexed: 11/15/2022]
Abstract
The ASCE superfamily of proteins consists of structurally similar ATPases associated with diverse cellular activities involving metabolism and transport of proteins and nucleic acids in all forms of life1. A subset of these enzymes are multimeric ringed pumps responsible for DNA transport in processes including genome packaging in adenoviruses, herpesviruses, poxviruses, and tailed bacteriophages2. While their mechanism of mechanochemical conversion is beginning to be understood3, little is known about how these motors engage their nucleic acid substrates. Do motors contact a single DNA element, such as a phosphate or a base, or are contacts distributed over multiple parts of the DNA? In addition, what role do these contacts play in the mechanochemical cycle? Here we use the genome packaging motor of the Bacillus subtilis bacteriophage φ294 to address these questions. The full mechanochemical cycle of the motor, whose ATPase is a pentameric-ring5 of gene product 16, involves two phases-- an ATP loading dwell followed by a translocation burst of four 2.5-bp steps6 triggered by hydrolysis product release7. By challenging the motor with a variety of modified DNA substrates, we find that during the dwell phase important contacts are made with adjacent phosphates every 10-bp on the 5’-3’ strand in the direction of packaging. In addition to providing stable, long-lived contacts, these phosphate interactions also regulate the chemical cycle. In contrast, during the burst phase, we find that DNA translocation is driven against large forces by extensive contacts, some of which are not specific to the chemical moieties of DNA. Such promiscuous, non-specific contacts may reflect common translocase-substrate interactions for both the nucleic acid and protein translocases of the ASCE superfamily1.
Collapse
|
131
|
Shortridge MD, Powers R. Structural and functional similarity between the bacterial type III secretion system needle protein PrgI and the eukaryotic apoptosis Bcl-2 proteins. PLoS One 2009; 4:e7442. [PMID: 19823588 PMCID: PMC2757720 DOI: 10.1371/journal.pone.0007442] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Accepted: 09/15/2009] [Indexed: 11/25/2022] Open
Abstract
Background Functional similarity is challenging to identify when global sequence and structure similarity is low. Active-sites or functionally relevant regions are evolutionarily more stable relative to the remainder of a protein structure and provide an alternative means to identify potential functional similarity between proteins. We recently developed the FAST-NMR methodology to discover biochemical functions or functional hypotheses of proteins of unknown function by experimentally identifying ligand binding sites. FAST-NMR utilizes our CPASS software and database to assign a function based on a similarity in the structure and sequence of ligand binding sites between proteins of known and unknown function. Methodology/Principal Findings The PrgI protein from Salmonella typhimurium forms the needle complex in the type III secretion system (T3SS). A FAST-NMR screen identified a similarity between the ligand binding sites of PrgI and the Bcl-2 apoptosis protein Bcl-xL. These ligand binding sites correlate with known protein-protein binding interfaces required for oligomerization. Both proteins form membrane pores through this oligomerization to release effector proteins to stimulate cell death. Structural analysis indicates an overlap between the PrgI structure and the pore forming motif of Bcl-xL. A sequence alignment indicates conservation between the PrgI and Bcl-xL ligand binding sites and pore formation regions. This active-site similarity was then used to verify that chelerythrine, a known Bcl-xL inhibitor, also binds PrgI. Conclusions/Significance A structural and functional relationship between the bacterial T3SS and eukaryotic apoptosis was identified using our FAST-NMR ligand affinity screen in combination with a bioinformatic analysis based on our CPASS program. A similarity between PrgI and Bcl-xL is not readily apparent using traditional global sequence and structure analysis, but was only identified because of conservation in ligand binding sites. These results demonstrate the unique opportunity that ligand-binding sites provide for the identification of functional relationships when global sequence and structural information is limited.
Collapse
Affiliation(s)
- Matthew D. Shortridge
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Robert Powers
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
132
|
Numoto N, Hasegawa Y, Takeda K, Miki K. Inter-subunit interaction and quaternary rearrangement defined by the central stalk of prokaryotic V1-ATPase. EMBO Rep 2009; 10:1228-34. [PMID: 19779483 DOI: 10.1038/embor.2009.202] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 08/04/2009] [Accepted: 08/04/2009] [Indexed: 11/09/2022] Open
Abstract
V-type ATPases (V-ATPases) are categorized as rotary ATP synthase/ATPase complexes. The V-ATPases are distinct from F-ATPases in terms of their rotation scheme, architecture and subunit composition. However, there is no detailed structural information on V-ATPases despite the abundant biochemical and biophysical research. Here, we report a crystallographic study of V1-ATPase, from Thermus thermophilus, which is a soluble component consisting of A, B, D and F subunits. The structure at 4.5 A resolution reveals inter-subunit interactions and nucleotide binding. In particular, the structure of the central stalk composed of D and F subunits was shown to be characteristic of V1-ATPases. Small conformational changes of respective subunits and significant rearrangement of the quaternary structure observed in the three AB pairs were related to the interaction with the straight central stalk. The rotation mechanism is discussed based on a structural comparison between V1-ATPases and F1-ATPases.
Collapse
Affiliation(s)
- Nobutaka Numoto
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | |
Collapse
|
133
|
Palmieri G, Cannio R, Fiume I, Rossi M, Pocsfalvi G. Outside the unusual cell wall of the hyperthermophilic archaeon Aeropyrum pernix K1. Mol Cell Proteomics 2009; 8:2570-81. [PMID: 19640852 DOI: 10.1074/mcp.m900012-mcp200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In contrast to the extensively studied eukaryal and bacterial protein secretion systems, comparatively less is known about how and which proteins cross the archaeal cell membrane. To identify secreted proteins of the hyperthermophilic archaeon Aeropyrum pernix K1 we used a proteomics approach to analyze the extracellular and cell surface protein fractions. The experimentally obtained data comprising 107 proteins were compared with the in silico predicted secretome. Because of the lack of signal peptide and cellular localization prediction tools specific for archaeal species, programs trained on eukaryotic and/or Gram-positive and Gram-negative bacterial signal peptide data sets were used. PSortB Gram-negative and Gram-positive analysis predicted 21 (1.2% of total ORFs) and 24 (1.4% of total ORFs) secreted proteins, respectively, from the entire A. pernix K1 proteome, 12 of which were experimentally identified in this work. Six additional proteins were predicted to follow non-classical secretion mechanisms using SecP algorithms. According to at least one of the two PSortB predictions, 48 proteins identified in the two fractions possess an unknown localization site. In addition, more than half of the proteins do not contain signal peptides recognized by current prediction programs. This suggests that known mechanisms only partly describe archaeal protein secretion. The most striking characteristic of the secretome was the high number of transport-related proteins identified from the ATP-binding cassette (ABC), tripartite ATP-independent periplasmic, ATPase, small conductance mechanosensitive ion channel (MscS), and dicarboxylate amino acid-cation symporter transporter families. In particular, identification of 21 solute-binding receptors of the ABC superfamily of the 24 predicted in silico confirms that ABC-mediated transport represents the most frequent strategy adopted by A. pernix for solute translocation across the cell membrane.
Collapse
Affiliation(s)
- Gianna Palmieri
- Institute of Protein Biochemistry-National Research Council, 80131 Naples, Italy
| | | | | | | | | |
Collapse
|
134
|
Nielsen CH. Biomimetic membranes for sensor and separation applications. Anal Bioanal Chem 2009; 395:697-718. [DOI: 10.1007/s00216-009-2960-0] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 07/02/2009] [Accepted: 07/07/2009] [Indexed: 01/04/2023]
|
135
|
Mnatsakanyan N, Hook JA, Quisenberry L, Weber J. ATP synthase with its gamma subunit reduced to the N-terminal helix can still catalyze ATP synthesis. J Biol Chem 2009; 284:26519-25. [PMID: 19636076 DOI: 10.1074/jbc.m109.030528] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ATP synthase uses a unique rotary mechanism to couple ATP synthesis and hydrolysis to transmembrane proton translocation. As part of the synthesis mechanism, the torque of the rotor has to be converted into conformational rearrangements of the catalytic binding sites on the stator to allow synthesis and release of ATP. The gamma subunit of the rotor, which plays a central role in the energy conversion, consists of two long helices inside the central cavity of the stator cylinder plus a globular portion outside the cylinder. Here, we show that the N-terminal helix alone is able to fulfill the function of full-length gamma in ATP synthesis as long as it connects to the rest of the rotor. This connection can occur via the epsilon subunit. No direct contact between gamma and the c ring seems to be required. In addition, the results indicate that the epsilon subunit of the rotor exists in two different conformations during ATP synthesis and ATP hydrolysis.
Collapse
Affiliation(s)
- Nelli Mnatsakanyan
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, USA
| | | | | | | |
Collapse
|
136
|
Mulkidjanian AY, Galperin MY, Koonin EV. Co-evolution of primordial membranes and membrane proteins. Trends Biochem Sci 2009; 34:206-15. [PMID: 19303305 PMCID: PMC2752816 DOI: 10.1016/j.tibs.2009.01.005] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 01/20/2009] [Accepted: 01/21/2009] [Indexed: 01/14/2023]
Abstract
Studies of the past several decades have provided major insights into the structural organization of biological membranes and mechanisms of many membrane molecular machines. However, the origin(s) of the membrane(s) and membrane proteins remains enigmatic. We discuss different concepts of the origin and early evolution of membranes with a focus on the evolution of the (im)permeability to charged molecules such as proteins, nucleic acids and small ions. Reconstruction of the evolution of F-type and A/V-type membrane ATPases (ATP synthases), which are either proton- or sodium-dependent, might help us to understand not only the origin of membrane bioenergetics but also of membranes themselves. We argue that evolution of biological membranes occurred as a process of co-evolution of lipid bilayers, membrane proteins and membrane bioenergetics.
Collapse
Affiliation(s)
- Armen Y. Mulkidjanian
- School of Physics, University of Osnabrück, D-49069 Osnabrück, Germany
- A.N.Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119991, Russia
| | - Michael Y. Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
137
|
Koonin EV, Wolf YI. Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world. Nucleic Acids Res 2008; 36:6688-719. [PMID: 18948295 PMCID: PMC2588523 DOI: 10.1093/nar/gkn668] [Citation(s) in RCA: 480] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The first bacterial genome was sequenced in 1995, and the first archaeal genome in 1996. Soon after these breakthroughs, an exponential rate of genome sequencing was established, with a doubling time of approximately 20 months for bacteria and approximately 34 months for archaea. Comparative analysis of the hundreds of sequenced bacterial and dozens of archaeal genomes leads to several generalizations on the principles of genome organization and evolution. A crucial finding that enables functional characterization of the sequenced genomes and evolutionary reconstruction is that the majority of archaeal and bacterial genes have conserved orthologs in other, often, distant organisms. However, comparative genomics also shows that horizontal gene transfer (HGT) is a dominant force of prokaryotic evolution, along with the loss of genetic material resulting in genome contraction. A crucial component of the prokaryotic world is the mobilome, the enormous collection of viruses, plasmids and other selfish elements, which are in constant exchange with more stable chromosomes and serve as HGT vehicles. Thus, the prokaryotic genome space is a tightly connected, although compartmentalized, network, a novel notion that undermines the ‘Tree of Life’ model of evolution and requires a new conceptual framework and tools for the study of prokaryotic evolution.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.
| | | |
Collapse
|
138
|
Mulkidjanian AY, Dibrov P, Galperin MY. The past and present of sodium energetics: may the sodium-motive force be with you. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1777:985-92. [PMID: 18485887 PMCID: PMC2695506 DOI: 10.1016/j.bbabio.2008.04.028] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 04/18/2008] [Accepted: 04/18/2008] [Indexed: 10/22/2022]
Abstract
All living cells routinely expel Na(+) ions, maintaining lower concentration of Na(+) in the cytoplasm than in the surrounding milieu. In the vast majority of bacteria, as well as in mitochondria and chloroplasts, export of Na(+) occurs at the expense of the proton-motive force. Some bacteria, however, possess primary generators of the transmembrane electrochemical gradient of Na(+) (sodium-motive force). These primary Na(+) pumps have been traditionally seen as adaptations to high external pH or to high temperature. Subsequent studies revealed, however, the mechanisms for primary sodium pumping in a variety of non-extremophiles, such as marine bacteria and certain bacterial pathogens. Further, many alkaliphiles and hyperthermophiles were shown to rely on H(+), not Na(+), as the coupling ion. We review here the recent progress in understanding the role of sodium-motive force, including (i) the conclusion on evolutionary primacy of the sodium-motive force as energy intermediate, (ii) the mechanisms, evolutionary advantages and limitations of switching from Na(+) to H(+) as the coupling ion, and (iii) the possible reasons why certain pathogenic bacteria still rely on the sodium-motive force.
Collapse
Affiliation(s)
- Armen Y. Mulkidjanian
- School of Physics, University of Osnabrück, D-49069 Osnabrück, Germany
- A.N.Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119991, Russia
| | - Pavel Dibrov
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Michael Y. Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| |
Collapse
|
139
|
Insight into the proteome of the hyperthermophilic Crenarchaeon Ignicoccus hospitalis: the major cytosolic and membrane proteins. Arch Microbiol 2008; 190:379-94. [PMID: 18584152 PMCID: PMC2755778 DOI: 10.1007/s00203-008-0399-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2008] [Revised: 05/21/2008] [Accepted: 06/09/2008] [Indexed: 12/25/2022]
Abstract
Ignicoccus hospitalis, a hyperthermophilic, chemolithoautotrophic Crenarchaeon, is the host of Nanoarchaeum equitans. Together, they form an intimate association, the first among Archaea. Membranes are of fundamental importance for the interaction of I. hospitalis and N. equitans, as they harbour the proteins necessary for the transport of macromolecules like lipids, amino acids, and cofactors between these organisms. Here, we investigated the protein inventory of I. hospitalis cells, and were able to identify 20 proteins in total. Experimental evidence and predictions let us conclude that 11 are soluble cytosolic proteins, eight membrane or membrane-associated proteins, and a single one extracellular. The quantitatively dominating proteins in the cytoplasm (peroxiredoxin; thermosome) antagonize oxidative and temperature stress which I. hospitalis cells are exposed to at optimal growth conditions. Three abundant membrane protein complexes are found: the major protein of the outer membrane, which might protect the cell against the hostile environment, forms oligomeric complexes with pores of unknown selectivity; two other complexes of the cytoplasmic membrane, the hydrogenase and the ATP synthase, play a key role in energy production and conversion.
Collapse
|
140
|
Mulkidjanian AY, Galperin MY, Makarova KS, Wolf YI, Koonin EV. Evolutionary primacy of sodium bioenergetics. Biol Direct 2008; 3:13. [PMID: 18380897 PMCID: PMC2359735 DOI: 10.1186/1745-6150-3-13] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Accepted: 04/01/2008] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The F- and V-type ATPases are rotary molecular machines that couple translocation of protons or sodium ions across the membrane to the synthesis or hydrolysis of ATP. Both the F-type (found in most bacteria and eukaryotic mitochondria and chloroplasts) and V-type (found in archaea, some bacteria, and eukaryotic vacuoles) ATPases can translocate either protons or sodium ions. The prevalent proton-dependent ATPases are generally viewed as the primary form of the enzyme whereas the sodium-translocating ATPases of some prokaryotes are usually construed as an exotic adaptation to survival in extreme environments. RESULTS We combine structural and phylogenetic analyses to clarify the evolutionary relation between the proton- and sodium-translocating ATPases. A comparison of the structures of the membrane-embedded oligomeric proteolipid rings of sodium-dependent F- and V-ATPases reveals nearly identical sets of amino acids involved in sodium binding. We show that the sodium-dependent ATPases are scattered among proton-dependent ATPases in both the F- and the V-branches of the phylogenetic tree. CONCLUSION Barring convergent emergence of the same set of ligands in several lineages, these findings indicate that the use of sodium gradient for ATP synthesis is the ancestral modality of membrane bioenergetics. Thus, a primitive, sodium-impermeable but proton-permeable cell membrane that harboured a set of sodium-transporting enzymes appears to have been the evolutionary predecessor of the more structurally demanding proton-tight membranes. The use of proton as the coupling ion appears to be a later innovation that emerged on several independent occasions.
Collapse
Affiliation(s)
- Armen Y Mulkidjanian
- School of Physics, University of Osnabrück, D-49069 Osnabrück, Germany
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119991, Russia
| | - Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
141
|
Affiliation(s)
- Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| |
Collapse
|
142
|
Koonin EV. The Biological Big Bang model for the major transitions in evolution. Biol Direct 2007; 2:21. [PMID: 17708768 PMCID: PMC1973067 DOI: 10.1186/1745-6150-2-21] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Accepted: 08/20/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Major transitions in biological evolution show the same pattern of sudden emergence of diverse forms at a new level of complexity. The relationships between major groups within an emergent new class of biological entities are hard to decipher and do not seem to fit the tree pattern that, following Darwin's original proposal, remains the dominant description of biological evolution. The cases in point include the origin of complex RNA molecules and protein folds; major groups of viruses; archaea and bacteria, and the principal lineages within each of these prokaryotic domains; eukaryotic supergroups; and animal phyla. In each of these pivotal nexuses in life's history, the principal "types" seem to appear rapidly and fully equipped with the signature features of the respective new level of biological organization. No intermediate "grades" or intermediate forms between different types are detectable. Usually, this pattern is attributed to cladogenesis compressed in time, combined with the inevitable erosion of the phylogenetic signal. HYPOTHESIS I propose that most or all major evolutionary transitions that show the "explosive" pattern of emergence of new types of biological entities correspond to a boundary between two qualitatively distinct evolutionary phases. The first, inflationary phase is characterized by extremely rapid evolution driven by various processes of genetic information exchange, such as horizontal gene transfer, recombination, fusion, fission, and spread of mobile elements. These processes give rise to a vast diversity of forms from which the main classes of entities at the new level of complexity emerge independently, through a sampling process. In the second phase, evolution dramatically slows down, the respective process of genetic information exchange tapers off, and multiple lineages of the new type of entities emerge, each of them evolving in a tree-like fashion from that point on. This biphasic model of evolution incorporates the previously developed concepts of the emergence of protein folds by recombination of small structural units and origin of viruses and cells from a pre-cellular compartmentalized pool of recombining genetic elements. The model is extended to encompass other major transitions. It is proposed that bacterial and archaeal phyla emerged independently from two distinct populations of primordial cells that, originally, possessed leaky membranes, which made the cells prone to rampant gene exchange; and that the eukaryotic supergroups emerged through distinct, secondary endosymbiotic events (as opposed to the primary, mitochondrial endosymbiosis). This biphasic model of evolution is substantially analogous to the scenario of the origin of universes in the eternal inflation version of modern cosmology. Under this model, universes like ours emerge in the infinite multiverse when the eternal process of exponential expansion, known as inflation, ceases in a particular region as a result of false vacuum decay, a first order phase transition process. The result is the nucleation of a new universe, which is traditionally denoted Big Bang, although this scenario is radically different from the Big Bang of the traditional model of an expanding universe. Hence I denote the phase transitions at the end of each inflationary epoch in the history of life Biological Big Bangs (BBB). CONCLUSION A Biological Big Bang (BBB) model is proposed for the major transitions in life's evolution. According to this model, each transition is a BBB such that new classes of biological entities emerge at the end of a rapid phase of evolution (inflation) that is characterized by extensive exchange of genetic information which takes distinct forms for different BBBs. The major types of new forms emerge independently, via a sampling process, from the pool of recombining entities of the preceding generation. This process is envisaged as being qualitatively different from tree-pattern cladogenesis.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| |
Collapse
|