101
|
McDermott JE, Arshad OA, Petyuk VA, Fu Y, Gritsenko MA, Clauss TR, Moore RJ, Schepmoes AA, Zhao R, Monroe ME, Schnaubelt M, Tsai CF, Payne SH, Huang C, Wang LB, Foltz S, Wyczalkowski M, Wu Y, Song E, Brewer MA, Thiagarajan M, Kinsinger CR, Robles AI, Boja ES, Rodriguez H, Chan DW, Zhang B, Zhang Z, Ding L, Smith RD, Liu T, Rodland KD. Proteogenomic Characterization of Ovarian HGSC Implicates Mitotic Kinases, Replication Stress in Observed Chromosomal Instability. CELL REPORTS MEDICINE 2020; 1. [PMID: 32529193 PMCID: PMC7289043 DOI: 10.1016/j.xcrm.2020.100004] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the absence of a dominant driving mutation other than uniformly present TP53 mutations, deeper understanding of the biology driving ovarian high-grade serous cancer (HGSC) requires analysis at a functional level, including post-translational modifications. Comprehensive proteogenomic and phosphoproteomic characterization of 83 prospectively collected ovarian HGSC and appropriate normal precursor tissue samples (fallopian tube) under strict control of ischemia time reveals pathways that significantly differentiate between HGSC and relevant normal tissues in the context of homologous repair deficiency (HRD) status. In addition to confirming key features of HGSC from previous studies, including a potential survival-associated signature and histone acetylation as a marker of HRD, deep phosphoproteomics provides insights regarding the potential role of proliferation-induced replication stress in promoting the characteristic chromosomal instability of HGSC and suggests potential therapeutic targets for use in precision medicine trials. Comparison of ovarian cancer and normal precursors identifies key signaling pathways Mitotic and cyclin-dependent kinases emerge as potential therapeutic targets Previously identified hallmarks of homologous repair status and survival are confirmed Replication stress appears to drive increased chromosomal instability
Collapse
Affiliation(s)
- Jason E McDermott
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA.,Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97201, USA.,These authors contributed equally
| | - Osama A Arshad
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA.,These authors contributed equally
| | - Vladislav A Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Yi Fu
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
| | - Marina A Gritsenko
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Therese R Clauss
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Ronald J Moore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Athena A Schepmoes
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Rui Zhao
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Matthew E Monroe
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Michael Schnaubelt
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
| | - Chia-Feng Tsai
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Samuel H Payne
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Chen Huang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Liang-Bo Wang
- The McDonnell Genome Institute, Washington University in St. Louis, St Louis, MO 63108, USA
| | - Steven Foltz
- The McDonnell Genome Institute, Washington University in St. Louis, St Louis, MO 63108, USA
| | - Matthew Wyczalkowski
- The McDonnell Genome Institute, Washington University in St. Louis, St Louis, MO 63108, USA
| | - Yige Wu
- The McDonnell Genome Institute, Washington University in St. Louis, St Louis, MO 63108, USA
| | - Ehwang Song
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Molly A Brewer
- Department of Obstetrics and Gynecology, University of Connecticut, Farmington, CT 06030, USA
| | - Mathangi Thiagarajan
- Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Christopher R Kinsinger
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Emily S Boja
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Daniel W Chan
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhen Zhang
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
| | - Li Ding
- The McDonnell Genome Institute, Washington University in St. Louis, St Louis, MO 63108, USA
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Karin D Rodland
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA.,Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, OR 97201, USA.,Lead Contact
| | | |
Collapse
|
102
|
Analysis of Telomere Lengths in p53 Signatures and Incidental Serous Tubal Intraepithelial Carcinomas Without Concurrent Ovarian Cancer. Am J Surg Pathol 2020; 43:1083-1091. [PMID: 31107721 DOI: 10.1097/pas.0000000000001283] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Telomere alterations represent one of the major molecular changes in the development of human cancer. We have previously reported that telomere lengths in most serous tubal intraepithelial carcinomas (STIC) are shorter than they are in ovarian high-grade serous carcinomas (HGSC) or in normal-appearing fallopian tube epithelium from the same patients. However, it remains critical to determine if similar telomere alterations occur in TP53-mutated but histologically unremarkable "p53 signature" lesions, as well as incidental STICs without concurrent HGSC. In this study, we quantitatively measured telomere lengths by performing telomere-specific fluorescence in situ hybridization in conjunction with p53 immunolabeling in 15 p53 signatures and 30 incidental STICs without concurrent HGSC. We compared these new results with our previous data in paired STICs and concurrent HGSCs. We found that most p53 signatures (80%) and incidental STICs without HGSC (77%) exhibited significant telomere shortening compared with adjacent normal-appearing fallopian tube epithelium (P<0.01). Interestingly, however, p53 signatures and incidental STICs without HGSC displayed longer telomeres and less cell-to-cell telomere length heterogeneity than STICs associated with HGSC (P<0.001). These findings indicate that telomere shortening occurs in p53 signatures, the earliest precancer lesion. Moreover, incidental STICs without concurrent HGSC are indeed similar to p53 signatures as they have less telomere shortening and less cell-to-cell telomere length heterogeneity than STICs associated with HGSC.
Collapse
|
103
|
Reavis HD, Drapkin R. The tubal epigenome - An emerging target for ovarian cancer. Pharmacol Ther 2020; 210:107524. [PMID: 32197795 DOI: 10.1016/j.pharmthera.2020.107524] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/18/2020] [Accepted: 02/26/2020] [Indexed: 02/07/2023]
Abstract
Ovarian cancer is the most lethal gynecologic malignancy in the United States. The mortality of this disease is primarily attributed to challenges in early detection and therapeutic resistance. Recent studies indicate that the majority of high-grade serous ovarian carcinomas (HGSCs) originate from aberrant fallopian tube epithelial (FTE) cells. This shift in thinking about ovarian cancer pathogenesis has been met with an effort to identify the early genetic and epigenetic changes that underlie the transformation of normal FTE cells and prompt them to migrate and colonize the ovary, ultimately giving rise to aggressive HGSC. While identification of these early changes is important for biomarker discovery, the emergence of epigenetic alterations in FTE chromatin may also provide new opportunities for early detection, prevention, and therapeutic intervention. Here we provide a comprehensive overview of the current knowledge regarding early epigenetic reprogramming that precedes HGSC tumor development, the way that these alterations affect both intrinsic and extrinsic tumor properties, and how the epigenome may be targeted to thwart HGSC tumorigenesis.
Collapse
Affiliation(s)
- Hunter D Reavis
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Graduate Program in Cell and Molecular Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ronny Drapkin
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Graduate Program in Cell and Molecular Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Basser Center for BRCA, Abramson Cancer Center, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
104
|
Wu Z, Li S, Tang X, Wang Y, Guo W, Cao G, Chen K, Zhang M, Guan M, Yang D. Copy Number Amplification of DNA Damage Repair Pathways Potentiates Therapeutic Resistance in Cancer. Am J Cancer Res 2020; 10:3939-3951. [PMID: 32226530 PMCID: PMC7086350 DOI: 10.7150/thno.39341] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 12/22/2019] [Indexed: 01/10/2023] Open
Abstract
Rationale: Loss of DNA damage repair (DDR) in the tumor is an established hallmark of sensitivity to DNA damaging agents such as chemotherapy. However, there has been scant investigation into gain-of-function alterations of DDR genes in cancer. This study aims to investigate to what extent copy number amplification of DDR genes occurs in cancer, and what are their impacts on tumor genome instability, patient prognosis and therapy outcome. Methods: Retrospective analysis was performed on the clinical, genomics, and pharmacogenomics data from 10,489 tumors, matched peripheral blood samples, and 1,005 cancer cell lines. The key discoveries were verified by an independent patient cohort and experimental validations. Results: This study revealed that 13 of the 80 core DDR genes were significantly amplified and overexpressed across the pan-cancer scale. Tumors harboring DDR gene amplification exhibited decreased global mutation load and mechanism-specific mutation signature scores, suggesting an increased DDR proficiency in the DDR amplified tumors. Clinically, patients with DDR gene amplification showed poor prognosis in multiple cancer types. The most frequent Nibrin (NBN) gene amplification in ovarian cancer tumors was observed in 15 out of 31 independent ovarian cancer patients. NBN overexpression in breast and ovarian cancer cells leads to BRCA1-dependent olaparib resistance by promoting the phosphorylation of ATM-S1981 and homology-dependent recombination efficiency. Finally, integration of the cancer pharmacogenomics database of 37 genome-instability targeting drugs across 505 cancer cell lines revealed significant correlations between DDR gene copy number amplification and DDR drug resistance, suggesting candidate targets for increasing patient treatment response. Principal Conclusions: DDR gene amplification can lead to chemotherapy resistance and poor overall survival by augmenting DDR. These amplified DDR genes may serve as actionable clinical biomarkers for cancer management.
Collapse
|
105
|
Kotsopoulos J, Narod SA. Prophylactic salpingectomy for the prevention of ovarian cancer: Who should we target? Int J Cancer 2020; 147:1245-1251. [PMID: 32037528 DOI: 10.1002/ijc.32916] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/14/2020] [Accepted: 01/31/2020] [Indexed: 12/12/2022]
Abstract
Ovarian cancer is the most fatal gynecologic malignancy (50% 5-year survival) due to a typically advanced stage at diagnosis and a high rate of recurrence. Chemoprevention options are limited, and few interventions have been shown to reduce cancer risk or mortality. Emerging data support the model that fallopian tubes are the site of origin for a proportion of high-grade serous cancers. This implies that a subset of cancers may be prevented by removing the fallopian tubes while leaving the ovaries intact. Accordingly, there has been shift in clinical practice for average risk women; some now recommend removal of both the fallopian tubes only instead of tubal ligation for sterilization or at the time of benign gynecologic surgery. This has been termed opportunistic salpingectomy and represents a means of decreasing the burden of ovarian cancer by preventing cancers that arise in the fallopian tubes. There have been no detailed, prospective reports that have estimated ovarian cancer risk reduction with opportunistic salpingectomy, neither among women at baseline population risk nor among women at a high risk of developing the disease. The situation is complicated for women with a BRCA mutation-bilateral salpingo-oophorectomy is a proven means of risk reduction and salpingectomy alone is not the standard of care. Based on the existing data, salpingectomy alone should only be reserved for women with a lifetime risk of ovarian cancer of less than 5%.
Collapse
Affiliation(s)
- Joanne Kotsopoulos
- Women's College Research Institute, Women's College Hospital, Toronto, Ontario, Canada.,Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Steven A Narod
- Women's College Research Institute, Women's College Hospital, Toronto, Ontario, Canada.,Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
106
|
Bergsten TM, Burdette JE, Dean M. Fallopian tube initiation of high grade serous ovarian cancer and ovarian metastasis: Mechanisms and therapeutic implications. Cancer Lett 2020; 476:152-160. [PMID: 32067992 DOI: 10.1016/j.canlet.2020.02.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/31/2020] [Accepted: 02/13/2020] [Indexed: 01/09/2023]
Abstract
Ovarian cancer is the most lethal gynecologic malignancy and the fifth leading cause of cancer-related death in women. Although outcomes have improved in recent years, there remains an unmet clinical need to understand the early pathogenesis of ovarian cancer in order to identify new diagnostic approaches and agents of chemoprevention and chemotherapy. While high grade serous ovarian cancer (HGSOC), the most abundant histotype, was initially thought to arise from the ovarian surface epithelium, there is an increasing body of evidence suggesting that HGSOC originates in the fallopian tube. With this new understanding of cell of origin, understanding of disease development requires analysis with a novel perspective. Currently, factors that drive the initiation and migration of dysplastic tubal epithelial cells from the fallopian tube to the ovary are not yet fully defined. These factors include common mutations to fallopian tube epithelial cells, as well as factors originating from both the fallopian tube and ovary which are capable of inducing transformation and dissemination in said cells. Here, we review these changes, their causative agents, and various potential means of intervention.
Collapse
Affiliation(s)
- Tova M Bergsten
- Medical Scientist Training Program, University of Illinois at Chicago College of Medicine, Chicago, IL, USA; Department of Pharmaceutical Sciences, Center for Biomolecular Science, University of Illinois at Chicago, Chicago, IL, USA
| | - Joanna E Burdette
- Department of Pharmaceutical Sciences, Center for Biomolecular Science, University of Illinois at Chicago, Chicago, IL, USA
| | - Matthew Dean
- Department of Animal Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
107
|
Bachert SE, McDowell A, Piecoro D, Baldwin Branch L. Serous Tubal Intraepithelial Carcinoma: A Concise Review for the Practicing Pathologist and Clinician. Diagnostics (Basel) 2020; 10:diagnostics10020102. [PMID: 32069831 PMCID: PMC7168247 DOI: 10.3390/diagnostics10020102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/03/2020] [Accepted: 02/08/2020] [Indexed: 01/18/2023] Open
Abstract
Ovarian cancer is the deadliest gynecologic malignancy, accounting for more than 14,000 deaths each year. With no established way to prevent or screen for it, the vast majority of cases are diagnosed as International Federation of Gynecology and Obstetrics (FIGO) stage III or higher. Individuals with germline BRCA mutations are at particularly high risk for epithelial ovarian cancer and have been the subject of many risk-reducing strategies. In the past ten years, studies looking at risk-reducing salpingo-oophorectomy (RRSO) in this population have uncovered an interesting association: up to 8% of women with BRCA1 or BRCA2 mutations who underwent RRSO had an associated serous tubal intraepithelial carcinoma (STIC). The importance of this finding is highlighted by the fact that up to 60% of ovarian cancer patients will also have an associated STIC. These studies have led to a paradigm shift that a subset of epithelial ovarian cancer originates not in the ovarian epithelium, but rather in the distal fallopian tube. In response to this, many providers have changed their practice by expanding the role of routine salpingectomy, hysterectomy, and sterilization procedures. The American College of Obstetricians and Gynecologists (ACOG) has acknowledged opportunistic salpingectomy as a safe strategy to reduce the risk of epithelial ovarian cancer in Committee Opinion #774. It is thus important for pathologists and clinicians to understand the definition of STIC; how it is diagnosed; and, most importantly, its clinical significance.
Collapse
Affiliation(s)
- S. Emily Bachert
- Department of Pathology and Laboratory Medicine, University of Kentucky College of Medicine, Lexington, KY 40536, USA; (S.E.B.); (D.P.)
| | - Anthony McDowell
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Kentucky College of Medicine, Lexington, KY 40536, USA;
| | - Dava Piecoro
- Department of Pathology and Laboratory Medicine, University of Kentucky College of Medicine, Lexington, KY 40536, USA; (S.E.B.); (D.P.)
| | - Lauren Baldwin Branch
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Kentucky College of Medicine, Lexington, KY 40536, USA;
- Correspondence:
| |
Collapse
|
108
|
Hu Z, Artibani M, Alsaadi A, Wietek N, Morotti M, Shi T, Zhong Z, Santana Gonzalez L, El-Sahhar S, Carrami EM, Mallett G, Feng Y, Masuda K, Zheng Y, Chong K, Damato S, Dhar S, Campo L, Garruto Campanile R, Soleymani Majd H, Rai V, Maldonado-Perez D, Jones S, Cerundolo V, Sauka-Spengler T, Yau C, Ahmed AA. The Repertoire of Serous Ovarian Cancer Non-genetic Heterogeneity Revealed by Single-Cell Sequencing of Normal Fallopian Tube Epithelial Cells. Cancer Cell 2020; 37:226-242.e7. [PMID: 32049047 DOI: 10.1016/j.ccell.2020.01.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 10/30/2019] [Accepted: 01/09/2020] [Indexed: 02/08/2023]
Abstract
The inter-differentiation between cell states promotes cancer cell survival under stress and fosters non-genetic heterogeneity (NGH). NGH is, therefore, a surrogate of tumor resilience but its quantification is confounded by genetic heterogeneity. Here we show that NGH in serous ovarian cancer (SOC) can be accurately measured when informed by the molecular signatures of the normal fallopian tube epithelium (FTE) cells, the cells of origin of SOC. Surveying the transcriptomes of ∼6,000 FTE cells, predominantly from non-ovarian cancer patients, identified 6 FTE subtypes. We used subtype signatures to deconvolute SOC expression data and found substantial intra-tumor NGH. Importantly, NGH-based stratification of ∼1,700 tumors robustly correlated with survival. Our findings lay the foundation for accurate prognostic and therapeutic stratification of SOC.
Collapse
Affiliation(s)
- Zhiyuan Hu
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK; Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Mara Artibani
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK; Gene Regulatory Networks in Development and Disease Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Abdulkhaliq Alsaadi
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK
| | - Nina Wietek
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK; Department of Gynecological Oncology, Churchill Hospital, Oxford University Hospitals, Oxford OX3 7LE, UK
| | - Matteo Morotti
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK; Department of Gynecological Oncology, Churchill Hospital, Oxford University Hospitals, Oxford OX3 7LE, UK
| | - Tingyan Shi
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK
| | - Zhe Zhong
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK
| | - Laura Santana Gonzalez
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK
| | - Salma El-Sahhar
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK
| | - Eli M Carrami
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK
| | - Garry Mallett
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK
| | - Yun Feng
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Kenta Masuda
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK
| | - Yiyan Zheng
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK
| | - Kay Chong
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK
| | - Stephen Damato
- Department of Histopathology, Oxford University Hospitals, Oxford OX3 9DU, UK
| | - Sunanda Dhar
- Department of Histopathology, Oxford University Hospitals, Oxford OX3 9DU, UK
| | - Leticia Campo
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Riccardo Garruto Campanile
- Department of Gynecological Oncology, Churchill Hospital, Oxford University Hospitals, Oxford OX3 7LE, UK
| | - Hooman Soleymani Majd
- Department of Gynecological Oncology, Churchill Hospital, Oxford University Hospitals, Oxford OX3 7LE, UK
| | - Vikram Rai
- Department of Gynaecology, Oxford University Hospitals NHS Trust, Oxford OX3 9DU, UK
| | - David Maldonado-Perez
- Oxford Radcliffe Biobank, Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK; NIHR Oxford Biomedical Research Centre, Second Floor, Unipart House Business Centre, Oxford OX4 2PG, UK
| | - Stephanie Jones
- Oxford Radcliffe Biobank, Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK
| | - Vincenzo Cerundolo
- Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Tatjana Sauka-Spengler
- Gene Regulatory Networks in Development and Disease Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Christopher Yau
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK; Centre for Computational Biology, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; Division of Informatics, Imaging and Data Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester M13 9PT, UK; Alan Turing Institute, London NW1 2DB, UK.
| | - Ahmed Ashour Ahmed
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK; Department of Gynecological Oncology, Churchill Hospital, Oxford University Hospitals, Oxford OX3 7LE, UK.
| |
Collapse
|
109
|
Hoffmann K, Berger H, Kulbe H, Thillainadarasan S, Mollenkopf HJ, Zemojtel T, Taube E, Darb-Esfahani S, Mangler M, Sehouli J, Chekerov R, Braicu EI, Meyer TF, Kessler M. Stable expansion of high-grade serous ovarian cancer organoids requires a low-Wnt environment. EMBO J 2020; 39:e104013. [PMID: 32009247 PMCID: PMC7073464 DOI: 10.15252/embj.2019104013] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/17/2019] [Accepted: 12/21/2019] [Indexed: 01/06/2023] Open
Abstract
High‐grade serous ovarian cancer (HGSOC) likely originates from the fallopian tube (FT) epithelium. Here, we established 15 organoid lines from HGSOC primary tumor deposits that closely match the mutational profile and phenotype of the parental tumor. We found that Wnt pathway activation leads to growth arrest of these cancer organoids. Moreover, active BMP signaling is almost always required for the generation of HGSOC organoids, while healthy fallopian tube organoids depend on BMP suppression by Noggin. Fallopian tube organoids modified by stable shRNA knockdown of p53, PTEN, and retinoblastoma protein (RB) also require a low‐Wnt environment for long‐term growth, while fallopian tube organoid medium triggers growth arrest. Thus, early changes in the stem cell niche environment are needed to support outgrowth of these genetically altered cells. Indeed, comparative analysis of gene expression pattern and phenotypes of normal vs. loss‐of‐function organoids confirmed that depletion of tumor suppressors triggers changes in the regulation of stemness and differentiation.
Collapse
Affiliation(s)
- Karen Hoffmann
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Hilmar Berger
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Hagen Kulbe
- Department of Gynecology, Charité University Medicine, Campus Virchow-Klinikum, Berlin, Germany
| | | | - Hans-Joachim Mollenkopf
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Tomasz Zemojtel
- BIH Genomics Core Unit, Charité University Medicine, Campus Virchow-Klinikum, Berlin, Germany
| | - Eliane Taube
- Department of Pathology, Charité University Medicine, Campus Charité, Berlin, Germany
| | - Silvia Darb-Esfahani
- Department of Pathology, Charité University Medicine, Campus Charité, Berlin, Germany
| | - Mandy Mangler
- Department of Gynecology, Vivantes Auguste-Viktoria-Klinikum, Berlin, Germany
| | - Jalid Sehouli
- Department of Gynecology, Charité University Medicine, Campus Virchow-Klinikum, Berlin, Germany
| | - Radoslav Chekerov
- Department of Gynecology, Charité University Medicine, Campus Virchow-Klinikum, Berlin, Germany
| | - Elena I Braicu
- Department of Gynecology, Charité University Medicine, Campus Virchow-Klinikum, Berlin, Germany
| | - Thomas F Meyer
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Mirjana Kessler
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
110
|
de Almeida Monteiro Melo Ferraz M, Nagashima JB, Venzac B, Le Gac S, Songsasen N. A dog oviduct-on-a-chip model of serous tubal intraepithelial carcinoma. Sci Rep 2020; 10:1575. [PMID: 32005926 PMCID: PMC6994655 DOI: 10.1038/s41598-020-58507-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/16/2020] [Indexed: 12/29/2022] Open
Abstract
Ovarian cancer is the fifth cause of cancer-related mortality in women, with an expected 5-year survival rate of only 47%. High-grade serous carcinoma (HGSC), an epithelial cancer phenotype, is the most common malignant ovarian cancer. It is known that the precursors of HGSC originate from secretory epithelial cells within the Fallopian tube, which first develops as serous tubal intraepithelial carcinoma (STIC). Here, we used gene editing by CRISPR-Cas9 to knock out the oncogene p53 in dog oviductal epithelia cultured in a dynamic microfluidic chip to create an in vitro model that recapitulated human STIC. Similar to human STIC, the gene-edited oviduct-on-a-chip, exhibited loss of cell polarization and had reduced ciliation, increased cell atypia and proliferation, with multilayered epithelium, increased Ki67, PAX8 and Myc and decreased PTEN and RB1 mRNA expression. This study provides a biomimetic in vitro model to study STIC progression and to identify potential biomarkers for early detection of HGSC.
Collapse
Affiliation(s)
| | - Jennifer Beth Nagashima
- Center for Species Survival, Smithsonian National Zoo and Conservation Biology Institute, 1500 Remount Road, Front Royal, Virginia, 22630, USA
| | - Bastien Venzac
- Applied Microfluidics for Bioengineering Research, MESA+ Institute for Nanotechnology and TechMed Center, University of Twente, 7500 AE, Enschede, The Netherlands
| | - Séverine Le Gac
- Applied Microfluidics for Bioengineering Research, MESA+ Institute for Nanotechnology and TechMed Center, University of Twente, 7500 AE, Enschede, The Netherlands
| | - Nucharin Songsasen
- Center for Species Survival, Smithsonian National Zoo and Conservation Biology Institute, 1500 Remount Road, Front Royal, Virginia, 22630, USA
| |
Collapse
|
111
|
Abildgaard C, Do Canto LM, Steffensen KD, Rogatto SR. Long Non-coding RNAs Involved in Resistance to Chemotherapy in Ovarian Cancer. Front Oncol 2020; 9:1549. [PMID: 32039022 PMCID: PMC6985280 DOI: 10.3389/fonc.2019.01549] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 12/20/2019] [Indexed: 12/26/2022] Open
Abstract
Ovarian cancer (OC) accounts for more than 150,000 deaths worldwide every year. Patients are often diagnosed at an advanced stage with metastatic dissemination. Although platinum- and taxane-based chemotherapies are effective treatment options, they are rarely curative and eventually, the disease will progress due to acquired resistance. Emerging evidence suggests a crucial role of long non-coding RNAs (lncRNAs) in the response to therapy in OC. Transcriptome profiling studies using high throughput approaches have identified differential expression patterns of lncRNAs associated with disease recurrence. Furthermore, several aberrantly expressed lncRNAs in resistant OC cells have been related to increased cell division, improved DNA repair, up-regulation of drug transporters or reduced susceptibility to apoptotic stimuli, supporting their involvement in acquired resistance. In this review, we will discuss the key aspects of lncRNAs associated with the development of resistance to platinum- and taxane-based chemotherapy in OC. The molecular landscape of OC will be introduced, to provide a background for understanding the role of lncRNAs in the acquisition of malignant properties. We will focus on the interplay between lncRNAs and molecular pathways affecting drug response to evaluate their impact on treatment resistance. Additionally, we will discuss the prospects of using lncRNAs as biomarkers or targets for precision medicine in OC. Although there is still plenty to learn about lncRNAs and technical challenges to be solved, the evidence of their involvement in OC and the development of acquired resistance are compelling and warrant further investigation for clinical applications.
Collapse
Affiliation(s)
- Cecilie Abildgaard
- Department of Clinical Genetics, Lillebaelt Hospital-University Hospital of Southern Denmark, Vejle, Denmark.,Department of Clinical Oncology, Lillebaelt Hospital-University Hospital of Southern Denmark, Vejle, Denmark.,Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Luisa M Do Canto
- Department of Clinical Genetics, Lillebaelt Hospital-University Hospital of Southern Denmark, Vejle, Denmark
| | - Karina D Steffensen
- Department of Clinical Oncology, Lillebaelt Hospital-University Hospital of Southern Denmark, Vejle, Denmark.,Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Silvia R Rogatto
- Department of Clinical Genetics, Lillebaelt Hospital-University Hospital of Southern Denmark, Vejle, Denmark.,Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
112
|
Role of microRNAs as Clinical Cancer Biomarkers for Ovarian Cancer: A Short Overview. Cells 2020; 9:cells9010169. [PMID: 31936634 PMCID: PMC7016727 DOI: 10.3390/cells9010169] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/1970] [Revised: 12/28/2019] [Accepted: 01/06/2020] [Indexed: 12/15/2022] Open
Abstract
Ovarian cancer has the highest mortality rate among gynecological cancers. Early clinical signs are missing and there is an urgent need to establish early diagnosis biomarkers. MicroRNAs are promising biomarkers in this respect. In this paper, we review the most recent advances regarding the alterations of microRNAs in ovarian cancer. We have briefly described the contribution of miRNAs in the mechanisms of ovarian cancer invasion, metastasis, and chemotherapy sensitivity. We have also summarized the alterations underwent by microRNAs in solid ovarian tumors, in animal models for ovarian cancer, and in various ovarian cancer cell lines as compared to previous reviews that were only focused the circulating microRNAs as biomarkers. In this context, we consider that the biomarker screening should not be limited to circulating microRNAs per se, but rather to the simultaneous detection of the same microRNA alteration in solid tumors, in order to understand the differences between the detection of nucleic acids in early vs. late stages of cancer. Moreover, in vitro and in vivo models should also validate these microRNAs, which could be very helpful as preclinical testing platforms for pharmacological and/or molecular genetic approaches targeting microRNAs. The enormous quantity of data produced by preclinical and clinical studies regarding the role of microRNAs that act synergistically in tumorigenesis mechanisms that are associated with ovarian cancer subtypes, should be gathered, integrated, and compared by adequate methods, including molecular clustering. In this respect, molecular clustering analysis should contribute to the discovery of best biomarkers-based microRNAs assays that will enable rapid, efficient, and cost-effective detection of ovarian cancer in early stages. In conclusion, identifying the appropriate microRNAs as clinical biomarkers in ovarian cancer might improve the life quality of patients.
Collapse
|
113
|
The Many Microenvironments of Ovarian Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1296:199-213. [PMID: 34185294 DOI: 10.1007/978-3-030-59038-3_12] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
High-grade serous ovarian cancer (HGSOC) is the most common and deadly subtype of ovarian cancer as it is commonly diagnosed after substantial metastasis has already occurred. The past two decades have been an active era in HGSOC research, with new information on the origin and genomic signature of the tumor cell. Additionally, studies have begun to characterize changes in the HGSOC microenvironment and examine the impact of these changes on tumor progression and response to therapies. While this knowledge may provide valuable insight into better prognosis and treatments for HGSOCs, its collection, synthesis, and application are complicated by the number of unique microenvironments in the disease-the initiating site (fallopian tube), first metastasis (ovary), distal metastases (peritoneum), and recurrent/platinum-resistant setting. Here, we review the state of our understanding of these diverse sites and highlight remaining questions.
Collapse
|
114
|
A Study of High-Grade Serous Ovarian Cancer Origins Implicates the SOX18 Transcription Factor in Tumor Development. Cell Rep 2019; 29:3726-3735.e4. [DOI: 10.1016/j.celrep.2019.10.122] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 08/06/2019] [Accepted: 10/29/2019] [Indexed: 12/30/2022] Open
|
115
|
Zhang S, Dolgalev I, Zhang T, Ran H, Levine DA, Neel BG. Both fallopian tube and ovarian surface epithelium are cells-of-origin for high-grade serous ovarian carcinoma. Nat Commun 2019; 10:5367. [PMID: 31772167 PMCID: PMC6879755 DOI: 10.1038/s41467-019-13116-2] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 10/22/2019] [Indexed: 01/11/2023] Open
Abstract
The cell-of-origin of high grade serous ovarian carcinoma (HGSOC) remains controversial, with fallopian tube epithelium (FTE) and ovarian surface epithelium (OSE) both considered candidates. Here, by using genetically engineered mouse models and organoids, we assessed the tumor-forming properties of FTE and OSE harboring the same oncogenic abnormalities. Combined RB family inactivation and Tp53 mutation in Pax8 + FTE caused Serous Tubal Intraepithelial Carcinoma (STIC), which metastasized rapidly to the ovarian surface. These events were recapitulated by orthotopic injection of mutant FTE organoids. Engineering the same genetic lesions into Lgr5 + OSE or OSE-derived organoids also caused metastatic HGSOC, although with longer latency and lower penetrance. FTE- and OSE-derived tumors had distinct transcriptomes, and comparative transcriptomics and genomics suggest that human HGSOC arises from both cell types. Finally, FTE- and OSE-derived organoids exhibited differential chemosensitivity. Our results comport with a dualistic origin for HGSOC and suggest that the cell-of-origin might influence therapeutic response.
Collapse
Affiliation(s)
- Shuang Zhang
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, 10016, USA.
| | - Igor Dolgalev
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, 10016, USA
| | - Tao Zhang
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, 10016, USA
| | - Hao Ran
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, 10016, USA
| | - Douglas A Levine
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, 10016, USA
| | - Benjamin G Neel
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, 10016, USA.
| |
Collapse
|
116
|
Mitra S, Tiwari K, Podicheti R, Pandhiri T, Rusch DB, Bonetto A, Zhang C, Mitra AK. Transcriptome Profiling Reveals Matrisome Alteration as a Key Feature of Ovarian Cancer Progression. Cancers (Basel) 2019; 11:cancers11101513. [PMID: 31600962 PMCID: PMC6826756 DOI: 10.3390/cancers11101513] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/30/2019] [Accepted: 09/30/2019] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Ovarian cancer is the most lethal gynecologic malignancy. There is a lack of comprehensive investigation of disease initiation and progression, including gene expression changes during early metastatic colonization. METHODS RNA-sequencing (RNA-seq) was done with matched primary tumors and fallopian tubes (n = 8 pairs) as well as matched metastatic and primary tumors (n = 11 pairs) from ovarian cancer patients. Since these are end point analyses, it was combined with RNA-seq using high-grade serous ovarian cancer cells seeded on an organotypic three-dimensional (3D) culture model of the omentum, mimicking early metastasis. This comprehensive approach revealed key changes in gene expression occurring in ovarian cancer initiation and metastasis, including early metastatic colonization. RESULTS 2987 genes were significantly deregulated in primary tumors compared to fallopian tubes, 845 genes were differentially expressed in metastasis compared to primary tumors and 304 genes were common to both. An assessment of patient metastasis and 3D omental culture model of early metastatic colonization revealed 144 common genes that were altered during early colonization and remain deregulated even in the fully developed metastasis. Deregulation of the matrisome was a key process in early and late metastasis. CONCLUSION These findings will help in understanding the key pathways involved in ovarian cancer progression and eventually targeting those pathways for therapeutic interventions.
Collapse
Affiliation(s)
- Sumegha Mitra
- Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN 46202, USA.
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Kartikeya Tiwari
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Bloomington, IN 47405, USA.
| | - Ram Podicheti
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN 47405, USA.
| | - Taruni Pandhiri
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Bloomington, IN 47405, USA.
| | - Douglas B Rusch
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN 47405, USA.
| | - Andrea Bonetto
- Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN 46202, USA.
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Chi Zhang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Anirban K Mitra
- Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN 46202, USA.
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Bloomington, IN 47405, USA.
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
117
|
Corradetti B, Pisano S, Conlan RS, Ferrari M. Nanotechnology and Immunotherapy in Ovarian Cancer: Tracing New Landscapes. J Pharmacol Exp Ther 2019; 370:636-646. [PMID: 30737357 PMCID: PMC6806629 DOI: 10.1124/jpet.118.254979] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/28/2019] [Indexed: 12/21/2022] Open
Abstract
Ovarian cancer (OC) is the seventh most common cancer in women worldwide. Standard therapeutic treatments involve debulking surgery combined with platinum-based chemotherapies. Of the patients with advanced-stage cancer who initially respond to current treatments, 50%-75% relapse. Immunotherapy-based approaches aimed at boosting antitumor immunity have recently emerged as promising tools to challenge tumor progression. Treatments with inhibitors of immune checkpoint molecules have shown impressive results in other types of tumors. However, only 15% of checkpoint inhibitors evaluated have proven successful in OC due to the immunosuppressive environment of the tumor and the transport barriers. This limits the efficacy of the existing immunotherapies. Nanotechnology-based delivery systems hold the potential to overcome such limitations. Various nanoformulations including polymeric, liposomes, and lipid-polymer hybrid nanoparticles have already been proposed to improve the biodistribution and targeting capabilities of drugs against tumor-associated immune cells, including dendritic cells and macrophages. In this review, we examine the impact of immunotherapeutic approaches that are currently under consideration for the treatment of OC. In this review, we also provide a comprehensive analysis of the existing nanoparticle-based synthetic strategies and their limitations and advantages over standard treatments. Furthermore, we discuss how the strength of the combination of nanotechnology with immunotherapy may help to overcome the current therapeutic limitations associated with their individual application and unravel a new paradigm in the treatment of this malignancy.
Collapse
Affiliation(s)
- Bruna Corradetti
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas (B.C., S.P., R.S.C., M.F.); Swansea University Medical School, Singleton Park, Swansea, United Kingdom (B.C., S.P., R.S.C.); and Department of Medicine, Weill Cornell Medical College, New York, New York (M.F.)
| | - Simone Pisano
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas (B.C., S.P., R.S.C., M.F.); Swansea University Medical School, Singleton Park, Swansea, United Kingdom (B.C., S.P., R.S.C.); and Department of Medicine, Weill Cornell Medical College, New York, New York (M.F.)
| | - Robert Steven Conlan
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas (B.C., S.P., R.S.C., M.F.); Swansea University Medical School, Singleton Park, Swansea, United Kingdom (B.C., S.P., R.S.C.); and Department of Medicine, Weill Cornell Medical College, New York, New York (M.F.)
| | - Mauro Ferrari
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas (B.C., S.P., R.S.C., M.F.); Swansea University Medical School, Singleton Park, Swansea, United Kingdom (B.C., S.P., R.S.C.); and Department of Medicine, Weill Cornell Medical College, New York, New York (M.F.)
| |
Collapse
|
118
|
Rajitha B, Malla RR, Vadde R, Kasa P, Prasad GLV, Farran B, Kumari S, Pavitra E, Kamal MA, Raju GSR, Peela S, Nagaraju GP. Horizons of nanotechnology applications in female specific cancers. Semin Cancer Biol 2019; 69:376-390. [PMID: 31301361 DOI: 10.1016/j.semcancer.2019.07.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/23/2019] [Accepted: 07/04/2019] [Indexed: 12/20/2022]
Abstract
Female-specific cancers are the most common cancers in women worldwide. Early detection methods remain unavailable for most of these cancers, signifying that most of them are diagnosed at later stages. Furthermore, current treatment options for most female-specific cancers are surgery, radiation and chemotherapy. Although important milestones in molecularly targeted approaches have been achieved lately, current therapeutic strategies for female-specific cancers remain limited, ineffective and plagued by the emergence of chemoresistance, which aggravates prognosis. Recently, the application of nanotechnology to the medical field has allowed the development of novel nano-based approaches for the management and treatment of cancers, including female-specific cancers. These approaches promise to improve patient survival rates by reducing side effects, enabling selective delivery of drugs to tumor tissues and enhancing the uptake of therapeutic compounds, thus increasing anti-tumor activity. In this review, we focus on the application of nano-based technologies to the design of novel and innovative diagnostic and therapeutic strategies in the context of female-specific cancers, highlighting their potential uses and limitations.
Collapse
Affiliation(s)
- Balney Rajitha
- Department of Pathology, WellStar Hospital, Marietta, GA, 30060, USA
| | - Rama Rao Malla
- Department of Biochemistry, GITAM Institute of Science, GITAM University, Visakhapatnam, AP, 530045, India
| | - Ramakrishna Vadde
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, AP, 516003, India
| | - Prameswari Kasa
- Dr. LV Prasad Diagnostics and Research Laboratory, Khairtabad, Hyderabad, TS, 500004, India
| | | | - Batoul Farran
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Seema Kumari
- Department of Biochemistry, GITAM Institute of Science, GITAM University, Visakhapatnam, AP, 530045, India
| | - Eluri Pavitra
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, 100, Inha-ro, Incheon 22212, Republic of Korea
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia; Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia; Novel Global Community Educational Foundation, Australia
| | - Ganji Seeta Rama Raju
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - Sujatha Peela
- Department of Biotechnology, Dr. B.R. Ambedkar University, Srikakulam, AP, 532410, India
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
119
|
Reavis H, Drapkin R. H2Bub1: Guardian of chromatin accessibility in ovarian cancer. Oncoscience 2019; 6:349-350. [PMID: 31608296 PMCID: PMC6768845 DOI: 10.18632/oncoscience.484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 06/14/2019] [Indexed: 12/13/2022] Open
Affiliation(s)
- Hunter Reavis
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Basser Center for BRCA, Abramson Cancer Center, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Ronny Drapkin
- Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Basser Center for BRCA, Abramson Cancer Center, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
120
|
Norris EJ, Zhang Q, Jones WD, DeStephanis D, Sutker AP, Livasy CA, Ganapathi RN, Tait DL, Ganapathi MK. Increased expression of neurotensin in high grade serous ovarian carcinoma with evidence of serous tubal intraepithelial carcinoma. J Pathol 2019; 248:352-362. [PMID: 30883751 PMCID: PMC6619390 DOI: 10.1002/path.5264] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/04/2019] [Accepted: 03/13/2019] [Indexed: 12/22/2022]
Abstract
High grade serous ovarian carcinoma (HGSC) without identifiable serous tubal intraepithelial carcinoma (STIC) within the fallopian tube (FT) occurs in approximately 50% of patients. The objective of this study was to use a multisite tumor sampling approach to study HGSC with and without STIC. RNAseq analysis of HGSC samples collected from multiple sites e.g. ovary, FT and peritoneum, revealed moderate levels of intrapatient heterogeneity in gene expression that could influence molecular profiles. Mixed‐model ANOVA analysis of gene expression in tumor samples from patients with multiple tumor sites (n = 13) and patients with a single site tumor sample (n = 11) to compare HGSC‐STIC to HGSC‐NOSTIC identified neurotensin (NTS) as significantly higher (> two‐fold change, False Discovery Rate (FDR) < 0.10) in HGSC‐STIC. This data was validated using publicly available RNA‐Seq datasets. Concordance between higher NTS gene expression and NTS peptide levels in HGSC‐STIC samples was demonstrated by immunohistochemistry. To determine the role of NTS in HGSC, five ovarian cancer (OvCa) cell lines were screened for expression of NTS and its receptors, NTSR1 and NTSR3. Increased expression of NTS and NSTR1 was observed in several of the OvCa cells, whereas the NTSR3 receptor was lower in all OvCa cells, compared to immortalized FT epithelial cells. Treatment with NTSR1 inhibitor (SR48692) decreased cell proliferation, but increased cell migration in OvCa cells. The effects of SR48692 were receptor mediated, since transient RNAi knockdown of NTSR1 mimicked the migratory effects and knockdown of NTSR3 mimicked the anti‐proliferative effects. Further, knockdown of NTSR1 or NTSR3 was associated with acquisition of distinct morphological phenotypes, epithelial or mesenchymal, respectively. Taken together, our results reveal a difference in a biologically active pathway between HGSC with and without STIC. Furthermore, we identify neurotensin signaling as an important pathway involved in cell proliferation and epithelial–mesenchymal transition in HGSC‐STIC which warrants further study as a potential therapeutic target. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Eric J Norris
- Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Qing Zhang
- Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Wendell D Jones
- Department of Bioinformatics and Clinical Systems, Q2 Solutions - EA Genomics, Morrisville, NC, USA
| | | | | | | | | | - David L Tait
- Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | | |
Collapse
|
121
|
Chen LY, Huang RL, Chan MW, Yan PS, Huang TS, Wu RC, Suryo Rahmanto Y, Su PH, Weng YC, Chou JL, Chao TK, Wang YC, Shih IM, Lai HC. TET1 reprograms the epithelial ovarian cancer epigenome and reveals casein kinase 2α as a therapeutic target. J Pathol 2019; 248:363-376. [PMID: 30883733 DOI: 10.1002/path.5266] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/09/2019] [Accepted: 03/11/2019] [Indexed: 12/22/2022]
Abstract
Ten-eleven translocation methylcytosine dioxygenase-1, TET1, takes part in active DNA demethylation. However, our understanding of DNA demethylation in cancer biology and its clinical significance remain limited. This study showed that TET1 expression correlated with poor survival in advanced-stage epithelial ovarian carcinoma (EOC), and with cell migration, anchorage-independent growth, cancer stemness, and tumorigenicity. In particular, TET1 was highly expressed in serous tubal intraepithelial carcinoma (STIC), a currently accepted type II EOC precursor, and inversely correlated with TP53 mutations. Moreover, TET1 could demethylate the epigenome and activate multiple oncogenic pathways, including an immunomodulation network having casein kinase II subunit alpha (CK2α) as a hub. Patients with TET1high CK2αhigh EOCs had the worst outcomes, and TET1-expressing EOCs were more sensitive to a CK2 inhibitor, both in vitro and in vivo. Our findings uncover the oncogenic and poor prognostic roles of TET1 in EOC and suggest an unexplored role of epigenetic reprogramming in early ovarian carcinogenesis. Moreover, the immunomodulator CK2α represents a promising new therapeutic target, warranting clinical trials of the tolerable CK2 inhibitor, CX4945, for precision medicine against EOC. Copyright © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Lin-Yu Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Rui-Lan Huang
- Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Michael Wy Chan
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi, Taiwan.,Institute of Molecular Biology, National Chung Cheng University, Chiayi, Taiwan
| | - Pearlly S Yan
- Department of Molecular Virology, Immunology, and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Tien-Shuo Huang
- Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Ren-Chin Wu
- Department of Pathology, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Yohan Suryo Rahmanto
- Department of Pathology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Po-Hsuan Su
- Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Yu-Chun Weng
- Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Jian-Liang Chou
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi, Taiwan
| | - Tai-Kuang Chao
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Chi Wang
- Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ie-Ming Shih
- Department of Pathology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA.,Department of Gynecology and Obstetrics, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Hung-Cheng Lai
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
122
|
Lheureux S, Gourley C, Vergote I, Oza AM. Epithelial ovarian cancer. Lancet 2019; 393:1240-1253. [PMID: 30910306 DOI: 10.1016/s0140-6736(18)32552-2] [Citation(s) in RCA: 1162] [Impact Index Per Article: 193.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 10/02/2018] [Accepted: 10/10/2018] [Indexed: 12/17/2022]
Abstract
Epithelial ovarian cancer generally presents at an advanced stage and is the most common cause of gynaecological cancer death. Treatment requires expert multidisciplinary care. Population-based screening has been ineffective, but new approaches for early diagnosis and prevention that leverage molecular genomics are in development. Initial therapy includes surgery and adjuvant therapy. Epithelial ovarian cancer is composed of distinct histological subtypes with unique genomic characteristics, which are improving the precision and effectiveness of therapy, allowing discovery of predictors of response such as mutations in breast cancer susceptibility genes BRCA1 and BRCA2, and homologous recombination deficiency for DNA damage response pathway inhibitors or resistance (cyclin E1). Rapidly evolving techniques to measure genomic changes in tumour and blood allow for assessment of sensitivity and emergence of resistance to therapy, and might be accurate indicators of residual disease. Recurrence is usually incurable, and patient symptom control and quality of life are key considerations at this stage. Treatments for recurrence have to be designed from a patient's perspective and incorporate meaningful measures of benefit. Urgent progress is needed to develop evidence and consensus-based treatment guidelines for each subgroup, and requires close international cooperation in conducting clinical trials through academic research groups such as the Gynecologic Cancer Intergroup.
Collapse
Affiliation(s)
- Stephanie Lheureux
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Charlie Gourley
- Nicola Murray Centre for Ovarian Cancer Research, Edinburgh Cancer Research UK Centre, MRC IGMM, University of Edinburgh, Western General Hospital, Edinburgh, UK; Edinburgh Cancer Centre, Western General Hospital, Edinburgh, UK
| | - Ignace Vergote
- Division of Gynaecological Oncology, Leuven Cancer Institute, Department of Gynaecology and Obstetrics, Universitaire Ziekenhuizen Leuven, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Amit M Oza
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
123
|
Chui MH, Vang R, Wang TL, Shih IM, VandenBussche CJ. Cytomorphologic and molecular analyses of fallopian tube fimbrial brushings for diagnosis of serous tubal intraepithelial carcinoma. Cancer Cytopathol 2019; 127:192-201. [PMID: 30861338 DOI: 10.1002/cncy.22110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 01/07/2019] [Accepted: 01/10/2019] [Indexed: 11/12/2022]
Abstract
BACKGROUND The paradigm shift localizing the origin of ovarian high-grade serous carcinoma (HGSC) to the fallopian tube underscores the rationale for meticulous microscopic examination of salpingectomy specimens. The precursor, termed "serous tubal intraepithelial carcinoma," is often a focal lesion, which poses difficulties for histologic diagnosis. METHODS The authors describe a method to examine exfoliated epithelial cells from fallopian tube fimbria by gentle brushing, thereby enabling thorough sampling of the mucosal surface. Fimbrial brushings were collected from 20 fresh salpingectomy specimens from 15 patients, including 5 who had pathologically confirmed ovarian HGSC. Samples taken only from tubes that were grossly negative for tumor were processed for Papanicolaou staining, p53 immunocytochemistry, and tumor protein 53 (TP53) mutation analysis. RESULTS Cells with malignant cytomorphologic features were identified only in tubal brushings from patients with ovarian HGSC. In all cases, atypical/malignant cells on cytology corresponded to lesions with similar morphology and immunostaining pattern in permanent sections, demonstrating the sensitivity of the technique while providing reassurance that specimen integrity was not disrupted by the procedure. Targeted next-generation sequencing confirmed the presence of TP53 mutations in fimbrial brushings from HGSC, but not in benign samples, and demonstrated concordance with the immunostaining pattern. Identical mutations were observed in matched lesions microdissected from formalin-fixed tissue sections. CONCLUSIONS The described technique enables cytologic evaluation of the fallopian tube fimbria for a diagnosis of serous tubal intraepithelial carcinoma, serving as a complement to histology while offering distinct advantages with respect to the procurement of cellular material for ancillary testing and research.
Collapse
Affiliation(s)
- M Herman Chui
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland.,Sidney Kimmel Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Russell Vang
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland.,Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Tian-Li Wang
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland.,Sidney Kimmel Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Ie-Ming Shih
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland.,Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Sidney Kimmel Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | | |
Collapse
|
124
|
Soong TR, Dinulescu DM, Xian W, Crum CP. Frontiers in the Pathology and Pathogenesis of Ovarian Cancer: Cancer Precursors and "Precursor Escape". Hematol Oncol Clin North Am 2019; 32:915-928. [PMID: 30390765 DOI: 10.1016/j.hoc.2018.07.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This article summarizes the pathogenesis of ovarian carcinoma, focusing on the paradox of high-grade serous carcinogenesis. The fallopian tube is the prime site of origin in early serous cancers. Because a subset of serous cancers is associated with early serous proliferations absent intramucosal carcinomas, "precursor escape" is emerging, whereby some advanced cancers trace their roots to early serous proliferations. This has parallels in the endometriosis model and opens up a novel mechanism by which advanced malignancy could emerge without an obvious tubal carcinoma. The impact of this concept on classification of serous cancer and expectations from preventive strategies are discussed.
Collapse
Affiliation(s)
- Thing Rinda Soong
- Department of Pathology, University of Washington Medical Center, 1959 North Pacific Street, Box 356100, Seattle, WA 98195, USA
| | - Daniela M Dinulescu
- Department of Pathology, Harvard Medical School, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - Wa Xian
- The University of Texas Health Center at Houston, Institute of Molecular Medicine Center for Stem Cell and Regenerative Medicine, Houston, TX 77030, USA
| | - Christopher P Crum
- Department of Pathology, Harvard Medical School, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA.
| |
Collapse
|
125
|
Wu RC, Wang P, Lin SF, Zhang M, Song Q, Chu T, Wang BG, Kurman RJ, Vang R, Kinzler K, Tomasetti C, Jiao Y, Shih IM, Wang TL. Genomic landscape and evolutionary trajectories of ovarian cancer precursor lesions. J Pathol 2019; 248:41-50. [PMID: 30560554 PMCID: PMC6618168 DOI: 10.1002/path.5219] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 12/02/2018] [Accepted: 12/12/2018] [Indexed: 01/21/2023]
Abstract
The clonal relationship between ovarian high-grade serous carcinoma (HGSC) and its presumed precursor lesion, serous tubal intraepithelial carcinoma (STIC), has been reported. However, when analyzing patients with concurrent ovarian carcinoma and tubal lesion, the extensive carcinoma tissues present at diagnosis may have effaced the natural habitat of precursor clone(s), obscuring tumor clonal evolutionary history, or may have disseminated to anatomically adjacent fimbriae ends, masquerading as precursor lesions. To circumvent these limitations, we analyzed the genomic landscape of incidental tubal precursor lesions including p53 signature, dormant STIC or serous tubal intraepithelial lesion (STIL) and proliferative STIC in women without ovarian carcinoma or any cancer diagnosis using whole-exome sequencing and amplicon sequencing. In three of the four cancer-free women with multiple discrete tubal lesions we observed non-identical TP53 mutations between precursor lesions from the same individual. In one of the four women with co-existing ovarian HGSC and tubal precursor lesion we found non-identical TP53 mutations and a lack of common mutations shared between her precursor lesion and carcinoma. Analyzing the evolutionary history of multiple tubal lesions in the same four patients with concurrent ovarian carcinoma indicated distinct evolution trajectories. Collectively, the results support diverse clonal origins of tubal precursor lesions at the very early stages of tumorigenesis. Mathematical modeling based on lesion-specific proliferation rates indicated that p53 signature and dormant STIC may take a prolonged time (two decades or more) to develop into STIC, whereas STIC may progress to carcinoma in a much shorter time (6 years). The above findings may have implications for future research aimed at prevention and early detection of ovarian cancer. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Ren-Chin Wu
- Department of Pathology, Chang Gung Memorial Hospital and Chang Gung University School of Medicine, Taoyuan, Taiwan
| | - Pei Wang
- State Key Lab of Molecular Oncology, Laboratory of Cell and Molecular Biology, National Cancer Center/ National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Shiou-Fu Lin
- Departments of Pathology and Gynecology/Obstetrics, Johns Hopkins Medical Institutions, Baltimore, MD, USA.,Department of Pathology, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ming Zhang
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Qianqian Song
- State Key Lab of Molecular Oncology, Laboratory of Cell and Molecular Biology, National Cancer Center/ National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Tiffany Chu
- Departments of Pathology and Gynecology/Obstetrics, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Brant G Wang
- Department of Pathology, Inova Fairfax Hospital, Falls Church, VA, USA
| | - Robert J Kurman
- Departments of Pathology and Gynecology/Obstetrics, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Russell Vang
- Departments of Pathology and Gynecology/Obstetrics, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Kenneth Kinzler
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Cristian Tomasetti
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Yuchen Jiao
- State Key Lab of Molecular Oncology, Laboratory of Cell and Molecular Biology, National Cancer Center/ National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Ie-Ming Shih
- Departments of Pathology and Gynecology/Obstetrics, Johns Hopkins Medical Institutions, Baltimore, MD, USA.,Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Tian-Li Wang
- Departments of Pathology and Gynecology/Obstetrics, Johns Hopkins Medical Institutions, Baltimore, MD, USA.,Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| |
Collapse
|
126
|
Elsherif SB, Faria SC, Lall C, Iyer R, Bhosale PR. Ovarian Cancer Genetics and Implications for Imaging and Therapy. J Comput Assist Tomogr 2019; 43:835-845. [DOI: 10.1097/rct.0000000000000932] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
127
|
Salazar C, Campbell IG, Gorringe KL. When Is "Type I" Ovarian Cancer Not "Type I"? Indications of an Out-Dated Dichotomy. Front Oncol 2018; 8:654. [PMID: 30627526 PMCID: PMC6309131 DOI: 10.3389/fonc.2018.00654] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/10/2018] [Indexed: 12/12/2022] Open
Abstract
The dualistic classification of epithelial ovarian cancer (EOC) into “type I” and “type II” is widely applied in the research setting; it is used as a convenient way of conceptualizing different mechanisms of tumorigenesis. However, this classification conflicts with recent molecular insights of the etiology of EOC. Molecular and cell of origin studies indicate that while type II tumors could be classed together, type I tumors are not homogenous, even within the histological types, and can have poor clinical outcomes. Type II high grade serous carcinoma and type I low grade serous carcinomas best fit the description of the dualistic model, with different precursors, and distinct molecular profiles. However, endometriosis-associated cancers should be considered a separate group, without assuming an indolent course or type I genetic profiles. Furthermore, the very clear differences between mucinous ovarian carcinomas and other type I tumors, including an uncertain origin, and heterogeneous mutational spectrum and clinical behavior, indicate a non-type I classification for this entity. The impression that only type II carcinomas are aggressive, have poor prognosis, and carry TP53 mutations is an unhelpful misinterpretation of the dualistic classification. In this review, we revisit the history of EOC classification, and discuss the misunderstanding of the dualistic model by comparing the clinical and molecular heterogeneity of EOC types. We also emphasize that all EOC research, both basic and clinical, should consider the subtypes as different diseases beyond the type I/type II model, and base novel therapies on the molecular characteristics of each tumor.
Collapse
Affiliation(s)
- Carolina Salazar
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Ian G Campbell
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Kylie L Gorringe
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
128
|
Hooda J, Novak M, Salomon MP, Matsuba C, Ramos RI, MacDuffie E, Song M, Hirsch MS, Lester J, Parkash V, Karlan BY, Oren M, Hoon DS, Drapkin R. Early Loss of Histone H2B Monoubiquitylation Alters Chromatin Accessibility and Activates Key Immune Pathways That Facilitate Progression of Ovarian Cancer. Cancer Res 2018; 79:760-772. [PMID: 30563893 DOI: 10.1158/0008-5472.can-18-2297] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/15/2018] [Accepted: 12/11/2018] [Indexed: 12/29/2022]
Abstract
Recent insights supporting the fallopian tube epithelium (FTE) and serous tubal intraepithelial carcinomas (STIC) as the tissue of origin and the precursor lesion, respectively, for the majority of high-grade serous ovarian carcinomas (HGSOC) provide the necessary context to study the mechanisms that drive the development and progression of HGSOC. Here, we investigate the role of the E3 ubiquitin ligase RNF20 and histone H2B monoubiquitylation (H2Bub1) in serous tumorigenesis and report that heterozygous loss of RNF20 defines the majority of HGSOC tumors. At the protein level, H2Bub1 was lost or downregulated in a large proportion of STIC and invasive HGSOC tumors, implicating RNF20/H2Bub1 loss as an early event in the development of serous ovarian carcinoma. Knockdown of RNF20, with concomitant loss of H2Bub1, was sufficient to enhance cell migration and clonogenic growth of FTE cells. To investigate the mechanisms underlying these effects, we performed ATAC-seq and RNA-seq in RNF20 knockdown FTE cell lines. Loss of RNF20 and H2Bub1 was associated with a more open chromatin conformation, leading to upregulation of immune signaling pathways, including IL6. IL6 was one of the key cytokines significantly upregulated in RNF20- and H2Bub1-depleted FTE cells and imparted upon these cells an enhanced migratory phenotype. These studies provide mechanistic insight into the observed oncogenic phenotypes triggered by the early loss of H2Bub1. SIGNIFICANCE: Loss of RNF20 and H2Bub1 contributes to transformation of the fallopian tube epithelium and plays a role in the initiation and progression of high-grade serous ovarian cancer.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/4/760/F1.large.jpg.
Collapse
MESH Headings
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Ovarian Epithelial/genetics
- Carcinoma, Ovarian Epithelial/metabolism
- Carcinoma, Ovarian Epithelial/pathology
- Cell Proliferation
- Chromatin/genetics
- Chromatin/metabolism
- Cystadenocarcinoma, Serous/genetics
- Cystadenocarcinoma, Serous/metabolism
- Cystadenocarcinoma, Serous/pathology
- Disease Progression
- Fallopian Tube Neoplasms/genetics
- Fallopian Tube Neoplasms/metabolism
- Fallopian Tube Neoplasms/pathology
- Female
- Gene Expression Regulation, Neoplastic
- Histones/genetics
- Histones/metabolism
- Humans
- Interleukin-6/genetics
- Interleukin-6/metabolism
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/pathology
- Prognosis
- Signal Transduction
- Tumor Cells, Cultured
- Ubiquitin-Protein Ligases/genetics
- Ubiquitin-Protein Ligases/metabolism
- Ubiquitination
Collapse
Affiliation(s)
- Jagmohan Hooda
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Marián Novak
- Department of Medical Oncology, Dana-Farber Institute, Harvard Medical School, Boston, Massachusetts
| | - Matthew P Salomon
- Department of Translational Molecular Medicine, John Wayne Cancer Institute, Providence Health Services, Santa Monica, California
| | - Chikako Matsuba
- Department of Translational Molecular Medicine, John Wayne Cancer Institute, Providence Health Services, Santa Monica, California
| | - Romela I Ramos
- Department of Translational Molecular Medicine, John Wayne Cancer Institute, Providence Health Services, Santa Monica, California
| | - Emily MacDuffie
- Department of Medical Oncology, Dana-Farber Institute, Harvard Medical School, Boston, Massachusetts
| | - Melissa Song
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michelle S Hirsch
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jenny Lester
- Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Vinita Parkash
- Department of Pathology, Yale University, New Haven, Connecticut
| | - Beth Y Karlan
- Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Moshe Oren
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Dave S Hoon
- Department of Translational Molecular Medicine, John Wayne Cancer Institute, Providence Health Services, Santa Monica, California
| | - Ronny Drapkin
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
129
|
Soong TR, Howitt BE, Horowitz N, Nucci MR, Crum CP. The fallopian tube, "precursor escape" and narrowing the knowledge gap to the origins of high-grade serous carcinoma. Gynecol Oncol 2018; 152:426-433. [PMID: 30503267 DOI: 10.1016/j.ygyno.2018.11.033] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 11/20/2018] [Accepted: 11/26/2018] [Indexed: 12/28/2022]
Abstract
Most ovarian carcinomas are high-grade serous carcinomas (HGSC) that contain TP53 mutations, present at advanced stage, and eventually become resistant to chemotherapy. The rapid evolution of this disease has been attributed to an origin in the distal fallopian tube, in the form of serous tubal intraepithelial carcinomas (STICs). This has led to a disease model where malignancy develops first in the tube and spreads to the peritoneum or regional lymph nodes. However, although most early or incidentally discovered HGSCs manifest in the tube with STICs, many advanced HGSCs are not accompanied by a malignancy in the fimbria. To resolve this paradox, the focus has shifted to earlier, premalignant serous proliferations (ESPs) in the tubes, which lack the cytomorphologic features of malignancy but contain TP53 mutations. These have been termed p53 signatures or serous tubal intraepithelial lesions (STILs). Although they have not been presumed to have cancer-causing potential by themselves, some ESPs have recently been shown to share identical TP53 mutations with concurrent HGSCs, indicating a shared lineage between these early mucosal changes and metastatic malignancy. This discovery supports a paradigm by which HGSCs can emerge not only from STICs but also from exfoliated precursor cells (precursor escape) that eventually undergo malignant transformation within the peritoneal cavity. This paradigm unifies both localized and widespread HGSCs to a visible pre-existing cellular alteration in the tubal epithelium, and highlights a consistent and necessary biologic event (TP53 mutation) rarely encountered in the ovary or secondary Mullerian system. This dual pathway to HGSCs underscores the subtle nature of many serous cancer origins in the tube, explains contrasting clinico-pathologic presentations, and explains why, until recently, the fallopian tube was unappreciated as the principal origin of HGSCs. Moreover, it highlights additional challenges faced in preventing or intercepting HGSCs at a curable stage.
Collapse
Affiliation(s)
- Thing Rinda Soong
- Department of Pathology, University of Washington Medical Center, Seattle, WA 98195, United States of America
| | - Brooke E Howitt
- Department of Pathology, Stanford University Medical Center, Palo Alto, CA 94305, United States of America
| | - Neil Horowitz
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Boston, MA 02115, United States of America
| | - Marisa R Nucci
- Department of Pathology, Division of Women's and Perinatal Pathology, Brigham and Women's Hospital, Boston, MA 02115, United States of America
| | - Christopher P Crum
- Department of Pathology, Division of Women's and Perinatal Pathology, Brigham and Women's Hospital, Boston, MA 02115, United States of America.
| |
Collapse
|
130
|
Soong TR, Kolin DL, Teschan NJ, Crum CP. Back to the Future? The Fallopian Tube, Precursor Escape and a Dualistic Model of High-Grade Serous Carcinogenesis. Cancers (Basel) 2018; 10:cancers10120468. [PMID: 30486509 PMCID: PMC6316244 DOI: 10.3390/cancers10120468] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/16/2018] [Accepted: 11/21/2018] [Indexed: 01/06/2023] Open
Abstract
Beginning with the discovery of the BRCA-associated ovarian cancer susceptibility genes and subsequent detailed examination of risk-reducing salpingo-oophorectomy (RRSO) specimens, a new paradigm of ovarian carcinogenesis has unfolded with attention to the distal fallopian tube. The primary focus has been an early cancer or neoplasm in the fallopian tube which is seen in virtually all incidentally discovered high-grade serous cancers in asymptomatic women. This high-frequency of tubal involvement in early serous neoplasm (usually in the form of serous tubal intraepithelial carcinoma—STIC) has galvanized attention to this organ as a primary source of this disease. However, an enduring mystery has been the relatively low frequency of STIC in the fallopian tubes of women with advanced malignancy. This paradox, a high frequency of tubal involvement early on and a low frequency of involvement later in the disease process, has spurred interest in other potential sources, such as the ovarian surface epithelium or cortical inclusions and the secondary Mullerian system. However, because essentially all high-grade serous carcinomas are linked by TP53 mutations, and because fallopian tubes frequently contain early serous proliferations (ESPs) with these mutations, attention has turned to the possibility that the nonmalignant but TP53 mutated tubal epithelium could be responsible for an eventual malignancy. Recent data have shown evidence of a lineage continuity between ESPs and concurrent serous carcinomas prompting the concept of “precursor escape”. This creates a second component of the paradigm by which cells from early precursors are shed from the tube and undergo subsequent malignant transformation, emerging suddenly as widespread intraperitoneal malignancy. This dualistic model thus provides a unique pathway by which the future outcome (wide spread high-grade serous carcinomas—HGSC) is ultimately explained by going back in time to an early serous proliferation. This paradigm also brings the peritoneal cavity into focus, raising new questions about the potential co-variables or exposures that might facilitate the occasional malignant transformation of an ESP in the peritoneal cavity or on the peritoneal surface.
Collapse
Affiliation(s)
- T Rinda Soong
- Department of Pathology, University of Washington Medical Center, Seattle, WA 98195, USA.
| | - David L Kolin
- Department of Pathology, Division of Women's and Perinatal Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | - Nathan J Teschan
- Department of Pathology, Division of Women's and Perinatal Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | - Christopher P Crum
- Department of Pathology, Division of Women's and Perinatal Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
131
|
Kotoula V, Lakis S, Tikas I, Giannoulatou E, Lazaridis G, Papadopoulou K, Manoussou K, Efstratiou I, Papanikolaou A, Fostira F, Vlachos I, Tarlatzis B, Fountzilas G. Pathogenic BRCA1 mutations may be necessary but not sufficient for tissue genomic heterogeneity: Deep sequencing data from ovarian cancer patients. Gynecol Oncol 2018; 152:375-386. [PMID: 30446274 DOI: 10.1016/j.ygyno.2018.11.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/05/2018] [Accepted: 11/11/2018] [Indexed: 01/12/2023]
Abstract
BACKGROUND Tissue genomic heterogeneity (t-HET) in patients with epithelial ovarian cancer (OVCA) is related to tissue plasticity, i.e., flexibility to adapt to adverse molecular environments. Here, we interrogated the presence and clinical relevance of OVCA t-HET. METHODS We applied high-depth (>2000×) sequencing on 297 paraffin tissue samples (fallopian tubes, ovaries, intra-abdominal metastases) from 71 treatment-naïve patients who subsequently received first-line platinum-based chemotherapy. Based on tissue mutation patterns, we distinguished tissue genotypes into: no mutation (33/297 samples; 11.1%), stable (173; 58.2%) and unstable (91; 30.7%). We profiled genotypes per patient and assessed t-HET in 69 patients. Predicted pathogenic mutations refer to germline and/or tissues. RESULTS Among all 71 patients, 46 (64.8%) had pathogenic BRCA1 mutations and 15 (21.7%) had BRCA1/2 disruption (i.e., pathogenic mutations with position-LOH). We classified 29 patients with t-HET (42%), all with pathogenic BRCA1; t-HET was observed in 64% with such mutations (p < 0.001). As opposed to non-t-HET, matched tissues in t-HET shared pathogenic BRCA1 (p < 0.001) but not BRCA2 and TP53. Germline BRCA1 mutations in tissues exhibited position-LOH; heterozygous status; or, partial loss of the inherited allele accompanied by additional clonal mutations. Patients with t-HET had worse outcome (log-rank p = 0.048 [progression-free]; p = 0.037 [overall survival]), including 12/15 patients with disrupted BRCA1/2 and 3 BRCA1 carriers with partial germline loss in tissues. CONCLUSIONS Pathogenic BRCA1 mutations appear necessary but may not be sufficient for the establishment of t-HET. t-HET may be associated with worse outcome, including in patients with disrupted BRCA1/2, which is usually considered as a favourable marker. OVCA t-HET may need to be addressed for treatment decisions.
Collapse
Affiliation(s)
- Vassiliki Kotoula
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research, Aristotle University of Thessaloniki, Thessaloniki, Greece; Department of Pathology, Aristotle University of Thessaloniki, School of Health Sciences, Faculty of Medicine, Thessaloniki, Greece.
| | - Sotirios Lakis
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Tikas
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Eleni Giannoulatou
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia; University of New South Wales, Kensington, NSW, Australia
| | - Georgios Lazaridis
- Department of Medical Oncology, Papageorgiou Hospital, Aristotle University of Thessaloniki, School of Health Sciences, Faculty of Medicine, Thessaloniki, Greece
| | - Kyriaki Papadopoulou
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Kyriaki Manoussou
- Section of Biostatistics, Hellenic Cooperative Oncology Group, Athens, Greece.
| | | | - Alexios Papanikolaou
- First Department of Obstetrics and Gynecology, Papageorgiou Hospital, Aristotle University of Thessaloniki, School of Health Sciences, Faculty of Medicine, Thessaloniki, Greece.
| | - Florentia Fostira
- Molecular Diagnostics Laboratory, INRASTES, National Center for Scientific Research NCSR Demokritos, Athens, Greece
| | - Ioannis Vlachos
- Molecular Diagnostics Laboratory, INRASTES, National Center for Scientific Research NCSR Demokritos, Athens, Greece.
| | - Basil Tarlatzis
- First Department of Obstetrics and Gynecology, Papageorgiou Hospital, Aristotle University of Thessaloniki, School of Health Sciences, Faculty of Medicine, Thessaloniki, Greece
| | - George Fountzilas
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research, Aristotle University of Thessaloniki, Thessaloniki, Greece; Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
132
|
Ovarian carcinomas: at least five different diseases with distinct histological features and molecular genetics. Hum Pathol 2018; 80:11-27. [DOI: 10.1016/j.humpath.2018.06.018] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 06/08/2018] [Accepted: 06/13/2018] [Indexed: 11/18/2022]
|
133
|
Mallen A, Soong TR, Townsend MK, Wenham RM, Crum CP, Tworoger SS. Surgical prevention strategies in ovarian cancer. Gynecol Oncol 2018; 151:166-175. [PMID: 30087058 DOI: 10.1016/j.ygyno.2018.08.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/02/2018] [Indexed: 12/12/2022]
Abstract
Given the current lack of effective screening for ovarian cancer, surgical removal of at-risk tissue is the most successful strategy to decrease risk of cancer development. However, the optimal timing of surgery and tissues to remove, as well as the appropriate patients to undergo preventive procedures are poorly understood. In this review, we first discuss the origin and precursors of ovarian epithelial carcinomas, focusing on high-grade serous carcinomas and endometriosis-associated carcinomas, which cause the majority of the mortality and incidence of ovarian cancer. In addition, we summarize the implications of current understanding of specific pathogenic origins for surgical prevention and remaining gaps in knowledge. Secondly, we review evidence from the epidemiologic literature on the associations of various surgical prevention strategies, including endometriosis excision, tubal procedures, and bilateral salpingo-oophorectomy, with risk of future ovarian cancer development, as well as the short- and long-term consequences of these strategies on women's health and quality and life. We conclude with recommendations for surgical prevention in women with high-risk genetic mutations and average-risk women, and a brief discussion of ongoing research that will help clarify optimal surgical approaches that balance risk-reduction with maintenance of women's quality of life.
Collapse
Affiliation(s)
- Adrianne Mallen
- Department of Gynecologic Oncology, Moffitt Cancer Center, Tampa, FL, United States of America
| | - T Rinda Soong
- Department of Pathology, University of Washington, Seattle, WA, United States of America
| | - Mary K Townsend
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, United States of America
| | - Robert M Wenham
- Department of Gynecologic Oncology, Moffitt Cancer Center, Tampa, FL, United States of America
| | - Christopher P Crum
- Department of Pathology, Division of Women's and Perinatal Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Shelley S Tworoger
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, United States of America; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States of America.
| |
Collapse
|
134
|
Can Stemness and Chemoresistance Be Therapeutically Targeted via Signaling Pathways in Ovarian Cancer? Cancers (Basel) 2018; 10:cancers10080241. [PMID: 30042330 PMCID: PMC6116003 DOI: 10.3390/cancers10080241] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/12/2018] [Accepted: 07/17/2018] [Indexed: 12/12/2022] Open
Abstract
Ovarian cancer is the most lethal gynecological malignancy. Poor overall survival, particularly for patients with high grade serous (HGS) ovarian cancer, is often attributed to late stage at diagnosis and relapse following chemotherapy. HGS ovarian cancer is a heterogenous disease in that few genes are consistently mutated between patients. Additionally, HGS ovarian cancer is characterized by high genomic instability. For these reasons, personalized approaches may be necessary for effective treatment and cure. Understanding the molecular mechanisms that contribute to tumor metastasis and chemoresistance are essential to improve survival rates. One favored model for tumor metastasis and chemoresistance is the cancer stem cell (CSC) model. CSCs are cells with enhanced self-renewal properties that are enriched following chemotherapy. Elimination of this cell population is thought to be a mechanism to increase therapeutic response. Therefore, accurate identification of stem cell populations that are most clinically relevant is necessary. While many CSC identifiers (ALDH, OCT4, CD133, and side population) have been established, it is still not clear which population(s) will be most beneficial to target in patients. Therefore, there is a critical need to characterize CSCs with reliable markers and find their weaknesses that will make the CSCs amenable to therapy. Many signaling pathways are implicated for their roles in CSC initiation and maintenance. Therapeutically targeting pathways needed for CSC initiation or maintenance may be an effective way of treating HGS ovarian cancer patients. In conclusion, the prognosis for HGS ovarian cancer may be improved by combining CSC phenotyping with targeted therapies for pathways involved in CSC maintenance.
Collapse
|
135
|
Samimi G, Trabert B, Duggan MA, Robinson JL, Coa KI, Waibel E, Garcia E, Minasian LM, Sherman ME. Processing of fallopian tube, ovary, and endometrial surgical pathology specimens: A survey of U.S. laboratory practices. Gynecol Oncol 2018; 148:515-520. [PMID: 29395311 DOI: 10.1016/j.ygyno.2018.01.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/12/2018] [Accepted: 01/15/2018] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Many high-grade serous carcinomas initiate in fallopian tubes as serous tubal intraepithelial carcinoma (STIC), a microscopic lesion identified with specimen processing according to the Sectioning and Extensive Examination of the Fimbria protocol (SEE-Fim). Given that the tubal origin of these cancers was recently recognized, we conducted a survey of pathology practices to assess processing protocols that are applied to gynecologic surgical pathology specimens in clinical contexts in which finding STIC might have different implications. METHODS We distributed a survey electronically to the American Society for Clinical Pathology list-serve to determine practice patterns and compared results between practice types by chi-square (χ2) tests for categorical variables. Free text comments were qualitatively reviewed. RESULTS Survey responses were received from 159 laboratories (72 academic, 87 non-academic), which reported diverse specimen volumes and percentage of gynecologic samples. Overall, 74.1% of laboratories reported performing SEE-Fim for risk-reducing surgical specimens (82.5% academic versus 65.7% non-academic, p < 0.05). In specimens from surgery for benign indications in which initial microscopic sections showed an unanticipated suspicious finding, 75.9% of laboratories reported using SEE-Fim to process the remainder of the specimen (94.8% academic versus 76.4% non-academic, p < 0.01), and 84.6% submitted the entire fimbriae. CONCLUSIONS Changes in the theories of pathogenesis of high-grade serous carcinoma have led to implementation of pathology specimen processing protocols that include detailed analysis of the fallopian tubes. These results have implications for interpreting trends in cancer incidence data and considering the feasibility of developing a bank of gynecologic tissues containing STIC or early cancer precursors.
Collapse
Affiliation(s)
- Goli Samimi
- National Cancer Institute, Bethesda, MD 20892, USA.
| | | | - Máire A Duggan
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Canada
| | | | - Kisha I Coa
- ICF International, Inc., Rockville, MD 20878, USA
| | - Elizabeth Waibel
- The American Society for Clinical Pathology Institute for Science, Technology, and Policy, Washington, DC 20005, USA
| | - Edna Garcia
- The American Society for Clinical Pathology Institute for Science, Technology, and Policy, Washington, DC 20005, USA
| | | | | |
Collapse
|
136
|
Muinao T, Pal M, Deka Boruah HP. Origins based clinical and molecular complexities of epithelial ovarian cancer. Int J Biol Macromol 2018; 118:1326-1345. [PMID: 29890249 DOI: 10.1016/j.ijbiomac.2018.06.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 12/25/2022]
Abstract
Ovarian cancer is the most lethal of all common gynaecological malignancies in women worldwide. Ovarian cancer comprises of >15 distinct tumor types and subtypes characterized by histopathological features, environmental and genetic risk factors, precursor lesions and molecular events during oncogenesis. Recent studies on gene signature profiling of different subtypes of ovarian cancer have revealed significant genetic heterogeneity between and within each ovarian cancer histological subtype. Thus, an immense interest have shown towards a more personalized medicine for understanding the clinical and molecular complexities of four major types of epithelial ovarian cancer (serous, endometrioid, clear cell, and mucinous). As such, further in depth studies are needed for identification of molecular signalling network complexities associated with effective prognostication and targeted therapies to prevent or treat metastasis. Therefore, understanding the metastatic potential of primary ovarian cancer and therapeutic interventions against lethal ovarian cancer for the development of personalized therapies is very much indispensable. Consequently, in this review we have updated the key dysregulated genes of four major subtypes of epithelial carcinomas. We have also highlighted the recent advances and current challenges in unravelling the complexities of the origin of tumor as well as genetic heterogeneity of ovarian cancer.
Collapse
Affiliation(s)
- Thingreila Muinao
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India; Academy of Scientific & Innovative Research, Jorhat Campus, Assam 785006, India
| | - Mintu Pal
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India; Academy of Scientific & Innovative Research, Jorhat Campus, Assam 785006, India.
| | - Hari Prasanna Deka Boruah
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India; Academy of Scientific & Innovative Research, Jorhat Campus, Assam 785006, India
| |
Collapse
|
137
|
Clifford C, Vitkin N, Nersesian S, Reid-Schachter G, Francis JA, Koti M. Multi-omics in high-grade serous ovarian cancer: Biomarkers from genome to the immunome. Am J Reprod Immunol 2018; 80:e12975. [DOI: 10.1111/aji.12975] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 04/16/2018] [Indexed: 12/16/2022] Open
Affiliation(s)
- Cole Clifford
- Department of Biomedical and Molecular Sciences; Queen's University; Kingston ON Canada
| | - Natasha Vitkin
- Department of Biomedical and Molecular Sciences; Queen's University; Kingston ON Canada
- Cancer Biology and Genetics; Queen's Cancer Research Institute; Queen's University; Kingston ON Canada
| | - Sarah Nersesian
- Department of Biomedical and Molecular Sciences; Queen's University; Kingston ON Canada
- Cancer Biology and Genetics; Queen's Cancer Research Institute; Queen's University; Kingston ON Canada
| | | | - Julie-Ann Francis
- Department of Obstetrics and Gynecology; Kingston Health Sciences Center; Queen's University; Kingston ON Canada
| | - Madhuri Koti
- Department of Biomedical and Molecular Sciences; Queen's University; Kingston ON Canada
- Cancer Biology and Genetics; Queen's Cancer Research Institute; Queen's University; Kingston ON Canada
- Department of Obstetrics and Gynecology; Kingston Health Sciences Center; Queen's University; Kingston ON Canada
| |
Collapse
|
138
|
Wang Y, Zhao S, Zhu L, Zhang Q, Ren Y. MiR-19a negatively regulated the expression of PTEN and promoted the growth of ovarian cancer cells. Gene 2018; 670:166-173. [PMID: 29783075 DOI: 10.1016/j.gene.2018.05.063] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 05/12/2018] [Accepted: 05/16/2018] [Indexed: 12/12/2022]
Abstract
Ovarian cancer is the most lethal malignancy of the women genital tract. Exploring novel factors involved in the development of ovarian cancer and characterizing the molecular mechanisms by which regulate the tumorigenesis of ovarian cancer are quite necessary. Here, we found that miR-19a was highly expressed in ovarian cancer tissues and cell lines. Overexpression of miR-19a promoted the viability of ovarian cancer cells, while down-regulation of miR-19a inhibited the growth of ovarian cancer cells. To further understand the underlying molecular mechanism of miR-19a in regulating ovarian cancer cell growth, the downstream targets of miR-19a were predicted. The bioinformatics analysis showed that the tumor suppressor PTEN was found as one of the targeting candidates of miR-19a. MiR-19a bound the 3'-UTR of PTEN and highly expressed miR-19a decreased both the mRNA and protein levels of PTEN in ovarian cancer cells. Overexpression of PTEN suppressed the promoting effect of miR-19a on regulating the growth of ovarian cancer cells. Notably, the expression of miR-19a and PTEN was inversely correlated in ovarian cancer tissues. These results demonstrated the potential oncogenic role of miR-19a in ovarian cancer, which suggested that miR-19a might be a promising target in the diagnosis and treatment of ovarian cancer.
Collapse
Affiliation(s)
- Yuhong Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Xinxiang City 453100, China.
| | - Shuzhen Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Xinxiang City 453100, China
| | - Lihong Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Xinxiang City 453100, China
| | - Quanle Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Xinxiang City 453100, China
| | - Yanfang Ren
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Xinxiang City 453100, China
| |
Collapse
|
139
|
Ovarian Cancers: Genetic Abnormalities, Tumor Heterogeneity and Progression, Clonal Evolution and Cancer Stem Cells. MEDICINES 2018; 5:medicines5010016. [PMID: 29389895 PMCID: PMC5874581 DOI: 10.3390/medicines5010016] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 02/07/2023]
Abstract
Four main histological subtypes of ovarian cancer exist: serous (the most frequent), endometrioid, mucinous and clear cell; in each subtype, low and high grade. The large majority of ovarian cancers are diagnosed as high-grade serous ovarian cancers (HGS-OvCas). TP53 is the most frequently mutated gene in HGS-OvCas; about 50% of these tumors displayed defective homologous recombination due to germline and somatic BRCA mutations, epigenetic inactivation of BRCA and abnormalities of DNA repair genes; somatic copy number alterations are frequent in these tumors and some of them are associated with prognosis; defective NOTCH, RAS/MEK, PI3K and FOXM1 pathway signaling is frequent. Other histological subtypes were characterized by a different mutational spectrum: LGS-OvCas have increased frequency of BRAF and RAS mutations; mucinous cancers have mutation in ARID1A, PIK3CA, PTEN, CTNNB1 and RAS. Intensive research was focused to characterize ovarian cancer stem cells, based on positivity for some markers, including CD133, CD44, CD117, CD24, EpCAM, LY6A, ALDH1. Ovarian cancer cells have an intrinsic plasticity, thus explaining that in a single tumor more than one cell subpopulation, may exhibit tumor-initiating capacity. The improvements in our understanding of the molecular and cellular basis of ovarian cancers should lead to more efficacious treatments.
Collapse
|
140
|
Saini U, Suarez AA, Naidu S, Wallbillich JJ, Bixel K, Wanner RA, Bice J, Kladney RD, Lester J, Karlan BY, Goodfellow PJ, Cohn DE, Selvendiran K. STAT3/PIAS3 Levels Serve as "Early Signature" Genes in the Development of High-Grade Serous Carcinoma from the Fallopian Tube. Cancer Res 2018; 78:1739-1750. [PMID: 29339537 DOI: 10.1158/0008-5472.can-17-1671] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 11/13/2017] [Accepted: 01/10/2018] [Indexed: 01/23/2023]
Abstract
The initial molecular events that lead to malignant transformation of the fimbria of the fallopian tube (FT) through high-grade serous ovarian carcinoma (HGSC) remain poorly understood. In this study, we report that increased expression of signal transducer and activator of transcription 3 (pSTAT3 Tyr705) and suppression or loss of protein inhibitor of activated STAT3 (PIAS3) in FT likely drive HGSC. We evaluated human tissues-benign normal FT, tubal-peritoneal junction (TPJ), p53 signature FT tissue, tubal intraepithelial lesion in transition (TILT), serous tubal intraepithelial carcinoma (STIC) without ovarian cancer, and HGSC for expression of STAT3/PIAS3 (compared with their known TP53 signature) and their target proliferation genes. We observed constitutive activation of STAT3 and low levels or loss of PIAS3 in the TPJ, p53 signature, TILT, and STIC through advanced stage IV (HGSC) tissues. Elevated expression of pSTAT3 Tyr705 and decreased levels of PIAS3 appeared as early as TPJ and the trend continued until very advanced stage HGSC (compared with high PIAS3 and low pSTAT3 expression in normal benign FT). Exogenous expression of STAT3 in FT cells mediated translocation of pSTAT3 and c-Myc into the nucleus. In vivo experiments demonstrated that overexpression of STAT3 in FT secretory epithelial cells promoted tumor progression and metastasis, mimicking the clinical disease observed in patients with HGSC. Thus, we conclude that the STAT3 pathway plays a role in the development and progression of HGSC from its earliest premalignant states.Significance: Concomitant gain of pSTAT3 Tyr705 and loss of PIAS3 appear critical for initiation and development of high-grade serous carcinoma. Cancer Res; 78(7); 1739-50. ©2018 AACR.
Collapse
Affiliation(s)
- Uksha Saini
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Comprehensive Cancer Center, the Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Adrian A Suarez
- Department of Pathology, Gynecological Pathology and Cytopathology Unit, the Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Shan Naidu
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Comprehensive Cancer Center, the Ohio State University Wexner Medical Center, Columbus, Ohio
| | - John J Wallbillich
- Division of Gynecologic Oncology, Department of OB/GYN, Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Kristin Bixel
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Comprehensive Cancer Center, the Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Ross A Wanner
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Comprehensive Cancer Center, the Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Jason Bice
- Pathology Core Lab, Comprehensive Cancer Center, the Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Raleigh D Kladney
- Pathology Core Lab, Comprehensive Cancer Center, the Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Jenny Lester
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars Sinai Medical Center, Los Angeles, California
| | - Beth Y Karlan
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars Sinai Medical Center, Los Angeles, California
| | - Paul J Goodfellow
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Comprehensive Cancer Center, the Ohio State University Wexner Medical Center, Columbus, Ohio
| | - David E Cohn
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Comprehensive Cancer Center, the Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Karuppaiyah Selvendiran
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Comprehensive Cancer Center, the Ohio State University Wexner Medical Center, Columbus, Ohio.
| |
Collapse
|