101
|
Abstract
The significance of noncoding RNAs in animal biology is being increasingly recognized. The nematode Caenorhabditis elegans has an extensive system of short RNAs that includes microRNAs, piRNAs, and endogenous siRNAs, which regulate development, control life span, provide resistance to viruses and transposons, and monitor gene duplications. Progress in our understanding of short RNAs was stimulated by the discovery of RNA interference, a phenomenon of sequence-specific gene silencing induced by exogenous double-stranded RNA, at the turn of the twenty-first century. This chapter provides a broad overview of the exogenous and endogenous RNAi processes in C. elegans and describes recent advances in genetic, genomic, and molecular analyses of nematode's short RNAs and proteins involved in the RNAi-related pathways.
Collapse
Affiliation(s)
- Alla Grishok
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, USA.
| |
Collapse
|
102
|
Voronina E, Paix A, Seydoux G. The P granule component PGL-1 promotes the localization and silencing activity of the PUF protein FBF-2 in germline stem cells. Development 2012; 139:3732-40. [PMID: 22991439 DOI: 10.1242/dev.083980] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the C. elegans germline, maintenance of undifferentiated stem cells depends on the PUF family RNA-binding proteins FBF-1 and FBF-2. FBF-1 and FBF-2 are 89% identical and are required redundantly to silence the expression of mRNAs that promote meiosis. Here we show that, despite their extensive sequence similarity, FBF-1 and FBF-2 have different effects on target mRNAs. FBF-1 promotes the degradation and/or transport of meiotic mRNAs out of the stem cell region, whereas FBF-2 prevents translation. FBF-2 activity depends on the P granule component PGL-1. PGL-1 is required to localize FBF-2 to perinuclear P granules and for efficient binding of FBF-2 to its mRNA targets. We conclude that multiple regulatory mechanisms converge on meiotic RNAs to ensure silencing in germline stem cells. Our findings also support the view that P granules facilitate mRNA silencing by providing an environment in which translational repressors can encounter their mRNA targets immediately upon exit from the nucleus.
Collapse
Affiliation(s)
- Ekaterina Voronina
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
103
|
Gibbings D, Mostowy S, Jay F, Schwab Y, Cossart P, Voinnet O. Selective autophagy degrades DICER and AGO2 and regulates miRNA activity. Nat Cell Biol 2012; 14:1314-21. [PMID: 23143396 PMCID: PMC3771578 DOI: 10.1038/ncb2611] [Citation(s) in RCA: 198] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 10/02/2012] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) form a class of short RNAs (∼ 21 nucleotides) that post-transcriptionally regulate partially complementary messenger RNAs. Each miRNA may target tens to hundreds of transcripts to control key biological processes. Although the biochemical reactions underpinning miRNA biogenesis and activity are relatively well defined and the importance of their homeostasis is increasingly evident, the processes underlying regulation of the miRNA pathway in vivo are still largely elusive. Autophagy, a degradative process in which cytoplasmic material is targeted into double-membrane vacuoles, is recognized to critically contribute to cellular homeostasis. Here, we show that the miRNA-processing enzyme, DICER (also known as DICER1), and the main miRNA effector, AGO2 (also known as eukaryotic translation initiation factor 2C, 2 (EIF2C2)), are targeted for degradation as miRNA-free entities by the selective autophagy receptor NDP52 (also known as calcium binding and coiled-coil domain 2 (CALCOCO2)). Autophagy establishes a checkpoint required for continued loading of miRNA into AGO2; accordingly, NDP52 and autophagy are required for homeostasis and activity of the tested miRNAs. Autophagy also engages post-transcriptional regulation of the DICER mRNA, underscoring the importance of fine-tuned regulation of the miRNA pathway. These findings have implications for human diseases linked to misregulated autophagy, DICER- and miRNA-levels, including cancer.
Collapse
Affiliation(s)
- Derrick Gibbings
- Swiss Federal Institute of Technology (ETH-Z), Department of Biology, Zürich 8092, Switzerland
- University of Ottawa, Department of Cellular and Molecular Medicine, Ottawa, Canada
| | - Serge Mostowy
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Département de Biologie Cellulaire et Infection, 75015 Paris, France
- Inserm, Unité 604, 75015 Paris, France
- INRA, USC2020, 75015 Paris, France
- Section of Microbiology, Centre for Molecular Microbiology and Infection, Imperial College London, Armstrong Road, London SW7 2AZ, UK
| | - Florence Jay
- Swiss Federal Institute of Technology (ETH-Z), Department of Biology, Zürich 8092, Switzerland
| | - Yannick Schwab
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Institut National de la Santé et de la Recherche Médicale Unité 964, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Pascale Cossart
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Département de Biologie Cellulaire et Infection, 75015 Paris, France
- Inserm, Unité 604, 75015 Paris, France
- INRA, USC2020, 75015 Paris, France
| | - Olivier Voinnet
- Swiss Federal Institute of Technology (ETH-Z), Department of Biology, Zürich 8092, Switzerland
- Institut de Biologie Moléculaire des Plantes (IBMP), 12 rue du Général Zimmer, 67084 Strasbourg Cedex, France
| |
Collapse
|
104
|
Abstract
The regulation of mRNA translation is a major checkpoint in the flux of information from the transcriptome to the proteome. Critical for translational control are the trans-acting factors, RNA-binding proteins (RBPs) and small RNAs that bind to the mRNA and modify its translatability. This review summarizes the mechanisms by which RBPs regulate mRNA translation, with special focus on those binding to the 3′-untranslated region. It also discusses how recent high-throughput technologies are revealing exquisite layers of complexity and are helping to untangle translational regulation at a genome-wide scale.
Collapse
|
105
|
microRNA-independent recruitment of Argonaute 1 to nanos mRNA through the Smaug RNA-binding protein. EMBO Rep 2012. [PMID: 23184089 DOI: 10.1038/embor.2012.192] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Argonaute (Ago) proteins are typically recruited to target messenger RNAs via an associated small RNA such as a microRNA (miRNA). Here, we describe a new mechanism of Ago recruitment through the Drosophila Smaug RNA-binding protein. We show that Smaug interacts with the Ago1 protein, and that Ago1 interacts with and is required for the translational repression of the Smaug target, nanos mRNA. The Ago1/nanos mRNA interaction does not require a miRNA, but it does require Smaug. Taken together, our data suggest a model whereby Smaug directly recruits Ago1 to nanos mRNA in a miRNA-independent manner, thereby repressing translation.
Collapse
|
106
|
Wu J, Campbell ZT, Menichelli E, Wickens M, Williamson JR. A protein.protein interaction platform involved in recruitment of GLD-3 to the FBF.fem-3 mRNA complex. J Mol Biol 2012; 425:738-54. [PMID: 23159559 DOI: 10.1016/j.jmb.2012.11.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 11/01/2012] [Accepted: 11/07/2012] [Indexed: 02/03/2023]
Abstract
The Pumilio and FBF (PUF) family of RNA-binding proteins interacts with protein partners to post-transcriptionally regulate mRNAs in eukaryotes. The interaction between PUF family member fem-3 binding factor (FBF) and germline development defective-3 (GLD-3) protein promotes spermatogenesis in Caenorhabditis elegans by increasing expression of the fem-3 mRNA. Defined here in these studies is the molecular basis for this critical interaction. A 10-amino-acid region within GLD-3 is required for FBF binding, while a 7-amino-acid loop in FBF between PUF repeats 7 and 8 is necessary for GLD-3 binding. These short sequences are conserved, as other FBF-binding proteins bear sequences similar to those in GLD-3 and other C. elegans PUF proteins contain sequences similar to those in FBF. The FBF-binding region of GLD-3 forms a ternary complex with FBF on the point mutation element (PME) in the fem-3 3' untranslated region, and formation of this GLD-3⋅FBF complex does not impact the RNA-binding activity of FBF. These data raise the possibility of alternative models involving the formation of a GLD-3⋅FBF⋅RNA complex in the regulation of germline mRNAs.
Collapse
Affiliation(s)
- Joann Wu
- Department of Molecular Biology, Department of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
107
|
Menichelli E, Wu J, Campbell ZT, Wickens M, Williamson JR. Biochemical characterization of the Caenorhabditis elegans FBF.CPB-1 translational regulation complex identifies conserved protein interaction hotspots. J Mol Biol 2012; 425:725-37. [PMID: 23159558 DOI: 10.1016/j.jmb.2012.11.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 11/01/2012] [Accepted: 11/07/2012] [Indexed: 10/27/2022]
Abstract
Caenorhabditis elegans CPB-1 (cytoplasmic polyadenylation element binding protein homolog-1) and FBF (fem-3 mRNA binding factor) are evolutionary conserved regulators of mRNA translation that belong to the CPEB (cytoplasmic polyadenylation element binding) and PUF (Pumilio and FBF) protein families, respectively. In hermaphrodite worms, CPB-1 and FBF control key steps during germline development, including stem cell maintenance and sex determination. While CPB-1 and FBF are known to interact, the molecular basis and function of the CPB-1⋅FBF complex are not known. The surface of CPB-1 that interacts with FBF was localized using in vivo and in vitro methods to a 10-residue region at the N-terminus of the protein and these residues are present in the FBF-binding protein GLD-3 (germline development defective-3). PUF proteins are characterized by the presence of eight α-helical repeats (PUF repeats) arranged side by side in an elongated structure. Critical residues for CPB-1 binding are found in the extended loop that connects PUF repeats 7 and 8. The same FBF residues also mediate binding to GLD-3, indicating a conserved binding mode between different protein partners. CPB-1 binding was competitive with GLD-3, suggestive of mutual exclusivity in vivo. RNA binding measurements demonstrated that CPB-1 alters the affinity of FBF for specific RNA sequences, implying a functional model where the coregulatory protein CPB-1 modulates FBF target selection.
Collapse
Affiliation(s)
- Elena Menichelli
- Department of Molecular Biology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
108
|
Van Etten J, Schagat TL, Hrit J, Weidmann CA, Brumbaugh J, Coon JJ, Goldstrohm AC. Human Pumilio proteins recruit multiple deadenylases to efficiently repress messenger RNAs. J Biol Chem 2012; 287:36370-83. [PMID: 22955276 PMCID: PMC3476303 DOI: 10.1074/jbc.m112.373522] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 09/05/2012] [Indexed: 11/06/2022] Open
Abstract
PUF proteins are a conserved family of eukaryotic RNA-binding proteins that regulate specific mRNAs: they control many processes including stem cell proliferation, fertility, and memory formation. PUFs repress protein expression from their target mRNAs but the mechanism by which they do so remains unclear, especially for humans. Humans possess two PUF proteins, PUM1 and PUM2, which exhibit similar RNA binding specificities. Here we report new insights into their regulatory activities and mechanisms of action. We developed functional assays to measure sequence-specific repression by PUM1 and PUM2. Both robustly inhibit translation and promote mRNA degradation. Purified PUM complexes were found to contain subunits of the CCR4-NOT (CNOT) complex, which contains multiple enzymes that catalyze mRNA deadenylation. PUMs interact with the CNOT deadenylase subunits in vitro. We used three approaches to determine the importance of deadenylases for PUM repression. First, dominant-negative mutants of CNOT7 and CNOT8 reduced PUM repression. Second, RNA interference depletion of the deadenylases alleviated PUM repression. Third, the poly(A) tail was necessary for maximal PUM repression. These findings demonstrate a conserved mechanism of PUF-mediated repression via direct recruitment of the CCR4-POP2-NOT deadenylase leading to translational inhibition and mRNA degradation. A second, deadenylation independent mechanism was revealed by the finding that PUMs repress an mRNA that lacks a poly(A) tail. Thus, human PUMs are repressors capable of deadenylation-dependent and -independent modes of repression.
Collapse
Affiliation(s)
- Jamie Van Etten
- From the Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0600
| | - Trista L. Schagat
- From the Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0600
- the Promega Corporation, Madison, Wisconsin 53711, and
| | - Joel Hrit
- From the Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0600
| | - Chase A. Weidmann
- From the Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0600
| | - Justin Brumbaugh
- the Departments of Chemistry and Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Joshua J. Coon
- the Departments of Chemistry and Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Aaron C. Goldstrohm
- From the Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0600
| |
Collapse
|
109
|
Frohn A, Eberl HC, Stöhr J, Glasmacher E, Rüdel S, Heissmeyer V, Mann M, Meister G. Dicer-dependent and -independent Argonaute2 protein interaction networks in mammalian cells. Mol Cell Proteomics 2012; 11:1442-56. [PMID: 22918229 DOI: 10.1074/mcp.m112.017756] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Argonaute (Ago) proteins interact with small regulatory RNAs such as microRNAs (miRNAs) and facilitate gene-silencing processes. miRNAs guide Ago proteins to specific mRNAs leading to translational silencing or mRNA decay. In order to understand the mechanistic details of miRNA function, it is important to characterize Ago protein interactors. Although several proteomic studies have been performed, it is not clear how the Ago interactome changes on miRNA or mRNA binding. Here, we report the analysis of Ago protein interactions in miRNA-containing and miRNA-depleted cells. Using stable isotope labeling in cell culture in conjunction with Dicer knock out mouse embryonic fibroblasts, we identify proteins that interact with Ago2 in the presence or the absence of Dicer. In contrast to our current view, we find that Ago-mRNA interactions can also take place in the absence of miRNAs. Our proteomics approach provides a rich resource for further functional studies on the cellular roles of Ago proteins.
Collapse
Affiliation(s)
- Anne Frohn
- Laboratory of RNA Biology, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | | | | | | | | | | | | | | |
Collapse
|
110
|
Kong J, Lasko P. Translational control in cellular and developmental processes. Nat Rev Genet 2012; 13:383-94. [PMID: 22568971 DOI: 10.1038/nrg3184] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Growing evidence indicates that translational control of specific mRNAs contributes importantly to genetic regulation across the breadth of cellular and developmental processes. Synthesis of protein from a specific mRNA can be controlled by RNA-binding proteins at the level of translational initiation and elongation, and translational control is also sometimes coupled to mRNA localization mechanisms. Recent discoveries from invertebrate and vertebrate systems have uncovered novel modes of translational regulation, have provided new insights into how specific regulators target the general translational machinery and have identified several new links between translational control and human disease.
Collapse
Affiliation(s)
- Jian Kong
- Department of Biology, McGill University, 3649 Promenade Sir William Osler, Montreal, Quebec H3G 0T5, Canada
| | | |
Collapse
|
111
|
Capshew CR, Dusenbury KL, Hundley HA. Inverted Alu dsRNA structures do not affect localization but can alter translation efficiency of human mRNAs independent of RNA editing. Nucleic Acids Res 2012; 40:8637-45. [PMID: 22735697 PMCID: PMC3458544 DOI: 10.1093/nar/gks590] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
With over one million copies, Alu elements are the most abundant repetitive elements in the human genome. When transcribed, interaction between two Alus that are in opposite orientation gives rise to double-stranded RNA (dsRNA). Although the presence of dsRNA in the cell was previously thought to only occur during viral infection, it is now known that cells express many endogenous small dsRNAs, such as short interfering RNA (siRNAs) and microRNA (miRNAs), which regulate gene expression. It is possible that long dsRNA structures formed from Alu elements influence gene expression. Here, we report that human mRNAs containing inverted Alu elements are present in the mammalian cytoplasm. The presence of these long intramolecular dsRNA structures within 3′-UTRs decreases translational efficiency, and although the structures undergo extensive editing in vivo, the effects on translation are independent of the presence of inosine. As inverted Alus are predicted to reside in >5% of human protein-coding genes, these intramolecular dsRNA structures are important regulators of gene expression.
Collapse
Affiliation(s)
- Claire R Capshew
- Medical Sciences Program, Indiana University, Bloomington, IN 47405, USA
| | | | | |
Collapse
|
112
|
Campbell ZT, Menichelli E, Friend K, Wu J, Kimble J, Williamson JR, Wickens M. Identification of a conserved interface between PUF and CPEB proteins. J Biol Chem 2012; 287:18854-62. [PMID: 22496444 DOI: 10.1074/jbc.m112.352815] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Members of the PUF (Pumilio and FBF) and CPEB (cytoplasmic polyadenylation element-binding) protein families collaborate to regulate mRNA expression throughout eukaryotes. Here, we focus on the physical interactions between members of these two families, concentrating on Caenorhabditis elegans FBF-2 and CPB-1. To localize the site of interaction on FBF-2, we identified conserved amino acids within C. elegans PUF proteins. Deletion of an extended loop containing several conserved residues abolished binding to CPB-1. We analyzed alanine substitutions at 13 individual amino acids in FBF-2, each identified via its conservation. Multiple single point mutations disrupted binding to CPB-1 but not to RNA. Position Tyr-479 was particularly critical as multiple substitutions to other amino acids at this position did not restore binding. The complex of FBF-2 and CPB-1 repressed translation of an mRNA containing an FBF binding element. Repression required both proteins and was disrupted by FBF-2 alleles that failed to bind CPB-1 or RNA. The equivalent loop in human PUM2 is required for binding to human CPEB3 in vitro, although the primary sequences of the human and C. elegans PUF proteins have diverged in that region. Our findings define a key region in PUF/CPEB interactions and imply a conserved platform through which PUF proteins interact with their protein partners.
Collapse
Affiliation(s)
- Zachary T Campbell
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | |
Collapse
|
113
|
EBV and human microRNAs co-target oncogenic and apoptotic viral and human genes during latency. EMBO J 2012; 31:2207-21. [PMID: 22473208 DOI: 10.1038/emboj.2012.63] [Citation(s) in RCA: 229] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 02/16/2012] [Indexed: 12/12/2022] Open
Abstract
Epstein-Barr virus (EBV) controls gene expression to transform human B cells and maintain viral latency. High-throughput sequencing and crosslinking immunoprecipitation (HITS-CLIP) identified mRNA targets of 44 EBV and 310 human microRNAs (miRNAs) in Jijoye (Latency III) EBV-transformed B cells. While 25% of total cellular miRNAs are viral, only three viral mRNAs, all latent transcripts, are targeted. Thus, miRNAs do not control the latent/lytic switch by targeting EBV lytic genes. Unexpectedly, 90% of the 1664 human 3'-untranslated regions targeted by the 12 most abundant EBV miRNAs are also targeted by human miRNAs via distinct binding sites. Half of these are targets of the oncogenic miR-17∼92 miRNA cluster and associated families, including mRNAs that regulate transcription, apoptosis, Wnt signalling, and the cell cycle. Reporter assays confirmed the functionality of several EBV and miR-17 family miRNA-binding sites in EBV latent membrane protein 1 (LMP1), EBV BHRF1, and host CAPRIN2 mRNAs. Our extensive list of EBV and human miRNA targets implicates miRNAs in the control of EBV latency and illuminates viral miRNA function in general.
Collapse
|
114
|
|