101
|
Zheng Z, Wei X, Hildebrandt A, Schmidt B. A computational method for studying the relation between alternative splicing and DNA methylation. Nucleic Acids Res 2015; 44:e19. [PMID: 26365234 PMCID: PMC4737180 DOI: 10.1093/nar/gkv906] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 08/29/2015] [Indexed: 01/10/2023] Open
Abstract
Alternative splicing is an important mechanism in eukaryotes that expands the transcriptome and proteome significantly. It plays an important role in a number of biological processes. Understanding its regulation is hence an important challenge. Recently, increasing evidence has been collected that supports an involvement of intragenic DNA methylation in the regulation of alternative splicing. The exact mechanisms of regulation, however, are largely unknown, and speculated to be complex: different methylation profiles might exist, each of which could be associated with a different regulation mechanism. We present a computational technique that is able to determine such stable methylation patterns and allows to correlate these patterns with inclusion propensity of exons. Pattern detection is based on dynamic time warping (DTW) of methylation profiles, a sophisticated similarity measure for signals that can be non-trivially transformed. We design a flexible self-organizing map approach to pattern grouping. Exemplary application on available data sets indicates that stable patterns which correlate non-trivially with exon inclusion do indeed exist. To improve the reliability of these predictions, further studies on larger data sets will be required. We have thus taken great care that our software runs efficiently on modern hardware, so that it can support future studies on large-scale data sets.
Collapse
Affiliation(s)
- Zejun Zheng
- Bioinformatics Institute, Singapore 138671, Singapore
| | - Xiaona Wei
- Institute of Bioengineering and Nanotechnology, Singapore 138669, Singapore
| | - Andreas Hildebrandt
- Institut für Informatik, Johannes Gutenberg Universität Mainz, 55099 Mainz, Germany
| | - Bertil Schmidt
- Institut für Informatik, Johannes Gutenberg Universität Mainz, 55099 Mainz, Germany
| |
Collapse
|
102
|
Absence of canonical marks of active chromatin in developmentally regulated genes. Nat Genet 2015; 47:1158-1167. [PMID: 26280901 PMCID: PMC4625605 DOI: 10.1038/ng.3381] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 07/22/2015] [Indexed: 12/13/2022]
Abstract
The interplay of active and repressive histone modifications is assumed to have a key role in the regulation of gene expression. In contrast to this generally accepted view, we show that the transcription of genes temporally regulated during fly and worm development occurs in the absence of canonically active histone modifications. Conversely, strong chromatin marking is related to transcriptional and post-transcriptional stability, an association that we also observe in mammals. Our results support a model in which chromatin marking is associated with the stable production of RNA, whereas unmarked chromatin would permit rapid gene activation and deactivation during development. In the latter case, regulation by transcription factors would have a comparatively more important regulatory role than chromatin marks.
Collapse
|
103
|
Warns JA, Davie JR, Dhasarathy A. Connecting the dots: chromatin and alternative splicing in EMT. Biochem Cell Biol 2015; 94:12-25. [PMID: 26291837 DOI: 10.1139/bcb-2015-0053] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nature has devised sophisticated cellular machinery to process mRNA transcripts produced by RNA Polymerase II, removing intronic regions and connecting exons together, to produce mature RNAs. This process, known as splicing, is very closely linked to transcription. Alternative splicing, or the ability to produce different combinations of exons that are spliced together from the same genomic template, is a fundamental means of regulating protein complexity. Similar to transcription, both constitutive and alternative splicing can be regulated by chromatin and its associated factors in response to various signal transduction pathways activated by external stimuli. This regulation can vary between different cell types, and interference with these pathways can lead to changes in splicing, often resulting in aberrant cellular states and disease. The epithelial to mesenchymal transition (EMT), which leads to cancer metastasis, is influenced by alternative splicing events of chromatin remodelers and epigenetic factors such as DNA methylation and non-coding RNAs. In this review, we will discuss the role of epigenetic factors including chromatin, chromatin remodelers, DNA methyltransferases, and microRNAs in the context of alternative splicing, and discuss their potential involvement in alternative splicing during the EMT process.
Collapse
Affiliation(s)
- Jessica A Warns
- a Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, 501 N. Columbia Road Stop 9061, Grand Forks, ND 58202-9061, USA
| | - James R Davie
- b Children's Hospital Research Institute of Manitoba, John Buhler Research Centre, Winnipeg, Manitoba R3E 3P4, Canada
| | - Archana Dhasarathy
- a Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, 501 N. Columbia Road Stop 9061, Grand Forks, ND 58202-9061, USA
| |
Collapse
|
104
|
Abstract
The modENCODE (Model Organism Encyclopedia of DNA Elements) Consortium aimed to map functional elements-including transcripts, chromatin marks, regulatory factor binding sites, and origins of DNA replication-in the model organisms Drosophila melanogaster and Caenorhabditis elegans. During its five-year span, the consortium conducted more than 2,000 genome-wide assays in developmentally staged animals, dissected tissues, and homogeneous cell lines. Analysis of these data sets provided foundational insights into genome, epigenome, and transcriptome structure and the evolutionary turnover of regulatory pathways. These studies facilitated a comparative analysis with similar data types produced by the ENCODE Consortium for human cells. Genome organization differs drastically in these distant species, and yet quantitative relationships among chromatin state, transcription, and cotranscriptional RNA processing are deeply conserved. Of the many biological discoveries of the modENCODE Consortium, we highlight insights that emerged from integrative studies. We focus on operational and scientific lessons that may aid future projects of similar scale or aims in other, emerging model systems.
Collapse
Affiliation(s)
- James B Brown
- Department of Statistics, University of California, Berkeley, California 94720;
| | | |
Collapse
|
105
|
Preissl S, Schwaderer M, Raulf A, Hesse M, Grüning BA, Köbele C, Backofen R, Fleischmann BK, Hein L, Gilsbach R. Deciphering the Epigenetic Code of Cardiac Myocyte Transcription. Circ Res 2015; 117:413-23. [PMID: 26105955 DOI: 10.1161/circresaha.115.306337] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 06/23/2015] [Indexed: 12/22/2022]
Abstract
RATIONALE Epigenetic mechanisms are crucial for cell identity and transcriptional control. The heart consists of different cell types, including cardiac myocytes, endothelial cells, fibroblasts, and others. Therefore, cell type-specific analysis is needed to gain mechanistic insight into the regulation of gene expression in cardiac myocytes. Although cytosolic mRNA represents steady-state levels, nuclear mRNA more closely reflects transcriptional activity. To unravel epigenetic mechanisms of transcriptional control, cell type-specific analysis of nuclear mRNA and epigenetic modifications is crucial. OBJECTIVE The aim was to purify cardiac myocyte nuclei from hearts of different species by magnetic- or fluorescent-assisted sorting and to determine the nuclear and cellular RNA expression profiles and epigenetic marks in a cardiac myocyte-specific manner. METHODS AND RESULTS Frozen cardiac tissue samples were used to isolate cardiac myocyte nuclei. High sorting purity was confirmed for cardiac myocyte nuclei isolated from mice, rats, and humans. Deep sequencing of nuclear RNA revealed a major fraction of nascent, unspliced RNA in contrast to results obtained from purified cardiac myocytes. Cardiac myocyte nuclear and cellular RNA expression profiles showed differences, especially for metabolic genes. Genome-wide maps of the transcriptional elongation mark H3K36me3 were generated by chromatin-immunoprecipitation. Transcriptome and epigenetic data confirmed the high degree of cardiac myocyte-specificity of our protocol. An integrative analysis of nuclear mRNA and histone mark occurrence indicated a major impact of the chromatin state on transcriptional activity in cardiac myocytes. CONCLUSIONS This study establishes cardiac myocyte-specific sorting of nuclei as a universal method to investigate epigenetic and transcriptional processes in cardiac myocytes of different origins. These data sets provide novel insight into cardiac myocyte transcription.
Collapse
Affiliation(s)
- Sebastian Preissl
- From the Institute of Experimental and Clinical Pharmacology and Toxicology (S.P., M.S., C.K., L.H., R.G.), and Bioinformatics Group, Department of Computer Science (B.A.G., R.B.), University of Freiburg, Freiburg, Germany; Institute of Physiology I, Life and Brain Center, University of Bonn, Bonn, Germany (A.R., M.H., B.K.F.); Pharma Center Bonn, Bonn, Germany (B.K.F.); and BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany (L.H.)
| | - Martin Schwaderer
- From the Institute of Experimental and Clinical Pharmacology and Toxicology (S.P., M.S., C.K., L.H., R.G.), and Bioinformatics Group, Department of Computer Science (B.A.G., R.B.), University of Freiburg, Freiburg, Germany; Institute of Physiology I, Life and Brain Center, University of Bonn, Bonn, Germany (A.R., M.H., B.K.F.); Pharma Center Bonn, Bonn, Germany (B.K.F.); and BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany (L.H.)
| | - Alexandra Raulf
- From the Institute of Experimental and Clinical Pharmacology and Toxicology (S.P., M.S., C.K., L.H., R.G.), and Bioinformatics Group, Department of Computer Science (B.A.G., R.B.), University of Freiburg, Freiburg, Germany; Institute of Physiology I, Life and Brain Center, University of Bonn, Bonn, Germany (A.R., M.H., B.K.F.); Pharma Center Bonn, Bonn, Germany (B.K.F.); and BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany (L.H.)
| | - Michael Hesse
- From the Institute of Experimental and Clinical Pharmacology and Toxicology (S.P., M.S., C.K., L.H., R.G.), and Bioinformatics Group, Department of Computer Science (B.A.G., R.B.), University of Freiburg, Freiburg, Germany; Institute of Physiology I, Life and Brain Center, University of Bonn, Bonn, Germany (A.R., M.H., B.K.F.); Pharma Center Bonn, Bonn, Germany (B.K.F.); and BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany (L.H.)
| | - Björn A Grüning
- From the Institute of Experimental and Clinical Pharmacology and Toxicology (S.P., M.S., C.K., L.H., R.G.), and Bioinformatics Group, Department of Computer Science (B.A.G., R.B.), University of Freiburg, Freiburg, Germany; Institute of Physiology I, Life and Brain Center, University of Bonn, Bonn, Germany (A.R., M.H., B.K.F.); Pharma Center Bonn, Bonn, Germany (B.K.F.); and BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany (L.H.)
| | - Claudia Köbele
- From the Institute of Experimental and Clinical Pharmacology and Toxicology (S.P., M.S., C.K., L.H., R.G.), and Bioinformatics Group, Department of Computer Science (B.A.G., R.B.), University of Freiburg, Freiburg, Germany; Institute of Physiology I, Life and Brain Center, University of Bonn, Bonn, Germany (A.R., M.H., B.K.F.); Pharma Center Bonn, Bonn, Germany (B.K.F.); and BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany (L.H.)
| | - Rolf Backofen
- From the Institute of Experimental and Clinical Pharmacology and Toxicology (S.P., M.S., C.K., L.H., R.G.), and Bioinformatics Group, Department of Computer Science (B.A.G., R.B.), University of Freiburg, Freiburg, Germany; Institute of Physiology I, Life and Brain Center, University of Bonn, Bonn, Germany (A.R., M.H., B.K.F.); Pharma Center Bonn, Bonn, Germany (B.K.F.); and BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany (L.H.)
| | - Bernd K Fleischmann
- From the Institute of Experimental and Clinical Pharmacology and Toxicology (S.P., M.S., C.K., L.H., R.G.), and Bioinformatics Group, Department of Computer Science (B.A.G., R.B.), University of Freiburg, Freiburg, Germany; Institute of Physiology I, Life and Brain Center, University of Bonn, Bonn, Germany (A.R., M.H., B.K.F.); Pharma Center Bonn, Bonn, Germany (B.K.F.); and BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany (L.H.)
| | - Lutz Hein
- From the Institute of Experimental and Clinical Pharmacology and Toxicology (S.P., M.S., C.K., L.H., R.G.), and Bioinformatics Group, Department of Computer Science (B.A.G., R.B.), University of Freiburg, Freiburg, Germany; Institute of Physiology I, Life and Brain Center, University of Bonn, Bonn, Germany (A.R., M.H., B.K.F.); Pharma Center Bonn, Bonn, Germany (B.K.F.); and BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany (L.H.).
| | - Ralf Gilsbach
- From the Institute of Experimental and Clinical Pharmacology and Toxicology (S.P., M.S., C.K., L.H., R.G.), and Bioinformatics Group, Department of Computer Science (B.A.G., R.B.), University of Freiburg, Freiburg, Germany; Institute of Physiology I, Life and Brain Center, University of Bonn, Bonn, Germany (A.R., M.H., B.K.F.); Pharma Center Bonn, Bonn, Germany (B.K.F.); and BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany (L.H.).
| |
Collapse
|
106
|
Pu M, Ni Z, Wang M, Wang X, Wood JG, Helfand SL, Yu H, Lee SS. Trimethylation of Lys36 on H3 restricts gene expression change during aging and impacts life span. Genes Dev 2015; 29:718-31. [PMID: 25838541 PMCID: PMC4387714 DOI: 10.1101/gad.254144.114] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Pu et al. profiled the genome-wide pattern of trimethylation of Lys36 on histone 3 (H3K36me3) in the somatic cells of young and old C. elegans. Genes with dramatic expression change during aging are marked with low or undetectable levels of H3K36me3 in their gene bodies. A similar negative correlation between H3K36me3 marking and mRNA expression change during aging is also observed in Drosophila melanogaster. Inactivation of the methyltransferase met-1 resulted in a decrease in global H3K36me3 marks, an increase in mRNA expression change with age, and a shortened life span. Functional data indicate that specific histone modification enzymes can be key to longevity in Caenorhabditis elegans, but the molecular basis of how chromatin structure modulates longevity is not well understood. In this study, we profiled the genome-wide pattern of trimethylation of Lys36 on histone 3 (H3K36me3) in the somatic cells of young and old Caenorhabditis elegans. We revealed a new role of H3K36me3 in maintaining gene expression stability through aging with important consequences on longevity. We found that genes with dramatic expression change during aging are marked with low or even undetectable levels of H3K36me3 in their gene bodies irrespective of their corresponding mRNA abundance. Interestingly, 3′ untranslated region (UTR) length strongly correlates with H3K36me3 levels and age-dependent mRNA expression stability. A similar negative correlation between H3K36me3 marking and mRNA expression change during aging was also observed in Drosophila melanogaster, suggesting a conserved mechanism for H3K36me3 in suppressing age-dependent mRNA expression change. Importantly, inactivation of the methyltransferase met-1 resulted in a decrease in global H3K36me3 marks, an increase in mRNA expression change with age, and a shortened life span, suggesting a causative role of the H3K36me3 marking in modulating age-dependent gene expression stability and longevity.
Collapse
Affiliation(s)
- Mintie Pu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA
| | - Zhuoyu Ni
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA
| | - Minghui Wang
- Computational Biology Service Unit, Cornell University, Ithaca, New York 14850, USA
| | - Xiujuan Wang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA; Department of Biostatistics and Computational Biology, Weill Institute, Cornell University, Ithaca, New York 14850, USA
| | - Jason G Wood
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Stephen L Helfand
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Haiyuan Yu
- Department of Biostatistics and Computational Biology, Weill Institute, Cornell University, Ithaca, New York 14850, USA
| | - Siu Sylvia Lee
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA;
| |
Collapse
|
107
|
Agirre E, Bellora N, Alló M, Pagès A, Bertucci P, Kornblihtt AR, Eyras E. A chromatin code for alternative splicing involving a putative association between CTCF and HP1α proteins. BMC Biol 2015; 13:31. [PMID: 25934638 PMCID: PMC4446157 DOI: 10.1186/s12915-015-0141-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 04/22/2015] [Indexed: 12/20/2022] Open
Abstract
Background Alternative splicing is primarily controlled by the activity of splicing factors and by the elongation of the RNA polymerase II (RNAPII). Recent experiments have suggested a new complex network of splicing regulation involving chromatin, transcription and multiple protein factors. In particular, the CCCTC-binding factor (CTCF), the Argonaute protein AGO1, and members of the heterochromatin protein 1 (HP1) family have been implicated in the regulation of splicing associated with chromatin and the elongation of RNAPII. These results raise the question of whether these proteins may associate at the chromatin level to modulate alternative splicing. Results Using chromatin immunoprecipitation sequencing (ChIP-Seq) data for CTCF, AGO1, HP1α, H3K27me3, H3K9me2, H3K36me3, RNAPII, total H3 and 5metC and alternative splicing arrays from two cell lines, we have analyzed the combinatorial code of their binding to chromatin in relation to the alternative splicing patterns between two cell lines, MCF7 and MCF10. Using Machine Learning techniques, we identified the changes in chromatin signals that are most significantly associated with splicing regulation between these two cell lines. Moreover, we have built a map of the chromatin signals on the pre-mRNA, that is, a chromatin-based RNA-map, which can explain 606 (68.55%) of the regulated events between MCF7 and MCF10. This chromatin code involves the presence of HP1α, CTCF, AGO1, RNAPII and histone marks around regulated exons and can differentiate patterns of skipping and inclusion. Additionally, we found a significant association of HP1α and CTCF activities around the regulated exons and a putative DNA binding site for HP1α. Conclusions Our results show that a considerable number of alternative splicing events could have a chromatin-dependent regulation involving the association of HP1α and CTCF near regulated exons. Additionally, we find further evidence for the involvement of HP1α and AGO1 in chromatin-related splicing regulation. Electronic supplementary material The online version of this article (doi:10.1186/s12915-015-0141-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eneritz Agirre
- Universitat Pompeu Fabra, E08003, Barcelona, Spain. .,Present address: Institute of Human Genetics, CNRS UPR 1142, Montpellier, France.
| | - Nicolás Bellora
- Universitat Pompeu Fabra, E08003, Barcelona, Spain. .,Present address: INIBIOMA, CONICET-UNComahue, Bariloche, Río Negro, Argentina.
| | - Mariano Alló
- IFIBYNE-UBA-CONICET, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, (C1428EHA), Buenos Aires, Argentina. .,Present address: European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany.
| | - Amadís Pagès
- Universitat Pompeu Fabra, E08003, Barcelona, Spain. .,Centre for Genomic Regulation, E08003, Barcelona, Spain.
| | - Paola Bertucci
- IFIBYNE-UBA-CONICET, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, (C1428EHA), Buenos Aires, Argentina. .,Present address: European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany.
| | - Alberto R Kornblihtt
- IFIBYNE-UBA-CONICET, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, (C1428EHA), Buenos Aires, Argentina.
| | - Eduardo Eyras
- Universitat Pompeu Fabra, E08003, Barcelona, Spain. .,Catalan Institution of Research and Advanced Studies (ICREA), E08010, Barcelona, Spain.
| |
Collapse
|
108
|
Herzel L, Neugebauer KM. Quantification of co-transcriptional splicing from RNA-Seq data. Methods 2015; 85:36-43. [PMID: 25929182 DOI: 10.1016/j.ymeth.2015.04.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 04/03/2015] [Accepted: 04/21/2015] [Indexed: 11/18/2022] Open
Abstract
During gene expression, protein-coding transcripts are shaped by multiple processing events: 5' end capping, pre-mRNA splicing, RNA editing, and 3' end cleavage and polyadenylation. These events are required to produce mature mRNA, which can be subsequently translated. Nearly all of these RNA processing steps occur during transcription, while the nascent RNA is still attached to the DNA template by RNA polymerase II (i.e. co-transcriptionally). Polyadenylation occurs after 3' end cleavage or post-transcriptionally. Pre-mRNA splicing - the removal of introns and ligation of exons - can be initiated and concluded co-transcriptionally, although this is not strictly required. Recently, a number of studies using global methods have shown that the majority of splicing is co-transcriptional, yet not all published studies agree in their conclusions. Short read sequencing of RNA (RNA-Seq) is the prevailing approach to measuring splicing levels in nascent RNA, mRNA or total RNA. Here, we compare four different strategies for analyzing and quantifying co-transcriptional splicing. To do so, we reanalyze two nascent RNA-Seq datasets of the same species, but different cell type and RNA isolation procedure. Average co-transcriptional splicing values calculated on a per intron basis are similar, independent of the strategy used. We emphasize the technical requirements for identifying co-transcriptional splicing events with high confidence, e.g. how to calculate co-transcriptional splicing from nascent RNA- versus mRNA-Seq data, the number of biological replicates needed, depletion of polyA+RNA, and appropriate normalization. Finally, we present guidelines for planning a nascent RNA-Seq experiment.
Collapse
Affiliation(s)
- Lydia Herzel
- Molecular Biophysics and Biochemistry, Yale University, 333 Cedar St, New Haven, CT 06520, United States
| | - Karla M Neugebauer
- Molecular Biophysics and Biochemistry, Yale University, 333 Cedar St, New Haven, CT 06520, United States.
| |
Collapse
|
109
|
Kfir N, Lev-Maor G, Glaich O, Alajem A, Datta A, Sze S, Meshorer E, Ast G. SF3B1 Association with Chromatin Determines Splicing Outcomes. Cell Rep 2015; 11:618-29. [DOI: 10.1016/j.celrep.2015.03.048] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 02/25/2015] [Accepted: 03/22/2015] [Indexed: 01/08/2023] Open
|
110
|
Patrick KL, Ryan CJ, Xu J, Lipp JJ, Nissen KE, Roguev A, Shales M, Krogan NJ, Guthrie C. Genetic interaction mapping reveals a role for the SWI/SNF nucleosome remodeler in spliceosome activation in fission yeast. PLoS Genet 2015; 11:e1005074. [PMID: 25825871 PMCID: PMC4380400 DOI: 10.1371/journal.pgen.1005074] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 02/16/2015] [Indexed: 12/19/2022] Open
Abstract
Although numerous regulatory connections between pre-mRNA splicing and chromatin have been demonstrated, the precise mechanisms by which chromatin factors influence spliceosome assembly and/or catalysis remain unclear. To probe the genetic network of pre-mRNA splicing in the fission yeast Schizosaccharomyces pombe, we constructed an epistatic mini-array profile (E-MAP) and discovered many new connections between chromatin and splicing. Notably, the nucleosome remodeler SWI/SNF had strong genetic interactions with components of the U2 snRNP SF3 complex. Overexpression of SF3 components in ΔSWI/SNF cells led to inefficient splicing of many fission yeast introns, predominantly those with non-consensus splice sites. Deletion of SWI/SNF decreased recruitment of the splicing ATPase Prp2, suggesting that SWI/SNF promotes co-transcriptional spliceosome assembly prior to first step catalysis. Importantly, defects in SWI/SNF as well as SF3 overexpression each altered nucleosome occupancy along intron-containing genes, illustrating that the chromatin landscape both affects—and is affected by—co-transcriptional splicing. It has recently become apparent that most introns are removed from pre-mRNA while the transcript is still engaged with RNA polymerase II (RNAPII). To gain insight into possible roles for chromatin in co-transcriptional splicing, we generated a genome-wide genetic interaction map in fission yeast and uncovered numerous connections between splicing and chromatin. The SWI/SNF remodeling complex is typically thought to activate gene expression by relieving barriers to polymerase elongation imposed by nucleosomes. Here we show that this remodeler is important for an early step in splicing in which Prp2, an RNA-dependent ATPase, is recruited to the assembling spliceosome to promote catalytic activation. Interestingly, introns with sub-optimal splice sites are particularly dependent on SWI/SNF, suggesting the impact of nucleosome dynamics on the kinetics of spliceosome assembly and catalysis. By monitoring nucleosome occupancy, we show significant alterations in nucleosome density in particular splicing and chromatin mutants, which generally paralleled the levels of RNAPII. Taken together, our findings challenge the notion that nucleosomes simply act as barriers to elongation; rather, we suggest that polymerase pausing at nucleosomes can activate gene expression by allowing more time for co-transcriptional splicing.
Collapse
Affiliation(s)
- Kristin L. Patrick
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, United States of America
| | - Colm J. Ryan
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, United States of America
- California Institute for Quantitative Biosciences, QB3, San Francisco, California, United States of America
| | - Jiewei Xu
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, United States of America
- California Institute for Quantitative Biosciences, QB3, San Francisco, California, United States of America
| | - Jesse J. Lipp
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, United States of America
| | - Kelly E. Nissen
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, United States of America
| | - Assen Roguev
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, United States of America
| | - Michael Shales
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, United States of America
- California Institute for Quantitative Biosciences, QB3, San Francisco, California, United States of America
| | - Nevan J. Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, United States of America
- California Institute for Quantitative Biosciences, QB3, San Francisco, California, United States of America
- J. David Gladstone Institutes, San Francisco, California, United States of America
| | - Christine Guthrie
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
111
|
Meinel DM, Sträßer K. Co-transcriptional mRNP formation is coordinated within a molecular mRNP packaging station in S. cerevisiae. Bioessays 2015; 37:666-77. [PMID: 25801414 PMCID: PMC5054900 DOI: 10.1002/bies.201400220] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In eukaryotes, the messenger RNA (mRNA), the blueprint of a protein‐coding gene, is processed and packaged into a messenger ribonucleoprotein particle (mRNP) by mRNA‐binding proteins in the nucleus. The steps of mRNP formation – transcription, processing, packaging, and the orchestrated release of the export‐competent mRNP from the site of transcription for nuclear mRNA export – are tightly coupled to ensure a highly efficient and regulated process. The importance of highly accurate nuclear mRNP formation is illustrated by the fact that mutations in components of this pathway lead to cellular inviability or to severe diseases in metazoans. We hypothesize that efficient mRNP formation is realized by a molecular mRNP packaging station, which is built by several recruitment platforms and coordinates the individual steps of mRNP formation.
Collapse
Affiliation(s)
- Dominik M Meinel
- Bavarian Health and Food Safety Authority, Oberschleißheim, Germany
| | - Katja Sträßer
- Institute of Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
112
|
Mauger O, Klinck R, Chabot B, Muchardt C, Allemand E, Batsché E. Alternative splicing regulates the expression of G9A and SUV39H2 methyltransferases, and dramatically changes SUV39H2 functions. Nucleic Acids Res 2015; 43:1869-82. [PMID: 25605796 PMCID: PMC4330376 DOI: 10.1093/nar/gkv013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Alternative splicing is the main source of proteome diversity. Here, we have investigated how alternative splicing affects the function of two human histone methyltransferases (HMTase): G9A and SUV39H2. We show that exon 10 in G9A and exon 3 in SUV39H2 are alternatively included in a variety of tissues and cell lines, as well as in a different species. The production of these variants is likely tightly regulated because both constitutive and alternative splicing factors control their splicing profiles. Based on this evidence, we have assessed the link between the inclusion of these exons and the activity of both enzymes. We document that these HMTase genes yield several protein isoforms, which are likely issued from alternative splicing regulation. We demonstrate that inclusion of SUV39H2 exon 3 is a determinant of the stability, the sub-nuclear localization, and the HMTase activity. Genome-wide expression analysis further revealed that alternative inclusion of SUV39H2 exon 3 differentially modulates the expression of target genes. Our data also suggest that a variant of G9A may display a function that is independent of H3K9 methylation. Our work emphasizes that expression and function of genes are not collinear; therefore alternative splicing must be taken into account in any functional study.
Collapse
Affiliation(s)
- Oriane Mauger
- Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 6, IFD, 4 Place Jussieu, 75252 PARIS cedex 05, France Institut Pasteur, Département de Biologie du Développement et Cellules Souches, CNRS URA2578, Unité de Régulation Epigénétique, 25 rue du Docteur Roux, Paris, 75015, France
| | - Roscoe Klinck
- Laboratory of Functional Genomics of the Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Benoit Chabot
- Laboratory of Functional Genomics of the Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke. Québec, J1E 4K8, Canada
| | - Christian Muchardt
- Institut Pasteur, Département de Biologie du Développement et Cellules Souches, CNRS URA2578, Unité de Régulation Epigénétique, 25 rue du Docteur Roux, Paris, 75015, France
| | - Eric Allemand
- Institut Pasteur, Département de Biologie du Développement et Cellules Souches, CNRS URA2578, Unité de Régulation Epigénétique, 25 rue du Docteur Roux, Paris, 75015, France
| | - Eric Batsché
- Institut Pasteur, Département de Biologie du Développement et Cellules Souches, CNRS URA2578, Unité de Régulation Epigénétique, 25 rue du Docteur Roux, Paris, 75015, France
| |
Collapse
|
113
|
Abstract
Transcription elongation by RNA polymerase II (RNAP II) involves the coordinated action of numerous regulatory factors. Among these are chromatin-modifying enzymes, which generate a stereotypic and conserved pattern of histone modifications along transcribed genes. This pattern implies a precise coordination between regulators of histone modification and the RNAP II elongation complex. Here I review the pathways and molecular events that regulate co-transcriptional histone modifications. Insight into these events will illuminate the assembly of functional RNAP II elongation complexes and how the chromatin landscape influences their composition and function.
Collapse
Affiliation(s)
- Jason C Tanny
- a Department of Pharmacology and Therapeutics ; McGill University ; Montreal , Canada
| |
Collapse
|
114
|
Tejedor J, Papasaikas P, Valcárcel J. Genome-Wide Identification of Fas/CD95 Alternative Splicing Regulators Reveals Links with Iron Homeostasis. Mol Cell 2015; 57:23-38. [DOI: 10.1016/j.molcel.2014.10.029] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 09/24/2014] [Accepted: 10/31/2014] [Indexed: 10/24/2022]
|
115
|
Abstract
Mounting evidence suggests that protein methyltransferases (PMTs), which catalyze methylation of histone and nonhistone proteins, play a crucial role in diverse biological processes and human diseases. In particular, PMTs have been recognized as major players in regulating gene expression and chromatin state. PMTs are divided into two categories: protein lysine methyltransferases (PKMTs) and protein arginine methyltransferases (PRMTs). There has been a steadily growing interest in these enzymes as potential therapeutic targets and therefore discovery of PMT inhibitors has also been pursued increasingly over the past decade. Here, we present a perspective on selective, small-molecule inhibitors of PMTs with an emphasis on their discovery, characterization, and applicability as chemical tools for deciphering the target PMTs' physiological functions and involvement in human diseases. We highlight the current state of PMT inhibitors and discuss future directions and opportunities for PMT inhibitor discovery.
Collapse
Affiliation(s)
- H Ümit Kaniskan
- Department of Structural and Chemical Biology, ‡Department of Oncological Sciences, §Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai , 1425 Madison Avenue, New York, New York 10029, United States
| | | | | |
Collapse
|
116
|
Choi Y, Mango SE. Hunting for Darwin's gemmules and Lamarck's fluid: Transgenerational signaling and histone methylation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:1440-53. [DOI: 10.1016/j.bbagrm.2014.05.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 05/07/2014] [Accepted: 05/13/2014] [Indexed: 01/22/2023]
|
117
|
Abstract
The building block of chromatin is nucleosome, which consists of 146 base pairs of DNA wrapped around a histone octamer composed of two copies of histone H2A, H2B, H3, and H4. Significantly, the somatic missense mutations of the histone H3 variant, H3.3, are associated with childhood and young-adult tumors, such as pediatric high-grade astrocytomas, as well as chondroblastoma and giant-cell tumors of the bone. The mechanisms by which these histone mutations cause cancer are by and large unclear. Interestingly, two recent studies identified BS69/ZMYND11, which was proposed to be a candidate tumor suppressor, as a specific reader for a modified form of H3.3 (H3.3K36me3). Importantly, some H3.3 cancer mutations are predicted to abrogate the H3.3K36me3/BS69 interaction, suggesting that this interaction may play an important role in tumor suppression. These new findings also raise the question of whether H3.3 cancer mutations may lead to the disruption and/or gain of interactions of additional cellular factors that contribute to tumorigenesis.
Collapse
|
118
|
Salton M, Voss TC, Misteli T. Identification by high-throughput imaging of the histone methyltransferase EHMT2 as an epigenetic regulator of VEGFA alternative splicing. Nucleic Acids Res 2014; 42:13662-73. [PMID: 25414343 PMCID: PMC4267647 DOI: 10.1093/nar/gku1226] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Recent evidence points to a role of chromatin in regulation of alternative pre-mRNA splicing (AS). In order to identify novel chromatin regulators of AS, we screened an RNAi library of chromatin proteins using a cell-based high-throughput in vivo assay. We identified a set of chromatin proteins that regulate AS. Using simultaneous genome-wide expression and AS analysis, we demonstrate distinct and non-overlapping functions of these chromatin modifiers on transcription and AS. Detailed mechanistic characterization of one dual function chromatin modifier, the H3K9 methyltransferase EHMT2 (G9a), identified VEGFA as a major chromatin-mediated AS target. Silencing of EHMT2, or its heterodimer partner EHMT1, affects AS by promoting exclusion of VEGFA exon 6a, but does not alter total VEGFA mRNA levels. The epigenetic regulatory mechanism of AS by EHMT2 involves an adaptor system consisting of the chromatin modulator HP1γ, which binds methylated H3K9 and recruits splicing regulator SRSF1. The epigenetic regulation of VEGFA is physiologically relevant since EHMT2 is transcriptionally induced in response to hypoxia and triggers concomitant changes in AS of VEGFA. These results characterize a novel epigenetic regulatory mechanism of AS and they demonstrate separate roles of epigenetic modifiers in transcription and alternative splicing.
Collapse
Affiliation(s)
- Maayan Salton
- National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Ty C Voss
- National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Tom Misteli
- National Cancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
119
|
Heyn P, Kalinka AT, Tomancak P, Neugebauer KM. Introns and gene expression: cellular constraints, transcriptional regulation, and evolutionary consequences. Bioessays 2014; 37:148-54. [PMID: 25400101 PMCID: PMC4654234 DOI: 10.1002/bies.201400138] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A gene's “expression profile” denotes the number of transcripts present relative to all other transcripts. The overall rate of transcript production is determined by transcription and RNA processing rates. While the speed of elongating RNA polymerase II has been characterized for many different genes and organisms, gene-architectural features – primarily the number and length of exons and introns – have recently emerged as important regulatory players. Several new studies indicate that rapidly cycling cells constrain gene-architecture toward short genes with a few introns, allowing efficient expression during short cell cycles. In contrast, longer genes with long introns exhibit delayed expression, which can serve as timing mechanisms for patterning processes. These findings indicate that cell cycle constraints drive the evolution of gene-architecture and shape the transcriptome of a given cell type. Furthermore, a tendency for short genes to be evolutionarily young hints at links between cellular constraints and the evolution of animal ontogeny.
Collapse
Affiliation(s)
- Patricia Heyn
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, UK
| | | | | | | |
Collapse
|
120
|
Dujardin G, Kornblihtt AR, Corcos L. [Kinetic regulation of pre-messenger RNA alternative splicing]. Med Sci (Paris) 2014; 30:940-3. [PMID: 25388571 DOI: 10.1051/medsci/20143011003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Gwendal Dujardin
- Centre for Genomic Regulation, carrer Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Alberto R Kornblihtt
- Laboratorio de Fisiología y Biología Molecular, Departamento de Fisiología, Biología Molecular y Celular, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentine
| | - Laurent Corcos
- Inserm U1078 - équipe ECLA, Faculté de médecine, 22, avenue Camille Desmoulins, 29238 Brest Cedex 3, France
| |
Collapse
|
121
|
Argonaute-1 binds transcriptional enhancers and controls constitutive and alternative splicing in human cells. Proc Natl Acad Sci U S A 2014; 111:15622-9. [PMID: 25313066 DOI: 10.1073/pnas.1416858111] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The roles of Argonaute proteins in cytoplasmic microRNA and RNAi pathways are well established. However, their implication in small RNA-mediated transcriptional gene silencing in the mammalian cell nucleus is less understood. We have recently shown that intronic siRNAs cause chromatin modifications that inhibit RNA polymerase II elongation and modulate alternative splicing in an Argonaute-1 (AGO1)-dependent manner. Here we used chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) to investigate the genome-wide distribution of AGO1 nuclear targets. Unexpectedly, we found that about 80% of AGO1 clusters are associated with cell-type-specific transcriptional enhancers, most of them (73%) overlapping active enhancers. This association seems to be mediated by long, rather than short, enhancer RNAs and to be more prominent in intragenic, rather than intergenic, enhancers. Paradoxically, crossing ChIP-seq with RNA-seq data upon AGO1 depletion revealed that enhancer-bound AGO1 is not linked to the global regulation of gene transcription but to the control of constitutive and alternative splicing, which was confirmed by an individual gene analysis explaining how AGO1 controls inclusion levels of the cassette exon 107 in the SYNE2 gene.
Collapse
|
122
|
Exon skipping event prediction based on histone modifications. Interdiscip Sci 2014; 6:241-9. [DOI: 10.1007/s12539-013-0195-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 12/30/2013] [Accepted: 02/07/2014] [Indexed: 12/11/2022]
|
123
|
H3K36 Histone Methyltransferase Setd2 Is Required for Murine Embryonic Stem Cell Differentiation toward Endoderm. Cell Rep 2014; 8:1989-2002. [DOI: 10.1016/j.celrep.2014.08.031] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 05/06/2014] [Accepted: 08/04/2014] [Indexed: 11/17/2022] Open
|
124
|
Fuchs G, Hollander D, Voichek Y, Ast G, Oren M. Cotranscriptional histone H2B monoubiquitylation is tightly coupled with RNA polymerase II elongation rate. Genome Res 2014; 24:1572-83. [PMID: 25049226 PMCID: PMC4199367 DOI: 10.1101/gr.176487.114] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Various histone modifications decorate nucleosomes within transcribed genes. Among these, monoubiquitylation of histone H2B (H2Bub1) and methylation of histone H3 on lysines 36 (H3K36me2/3) and 79 (H3K79me2/3) correlate positively with gene expression. By measuring the progression of the transcriptional machinery along genes within live cells, we now report that H2B monoubiquitylation occurs cotranscriptionally and accurately reflects the advance of RNA polymerase II (Pol II). In contrast, H3K36me3 and H3K79me2 are less dynamic and represent Pol II movement less faithfully. High-resolution ChIP-seq reveals that H2Bub1 levels are selectively reduced at exons and decrease in an exon-dependent stepwise manner toward the 3' end of genes. Exonic depletion of H2Bub1 in gene bodies is highly correlated with Pol II pausing at exons, suggesting elongation rate changes associated with intron-exon structure. In support of this notion, H2Bub1 levels were found to be significantly correlated with transcription elongation rates measured in various cell lines. Overall, our data shed light on the organization of H2Bub1 within transcribed genes and single out H2Bub1 as a reliable marker for ongoing transcription elongation.
Collapse
Affiliation(s)
- Gilad Fuchs
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Dror Hollander
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv 69978, Israel
| | - Yoav Voichek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Gil Ast
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv 69978, Israel
| | - Moshe Oren
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel;
| |
Collapse
|
125
|
Dušková E, Hnilicová J, Staněk D. CRE promoter sites modulate alternative splicing via p300-mediated histone acetylation. RNA Biol 2014; 11:865-74. [PMID: 25019513 DOI: 10.4161/rna.29441] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Histone acetylation modulates alternative splicing of several hundred genes. Here, we tested the role of the histone acetyltransferase p300 in alternative splicing and showed that knockdown of p300 promotes inclusion of the fibronectin (FN1) alternative EDB exon. p300 associates with CRE sites in the promoter via the CREB transcription factor. We created mini-gene reporters driven by an artificial promoter containing CRE sites. Both deletion and mutation of the CRE site affected EDB alternative splicing in the same manner as p300 knockdown. Next we showed that p300 controls histone H4 acetylation along the FN1 gene. Consistently, p300 depletion and CRE deletion/mutation both reduced histone H4 acetylation on mini-gene reporters. Finally, we provide evidence that the effect of CRE inactivation on H4 acetylation and alternative splicing is counteracted by the inhibition of histone deacetylases. Together, these data suggest that histone acetylation could be one of the mechanisms how promoter and promoter binding proteins influence alternative splicing.
Collapse
Affiliation(s)
- Eva Dušková
- Department of RNA Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic; Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Jarmila Hnilicová
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - David Staněk
- Department of RNA Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
126
|
Podlaha O, De S, Gonen M, Michor F. Histone modifications are associated with transcript isoform diversity in normal and cancer cells. PLoS Comput Biol 2014; 10:e1003611. [PMID: 24901363 PMCID: PMC4046914 DOI: 10.1371/journal.pcbi.1003611] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 03/26/2014] [Indexed: 11/29/2022] Open
Abstract
Mechanisms that generate transcript diversity are of fundamental importance in eukaryotes. Although a large fraction of human protein-coding genes and lincRNAs produce more than one mRNA isoform each, the regulation of this phenomenon is still incompletely understood. Much progress has been made in deciphering the role of sequence-specific features as well as DNA-and RNA-binding proteins in alternative splicing. Recently, however, several experimental studies of individual genes have revealed a direct involvement of epigenetic factors in alternative splicing and transcription initiation. While histone modifications are generally correlated with overall gene expression levels, it remains unclear how histone modification enrichment affects relative isoform abundance. Therefore, we sought to investigate the associations between histone modifications and transcript diversity levels measured by the rates of transcription start-site switching and alternative splicing on a genome-wide scale across protein-coding genes and lincRNAs. We found that the relationship between enrichment levels of epigenetic marks and transcription start-site switching is similar for protein-coding genes and lincRNAs. Furthermore, we found associations between splicing rates and enrichment levels of H2az, H3K4me1, H3K4me2, H3K4me3, H3K9ac, H3K9me3, H3K27ac, H3K27me3, H3K36me3, H3K79me2, and H4K20me, marks traditionally associated with enhancers, transcription initiation, transcriptional repression, and others. These patterns were observed in both normal and cancer cell lines. Additionally, we developed a novel computational method that identified 840 epigenetically regulated candidate genes and predicted transcription start-site switching and alternative exon splicing with up to 92% accuracy based on epigenetic patterning alone. Our results suggest that the epigenetic regulation of transcript isoform diversity may be a relatively common genome-wide phenomenon representing an avenue of deregulation in tumor development. Traditionally, the regulation of gene expression was thought to be largely based on DNA and RNA sequence motifs. However, this dogma has recently been challenged as other factors, such as epigenetic patterning of the genome, have become better understood. Sparse but convincing experimental evidence suggests that the epigenetic background, in the form of histone modifications, acts as an additional layer of regulation determining how transcripts are processed. Here we developed a computational approach to investigate the genome-wide prevalence and the level of association between the enrichment of epigenetic marks and transcript diversity generated via alternative transcription start sites and splicing. We found that the role of epigenetic patterning in alternative transcription start-site switching is likely to be the same for all genes whereas the role of epigenetic patterns in splicing is likely gene-specific. Furthermore, we show that epigenetic data alone can be used to predict the inclusion pattern of an exon. These findings have significant implications for a better understanding of the regulation of transcript diversity in humans as well as the modifications arising during tumor development.
Collapse
Affiliation(s)
- Ondrej Podlaha
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, and Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Subhajyoti De
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, United States of America; Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, Colorado, United States of America; Molecular Oncology Program, University of Colorado Cancer Center, Aurora, Colorado, United States of America
| | - Mithat Gonen
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Franziska Michor
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, and Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, United States of America
| |
Collapse
|
127
|
da Glória VG, Martins de Araújo M, Mafalda Santos A, Leal R, de Almeida SF, Carmo AM, Moreira A. T cell activation regulates CD6 alternative splicing by transcription dynamics and SRSF1. THE JOURNAL OF IMMUNOLOGY 2014; 193:391-9. [PMID: 24890719 DOI: 10.4049/jimmunol.1400038] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The T cell-surface glycoprotein CD6 is a modulator of cellular responses and has been implicated in several autoimmune diseases such as multiple sclerosis, rheumatoid arthritis, and psoriasis. During Ag presentation, CD6 is targeted to the immunological synapse in a ligand binding-dependent manner, in which CD6 domain 3 directly contacts CD166, expressed on the APC. T cell activation results in the induction of CD6Δd3, an alternatively spliced isoform that lacks the ligand-binding domain and thus no longer localizes at the immunological synapse. In this study, we investigated the molecular mechanisms regulating the expression of CD6Δd3 upon human primary T cell activation. Using chromatin immunoprecipitation, we observed an increase in RNA polymerase II occupancy along the CD6 gene and augmented CD6 transcription. We showed that activation leads to transcription-related chromatin modifications, revealed by higher CD6 acetylation levels. Modulation of chromatin conformation using a histone deacetylase inhibitor that increases transcription rate causes an increase of exon 5 skipping. We further showed that the splicing factor SRSF1 binds to a regulatory element in CD6 intron 4, activating exon 5 splicing and promoting exon 5 inclusion. Concomitant with T cell activation-induced exon 5 skipping, we observed a downregulation of SRSF1. Using RNA immunoprecipitation, we showed that in activated T cells, SRSF1 recruitment to the CD6 transcript is impaired by increased chromatin acetylation levels. We propose that upon T cell activation, SRSF1 becomes limiting, and its function in CD6 exon 5 splicing is countered by an increase in CD6 transcription, dependent on chromatin acetylation.
Collapse
Affiliation(s)
- Vânia G da Glória
- Grupo Regulação Genética, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto 4150-180, Portugal
| | - Mafalda Martins de Araújo
- Grupo Activação Celular e Expressão Genética, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto 4150-180, Portugal; Instituto de Investigação em Ciências da Vida e da Saude, Escola de Ciências da Saude, Universidade do Minho, Braga 4710-057, Portugal; ICVS/3B's Laboratório Associado, Braga/Guimarães 4806-909, Portugal
| | - Ana Mafalda Santos
- Grupo Activação Celular e Expressão Genética, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto 4150-180, Portugal
| | - Rafaela Leal
- Grupo Regulação Genética, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto 4150-180, Portugal
| | - Sérgio F de Almeida
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade Lisboa, Lisboa 1649-028, Portugal; and
| | - Alexandre M Carmo
- Grupo Activação Celular e Expressão Genética, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto 4150-180, Portugal; Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto 4050-313, Portugal
| | - Alexandra Moreira
- Grupo Regulação Genética, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto 4150-180, Portugal;
| |
Collapse
|
128
|
Lyons DB, Lomvardas S. Repressive histone methylation: a case study in deterministic versus stochastic gene regulation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:1373-84. [PMID: 24859457 DOI: 10.1016/j.bbagrm.2014.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 04/09/2014] [Accepted: 05/13/2014] [Indexed: 01/21/2023]
Abstract
Transcriptionally repressive histone lysine methylation is used by eukaryotes to tightly control cell fate. Here we explore the importance of this form of regulation in the control of clustered genes in the genome. Two distinctly regulated gene families with important roles in vertebrates are discussed, namely the Hox genes and olfactory receptor genes. Major recent advances in these two fields are compared and contrasted, with an emphasis on the roles of the two different forms of histone trimethylation. We discuss how this repression may impact both the transcriptional output of these loci and the way higher-order chromatin organization is related to their unique control.
Collapse
Affiliation(s)
- David B Lyons
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Stavros Lomvardas
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Anatomy, University of California San Francisco, CA 94920, USA.
| |
Collapse
|
129
|
Descostes N, Heidemann M, Spinelli L, Schüller R, Maqbool MA, Fenouil R, Koch F, Innocenti C, Gut M, Gut I, Eick D, Andrau JC. Tyrosine phosphorylation of RNA polymerase II CTD is associated with antisense promoter transcription and active enhancers in mammalian cells. eLife 2014; 3:e02105. [PMID: 24842994 PMCID: PMC4042876 DOI: 10.7554/elife.02105] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In mammals, the carboxy-terminal domain (CTD) of RNA polymerase (Pol) II consists of 52 conserved heptapeptide repeats containing the consensus sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7. Post-translational modifications of the CTD coordinate the transcription cycle and various steps of mRNA maturation. Here we describe Tyr1 phosphorylation (Tyr1P) as a hallmark of promoter (5' associated) Pol II in mammalian cells, in contrast to what was described in yeast. Tyr1P is predominantly found in antisense orientation at promoters but is also specifically enriched at active enhancers. Mutation of Tyr1 to phenylalanine (Y1F) prevents the formation of the hyper-phosphorylated Pol IIO form, induces degradation of Pol II to the truncated Pol IIB form, and results in a lethal phenotype. Our results suggest that Tyr1P has evolved specialized and essential functions in higher eukaryotes associated with antisense promoter and enhancer transcription, and Pol II stability.DOI: http://dx.doi.org/10.7554/eLife.02105.001.
Collapse
Affiliation(s)
- Nicolas Descostes
- Centre d'Immunologie de Marseille-Luminy, Université Aix-Marseille, Marseille, France Centre National de la Recherche Scientifique (CNRS) UMR6102, Marseille, France Inserm U631, Marseille, France Institut de Génétique Moléculaire de Montpellier (IGMM), CNRS-UMR5535, Montpellier, France
| | - Martin Heidemann
- Department of Molecular Epigenetics, Helmholtz Center Munich, Center of Integrated Protein Science Munich, Munich, Germany
| | - Lionel Spinelli
- Centre d'Immunologie de Marseille-Luminy, Université Aix-Marseille, Marseille, France Centre National de la Recherche Scientifique (CNRS) UMR6102, Marseille, France Inserm U631, Marseille, France
| | - Roland Schüller
- Department of Molecular Epigenetics, Helmholtz Center Munich, Center of Integrated Protein Science Munich, Munich, Germany
| | - Muhammad Ahmad Maqbool
- Centre d'Immunologie de Marseille-Luminy, Université Aix-Marseille, Marseille, France Centre National de la Recherche Scientifique (CNRS) UMR6102, Marseille, France Inserm U631, Marseille, France Institut de Génétique Moléculaire de Montpellier (IGMM), CNRS-UMR5535, Montpellier, France
| | - Romain Fenouil
- Centre d'Immunologie de Marseille-Luminy, Université Aix-Marseille, Marseille, France Centre National de la Recherche Scientifique (CNRS) UMR6102, Marseille, France Inserm U631, Marseille, France
| | - Frederic Koch
- Centre d'Immunologie de Marseille-Luminy, Université Aix-Marseille, Marseille, France Centre National de la Recherche Scientifique (CNRS) UMR6102, Marseille, France Inserm U631, Marseille, France
| | - Charlène Innocenti
- Centre d'Immunologie de Marseille-Luminy, Université Aix-Marseille, Marseille, France Centre National de la Recherche Scientifique (CNRS) UMR6102, Marseille, France Inserm U631, Marseille, France
| | - Marta Gut
- Centre Nacional D'Anàlisi Genòmica, Barcelona, Spain
| | - Ivo Gut
- Centre Nacional D'Anàlisi Genòmica, Barcelona, Spain
| | - Dirk Eick
- Department of Molecular Epigenetics, Helmholtz Center Munich, Center of Integrated Protein Science Munich, Munich, Germany
| | - Jean-Christophe Andrau
- Centre d'Immunologie de Marseille-Luminy, Université Aix-Marseille, Marseille, France Centre National de la Recherche Scientifique (CNRS) UMR6102, Marseille, France Inserm U631, Marseille, France Institut de Génétique Moléculaire de Montpellier (IGMM), CNRS-UMR5535, Montpellier, France
| |
Collapse
|
130
|
Van der Meulen J, Van Roy N, Van Vlierberghe P, Speleman F. The epigenetic landscape of T-cell acute lymphoblastic leukemia. Int J Biochem Cell Biol 2014; 53:547-57. [PMID: 24786297 DOI: 10.1016/j.biocel.2014.04.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 04/08/2014] [Accepted: 04/10/2014] [Indexed: 12/29/2022]
Abstract
The genetic landscape of T-ALL has been very actively explored during the past decades. This leads to an overwhelming body of exciting novel findings providing insight into (1) the genetic heterogeneity of the disease with marked genetic subsets, (2) the mechanisms by which aberrant T-cell development drive leukemogenesis and (3) emerging opportunities for novel therapeutic interventions. Of further interest, recent genome wide sequencing studies identified proteins that actively participate in the regulation of the T-cell epigenome as novel oncogenes and tumor suppressor genes in T-ALL. The identification of these perturbed molecular epigenetic events in the pathogenesis of T-ALL will contribute to the further exploration of novel therapies in this cancer type. As some epigenetic therapies have recently been approved for a number of hematological neoplasms, one could speculate that targeted therapies against epigenetic regulators might offer good prospects for T-ALL treatment in the near future. In this review, we summarize the epigenetic discoveries made in T-ALL hitherto and discuss possible new venues for epigenetic therapeutic intervention in this aggressive subtype of human leukemia. This article is part of a Directed Issue entitled: Rare Cancers.
Collapse
Affiliation(s)
| | - Nadine Van Roy
- Center for Medical Genetics, Ghent University, Ghent, Belgium
| | | | - Frank Speleman
- Center for Medical Genetics, Ghent University, Ghent, Belgium.
| |
Collapse
|
131
|
de Almeida SF, Carmo-Fonseca M. Reciprocal regulatory links between cotranscriptional splicing and chromatin. Semin Cell Dev Biol 2014; 32:2-10. [PMID: 24657193 DOI: 10.1016/j.semcdb.2014.03.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 03/11/2014] [Indexed: 10/25/2022]
Abstract
Here we review recent findings showing that chromatin organization adds another layer of complexity to the already intricate network of splicing regulatory mechanisms. Chromatin structure can impact splicing by either affecting the elongation rate of RNA polymerase II or by signaling the recruitment of splicing regulatory proteins. The C-terminal domain of the RNA polymerase II largest subunit serves as a coordination platform that binds factors required for adapting chromatin structure to both efficient transcription and processing of the newly synthesized RNA. Reciprocal interconnectivity of steps required for gene activation plays a critical role ensuring efficiency and fidelity of gene expression.
Collapse
Affiliation(s)
| | - Maria Carmo-Fonseca
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal.
| |
Collapse
|
132
|
Biamonti G, Catillo M, Pignataro D, Montecucco A, Ghigna C. The alternative splicing side of cancer. Semin Cell Dev Biol 2014; 32:30-6. [PMID: 24657195 DOI: 10.1016/j.semcdb.2014.03.016] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 03/11/2014] [Indexed: 12/22/2022]
Abstract
Alternative splicing emerges as a potent and pervasive mechanism of gene expression regulation that expands the coding capacity of the genome and forms an intermediate layer of regulation between transcriptional and post-translational networks. Indeed, alternative splicing occupies a pivotal position in developmental programs and in the cell response to external and internal stimuli. Not surprisingly, therefore, its deregulation frequently leads to human disease. In this review we provide an updated overview of the impact of alternative splicing on tumorigenesis. Moreover, we discuss the intricacy of the reciprocal interactions between alternative splicing programs and signal transduction pathways, which appear to be crucially linked to cancer progression in response to the tumor microenvironment. Finally, we focus on the recently described interplay between splicing and chromatin organization which is expected to shed new lights into gene expression regulation in normal and cancer cells.
Collapse
Affiliation(s)
- Giuseppe Biamonti
- Istituto di Genetica Molecolare - CNR, Via Abbiategrasso 207, 27011 Pavia, Italy.
| | - Morena Catillo
- Istituto di Genetica Molecolare - CNR, Via Abbiategrasso 207, 27011 Pavia, Italy
| | - Daniela Pignataro
- Istituto di Genetica Molecolare - CNR, Via Abbiategrasso 207, 27011 Pavia, Italy
| | | | - Claudia Ghigna
- Istituto di Genetica Molecolare - CNR, Via Abbiategrasso 207, 27011 Pavia, Italy
| |
Collapse
|
133
|
Convertini P, Shen M, Potter PM, Palacios G, Lagisetti C, de la Grange P, Horbinski C, Fondufe-Mittendorf YN, Webb TR, Stamm S. Sudemycin E influences alternative splicing and changes chromatin modifications. Nucleic Acids Res 2014; 42:4947-61. [PMID: 24623796 PMCID: PMC4005683 DOI: 10.1093/nar/gku151] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Sudemycin E is an analog of the pre-messenger RNA splicing modulator FR901464 and its derivative spliceostatin A. Sudemycin E causes the death of cancer cells through an unknown mechanism. We found that similar to spliceostatin A, sudemycin E binds to the U2 small nuclear ribonucleoprotein (snRNP) component SF3B1. Native chromatin immunoprecipitations showed that U2 snRNPs physically interact with nucleosomes. Sudemycin E induces a dissociation of the U2 snRNPs and decreases their interaction with nucleosomes. To determine the effect on gene expression, we performed genome-wide array analysis. Sudemycin E first causes a rapid change in alternative pre-messenger RNA splicing, which is later followed by changes in overall gene expression and arrest in the G2 phase of the cell cycle. The changes in alternative exon usage correlate with a loss of the H3K36me3 modification in chromatin encoding these exons. We propose that sudemycin E interferes with the ability of U2 snRNP to maintain an H3K36me3 modification in actively transcribed genes. Thus, in addition to the reversible changes in alternative splicing, sudemycin E causes changes in chromatin modifications that result in chromatin condensation, which is a likely contributing factor to cancer cell death.
Collapse
Affiliation(s)
- Paolo Convertini
- Department of Molecular and Cellular Biochemistry, University of Kentucky, 741 South Limestone, Lexington, KY 40536, USA, Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA and GenoSplice Technology, Hôpital Saint-Louis, Av Claude Vellefaux, 75010 Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Bentley DL. Coupling mRNA processing with transcription in time and space. Nat Rev Genet 2014; 15:163-75. [PMID: 24514444 DOI: 10.1038/nrg3662] [Citation(s) in RCA: 584] [Impact Index Per Article: 53.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Maturation of mRNA precursors often occurs simultaneously with their synthesis by RNA polymerase II (Pol II). The co-transcriptional nature of mRNA processing has permitted the evolution of coupling mechanisms that coordinate transcription with mRNA capping, splicing, editing and 3' end formation. Recent experiments using sophisticated new methods for analysis of nascent RNA have provided important insights into the relative amount of co-transcriptional and post-transcriptional processing, the relationship between mRNA elongation and processing, and the role of the Pol II carboxy-terminal domain (CTD) in regulating these processes.
Collapse
Affiliation(s)
- David L Bentley
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, MS8101, PO BOX 6511, Aurora, Colorado 80045, USA
| |
Collapse
|
135
|
Davidson L, Muniz L, West S. 3' end formation of pre-mRNA and phosphorylation of Ser2 on the RNA polymerase II CTD are reciprocally coupled in human cells. Genes Dev 2014; 28:342-56. [PMID: 24478330 PMCID: PMC3937513 DOI: 10.1101/gad.231274.113] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Pre-mRNA 3′ end formation is coupled to transcription via the RNA Pol II C-terminal domain (CTD). However, how transcription and pre-mRNA maturation are coordinated in humans is poorly understood. Here, West and colleagues show that Pol II pausing promotes Ser2p by Cdk12, which recruits CPA factor CstF77 and is required for optimal 3′ end processing. This study delineates a reciprocal relationship between early steps in poly(A) site processing and Pol II Ser2p that ensures efficient pre-mRNA 3′ end formation in human cells. 3′ end formation of pre-mRNAs is coupled to their transcription via the C-terminal domain (CTD) of RNA polymerase II (Pol II). Nearly all protein-coding transcripts are matured by cleavage and polyadenylation (CPA), which is frequently misregulated in disease. Understanding how transcription is coordinated with CPA in human cells is therefore very important. We found that the CTD is heavily phosphorylated on Ser2 (Ser2p) at poly(A) (pA) signals coincident with recruitment of the CstF77 CPA factor. Depletion of the Ser2 kinase Cdk12 impairs Ser2p, CstF77 recruitment, and CPA, strongly suggesting that the processes are linked, as they are in budding yeast. Importantly, we additionally show that the high Ser2p signals at the 3′ end depend on pA signal function. Down-regulation of CPA results in the loss of a 3′ Ser2p peak, whereas a new peak is formed when CPA is induced de novo. Finally, high Ser2p signals are generated by Pol II pausing, which is a well-known feature of pA site recognition. Thus, a reciprocal relationship between early steps in pA site processing and Ser2p ensures efficient 3′ end formation.
Collapse
Affiliation(s)
- Lee Davidson
- Wellcome Trust Centre for Cell Biology, Edinburgh EH9 3JR, United Kingdom
| | | | | |
Collapse
|
136
|
Abstract
The discovery that many intron-containing genes can be cotranscriptionally spliced has led to an increased understanding of how splicing and transcription are intricately intertwined. Cotranscriptional splicing has been demonstrated in a number of different organisms and has been shown to play roles in coordinating both constitutive and alternative splicing. The nature of cotranscriptional splicing suggests that changes in transcription can dramatically affect splicing, and new evidence suggests that splicing can, in turn, influence transcription. In this chapter, we discuss the mechanisms and consequences of cotranscriptional splicing and introduce some of the tools used to measure this process.
Collapse
Affiliation(s)
- Evan C Merkhofer
- Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | | | | |
Collapse
|
137
|
Polycomb-Dependent H3K27me1 and H3K27me2 Regulate Active Transcription and Enhancer Fidelity. Mol Cell 2014; 53:49-62. [DOI: 10.1016/j.molcel.2013.10.030] [Citation(s) in RCA: 357] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/23/2013] [Accepted: 10/24/2013] [Indexed: 01/22/2023]
|
138
|
Abstract
In the past several years, the relationship between chromatin structure and mRNA processing has been the source of significant investigation across diverse disciplines. Central to these efforts was an unanticipated nonrandom distribution of chromatin marks across transcribed regions of protein-coding genes. In addition to the presence of specific histone modifications at the 5' and 3' ends of genes, exonic DNA was demonstrated to present a distinct chromatin landscape relative to intronic DNA. As splicing in higher eukaryotes predominantly occurs co-transcriptionally, these studies raised the possibility that chromatin modifications may aid the spliceosome in the detection of exons amidst vast stretches of noncoding intronic sequences. Recent investigations have supported a direct role for chromatin in splicing regulation and have suggested an intriguing role for splicing in the establishment of chromatin modifications. Here we will summarize an accumulating body of data that begins to reveal extensive coupling between chromatin structure and pre-mRNA splicing.
Collapse
Affiliation(s)
- Nazmul Haque
- Laboratory of Ribonucleoprotein Biochemistry, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
139
|
Abstract
Researchers in the field of epigenomics are developing more nuanced understandings of biological complexity, and exploring the multiple pathways that lead to phenotypic expression. The concept of degeneracy-referring to the multiple pathways that a system recruits to achieve functional plasticity-is an important conceptual accompaniment to the growing body of knowledge in epigenomics. Distinct from degradation, redundancy and dilapidation; degeneracy refers to the plasticity of traits whose function overlaps in some environments, but diverges in others. While a redundant system is composed of repeated identical elements performing the same function, a degenerate system is composed of different elements performing similar or overlapping functions. Here, we describe the degenerate structure of gene regulatory systems from the basic genetic code to flexible epigenomic modifications, and discuss how these structural features have contributed to organism complexity, robustness, plasticity and evolvability.
Collapse
|
140
|
Santini V, Melnick A, Maciejewski JP, Duprez E, Nervi C, Cocco L, Ford KG, Mufti G. Epigenetics in focus: Pathogenesis of myelodysplastic syndromes and the role of hypomethylating agents. Crit Rev Oncol Hematol 2013; 88:231-45. [DOI: 10.1016/j.critrevonc.2013.06.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 05/14/2013] [Accepted: 06/12/2013] [Indexed: 12/22/2022] Open
|
141
|
Simon JM, Hacker KE, Singh D, Brannon AR, Parker JS, Weiser M, Ho TH, Kuan PF, Jonasch E, Furey TS, Prins JF, Lieb JD, Rathmell WK, Davis IJ. Variation in chromatin accessibility in human kidney cancer links H3K36 methyltransferase loss with widespread RNA processing defects. Genome Res 2013; 24:241-50. [PMID: 24158655 PMCID: PMC3912414 DOI: 10.1101/gr.158253.113] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Comprehensive sequencing of human cancers has identified recurrent mutations in genes encoding chromatin regulatory proteins. For clear cell renal cell carcinoma (ccRCC), three of the five commonly mutated genes encode the chromatin regulators PBRM1, SETD2, and BAP1. How these mutations alter the chromatin landscape and transcriptional program in ccRCC or other cancers is not understood. Here, we identified alterations in chromatin organization and transcript profiles associated with mutations in chromatin regulators in a large cohort of primary human kidney tumors. By associating variation in chromatin organization with mutations in SETD2, which encodes the enzyme responsible for H3K36 trimethylation, we found that changes in chromatin accessibility occurred primarily within actively transcribed genes. This increase in chromatin accessibility was linked with widespread alterations in RNA processing, including intron retention and aberrant splicing, affecting ∼25% of all expressed genes. Furthermore, decreased nucleosome occupancy proximal to misspliced exons was observed in tumors lacking H3K36me3. These results directly link mutations in SETD2 to chromatin accessibility changes and RNA processing defects in cancer. Detecting the functional consequences of specific mutations in chromatin regulatory proteins in primary human samples could ultimately inform the therapeutic application of an emerging class of chromatin-targeted compounds.
Collapse
Affiliation(s)
- Jeremy M Simon
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27514, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Herz HM, Garruss A, Shilatifard A. SET for life: biochemical activities and biological functions of SET domain-containing proteins. Trends Biochem Sci 2013; 38:621-39. [PMID: 24148750 DOI: 10.1016/j.tibs.2013.09.004] [Citation(s) in RCA: 225] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 09/06/2013] [Accepted: 09/12/2013] [Indexed: 01/23/2023]
Affiliation(s)
- Hans-Martin Herz
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | | | | |
Collapse
|
143
|
Schmolka N, Serre K, Grosso AR, Rei M, Pennington DJ, Gomes AQ, Silva-Santos B. Epigenetic and transcriptional signatures of stable versus plastic differentiation of proinflammatory γδ T cell subsets. Nat Immunol 2013; 14:1093-1100. [PMID: 23995235 PMCID: PMC4834994 DOI: 10.1038/ni.2702] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 08/06/2013] [Indexed: 12/12/2022]
Abstract
Two distinct subsets of γδ T cells that produce interleukin 17 (IL-17) (CD27(-) γδ T cells) or interferon-γ (IFN-γ) (CD27(+) γδ T cells) develop in the mouse thymus, but the molecular determinants of their functional potential in the periphery remain unknown. Here we conducted a genome-wide characterization of the methylation patterns of histone H3, along with analysis of mRNA encoding transcription factors, to identify the regulatory networks of peripheral IFN-γ-producing or IL-17-producing γδ T cell subsets in vivo. We found that CD27(+) γδ T cells were committed to the expression of Ifng but not Il17, whereas CD27(-) γδ T cells displayed permissive chromatin configurations at loci encoding both cytokines and their regulatory transcription factors and differentiated into cells that produced both IL-17 and IFN-γ in a tumor microenvironment.
Collapse
Affiliation(s)
- Nina Schmolka
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Karine Serre
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Ana R Grosso
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Margarida Rei
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Blizard Institute, Barts and The London School of Medicine, Queen Mary University of London, UK
| | - Daniel J Pennington
- Blizard Institute, Barts and The London School of Medicine, Queen Mary University of London, UK
| | - Anita Q Gomes
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Escola Superior de Tecnologia da Saúde de Lisboa, Lisbon, Portugal
| | - Bruno Silva-Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| |
Collapse
|
144
|
Zhou HL, Luo G, Wise JA, Lou H. Regulation of alternative splicing by local histone modifications: potential roles for RNA-guided mechanisms. Nucleic Acids Res 2013; 42:701-13. [PMID: 24081581 PMCID: PMC3902899 DOI: 10.1093/nar/gkt875] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The molecular mechanisms through which alternative splicing and histone modifications regulate gene expression are now understood in considerable detail. Here, we discuss recent studies that connect these two previously separate avenues of investigation, beginning with the unexpected discoveries that nucleosomes are preferentially positioned over exons and DNA methylation and certain histone modifications also show exonic enrichment. These findings have profound implications linking chromatin structure, histone modification and splicing regulation. Complementary single gene studies provided insight into the mechanisms through which DNA methylation and histones modifications modulate alternative splicing patterns. Here, we review an emerging theme resulting from these studies: RNA-guided mechanisms integrating chromatin modification and splicing. Several groundbreaking papers reported that small noncoding RNAs affect alternative exon usage by targeting histone methyltransferase complexes to form localized facultative heterochromatin. More recent studies provided evidence that pre-messenger RNA itself can serve as a guide to enable precise alternative splicing regulation via local recruitment of histone-modifying enzymes, and emerging evidence points to a similar role for long noncoding RNAs. An exciting challenge for the future is to understand the impact of local modulation of transcription elongation rates on the dynamic interplay between histone modifications, alternative splicing and other processes occurring on chromatin.
Collapse
Affiliation(s)
- Hua-Lin Zhou
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China, Department of Genetics and Genome Sciences, Case Comprehensive Cancer Center and Center for RNA Molecular Biology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | | | | | | |
Collapse
|
145
|
Hnilicová J, Hozeifi S, Stejskalová E, Dušková E, Poser I, Humpolíčková J, Hof M, Staněk D. The C-terminal domain of Brd2 is important for chromatin interaction and regulation of transcription and alternative splicing. Mol Biol Cell 2013; 24:3557-68. [PMID: 24048450 PMCID: PMC3826993 DOI: 10.1091/mbc.e13-06-0303] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
This study determines genes that are regulated by Brd2 and finds that, in addition to expression control, Brd2 modulates the alternative splicing of several hundred genes. The in vivo interaction of Brd2 with chromatin is analyzed, and the contributions of individual Brd2 domains to the chromatin interaction are determined. Brd2 is a member of the bromodomain extra terminal (BET) protein family, which consists of four chromatin-interacting proteins that regulate gene expression. Each BET protein contains two N-terminal bromodomains, which recognize acetylated histones, and the C-terminal protein–protein interaction domain. Using a genome-wide screen, we identify 1450 genes whose transcription is regulated by Brd2. In addition, almost 290 genes change their alternative splicing pattern upon Brd2 depletion. Brd2 is specifically localized at promoters of target genes, and our data show that Brd2 interaction with chromatin cannot be explained solely by histone acetylation. Using coimmunoprecipitation and live-cell imaging, we show that the C-terminal part is crucial for Brd2 association with chromatin. Live-cell microscopy also allows us to map the average binding time of Brd2 to chromatin and quantify the contributions of individual Brd2 domains to the interaction with chromatin. Finally, we show that bromodomains and the C-terminal domain are equally important for transcription and splicing regulation, which correlates with the role of these domains in Brd2 binding to chromatin.
Collapse
Affiliation(s)
- Jarmila Hnilicová
- Department of RNA Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic Max Planck Institute for Molecular Cell Biology and Genetics, Dresden 01307, Germany J. Heyrovsky Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Prague 182 23, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
146
|
Abstract
Long intervening noncoding RNAs (lincRNAs) are transcribed from thousands of loci in mammalian genomes and might play widespread roles in gene regulation and other cellular processes. This Review outlines the emerging understanding of lincRNAs in vertebrate animals, with emphases on how they are being identified and current conclusions and questions regarding their genomics, evolution and mechanisms of action.
Collapse
Affiliation(s)
- Igor Ulitsky
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | |
Collapse
|
147
|
Affiliation(s)
- Dirk Eick
- Department of Molecular Epigenetics, Helmholtz Center Munich and Center for Integrated Protein Science Munich (CIPSM), Marchioninistrasse 25, 81377 Munich,
Germany
| | - Matthias Geyer
- Center of Advanced European Studies and Research, Group Physical Biochemistry,
Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| |
Collapse
|
148
|
Iannone C, Valcárcel J. Chromatin's thread to alternative splicing regulation. Chromosoma 2013; 122:465-74. [PMID: 23912688 DOI: 10.1007/s00412-013-0425-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 06/27/2013] [Accepted: 06/28/2013] [Indexed: 10/26/2022]
Abstract
Intron removal (pre-mRNA splicing) is a necessary step for expression of most genes in higher eukaryotes. Alternative splice site selection is a prevalent mechanism that diversifies genome outputs and offers ample opportunities for gene regulation in these organisms. Pre-mRNA splicing occurs co-transcriptionally and is influenced by features in chromatin structure, including nucleosome density and epigenetic modifications. We review here the molecular mechanisms by which the reciprocal interplay between chromatin and RNA processing can contribute to alternative splicing regulation.
Collapse
|
149
|
Irimia M, Maeso I, Roy SW, Fraser HB. Ancient cis-regulatory constraints and the evolution of genome architecture. Trends Genet 2013; 29:521-8. [PMID: 23791467 DOI: 10.1016/j.tig.2013.05.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 05/02/2013] [Accepted: 05/15/2013] [Indexed: 01/18/2023]
Abstract
The order of genes along metazoan chromosomes has generally been thought to be largely random, with few implications for organismal function. However, two recent studies, reporting hundreds of pairs of genes that have remained linked in diverse metazoan species over hundreds of millions of years of evolution, suggest widespread functional implications for gene order. These associations appear to largely reflect cis-regulatory constraints, with either (i) multiple genes sharing transcriptional regulatory elements, or (ii) regulatory elements for a developmental gene being found within a neighboring 'bystander' gene (known as a genomic regulatory block). We discuss implications, questions raised, and new research directions arising from these studies, as well as evidence for similar phenomena in other eukaryotic groups.
Collapse
Affiliation(s)
- Manuel Irimia
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | |
Collapse
|
150
|
Kimura H. Histone modifications for human epigenome analysis. J Hum Genet 2013; 58:439-45. [PMID: 23739122 DOI: 10.1038/jhg.2013.66] [Citation(s) in RCA: 330] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 05/06/2013] [Accepted: 05/11/2013] [Indexed: 12/12/2022]
Abstract
Histones function both positively and negatively in the regulation of gene expression, mainly governed by post-translational modifications on specific amino acid residues. Although histone modifications are not necessarily prerequisite codes, they may still serve as good epigenetic indicators of chromatin state associated with gene activation or repression. In particular, six emerging classes of histone H3 modifications are subjected for epigenome profiling by the International Human Epigenome Consortium. In general, transcription start sites of actively transcribed genes are marked by trimethylated H3K4 (H3K4me3) and acetylated H3K27 (H3K27ac), and active enhancers can be identified by enrichments of both monomethylated H3K4 (H3K4me1) and H3K27ac. Gene bodies of actively transcribed genes are associated with trimethylated H3K36 (H3K36me3). Gene repression can be mediated through two distinct mechanisms involving trimethylated H3K9 (H3K9me3) and trimethylated H3K27 (H3K27me3). Enrichments of these histone modifications on specific loci, or in genome wide, in given cells can be analyzed by chromatin immunoprecipitation (ChIP)-based methods using an antibody directed against the site-specific modification. When performing ChIP experiments, one should be careful about the specificity of antibody, as this affects the data interpretation. If cell samples with preserved histone-DNA contacts are available, evaluation of histone modifications, in addition to DNA methylaion, at specific gene loci would be useful for deciphering the epigenome state for human genetics studies.
Collapse
Affiliation(s)
- Hiroshi Kimura
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan.
| |
Collapse
|