101
|
Affiliation(s)
- Joseph D Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
102
|
Goldman DH, Kaiser CM, Milin A, Righini M, Tinoco I, Bustamante C. Ribosome. Mechanical force releases nascent chain-mediated ribosome arrest in vitro and in vivo. Science 2015; 348:457-60. [PMID: 25908824 DOI: 10.1126/science.1261909] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 03/09/2015] [Indexed: 01/12/2023]
Abstract
Protein synthesis rates can affect gene expression and the folding and activity of the translation product. Interactions between the nascent polypeptide and the ribosome exit tunnel represent one mode of regulating synthesis rates. The SecM protein arrests its own translation, and release of arrest at the translocon has been proposed to occur by mechanical force. Using optical tweezers, we demonstrate that arrest of SecM-stalled ribosomes can indeed be rescued by force alone and that the force needed to release stalling can be generated in vivo by a nascent chain folding near the ribosome tunnel exit. We formulate a kinetic model describing how a protein can regulate its own synthesis by the force generated during folding, tuning ribosome activity to structure acquisition by a nascent polypeptide.
Collapse
Affiliation(s)
- Daniel H Goldman
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Christian M Kaiser
- Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA. Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Anthony Milin
- Department of Chemistry, University of California, Berkeley, CA 94720, USA. Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Maurizio Righini
- Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
| | - Ignacio Tinoco
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Carlos Bustamante
- Department of Chemistry, University of California, Berkeley, CA 94720, USA. Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA. Department of Physics, University of California, Berkeley, CA 94720, USA. Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA. Kavli Energy Nanosciences Institute at Berkeley, Berkeley, CA 94720, USA. Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
103
|
Sohmen D, Chiba S, Shimokawa-Chiba N, Innis CA, Berninghausen O, Beckmann R, Ito K, Wilson DN. Structure of the Bacillus subtilis 70S ribosome reveals the basis for species-specific stalling. Nat Commun 2015; 6:6941. [PMID: 25903689 PMCID: PMC4423224 DOI: 10.1038/ncomms7941] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/16/2015] [Indexed: 12/23/2022] Open
Abstract
Ribosomal stalling is used to regulate gene expression and can occur in a species-specific manner. Stalling during translation of the MifM leader peptide regulates expression of the downstream membrane protein biogenesis factor YidC2 (YqjG) in Bacillus subtilis, but not in Escherichia coli. In the absence of structures of Gram-positive bacterial ribosomes, a molecular basis for species-specific stalling has remained unclear. Here we present the structure of a Gram-positive B. subtilis MifM-stalled 70S ribosome at 3.5–3.9 Å, revealing a network of interactions between MifM and the ribosomal tunnel, which stabilize a non-productive conformation of the PTC that prevents aminoacyl-tRNA accommodation and thereby induces translational arrest. Complementary genetic analyses identify a single amino acid within ribosomal protein L22 that dictates the species specificity of the stalling event. Such insights expand our understanding of how the synergism between the ribosome and the nascent chain is utilized to modulate the translatome in a species-specific manner. Ribosome stalling regulates gene expression by exposing otherwise inaccessible downstream ribosome-binding sites. Here the authors present a high-resolution Cryo-EM structure of the Bacillus subtilis MifM-stalled 70S ribosome to provide mechanistic insight into species-specific nascent peptide induced translational arrest.
Collapse
Affiliation(s)
- Daniel Sohmen
- Gene Center and Department for Biochemistry, University of Munich, Feodor-Lynen-Street 25, Munich 81377, Germany
| | - Shinobu Chiba
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto 603-8555, Japan
| | - Naomi Shimokawa-Chiba
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto 603-8555, Japan
| | - C Axel Innis
- 1] Institut Européen de Chimie et Biologie, Université de Bordeaux, Pessac, France [2] Institut National de la Santé et de la Recherche Médicale (U869), Bordeaux, France
| | - Otto Berninghausen
- Gene Center and Department for Biochemistry, University of Munich, Feodor-Lynen-Street 25, Munich 81377, Germany
| | - Roland Beckmann
- 1] Gene Center and Department for Biochemistry, University of Munich, Feodor-Lynen-Street 25, Munich 81377, Germany [2] Center for integrated Protein Science Munich (CiPSM), University of Munich, Feodor-Lynen-Street 25, Munich 81377, Germany
| | - Koreaki Ito
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto 603-8555, Japan
| | - Daniel N Wilson
- 1] Gene Center and Department for Biochemistry, University of Munich, Feodor-Lynen-Street 25, Munich 81377, Germany [2] Center for integrated Protein Science Munich (CiPSM), University of Munich, Feodor-Lynen-Street 25, Munich 81377, Germany
| |
Collapse
|
104
|
Yang Z, Iizuka R, Funatsu T. Nascent SecM chain outside the ribosome reinforces translation arrest. PLoS One 2015; 10:e0122017. [PMID: 25806953 PMCID: PMC4373844 DOI: 10.1371/journal.pone.0122017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 02/12/2015] [Indexed: 12/04/2022] Open
Abstract
SecM, a bacterial secretion monitor protein, contains a specific amino acid sequence at its C-terminus, called arrest sequence, which interacts with the ribosomal tunnel and arrests its own translation. The arrest sequence is sufficient and necessary for stable translation arrest. However, some previous studies have suggested that the nascent chain outside the ribosome affects the stability of translation arrest. To clarify this issue, we performed in vitro translation assays with HaloTag proteins fused to the C-terminal fragment of E. coli SecM containing the arrest sequence or the full-length SecM. We showed that the translation of HaloTag proteins, which are fused to the fragment, is not effectively arrested, whereas the translation of HaloTag protein fused to full-length SecM is arrested efficiently. In addition, we observed that the nascent SecM chain outside the ribosome markedly stabilizes the translation arrest. These results indicate that changes in the nascent polypeptide chain outside the ribosome can affect the stability of translation arrest; the nascent SecM chain outside the ribosome stabilizes the translation arrest.
Collapse
Affiliation(s)
- Zhuohao Yang
- Laboratory of Bio-analytical Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Ryo Iizuka
- Laboratory of Bio-analytical Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Takashi Funatsu
- Laboratory of Bio-analytical Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
105
|
Cymer F, Hedman R, Ismail N, von Heijne G. Exploration of the arrest peptide sequence space reveals arrest-enhanced variants. J Biol Chem 2015; 290:10208-15. [PMID: 25713070 DOI: 10.1074/jbc.m115.641555] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Indexed: 12/27/2022] Open
Abstract
Translational arrest peptides (APs) are short stretches of polypeptides that induce translational stalling when synthesized on a ribosome. Mechanical pulling forces acting on the nascent chain can weaken or even abolish stalling. APs can therefore be used as in vivo force sensors, making it possible to measure the forces that act on a nascent chain during translation with single-residue resolution. It is also possible to score the relative strengths of APs by subjecting them to a given pulling force and ranking them according to stalling efficiency. Using the latter approach, we now report an extensive mutagenesis scan of a strong mutant variant of the Mannheimia succiniciproducens SecM AP and identify mutations that further increase the stalling efficiency. Combining three such mutations, we designed an AP that withstands the strongest pulling force we are able to generate at present. We further show that diproline stretches in a nascent protein act as very strong APs when translation is carried out in the absence of elongation factor P. Our findings highlight critical residues in APs, show that certain amino acid sequences induce very strong translational arrest and provide a toolbox of APs of varying strengths that can be used for in vivo force measurements.
Collapse
Affiliation(s)
- Florian Cymer
- From the Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden and
| | - Rickard Hedman
- From the Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden and
| | - Nurzian Ismail
- From the Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden and
| | - Gunnar von Heijne
- From the Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden and the Science for Life Laboratory Stockholm University, Box 1031, 17121 Solna, Sweden
| |
Collapse
|
106
|
Ismail N, Hedman R, Lindén M, von Heijne G. Charge-driven dynamics of nascent-chain movement through the SecYEG translocon. Nat Struct Mol Biol 2015; 22:145-149. [PMID: 25558985 PMCID: PMC4338579 DOI: 10.1038/nsmb.2940] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 11/26/2014] [Indexed: 11/18/2022]
Abstract
On average, every fifth residue in secretory proteins carries either a positive or a negative charge. In a bacterium such as Escherichia coli, charged residues are exposed to an electric field as they transit through the inner membrane, which should generate a fluctuating electric force on a translocating nascent chain. Here, we have used translational arrest peptides as in vivo force sensors to measure this electric force during co-translational chain translocation through the SecYEG translocon. We find that charged residues experience a biphasic electric force as they move across the membrane, including an early component with a maximum when they are 47-49 residues away from the ribosomal P-site, followed by a more slowly varying component. The early component is generated by the transmembrane electric potential while the second may reflect interactions between charged residues and the periplasmic membrane surface.
Collapse
Affiliation(s)
- Nurzian Ismail
- Center for Biomembrane Research, Department of Biochemistry and Biophysics Stockholm University, Stockholm, Sweden
| | - Rickard Hedman
- Center for Biomembrane Research, Department of Biochemistry and Biophysics Stockholm University, Stockholm, Sweden
| | - Martin Lindén
- Center for Biomembrane Research, Department of Biochemistry and Biophysics Stockholm University, Stockholm, Sweden.,Dept. of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Gunnar von Heijne
- Center for Biomembrane Research, Department of Biochemistry and Biophysics Stockholm University, Stockholm, Sweden.,Science for Life Laboratory Stockholm University, Solna, Sweden
| |
Collapse
|
107
|
MifM monitors total YidC activities of Bacillus subtilis, including that of YidC2, the target of regulation. J Bacteriol 2014; 197:99-107. [PMID: 25313395 DOI: 10.1128/jb.02074-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The YidC/Oxa1/Alb3 family proteins are involved in membrane protein biogenesis in bacteria, mitochondria, and chloroplasts. Recent studies show that YidC uses a channel-independent mechanism to insert a class of membrane proteins into the membrane. Bacillus subtilis has two YidC homologs, SpoIIIJ (YidC1) and YidC2 (YqjG); the former is expressed constitutively, while the latter is induced when the SpoIIIJ activity is compromised. MifM is a substrate of SpoIIIJ, and its failure in membrane insertion is accompanied by stable ribosome stalling on the mifM-yidC2 mRNA, which ultimately facilitates yidC2 translation. While mutational inactivation of SpoIIIJ has been known to induce yidC2 expression, here, we show that the level of this induction is lower than that observed when the membrane insertion signal of MifM is defective. Moreover, this partial induction of YidC2 translation is lowered further when YidC2 is overexpressed in trans. These results suggest that YidC2 is able to insert MifM into the membrane and to release its translation arrest. Thus, under SpoIIIJ-deficient conditions, YidC2 expression is subject to MifM-mediated autogenous feedback repression. Our results show that YidC2 uses a mechanism that is virtually identical to that used by SpoIIIJ; Arg75 of YidC2 in its intramembrane yet hydrophilic cavity is functionally indispensable and requires negatively charged residues of MifM as an insertion substrate. From these results, we conclude that MifM monitors the total activities of the SpoIIIJ and the YidC2 pathways to control the synthesis of YidC2 and to maintain the cellular capability of the YidC mode of membrane protein biogenesis.
Collapse
|
108
|
Cymer F, von Heijne G, White SH. Mechanisms of integral membrane protein insertion and folding. J Mol Biol 2014; 427:999-1022. [PMID: 25277655 DOI: 10.1016/j.jmb.2014.09.014] [Citation(s) in RCA: 262] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 09/13/2014] [Accepted: 09/22/2014] [Indexed: 11/30/2022]
Abstract
The biogenesis, folding, and structure of α-helical membrane proteins (MPs) are important to understand because they underlie virtually all physiological processes in cells including key metabolic pathways, such as the respiratory chain and the photosystems, as well as the transport of solutes and signals across membranes. Nearly all MPs require translocons--often referred to as protein-conducting channels--for proper insertion into their target membrane. Remarkable progress toward understanding the structure and functioning of translocons has been made during the past decade. Here, we review and assess this progress critically. All available evidence indicates that MPs are equilibrium structures that achieve their final structural states by folding along thermodynamically controlled pathways. The main challenge for cells is the targeting and membrane insertion of highly hydrophobic amino acid sequences. Targeting and insertion are managed in cells principally by interactions between ribosomes and membrane-embedded translocons. Our review examines the biophysical and biological boundaries of MP insertion and the folding of polytopic MPs in vivo. A theme of the review is the under-appreciated role of basic thermodynamic principles in MP folding and assembly. Thermodynamics not only dictates the final folded structure but also is the driving force for the evolution of the ribosome-translocon system of assembly. We conclude the review with a perspective suggesting a new view of translocon-guided MP insertion.
Collapse
Affiliation(s)
- Florian Cymer
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm
| | - Gunnar von Heijne
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm.,Science for Life Laboratory Stockholm University, Box 1031, SE-171 21 Solna, Sweden
| | - Stephen H White
- Department of Physiology and Biophysics and the Center for Biomembrane Systems University of California, Irvine Irvine, CA 92697
| |
Collapse
|
109
|
Warshel A. Multiscale modeling of biological functions: from enzymes to molecular machines (Nobel Lecture). Angew Chem Int Ed Engl 2014; 53:10020-31. [PMID: 25060243 PMCID: PMC4948593 DOI: 10.1002/anie.201403689] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Indexed: 01/30/2023]
Abstract
A detailed understanding of the action of biological molecules is a pre-requisite for rational advances in health sciences and related fields. Here, the challenge is to move from available structural information to a clear understanding of the underlying function of the system. In light of the complexity of macromolecular complexes, it is essential to use computer simulations to describe how the molecular forces are related to a given function. However, using a full and reliable quantum mechanical representation of large molecular systems has been practically impossible. The solution to this (and related) problems has emerged from the realization that large systems can be spatially divided into a region where the quantum mechanical description is essential (e.g. a region where bonds are being broken), with the remainder of the system being represented on a simpler level by empirical force fields. This idea has been particularly effective in the development of the combined quantum mechanics/molecular mechanics (QM/MM) models. Here, the coupling between the electrostatic effects of the quantum and classical subsystems has been a key to the advances in describing the functions of enzymes and other biological molecules. The same idea of representing complex systems in different resolutions in both time and length scales has been found to be very useful in modeling the action of complex systems. In such cases, starting with coarse grained (CG) representations that were originally found to be very useful in simulating protein folding, and augmenting them with a focus on electrostatic energies, has led to models that are particularly effective in probing the action of molecular machines. The same multiscale idea is likely to play a major role in modeling of even more complex systems, including cells and collections of cells.
Collapse
Affiliation(s)
- Arieh Warshel
- Department of Chemistry, University of Southern California, Los Angeles, CA (USA)
| |
Collapse
|
110
|
Fluman N, Navon S, Bibi E, Pilpel Y. mRNA-programmed translation pauses in the targeting of E. coli membrane proteins. eLife 2014; 3. [PMID: 25135940 PMCID: PMC4359368 DOI: 10.7554/elife.03440] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 08/16/2014] [Indexed: 02/05/2023] Open
Abstract
In all living organisms, ribosomes translating membrane proteins are targeted to membrane translocons early in translation, by the ubiquitous signal recognition particle (SRP) system. In eukaryotes, the SRP Alu domain arrests translation elongation of membrane proteins until targeting is complete. Curiously, however, the Alu domain is lacking in most eubacteria. In this study, by analyzing genome-wide data on translation rates, we identified a potential compensatory mechanism in E. coli that serves to slow down the translation during membrane protein targeting. The underlying mechanism is likely programmed into the coding sequence, where Shine-Dalgarno-like elements trigger elongation pauses at strategic positions during the early stages of translation. We provide experimental evidence that slow translation during targeting and improves membrane protein production fidelity, as it correlates with better folding of overexpressed membrane proteins. Thus, slow elongation is important for membrane protein targeting in E. coli, which utilizes mechanisms different from the eukaryotic one to control the translation speed.
Collapse
Affiliation(s)
- Nir Fluman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Sivan Navon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Eitan Bibi
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Yitzhak Pilpel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
111
|
Warshel A. Multiskalenmodellierung biologischer Funktionen: Von Enzymen zu molekularen Maschinen (Nobel-Aufsatz). Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201403689] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
112
|
Nakamori K, Chiba S, Ito K. Identification of a SecM segment required for export-coupled release from elongation arrest. FEBS Lett 2014; 588:3098-103. [PMID: 24967850 DOI: 10.1016/j.febslet.2014.06.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 06/09/2014] [Accepted: 06/11/2014] [Indexed: 10/25/2022]
Abstract
SecM in Escherichia coli has two functionally crucial regions. The arrest motif near the C-terminus interacts with the ribosomal exit tunnel to arrest its own translational elongation. The signal sequence at the N-terminus directs the SecM nascent polypeptide to the Sec-mediated export pathway to release the arrested state of translation. Here, we addressed the importance of the central region of SecM. Characterization of internal substitution and deletion mutants revealed that a segment from residue 100 to residue 109 is required for the export-coupled release of the SecM nascent chain from the elongation-arrested state. Thus, the central region of SecM is not just a geometric linker but it participates actively in the regulation of translation arrest.
Collapse
Affiliation(s)
- Kenta Nakamori
- Faculty of Life Sciences and Structural Biology Research Center, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Shinobu Chiba
- Faculty of Life Sciences and Structural Biology Research Center, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Koreaki Ito
- Faculty of Life Sciences and Structural Biology Research Center, Kyoto Sangyo University, Kyoto 603-8555, Japan.
| |
Collapse
|
113
|
Denks K, Vogt A, Sachelaru I, Petriman NA, Kudva R, Koch HG. The Sec translocon mediated protein transport in prokaryotes and eukaryotes. Mol Membr Biol 2014; 31:58-84. [DOI: 10.3109/09687688.2014.907455] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
114
|
Weak pulling forces exerted on Nin-orientated transmembrane segments during co-translational insertion into the inner membrane ofEscherichia coli. FEBS Lett 2014; 588:1930-4. [DOI: 10.1016/j.febslet.2014.03.050] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 03/24/2014] [Accepted: 03/27/2014] [Indexed: 11/17/2022]
|
115
|
Mackinnon AL, Paavilainen VO, Sharma A, Hegde RS, Taunton J. An allosteric Sec61 inhibitor traps nascent transmembrane helices at the lateral gate. eLife 2014; 3:e01483. [PMID: 24497544 PMCID: PMC3913039 DOI: 10.7554/elife.01483] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Membrane protein biogenesis requires the coordinated movement of hydrophobic transmembrane domains (TMD) from the cytosolic vestibule of the Sec61 channel into the lipid bilayer. Molecular insight into TMD integration has been hampered by the difficulty of characterizing intermediates during this intrinsically dynamic process. In this study, we show that cotransin, a substrate-selective Sec61 inhibitor, traps nascent TMDs in the cytosolic vestibule, permitting detailed interrogation of an early pre-integration intermediate. Site-specific crosslinking revealed the pre-integrated TMD docked to Sec61 near the cytosolic tip of the lateral gate. Escape from cotransin-arrest depends not only on cotransin concentration, but also on the biophysical properties of the TMD. Genetic selection of cotransin-resistant cancer cells uncovered multiple mutations clustered near the lumenal plug of Sec61α, thus revealing cotransin’s likely site of action. Our results suggest that TMD/lateral gate interactions facilitate TMD transfer into the membrane, a process that is allosterically modulated by cotransin binding to the plug. DOI:http://dx.doi.org/10.7554/eLife.01483.001 Cells are surrounded by a plasma membrane that acts like a barrier around the cell—keeping the cell’s boundaries distinct from surrounding cells and helping to regulate the contents of the cell. This plasma membrane is made up mostly of two layers of fatty molecules, and is also studded with proteins. Some of these membrane proteins act as channels that allow nutrients and other chemicals to enter and leave the cell, while others allow the cell to communicate with other cells and the outside environment. Like all proteins, membrane proteins are chains of amino acids that are linked together by a molecular machine called a ribosome. The ribosomes that make membrane proteins are located on the outside of a membrane-enclosed compartment within the cell called the endoplasmic reticulum. To eventually become embedded within a membrane, a new protein must—at the same time as it is being built—enter a channel within the membrane of the endoplasmic reticulum. The newly synthesized protein chain enters this channel, called Sec61, via an entrance near the ribosome and then threads its way toward the inside of the endoplasmic reticulum. However, there is also a ‘side-gate’ in Sec61 that allows specific segments the new protein to escape the channel and become embedded within the membrane. From here, the membrane protein can be trafficked to other destinations within the cell, including the plasma membrane. However, how the newly forming protein chain passes through the side-gate of Sec61 is not well understood. Now MacKinnon, Paavilainen et al. have used a small molecule called cotransin—which is known to interfere with the passage of proteins through Sec61—to observe the interactions between the Sec61 channel and the new protein. Cotransin appears to trap the new protein chain within the Sec61 channel by essentially ‘locking’ the side-gate. MacKinnon, Paavilainen et al. observed that the trapped protein interacts with the inside of the channel at the end closest to the ribosome—which is the likely location of the side-gate. In contrast, cotransin likely binds at the other end of the channel, to a piece of Sec61 that serves to plug the exit into the endoplasmic reticulum; and this plug is directly connected to the side-gate. By preventing the plug from moving out of the way, cotransin can somehow stop the new protein from passing through the side-gate. However, MacKinnon, Paavilainen et al. did find that some membrane proteins with certain physical and chemical properties could get through the gate, despite the presence of cotransin. The next challenge is to resolve exactly how interactions between cotransin and the Sec61 plug can block the escape of new proteins into the membrane. DOI:http://dx.doi.org/10.7554/eLife.01483.002
Collapse
Affiliation(s)
- Andrew L Mackinnon
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| | | | | | | | | |
Collapse
|
116
|
Vicatos S, Rychkova A, Mukherjee S, Warshel A. An effective Coarse-grained model for biological simulations: Recent refinements and validations. Proteins 2013; 82:1168-85. [DOI: 10.1002/prot.24482] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Spyridon Vicatos
- Department of Chemistry; University of Southern California; Los Angeles California 90089-1062
| | - Anna Rychkova
- Department of Chemistry; University of Southern California; Los Angeles California 90089-1062
| | - Shayantani Mukherjee
- Department of Chemistry; University of Southern California; Los Angeles California 90089-1062
| | - Arieh Warshel
- Department of Chemistry; University of Southern California; Los Angeles California 90089-1062
| |
Collapse
|
117
|
Abstract
Each peptide bond of a protein is generated at the peptidyl transferase center (PTC) of the ribosome and then moves through the exit tunnel, which accommodates ever-changing segments of ≈ 40 amino acids of newly translated polypeptide. A class of proteins, called ribosome arrest peptides, contains specific sequences of amino acids (arrest sequences) that interact with distinct components of the PTC-exit tunnel region of the ribosome and arrest their own translation continuation, often in a manner regulated by environmental cues. Thus, the ribosome that has translated an arrest sequence is inactivated for peptidyl transfer, translocation, or termination. The stalled ribosome then changes the configuration or localization of mRNA, resulting in specific biological outputs, including regulation of the target gene expression and downstream events of mRNA/polypeptide maturation or localization. Living organisms thus seem to have integrated potentially harmful arrest sequences into elaborate regulatory mechanisms to express genetic information in productive directions.
Collapse
Affiliation(s)
- Koreaki Ito
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto 603-8555, Japan.
| | | |
Collapse
|
118
|
Co-translational targeting and translocation of proteins to the endoplasmic reticulum. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2392-402. [DOI: 10.1016/j.bbamcr.2013.02.021] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/18/2013] [Accepted: 02/19/2013] [Indexed: 12/16/2022]
|
119
|
Onishi Y, Yamagishi M, Imai K, Fujita H, Kida Y, Sakaguchi M. Stop-and-Move of a Marginally Hydrophobic Segment Translocating across the Endoplasmic Reticulum Membrane. J Mol Biol 2013; 425:3205-16. [PMID: 23747484 DOI: 10.1016/j.jmb.2013.05.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 05/28/2013] [Accepted: 05/30/2013] [Indexed: 10/26/2022]
|
120
|
Cotranslational folding of membrane proteins probed by arrest-peptide-mediated force measurements. Proc Natl Acad Sci U S A 2013; 110:14640-5. [PMID: 23959879 DOI: 10.1073/pnas.1306787110] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Polytopic membrane proteins are inserted cotranslationally into target membranes by ribosome-translocon complexes. It is, however, unclear when during the insertion process specific interactions between the transmembrane helices start to form. Here, we use a recently developed in vivo technique to measure pulling forces acting on transmembrane helices during their cotranslational insertion into the inner membrane of Escherichia coli to study the earliest steps of tertiary folding of five polytopic membrane proteins. We find that interactions between residues in a C-terminally located transmembrane helix and in more N-terminally located helices can be detected already at the point when the C-terminal helix partitions from the translocon into the membrane. Our findings pinpoint the earliest steps of tertiary structure formation and open up possibilities to study the cotranslational folding of polytopic membrane proteins.
Collapse
|
121
|
Kudva R, Denks K, Kuhn P, Vogt A, Müller M, Koch HG. Protein translocation across the inner membrane of Gram-negative bacteria: the Sec and Tat dependent protein transport pathways. Res Microbiol 2013; 164:505-34. [DOI: 10.1016/j.resmic.2013.03.016] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 03/11/2013] [Indexed: 11/28/2022]
|
122
|
Simulating the pulling of stalled elongated peptide from the ribosome by the translocon. Proc Natl Acad Sci U S A 2013; 110:10195-200. [PMID: 23729811 DOI: 10.1073/pnas.1307869110] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The nature of the coupling between the stalling of the elongated nascent peptide chain in the ribosome and its insertion through the translocon is analyzed, focusing on the recently discovered biphasic force that overcomes the stalling barrier. The origin of this long-range coupling is explored by coarse-grained simulations that combine the translocon (TR) insertion profile and the effective chemical barrier for the extension of the nascent chain in the ribosome. Our simulation determined that the inserted H segment is unlikely to climb the TR barrier in parallel with the peptide synthesis chemical step and that the nascent chain should first overcome the chemical barriers and move into the ribosome-TR gap region before the insertion into the TR tunnel. Furthermore, the simulations indicate that the coupled TR-chemistry free energy profile accounts for the biphasic force. Apparently, although the overall elongation/insertion process can be depicted as a tug-of-war between the forces of the TR and the ribosome, it is actually a reflection of the combined free-energy landscape. Most importantly, the present study helps to relate the experimental observation of the biphasic force to crucial information about the elusive path and barriers of the TR insertion process.
Collapse
|
123
|
Abstract
SecY and Sec61 translocons mediate the orderly insertion of transmembrane segments into the lipid bilayer during membrane-protein biogenesis. Reporting in this issue, Ismail et al. now use a SecM-based molecular force sensor to show that the translocon exerts a pulling force on the nascent chain that is capable of mechanical action at two distinct stages of the insertion process.
Collapse
Affiliation(s)
- Soo Jung Kim
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon, USA
| | | |
Collapse
|
124
|
Gumbart JC, Teo I, Roux B, Schulten K. Reconciling the roles of kinetic and thermodynamic factors in membrane-protein insertion. J Am Chem Soc 2013; 135:2291-7. [PMID: 23298280 PMCID: PMC3573731 DOI: 10.1021/ja310777k] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
![]()
For the vast majority of membrane proteins, insertion
into a membrane
is not direct, but rather is catalyzed by a protein-conducting channel,
the translocon. This channel provides a lateral exit into the bilayer
while simultaneously offering a pathway into the aqueous lumen. The
determinants of a nascent protein’s choice between these two
pathways are not comprehensively understood, although both energetic
and kinetic factors have been observed. To elucidate the specific
roles of some of these factors, we have carried out extensive all-atom
molecular dynamics simulations of different nascent transmembrane
segments embedded in a ribosome-bound bacterial translocon, SecY.
Simulations on the μs time scale reveal a spontaneous motion
of the substrate segment into the membrane or back into the channel,
depending on its hydrophobicity. Potential of mean force (PMF) calculations
confirm that the observed motion is the result of local free-energy
differences between channel and membrane. Based on these and other
PMFs, the time-dependent probability of membrane insertion is determined
and is shown to mimic a two-state partition scheme with an apparent
free energy that is compressed relative to the molecular-level PMFs.
It is concluded that insertion kinetics underlies the experimentally
observed thermodynamic partitioning process.
Collapse
Affiliation(s)
- James C Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30363, USA
| | | | | | | |
Collapse
|
125
|
Abstract
The elucidation of the molecular nature of the translocon-assisted protein insertion is a challenging problem due to the complexity of this process. Furthermore, the limited availability of crucial structural information makes it hard to interpret the hints about the insertion mechanism provided by biochemical studies. At present, it is not practical to explore the insertion process by brute force simulation approaches due to the extremely lengthy process and very complex landscape. Thus, this work uses our previously developed coarse-grained model and explores the energetics of the membrane insertion and translocation paths. The trend in the calculated free-energy profiles is verified by evaluating the correlation between the calculated and observed effect of mutations as well as the effect of inverting the signal peptide that reflects the "positive-inside" rule. Furthermore, the effect of the tentative opening induced by the ribosome is found to reduce the kinetic barrier. Significantly, the trend of the forward and backward energy barriers provides a powerful way to analyze key energetics information. Thus, it is concluded that the insertion process is most likely a nonequilibrium process. Moreover, we provided a general formulation for the analysis of the elusive apparent membrane insertion energy, ΔG(app), and conclude that this important parameter is unlikely to correspond to the free-energy difference between the translocon and membrane. Our formulation seems to resolve the controversy about ΔG(app) for Arg.
Collapse
|