101
|
Mitochondrial DNA sequencing reveals association of variants and haplogroup M33a2'3 with High altitude pulmonary edema susceptibility in Indian male lowlanders. Sci Rep 2019; 9:10975. [PMID: 31358833 PMCID: PMC6662842 DOI: 10.1038/s41598-019-47500-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 07/18/2019] [Indexed: 12/29/2022] Open
Abstract
High Altitude Pulmonary Edema (HAPE) is a threatening disorder caused due to acute exposure to high altitude above 3000 m. Apart from multiple factors involved, the genetic factors also play an important function in the pathogenesis of HAPE. This study aims to evaluate the role of mtDNA polymorphism and their association with haplogroup in understanding the etiology of HAPE. In this study, all the HAPE susceptible and acclimatized control subjects could be classified into nine haplogroups pertaining mostly to Macrohaplogroup M and U. The frequency of haplogroup M was significantly higher in HAPE susceptibles whereas the haplogroup M33a2'3 was found only in HAPE susceptibles. The variant G4491A and A4944G of MT-ND2, A14002G of MT-ND5, and C8562T of MT-ATP8, were definition site of haplogroup M33a2'3. The frequency of A10398G of MT-ND3, A8701G of MT-ATP6 and C14766T of MT-CYB genes were significantly higher in HAPE susceptibles. mtDNA copy number also plays a significant synergistic role in HAPE susceptibility. Our findings suggests that variants in MT-ND2 and MT-ND5 were predicted to confer decreased protein stability in HAPE susceptibles and in particular, highly conserved variants G4491A, A4944G and A14002G associated with haplogroup M33a2'3 may be the primary cause of susceptibility to HAPE in Indian male lowlanders.
Collapse
|
102
|
Xu F, Xia Y, Feng Z, Lin W, Xue Q, Jiang J, Yu X, Peng C, Luo M, Yang Y, Wei Y, Yu L. Repositioning antipsychotic fluphenazine hydrochloride for treating triple negative breast cancer with brain metastases and lung metastases. Am J Cancer Res 2019; 9:459-478. [PMID: 30949404 PMCID: PMC6448056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 02/18/2019] [Indexed: 06/09/2023] Open
Abstract
Triple negative breast cancer (TNBC) patients have a high risk of brain metastases. This deadly disease represents a major challenge for successful treatment, in part because of the poor ability of drugs to penetrate the blood-brain barrier. Antipsychotic drugs show good bioavailability in the brain, and some of them have exhibited anticancer effects in several cancer types. In this study, we investigated the potential of repurposing fluphenazine hydrochloride (Flu) for the treatment of TNBC and the brain metastases. Our data showed that Flu inhibited survival of metastatic TNBC cells. It induced G0/G1 cell cycle arrest and promoted mitochondria-mediated intrinsic apoptosis in vitro. Pharmacokinetic studies in BALB/c mice showed a brain/plasma drug concentration ratio of Flu above 25 for at least 24 hours after dosing. Flu moderately suppressed tumor growth in a TNBC subcutaneous xenograft mouse model. Importantly, Flu exhibited good anti-metastatic potential in a mouse brain metastasis model with an inhibition rate of 85%. In addition, Flu showed a strong inhibitory effect on spontaneous lung metastasis. Moreover, Flu didn't cause serious side effects in the mice. Taken together, this study prompts further preclinical and clinical investigation into repurposing Flu for treating metastatic TNBC patients, which urgently need new treatment options.
Collapse
Affiliation(s)
- Fuyan Xu
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for BiotherapyChengdu 610041, China
| | - Yong Xia
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for BiotherapyChengdu 610041, China
- Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan UniversityChengdu 610041, China
| | - Zhanzhan Feng
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for BiotherapyChengdu 610041, China
| | - Wentao Lin
- Department of Plastic Surgery, The First Affiliated Hospital of Chongqing Medical UniversityChongqing 400016, China
| | - Qiang Xue
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for BiotherapyChengdu 610041, China
| | - Jinrui Jiang
- West China School of Pharmacy, Sichuan UniversityChengdu 610041, China
| | - Xi Yu
- Carey Bussiness School, Johns Hopkins UniversityBaltimore MD 21202, USA
| | - Cuiting Peng
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for BiotherapyChengdu 610041, China
| | - Min Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan UniversityChengdu, Sichuan, China
| | - Yufei Yang
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for BiotherapyChengdu 610041, China
| | - Yuquan Wei
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for BiotherapyChengdu 610041, China
| | - Luoting Yu
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for BiotherapyChengdu 610041, China
| |
Collapse
|
103
|
Takeda M, Koseki J, Takahashi H, Miyoshi N, Nishida N, Nishimura J, Hata T, Matsuda C, Mizushima T, Yamamoto H, Ishii H, Doki Y, Mori M, Haraguchi N. Disruption of Endolysosomal RAB5/7 Efficiently Eliminates Colorectal Cancer Stem Cells. Cancer Res 2019; 79:1426-1437. [PMID: 30765602 DOI: 10.1158/0008-5472.can-18-2192] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/13/2018] [Accepted: 02/11/2019] [Indexed: 02/04/2023]
Abstract
Given that cancer stem cells (CSC) play a key role in drug resistance and relapse, targeting CSCs remains promising in cancer therapy. Here we show that RAB5/7, which are involved in the endolysosomal pathway, play key roles in the maintenance of CSC survival via regulation of the mitophagic pathway. Inhibition of RAB5/7 efficiently eliminated colorectal CSCs and disrupted cancer foci. In addition, we identified mefloquine hydrochloride, an antimalarial drug, as a novel RAB5/7 inhibitor and promising colorectal CSC-targeting drug. Endolysosomal RAB5/7 and LAMP1/2 mediated parkin-dependent mitochondrial clearance and modulated mitophagy through lysosomal dynamics. In a patient-derived xenograft (PDX) model of colon cancer, treatment with mefloquine resulted in suppression of mitophagic PINK1/PARKIN and increased mitochondrial disorder and mitochondria-induced apoptosis without apparent side effects. These results suggest that the combination of mefloquine with chemotherapeutic agents in the PDX model potentially disrupts the hierarchy of colorectal cancer cells and identify endolysosomal RAB5/7 and LAMP1/2 as promising therapeutic targets in CSCs. SIGNIFICANCE: These findings show that endosomal/lysosomal RAB5 and RAB7, which regulate mitophagy, are essential for the survival of colon cancer stem cells.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/7/1426/F1.large.jpg.
Collapse
Affiliation(s)
- Mitsunobu Takeda
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Jun Koseki
- Department of Cancer Profiling Discovery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hidekazu Takahashi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Norikatsu Miyoshi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Naohiro Nishida
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Junichi Nishimura
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Taishi Hata
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Chu Matsuda
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tsunekazu Mizushima
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hirofumi Yamamoto
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hideshi Ishii
- Department of Cancer Profiling Discovery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masaki Mori
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Naotsugu Haraguchi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan.
| |
Collapse
|
104
|
Wang G, Wang Q, Huang Q, Chen Y, Sun X, He L, Zhan L, Guo X, Yin C, Fang Y, He X, Xing J. Upregulation of mtSSB by interleukin-6 promotes cell growth through mitochondrial biogenesis-mediated telomerase activation in colorectal cancer. Int J Cancer 2018; 144:2516-2528. [PMID: 30415472 DOI: 10.1002/ijc.31978] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/08/2018] [Accepted: 10/30/2018] [Indexed: 12/17/2022]
Abstract
It is now widely accepted that mitochondrial biogenesis is inhibited in most cancer cells. Interestingly, one of the possible exceptions is colorectal cancer (CRC), in which the content of mitochondria has been found to be higher than in normal colon mucosa. However, to date, the causes and effects of this phenomenon are still unclear. In the present study, we systematically investigated the functional role of mitochondrial single-strand DNA binding protein (mtSSB), a key molecule in the regulation of mitochondrial DNA (mtDNA) replication, in the mitochondrial biogenesis and CRC cell growth. Our results demonstrated that mtSSB was frequently upregulated in CRC tissues and that upregulated mtSSB was associated with poor prognosis in CRC patients. Furthermore, overexpression of mtSSB promoted CRC cell growth in vitro by regulating cell proliferation. The in vivo assay confirmed these results, indicating that the forced expression of mtSSB significantly increases the growth capacity of xenograft tumors. Mechanistically, the survival advantage conferred by mtSSB was primarily caused by increased mitochondrial biogenesis and subsequent ROS production, which induced telomerase reverse transcriptase (TERT) expression and telomere elongation via Akt/mTOR pathway in CRC cells. In addition, FOXP1, a member of the forkhead box family, was identified as a new transcription factor for mtSSB. Moreover, our results also demonstrate that proinflammatory IL-6/STAT3 signaling facilitates mtSSB expression and CRC cell proliferation via inducing FOXP1 expression. Collectively, our findings demonstrate that mtSSB induced by inflammation plays a critical role in the regulation of mitochondrial biogenesis, telomerase activation, and subsequent CRC proliferation, providing a strong evidence for mtSSB as drug target in CRC treatment.
Collapse
Affiliation(s)
- Gang Wang
- State Key Laboratory of Cancer Biology and Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, Xi'an, China.,Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Qian Wang
- State Key Laboratory of Cancer Biology and Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, Xi'an, China.,Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Qichao Huang
- State Key Laboratory of Cancer Biology and Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Yibing Chen
- State Key Laboratory of Cancer Biology and Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, Xi'an, China.,Center of Genetic & Prenatal Diagnosis, First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Xiacheng Sun
- State Key Laboratory of Cancer Biology and Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Linjie He
- State Key Laboratory of Cancer Biology and Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Lei Zhan
- Department of Gastroenterology, Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xu Guo
- State Key Laboratory of Cancer Biology and Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Chun Yin
- State Key Laboratory of Cancer Biology and Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Yujiang Fang
- Department of Microbiology, Immunology & Pathology, Des Moines University, Des Moines, IA
| | - Xianli He
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jinliang Xing
- State Key Laboratory of Cancer Biology and Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, Xi'an, China
| |
Collapse
|