101
|
Hope H, Schmauch C, Arkowitz RA, Bassilana M. The Candida albicans ELMO homologue functions together with Rac1 and Dck1, upstream of the MAP Kinase Cek1, in invasive filamentous growth. Mol Microbiol 2010; 76:1572-90. [PMID: 20444104 DOI: 10.1111/j.1365-2958.2010.07186.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Regulation of Rho G-proteins is critical for cytoskeletal organization and cell morphology in all eukaryotes. In the human opportunistic pathogen Candida albicans, Rac1 and its activator Dck1, a member of the CED5, Dock180, myoblast city family of guanine nucleotide exchange factors, are required for the budding to filamentous transition during invasive growth. We show that Lmo1, a protein with similarity to human ELMO1, is necessary for invasive filamentous growth, similar to Rac1 and Dck1. Furthermore, Rac1, Dck1 and Lmo1 are required for cell wall integrity, as the deletion mutants are sensitive to cell wall perturbing agents, but not to oxidative or osmotic stresses. The region of Lmo1 encompassing the ELMO and PH-like domains is sufficient for its function. Both Rac1 and Dck1 can bind Lmo1. Overexpression of a number of protein kinases in the rac1, dck1 and lmo1 deletion mutants indicates that Rac1, Dck1 and Lmo1 function upstream of the mitogen-activated protein kinases Cek1 and Mkc1, linking invasive filamentous growth to cell wall integrity. We conclude that the requirement of ELMO/CED12 family members for Rac1 function is conserved from fungi to humans.
Collapse
Affiliation(s)
- Hannah Hope
- Institute of Developmental Biology and Cancer, CNRS UMR 6543, Université de Nice - Sophia Antipolis, Faculté des Sciences-Parc Valrose, 06108 Nice Cedex 2, France
| | | | | | | |
Collapse
|
102
|
Nailis H, Kucharíková S, Ricicová M, Van Dijck P, Deforce D, Nelis H, Coenye T. Real-time PCR expression profiling of genes encoding potential virulence factors in Candida albicans biofilms: identification of model-dependent and -independent gene expression. BMC Microbiol 2010; 10:114. [PMID: 20398368 PMCID: PMC2862034 DOI: 10.1186/1471-2180-10-114] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Accepted: 04/16/2010] [Indexed: 01/09/2023] Open
Abstract
Background Candida albicans infections are often associated with biofilm formation. Previous work demonstrated that the expression of HWP1 (hyphal wall protein) and of genes belonging to the ALS (agglutinin-like sequence), SAP (secreted aspartyl protease), PLB (phospholipase B) and LIP (lipase) gene families is associated with biofilm growth on mucosal surfaces. We investigated using real-time PCR whether genes encoding potential virulence factors are also highly expressed in biofilms associated with abiotic surfaces. For this, C. albicans biofilms were grown on silicone in microtiter plates (MTP) or in the Centres for Disease Control (CDC) reactor, on polyurethane in an in vivo subcutaneous catheter rat (SCR) model, and on mucosal surfaces in the reconstituted human epithelium (RHE) model. Results HWP1 and genes belonging to the ALS, SAP, PLB and LIP gene families were constitutively expressed in C. albicans biofilms. ALS1-5 were upregulated in all model systems, while ALS9 was mostly downregulated. ALS6 and HWP1 were overexpressed in all models except in the RHE and MTP, respectively. The expression levels of SAP1 were more pronounced in both in vitro models, while those of SAP2, SAP4 and SAP6 were higher in the in vivo model. Furthermore, SAP5 was highly upregulated in the in vivo and RHE models. For SAP9 and SAP10 similar gene expression levels were observed in all model systems. PLB genes were not considerably upregulated in biofilms, while LIP1-3, LIP5-7 and LIP9-10 were highly overexpressed in both in vitro models. Furthermore, an elevated lipase activity was detected in supernatans of biofilms grown in the MTP and RHE model. Conclusions Our findings show that HWP1 and most of the genes belonging to the ALS, SAP and LIP gene families are upregulated in C. albicans biofilms. Comparison of the fold expression between the various model systems revealed similar expression levels for some genes, while for others model-dependent expression levels were observed. This suggests that data obtained in one biofilm model cannot be extrapolated to other model systems. Therefore, the need to use multiple model systems when studying the expression of genes encoding potential virulence factors in C. albicans biofilms is highlighted.
Collapse
Affiliation(s)
- Heleen Nailis
- Laboratory for Pharmaceutical Microbiology, Universiteit Gent, Harelbekestraat 72, B-9000, Ghent, Belgium
| | | | | | | | | | | | | |
Collapse
|
103
|
An extensive circuitry for cell wall regulation in Candida albicans. PLoS Pathog 2010; 6:e1000752. [PMID: 20140194 PMCID: PMC2816693 DOI: 10.1371/journal.ppat.1000752] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 01/06/2010] [Indexed: 01/30/2023] Open
Abstract
Protein kinases play key roles in signaling and response to changes in the external environment. The ability of Candida albicans to quickly sense and respond to changes in its environment is key to its survival in the human host. Our guiding hypothesis was that creating and screening a set of protein kinase mutant strains would reveal signaling pathways that mediate stress response in C. albicans. A library of protein kinase mutant strains was created and screened for sensitivity to a variety of stresses. For the majority of stresses tested, stress response was largely conserved between C. albicans, Saccharomyces cerevisiae, and Schizosaccharomyces pombe. However, we identified eight protein kinases whose roles in cell wall regulation (CWR) were not expected from functions of their orthologs in the model fungi Saccharomyces cerevisiae and Schizosaccharomyces pombe. Analysis of the conserved roles of these protein kinases indicates that establishment of cell polarity is critical for CWR. In addition, we found that septins, crucial to budding, are both important for surviving and are mislocalized by cell wall stress. Our study shows an expanded role for protein kinase signaling in C. albicans cell wall integrity. Our studies suggest that in some cases, this expansion represents a greater importance for certain pathways in cell wall biogenesis. In other cases, it appears that signaling pathways have been rewired for a cell wall integrity response. Candida albicans is the major fungal commensal and pathogen of humans. Like most microorganisms, C. albicans is surrounded and protected by a cell wall. This cell wall has two purposes: to act as a rigid “exoskeleton” to prevent cells from bursting, and to provide a surface where a cell can interact with the outside environment while protecting the cell itself from this environment. Maintenance of this structure has been well studied in the model fungus, Saccharomyces cerevisiae, but previous evidence suggested that C. albicans might have additional inputs to this process. By creating and testing a library of mutant strains for sensitivity to cell wall stress, we were able to identify a number of conserved genes with roles in this process not shared by their S. cerevisiae counterparts. Although some of these genes had previously been linked to cell wall integrity, it appears that they have increased impact on this process in C. albicans. For other genes, their role in cell wall integrity may represent a novel connection. Our findings provide insight into novel aspects of cell wall integrity in this pathogen and lay a foundation for its more detailed analysis.
Collapse
|
104
|
Abstract
Morphogenesis in living organisms relies on the integration of both biochemical and mechanical signals. During the last decade, attention has been mainly focused on the role of biochemical signals in patterning and morphogenesis, leaving the contribution of mechanics largely unexplored. Fortunately, the development of new tools and approaches has made it possible to re-examine these processes. In plants, shape is defined by two local variables: growth rate and growth direction. At the level of the cell, these variables depend on both the cell wall and turgor pressure. Multidisciplinary approaches have been used to understand how these cellular processes are integrated in the growing tissues. These include quantitative live imaging to measure growth rate and direction in tissues with cellular resolution. In parallel, stress patterns have been artificially modified and their impact on strain and cell behavior been analysed. Importantly, computational models based on analogies with continuum mechanics systems have been useful in interpreting the results. In this review, we will discuss these issues focusing on the shoot apical meristem, a population of stem cells that is responsible for the initiation of the aerial organs of the plant.
Collapse
Affiliation(s)
- Olivier Hamant
- Laboratoire de Reproduction et Développement des Plantes, INRA, CNRS, ENS, Université de Lyon, Lyon Cedex 07, France.
| | | |
Collapse
|
105
|
Brand A, Gow NAR. Mechanisms of hypha orientation of fungi. Curr Opin Microbiol 2009; 12:350-7. [PMID: 19546023 PMCID: PMC2728830 DOI: 10.1016/j.mib.2009.05.007] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 04/29/2009] [Accepted: 05/12/2009] [Indexed: 12/21/2022]
Abstract
Hypha orientation is an essential aspect of polarised growth and the morphogenesis, spatial ecology and pathogenesis of fungi. The ability to re-orient tip growth in response to environmental cues is critical for colony ramification, the penetration of diverse host tissues and the formation of mating structures. Recent studies have begun to describe the molecular machinery regulating hypha orientation. Calcium signalling, the polarisome Bud1-GTPase module and the Tea cell-end marker proteins of the microtubule cytoskeleton, along with specific kinesins and sterol-rich apical microdomains, are involved in hypha orientation. Mutations that affect these processes generate normal-shaped, growing hyphae that have either abnormal meandering trajectories or attenuated tropic responses. Hyphal tip orientation and tip extension are, therefore, distinct regulatory mechanisms that operate in parallel during filamentous growth, thereby allowing fungi to orchestrate their reproduction in relation to gradients of effectors in their environments.
Collapse
|
106
|
Held M, Edwards C, Nicolau DV. Fungal intelligence; Or on the behaviour of microorganisms in confined micro-environments. ACTA ACUST UNITED AC 2009. [DOI: 10.1088/1742-6596/178/1/012005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
107
|
Chen Z, Noir S, Kwaaitaal M, Hartmann HA, Wu MJ, Mudgil Y, Sukumar P, Muday G, Panstruga R, Jones AM. Two seven-transmembrane domain MILDEW RESISTANCE LOCUS O proteins cofunction in Arabidopsis root thigmomorphogenesis. THE PLANT CELL 2009; 21:1972-91. [PMID: 19602625 PMCID: PMC2729597 DOI: 10.1105/tpc.108.062653] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 06/10/2009] [Accepted: 06/24/2009] [Indexed: 05/18/2023]
Abstract
Directional root expansion is governed by nutrient gradients, positive gravitropism and hydrotropism, negative phototropism and thigmotropism, as well as endogenous oscillations in the growth trajectory (circumnutation). Null mutations in phylogenetically related Arabidopsis thaliana genes MILDEW RESISTANCE LOCUS O 4 (MLO4) and MLO11, encoding heptahelical, plasma membrane-localized proteins predominantly expressed in the root tip, result in aberrant root thigmomorphogenesis. mlo4 and mlo11 mutant plants show anisotropic, chiral root expansion manifesting as tightly curled root patterns upon contact with solid surfaces. The defect in mlo4 and mlo11 mutants is nonadditive and dependent on light and nutrients. Genetic epistasis experiments demonstrate that the mutant phenotype is independently modulated by the Gbeta subunit of the heterotrimeric G-protein complex. Analysis of expressed chimeric MLO4/MLO2 proteins revealed that the C-terminal domain of MLO4 is necessary but not sufficient for MLO4 action in root thigmomorphogenesis. The expression of the auxin efflux carrier fusion, PIN1-green fluorescent protein, the pattern of auxin-induced gene expression, and acropetal as well as basipetal auxin transport are altered at the root tip of mlo4 mutant seedlings. Moreover, addition of auxin transport inhibitors or the loss of EIR1/AGR1/PIN2 function abolishes root curling of mlo4, mlo11, and wild-type seedlings. These results demonstrate that the exaggerated root curling phenotypes of the mlo4 and mlo11 mutants depend on auxin gradients and suggest that MLO4 and MLO11 cofunction as modulators of touch-induced root tropism.
Collapse
Affiliation(s)
- Zhongying Chen
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Mao X, Nie X, Cao F, Chen J. Functional analysis of ScSwi1 and CaSwi1 in invasive and pseudohyphal growth of Saccharomyces cerevisiae. Acta Biochim Biophys Sin (Shanghai) 2009; 41:594-602. [PMID: 19578723 DOI: 10.1093/abbs/gmp047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Here we reported that, in Saccharomyces cerevisiae, deleting Swi1 (ScSwi1), a core component in Swi/Snf complex, caused defects of invasive growth, pseudohyphal growth, FLO11 expression, and proper cell separation. Re-introduction of SWI1 into the swi1 mutants could suppress all defects observed. We also showed that overproducing Swi1 could suppress the defect of flo8 cells in pseudohyphal growth in diploids, but not invasive growth in haploids. Overexpression of SWI1 could not bypass the requirement of Ste12 or Tec1 in invasive growth or pseudohyphal growth. We concluded that the Swi/Snf complex was required for FLO11 expression and proper cell separation, and both the FLO8 and STE12 genes should be present for the complex to function for the invasive growth but only the STE12 gene was required for the pseudohyphal growth. Ectopic expression of Candida albicans SWI1 (CaSWI1) could partially complement the defects examined of haploid Scswi1 mutants, but failed to complement the defects examined of diploid Scswi1/ Scswi1 mutants. Overexpressing CaSwi1 mitigated invasive and pseudohyphal growth defects resulting from deletions in the MAP kinase and cAMP pathways. The integrity of S. cerevisiae Swi/Snf complex is required for invasive and filamentous growth promoted by overexpressing CaSwi1.
Collapse
Affiliation(s)
- Xuming Mao
- Institute of Biochemistry, Zhejiang University, Hangzhou 310058, China
| | | | | | | |
Collapse
|
109
|
Biofilm formation and effect of caspofungin on biofilm structure of Candida species bloodstream isolates. Antimicrob Agents Chemother 2009; 53:4377-84. [PMID: 19546368 DOI: 10.1128/aac.00316-09] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Candida biofilms are microbial communities, embedded in a polymeric matrix, growing attached to a surface, and are highly recalcitrant to antimicrobial therapy. These biofilms exhibit enhanced resistance against most antifungal agents except echinocandins and lipid formulations of amphotericin B. In this study, biofilm formation by different Candida species, particularly Candida albicans, C. tropicalis, and C. parapsilosis, was evaluated, and the effect of caspofungin (CAS) was assessed using a clinically relevant in vitro model system. CAS displayed in vitro activity against C. albicans and C. tropicalis cells within biofilms. Biofilm formation was evaluated after 48 h of antifungal drug exposure, and the effects of CAS on preformed Candida species biofilms were visualized using scanning electron microscopy (SEM). Several species-specific differences in the cellular morphologies associated with biofilms were observed. Our results confirmed the presence of paradoxical growth (PG) in C. albicans and C. tropicalis biofilms in the presence of high CAS concentrations. These findings were also confirmed by SEM analysis and were associated with the metabolic activity obtained by biofilm susceptibility testing. Importantly, these results suggest that the presence of atypical, enlarged, conical cells could be associated with PG and with tolerant cells in Candida species biofilm populations. The clinical implications of these findings are still unknown.
Collapse
|
110
|
Streptococcus gordonii modulates Candida albicans biofilm formation through intergeneric communication. Infect Immun 2009; 77:3696-704. [PMID: 19528215 DOI: 10.1128/iai.00438-09] [Citation(s) in RCA: 212] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The fungus Candida albicans colonizes human oral cavity surfaces in conjunction with a complex microflora. C. albicans SC5314 formed biofilms on saliva-coated surfaces that in early stages of development consisted of approximately 30% hyphal forms. In mixed biofilms with the oral bacterium Streptococcus gordonii DL1, hyphal development by C. albicans was enhanced so that biofilms consisted of approximately 60% hyphal forms. Cell-cell contact between S. gordonii and C. albicans involved Streptococcus cell wall-anchored proteins SspA and SspB (antigen I/II family polypeptides). Repression of C. albicans hyphal filament and biofilm production by the quorum-sensing molecule farnesol was relieved by S. gordonii. The ability of a luxS mutant of S. gordonii deficient in production of autoinducer 2 to induce C. albicans hyphal formation was reduced, and this mutant suppressed farnesol inhibition of hyphal formation less effectively. Coincubation of the two microbial species led to activation of C. albicans mitogen-activated protein kinase Cek1p, inhibition of Mkc1p activation by H(2)O(2), and enhanced activation of Hog1p by farnesol, which were direct effects of streptococci on morphogenetic signaling. These results suggest that interactions between C. albicans and S. gordonii involve physical (adherence) and chemical (diffusible) signals that influence the development of biofilm communities. Thus, bacteria may play a significant role in modulating Candida carriage and infection processes in the oral cavity.
Collapse
|