101
|
Sun X, Wang M, Wang M, Yao L, Li X, Dong H, Li M, Sun T, Liu X, Liu Y, Xu Y. Role of Proton-Coupled Monocarboxylate Transporters in Cancer: From Metabolic Crosstalk to Therapeutic Potential. Front Cell Dev Biol 2020; 8:651. [PMID: 32766253 PMCID: PMC7379837 DOI: 10.3389/fcell.2020.00651] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 07/01/2020] [Indexed: 01/18/2023] Open
Abstract
Proton-coupled monocarboxylate transporters (MCTs), representing the first four isoforms of the SLC16A gene family, mainly participate in the transport of lactate, pyruvate, and other monocarboxylates. Cancer cells exhibit a metabolic shift from oxidative metabolism to an enhanced glycolytic phenotype, leading to a higher production of lactate in the cytoplasm. Excessive accumulation of lactate threatens the survival of cancer cells, and the overexpression of proton-coupled MCTs observed in multiple types of cancer facilitates enhanced export of lactate from highly glycolytic cancer cells. Proton-coupled MCTs not only play critical roles in the metabolic symbiosis between hypoxic and normoxic cancer cells within tumors but also mediate metabolic interaction between cancer cells and cancer-associated stromal cells. Of the four proton-coupled MCTs, MCT1 and MCT4 are the predominantly expressed isoforms in cancer and have been identified as potential therapeutic targets in cancer. Therefore, in this review, we primarily focus on the roles of MCT1 and MCT4 in the metabolic reprogramming of cancer cells under hypoxic and nutrient-deprived conditions. Additionally, we discuss how MCT1 and MCT4 serve as metabolic links between cancer cells and cancer-associated stromal cells via transport of crucial monocarboxylates, as well as present emerging opportunities and challenges in targeting MCT1 and MCT4 for cancer treatment.
Collapse
Affiliation(s)
- Xiangyu Sun
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Mozhi Wang
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Mengshen Wang
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Litong Yao
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xinyan Li
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Haoran Dong
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Meng Li
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Tie Sun
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xing Liu
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yang Liu
- The Second Affiliated Hospital of China Medical University, Shenyang, China
| | - Yingying Xu
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
102
|
The Multifaceted Pyruvate Metabolism: Role of the Mitochondrial Pyruvate Carrier. Biomolecules 2020; 10:biom10071068. [PMID: 32708919 PMCID: PMC7407832 DOI: 10.3390/biom10071068] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/09/2020] [Accepted: 07/14/2020] [Indexed: 12/17/2022] Open
Abstract
Pyruvate, the end product of glycolysis, plays a major role in cell metabolism. Produced in the cytosol, it is oxidized in the mitochondria where it fuels the citric acid cycle and boosts oxidative phosphorylation. Its sole entry point into mitochondria is through the recently identified mitochondrial pyruvate carrier (MPC). In this review, we report the latest findings on the physiology of the MPC and we discuss how a dysfunctional MPC can lead to diverse pathologies, including neurodegenerative diseases, metabolic disorders, and cancer.
Collapse
|
103
|
Lactate production by Staphylococcus aureus biofilm inhibits HDAC11 to reprogramme the host immune response during persistent infection. Nat Microbiol 2020; 5:1271-1284. [PMID: 32661313 PMCID: PMC7529909 DOI: 10.1038/s41564-020-0756-3] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 06/16/2020] [Indexed: 02/07/2023]
Abstract
Staphylococcus aureus (S. aureus) is a leading cause of biofilm-associated prosthetic joint infection (PJI), resulting in significant disability and prolonged treatment. It is known that host leukocyte IL-10 production is required for S. aureus biofilm persistence in PJI. A S. aureus bursa aurealis Tn library consisting of 1,952 non-essential genes was screened for mutants that failed to induce IL-10 in myeloid-derived suppressor cells (MDSCs), which identified a critical role for bacterial lactic acid biosynthesis. We generated a S. aureus ddh/ldh1/ldh2 triple Tn mutant that cannot produce D- or L-lactate. Co-culture of MDSCs or macrophages with ddh/ldh1/ldh2 mutant biofilm produced substantially less IL-10 compared with wild type S. aureus, which was also observed in a mouse model of PJI and led to reduced biofilm burden. Using MDSCs recovered from the mouse PJI model and in vitro leukocyte-biofilm co-cultures we show that bacterial-derived lactate inhibits histone deacetylase 11 (HDAC11), causing unchecked HDAC6 activity and increased histone 3 acetylation at the Il-10 promoter, resulting in enhanced Il-10 transcription in MDSCs and macrophages. Finally, we show that synovial fluid of patients with PJI contains elevated amounts of D-lactate and IL-10 compared with control subjects, and bacterial lactate increases IL-10 production by human monocyte-derived macrophages. Biofilms are bacterial communities that are difficult to treat because of their tolerance to antibiotics and ability to evade immune-mediated clearance. Prosthetic joint infection (PJI), a devastating complication of arthroplasty, is characterized by biofilm formation. The current study has discovered a central role for lactic acid biosynthesis in S. aureus biofilm formation during PJI. Mechanistically, bacterial-derived lactate inhibits histone deacetylase 11 (HDAC11) activity, which causes extensive epigenetic changes at the promoters of numerous host genes, including the key anti-inflammatory cytokine Il-10. Indeed, IL-10 production by myeloid-derived suppressor cells (MDSCs) and macrophages is critical for biofilm persistence during PJI. HDAC11 inhibition by S. aureus lactate results in unchecked HDAC6 activity, a positive regulator of IL-10, thereby increasing IL-10 production by MDSCs and macrophages in vitro and in vivo. Similarly, S. aureus lactate promotes IL-10 production in human monocyte-derived macrophages following biofilm exposure. This study highlights how bacterial metabolism can influence the host immune response to promote infection persistence.
Collapse
|
104
|
Repurposing Drugs for Cancer Radiotherapy: Early Successes and Emerging Opportunities. ACTA ACUST UNITED AC 2020; 25:106-115. [PMID: 30896532 DOI: 10.1097/ppo.0000000000000369] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
It has long been recognized that combining radiotherapy with cytotoxic drugs such as cisplatin can improve efficacy. However, while concurrent chemoradiotherapy improves patient outcomes, it comes at costs of increased toxicity. A tremendous opportunity remains to investigate drug combinations in the clinical setting that might increase the benefits of radiation without additional toxicity. This chapter highlights opportunities to apply repurposing of drugs along with a mechanistic understanding of radiation effects on cancer and normal tissue to discover new therapy-modifying drugs and help rapidly translate them to the clinic. We survey candidate radiosensitizers that alter DNA repair, decrease hypoxia, block tumor survival signaling, modify tumor metabolism, block growth factor signaling, slow tumor invasiveness, impair angiogenesis, or stimulate antitumor immunity. Promising agents include widely used drugs such as aspirin, metformin, and statins, offering the potential to improve outcomes, decrease radiation doses, and lower costs. Many other candidate drugs are also discussed.
Collapse
|
105
|
Weiner HS, Crosier AE, Keefer CL. Analysis of metabolic flux in felid spermatozoa using metabolomics and 13C-based fluxomics†. Biol Reprod 2020; 100:1261-1274. [PMID: 30715249 DOI: 10.1093/biolre/ioz010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 11/30/2018] [Accepted: 01/29/2019] [Indexed: 12/21/2022] Open
Abstract
Spermatozoa from three feline species-the domestic cat (Felis catus), the cheetah (Acinonyx jubatus), and the clouded leopard (Neofelis nebulosa)-were analyzed using metabolomic profiling and 13C-based fluxomics to address questions raised regarding their energy metabolism. Metabolic profiles and utilization of 13C-labeled energy substrates were detected and quantified using gas chromatography-mass spectrometry (GC-MS). Spermatozoa were collected by electroejaculation and incubated in media supplemented with 1.0 mM [U13C]-glucose, [U13C]-fructose, or [U13C]-pyruvate. Evaluation of intracellular metabolites following GC-MS analysis revealed the uptake and utilization of labeled glucose and fructose in sperm, as indicated by the presence of heavy ions in glycolytic products lactate and pyruvate. Despite evidence of substrate utilization, neither glucose nor fructose had an effect on the sperm motility index of ejaculated spermatozoa from any of the three felid species, and limited entry of pyruvate derived from these hexose substrates into mitochondria and the tricarboxylic acid cycle was detected. However, pathway utilization was species-specific for the limited number of individuals (four to seven males per species) assessed in these studies. An inhibitor of fatty acid beta-oxidation (FAO), etomoxir, altered metabolic profiles of all three felid species but decreased motility only in the cheetah. While fluxomic analysis provided direct evidence that glucose and fructose undergo catabolic metabolism, other endogenous substrates such as endogenous lipids may provide energy to fuel motility.
Collapse
Affiliation(s)
- Halli S Weiner
- Department of Animal & Avian Sciences, University of Maryland, College Park, Maryland, USA
| | - Adrienne E Crosier
- Center for Species Survival, Smithsonian Conservation Biology Institute, Front Royal, Virginia, USA
| | - Carol L Keefer
- Department of Animal & Avian Sciences, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
106
|
Trempolec N, Degavre C, Doix B, Brusa D, Corbet C, Feron O. Acidosis-Induced TGF-β2 Production Promotes Lipid Droplet Formation in Dendritic Cells and Alters Their Potential to Support Anti-Mesothelioma T Cell Response. Cancers (Basel) 2020; 12:cancers12051284. [PMID: 32438640 PMCID: PMC7281762 DOI: 10.3390/cancers12051284] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 11/23/2022] Open
Abstract
For poorly immunogenic tumors such as mesothelioma there is an imperious need to understand why antigen-presenting cells such as dendritic cells (DCs) are not prone to supporting the anticancer T cell response. The tumor microenvironment (TME) is thought to be a major contributor to this DC dysfunction. We have reported that the acidic TME component promotes lipid droplet (LD) formation together with epithelial-to-mesenchymal transition in cancer cells through autocrine transforming growth factor-β2 (TGF-β2) signaling. Since TGF-β is also a master regulator of immune tolerance, we have here examined whether acidosis can impede immunostimulatory DC activity. We have found that exposure of mesothelioma cells to acidosis promotes TGF-β2 secretion, which in turn leads to LD accumulation and profound metabolic rewiring in DCs. We have further documented how DCs exposed to the mesothelioma acidic milieu make the anticancer vaccine less efficient in vivo, with a reduced extent of both DC migratory potential and T cell activation. Interestingly, inhibition of TGF-β2 signaling and diacylglycerol O-acyltransferase (DGAT), the last enzyme involved in triglyceride synthesis, led to a significant restoration of DC activity and anticancer immune response. In conclusion, our study has identified that acidic mesothelioma milieu drives DC dysfunction and altered T cell response through pharmacologically reversible TGF-β2-dependent mechanisms.
Collapse
Affiliation(s)
- Natalia Trempolec
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, B-1200 Brussels, Belgium; (N.T.); (C.D.); (B.D.); (C.C.)
| | - Charline Degavre
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, B-1200 Brussels, Belgium; (N.T.); (C.D.); (B.D.); (C.C.)
| | - Bastien Doix
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, B-1200 Brussels, Belgium; (N.T.); (C.D.); (B.D.); (C.C.)
| | - Davide Brusa
- Institut de Recherche Expérimentale et Clinique (IREC) Flow Cytometry Platform, UCLouvain, B-1200 Brussels, Belgium;
| | - Cyril Corbet
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, B-1200 Brussels, Belgium; (N.T.); (C.D.); (B.D.); (C.C.)
| | - Olivier Feron
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, B-1200 Brussels, Belgium; (N.T.); (C.D.); (B.D.); (C.C.)
- Correspondence: ; Tel.: +32-2-7645264; Fax: +32-2-7645269
| |
Collapse
|
107
|
Characteristic Analysis of Homo- and Heterodimeric Complexes of Human Mitochondrial Pyruvate Carrier Related to Metabolic Diseases. Int J Mol Sci 2020; 21:ijms21093403. [PMID: 32403431 PMCID: PMC7246999 DOI: 10.3390/ijms21093403] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/01/2020] [Accepted: 05/08/2020] [Indexed: 02/07/2023] Open
Abstract
Human mitochondrial pyruvate carriers (hMPCs), which are required for the uptake of pyruvate into mitochondria, are associated with several metabolic diseases, including type 2 diabetes and various cancers. Yeast MPC was recently demonstrated to form a functional unit of heterodimers. However, human MPC-1 (hMPC-1) and MPC-2 (hMPC-2) have not yet been individually isolated for their detailed characterization, in particular in terms of their structural and functional properties, namely, whether they exist as homo- or heterodimers. In this study, hMPC-1 and hMPC-2 were successfully isolated in micelles and they formed stable homodimers. However, the heterodimer state was found to be dominant when both hMPC-1 and hMPC-2 were present. In addition, as heterodimers, the molecules exhibited a higher binding capacity to both substrates and inhibitors, together with a larger structural stability than when they existed as homodimers. Taken together, our results demonstrated that the hetero-dimerization of hMPCs is the main functional unit of the pyruvate metabolism, providing a structural insight into the transport mechanisms of hMPCs.
Collapse
|
108
|
Inhibition of colorectal cancer-associated fibroblasts by lipid nanocapsules loaded with acriflavine or paclitaxel. Int J Pharm 2020; 584:119337. [PMID: 32371002 DOI: 10.1016/j.ijpharm.2020.119337] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/03/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022]
Abstract
Crosstalk between cancer-associated fibroblasts (CAFs) and colorectal cancer cells promotes tumor growth and contributes to chemoresistance. In this study, we assessed the sensitivity of a primary CAF cell line, CT5.3hTERT, to standard-of-care and alternative cytotoxic treatments. Paclitaxel (PTX) and acriflavine (ACF) were identified as the most promising molecules to inhibit CAF development. To allow the translational use of both drugs, we developed lipid nanocapsule (LNC) formulations for PTX and ACF. Finally, we mixed CAFs and tumor cell lines in a cocultured spheroid, and the effect of both drugs was investigated by histological analyses. We demonstrated CAF inhibition by LNC-ACF and whole tumor inhibition by LNC-PTX. Altogether, we proposed a new strategy to reduce CAF populations in the colorectal microenvironment that should be tested in vivo.
Collapse
|
109
|
Bader DA, McGuire SE. Tumour metabolism and its unique properties in prostate adenocarcinoma. Nat Rev Urol 2020; 17:214-231. [PMID: 32112053 DOI: 10.1038/s41585-020-0288-x] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2020] [Indexed: 12/14/2022]
Abstract
Anabolic metabolism mediated by aberrant growth factor signalling fuels tumour growth and progression. The first biochemical descriptions of the altered metabolic nature of solid tumours were reported by Otto Warburg almost a century ago. Now, the study of tumour metabolism is being redefined by the development of new molecular tools, tumour modelling systems and precise instrumentation together with important advances in genetics, cell biology and spectroscopy. In contrast to Warburg's original hypothesis, accumulating evidence demonstrates a critical role for mitochondrial metabolism and substantial variation in the way in which different tumours metabolize nutrients to generate biomass. Furthermore, computational and experimental approaches suggest a dominant influence of the tissue-of-origin in shaping the metabolic reprogramming that enables tumour growth. For example, the unique metabolic properties of prostate adenocarcinoma are likely to stem from the distinct metabolism of the prostatic epithelium from which it emerges. Normal prostatic epithelium employs comparatively glycolytic metabolism to sustain physiological citrate secretion, whereas prostate adenocarcinoma consumes citrate to power oxidative phosphorylation and fuel lipogenesis, enabling tumour progression through metabolic reprogramming. Current data suggest that the distinct metabolic aberrations in prostate adenocarcinoma are driven by the androgen receptor, providing opportunities for functional metabolic imaging and novel therapeutic interventions that will be complementary to existing diagnostic and treatment options.
Collapse
Affiliation(s)
- David A Bader
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA. .,Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA.
| | - Sean E McGuire
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA. .,Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
110
|
TGFβ2-induced formation of lipid droplets supports acidosis-driven EMT and the metastatic spreading of cancer cells. Nat Commun 2020; 11:454. [PMID: 31974393 PMCID: PMC6978517 DOI: 10.1038/s41467-019-14262-3] [Citation(s) in RCA: 209] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 12/23/2019] [Indexed: 11/10/2022] Open
Abstract
Acidosis, a common characteristic of the tumor microenvironment, is associated with alterations in metabolic preferences of cancer cells and progression of the disease. Here we identify the TGF-β2 isoform at the interface between these observations. We document that acidic pH promotes autocrine TGF-β2 signaling, which in turn favors the formation of lipid droplets (LD) that represent energy stores readily available to support anoikis resistance and cancer cell invasiveness. We find that, in cancer cells of various origins, acidosis-induced TGF-β2 activation promotes both partial epithelial-to-mesenchymal transition (EMT) and fatty acid metabolism, the latter supporting Smad2 acetylation. We show that upon TGF-β2 stimulation, PKC-zeta-mediated translocation of CD36 facilitates the uptake of fatty acids that are either stored as triglycerides in LD through DGAT1 or oxidized to generate ATP to fulfill immediate cellular needs. We also address how, by preventing fatty acid mobilization from LD, distant metastatic spreading may be inhibited. The tumour microenvironment is known to have an acidic pH but how this influences cancer cell phenotype is unclear. Here, the authors show that tumour cells upregulate TGF-β2 under acidosis, which leads to the increased formation of lipid droplets allowing for invasiveness and metastases.
Collapse
|
111
|
Pereira-Nunes A, Afonso J, Granja S, Baltazar F. Lactate and Lactate Transporters as Key Players in the Maintenance of the Warburg Effect. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1219:51-74. [PMID: 32130693 DOI: 10.1007/978-3-030-34025-4_3] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Reprogramming of energy metabolism is a key hallmark of cancer. Most cancer cells display a glycolytic phenotype, with increased glucose consumption and glycolysis rates, and production of lactate as the end product, independently of oxygen concentrations. This phenomenon, known as "Warburg Effect", provides several survival advantages to cancer cells and modulates the metabolism and function of neighbour cells in the tumour microenvironment. However, due to the presence of metabolic heterogeneity within a tumour, cancer cells can also display an oxidative phenotype, and corruptible cells from the microenvironment become glycolytic, cooperating with oxidative cancer cells to boost tumour growth. This phenomenon is known as "Reverse Warburg Effect". In either way, lactate is a key mediator in the metabolic crosstalk between cancer cells and the microenvironment, and lactate transporters are expressed differentially by existing cell populations, to support this crosstalk.In this review, we will focus on lactate and on lactate transporters in distinct cells of the tumour microenvironment, aiming at a better understanding of their role in the acquisition and maintenance of the direct/reverse "Warburg effect" phenotype, which modulate cancer progression.
Collapse
Affiliation(s)
- Andreia Pereira-Nunes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Julieta Afonso
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Sara Granja
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
112
|
O'Sullivan D, Sanin DE, Pearce EJ, Pearce EL. Metabolic interventions in the immune response to cancer. Nat Rev Immunol 2019; 19:324-335. [PMID: 30820043 DOI: 10.1038/s41577-019-0140-9] [Citation(s) in RCA: 202] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
At the centre of the therapeutic dilemma posed by cancer is the question of how to develop more effective treatments that discriminate between normal and cancerous tissues. Decades of research have shown us that universally applicable principles are rare, but two well-accepted concepts have emerged: first, that malignant transformation goes hand in hand with distinct changes in cellular metabolism; second, that the immune system is critical for tumour control and clearance. Unifying our understanding of tumour metabolism with immune cell function may prove to be a powerful approach in the development of more effective cancer therapies. Here, we explore how nutrient availability in the tumour microenvironment shapes immune responses and identify areas of intervention to modulate the metabolic constraints placed on immune cells in this setting.
Collapse
Affiliation(s)
- David O'Sullivan
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.,University of Freiburg, Freiburg, Germany
| | - David E Sanin
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.,University of Freiburg, Freiburg, Germany
| | - Edward J Pearce
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany. .,University of Freiburg, Freiburg, Germany.
| | - Erika L Pearce
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| |
Collapse
|
113
|
Lee YG, Nam Y, Shin KJ, Yoon S, Park WS, Joung JY, Seo JK, Jang J, Lee S, Nam D, Caino MC, Suh PG, Chan Chae Y. Androgen-induced expression of DRP1 regulates mitochondrial metabolic reprogramming in prostate cancer. Cancer Lett 2019; 471:72-87. [PMID: 31838085 DOI: 10.1016/j.canlet.2019.12.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/10/2019] [Accepted: 12/10/2019] [Indexed: 12/26/2022]
Abstract
Androgen receptor (AR) signaling plays a central role in metabolic reprogramming for prostate cancer (PCa) growth and progression. Mitochondria are metabolic powerhouses of the cell and support several hallmarks of cancer. However, the molecular links between AR signaling and the mitochondria that support the metabolic demands of PCa cells are poorly understood. Here, we demonstrate increased levels of dynamin-related protein 1 (DRP1), a mitochondrial fission mediator, in androgen-sensitive and castration-resistant AR-driven PCa. AR signaling upregulates DRP1 to form the VDAC-MPC2 complex, increases pyruvate transport into mitochondria, and supports mitochondrial metabolism, including oxidative phosphorylation and lipogenesis. DRP1 inhibition activates the cellular metabolic stress response, which involves AMPK phosphorylation, induction of autophagy, and the ER unfolded protein response, and attenuates androgen-induced proliferation. Additionally, DRP1 expression facilitates PCa cell survival under diverse metabolic stress conditions, including hypoxia and oxidative stress. Moreover, we found that increased DRP1 expression was indicative of poor prognosis in patients with castration-resistant PCa. Collectively, our findings link androgen signaling-mediated mitochondrial dynamics to metabolic reprogramming; moreover, they have important implications for understanding PCa progression.
Collapse
Affiliation(s)
- Yu Geon Lee
- School of Life Sciences, Ulsan National University of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Yeji Nam
- School of Life Sciences, Ulsan National University of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Kyeong Jin Shin
- School of Life Sciences, Ulsan National University of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Sora Yoon
- School of Life Sciences, Ulsan National University of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Weon Seo Park
- Department of Pathology, Prostate Cancer Center, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Jae Young Joung
- Department of Urology, Prostate Cancer Center, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Jeong Kon Seo
- UNIST Central Research Facility, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Jinho Jang
- School of Life Sciences, Ulsan National University of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Semin Lee
- School of Life Sciences, Ulsan National University of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Dougu Nam
- School of Life Sciences, Ulsan National University of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - M Cecilia Caino
- Department of Pharmacology, University of Colorado Denver, Aurora, CO, 80045, USA
| | - Pann-Ghill Suh
- School of Life Sciences, Ulsan National University of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Young Chan Chae
- School of Life Sciences, Ulsan National University of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| |
Collapse
|
114
|
Mignion L, Acciardo S, Gourgue F, Joudiou N, Caignet X, Goebbels RM, Corbet C, Feron O, Bouzin C, Cani PD, Machiels JP, Schmitz S, Jordan BF. Metabolic Imaging Using Hyperpolarized Pyruvate-Lactate Exchange Assesses Response or Resistance to the EGFR Inhibitor Cetuximab in Patient-Derived HNSCC Xenografts. Clin Cancer Res 2019; 26:1932-1943. [PMID: 31831557 DOI: 10.1158/1078-0432.ccr-19-1369] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 09/04/2019] [Accepted: 12/05/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Optimal head and neck squamous cell carcinoma (HNSCC) patient selection for anti-EGFR-based therapy remains an unmet need since only a minority of patients derive long-term benefit from cetuximab treatment. We assessed the ability of state-of-the-art noninvasive in vivo metabolic imaging to probe metabolic shift in cetuximab-sensitive and -resistant HNSCC patient-derived tumor xenografts (PDTXs). EXPERIMENTAL DESIGN Three models selected based on their known sensitivity to cetuximab in patients (cetuximab-sensitive or acquired-resistant HNC007 PDTXs, cetuximab-naïve UCLHN4 PDTXs, and cetuximab-resistant HNC010 PDTXs) were inoculated in athymic nude mice. RESULTS Cetuximab induced tumor size stabilization in mice for 4 weeks in cetuximab-sensitive and -naïve models treated with weekly injections (30 mg/kg) of cetuximab. Hyperpolarized 13C-pyruvate-13C-lactate exchange was significantly decreased in vivo in cetuximab-sensitive xenograft models 8 days after treatment initiation, whereas it was not modified in cetuximab-resistant xenografts. Ex vivo analysis of sensitive tumors resected at day 8 after treatment highlighted specific metabolic changes, likely to participate in the decrease in the lactate to pyruvate ratio in vivo. Diffusion MRI showed a decrease in tumor cellularity in the HNC007-sensitive tumors, but failed to show sensitivity to cetuximab in the UCLHN4 model. CONCLUSIONS This study constitutes the first in vivo demonstration of cetuximab-induced metabolic changes in cetuximab-sensitive HNSCC PDTXs that were not present in resistant tumors. Using metabolic imaging, we were able to identify hyperpolarized 13C-pyruvate as a potential marker for response and resistance to the EGFR inhibitor in HNSCC.
Collapse
Affiliation(s)
- Lionel Mignion
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
| | - Stefania Acciardo
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
| | - Florian Gourgue
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Brussels, Belgium.,Metabolism and Nutrition Group, Louvain Drug Research Institute, UCLouvain, WELBIO (WELBIO- Walloon Excellence in Life Sciences and BIOtechnology), Université Catholique de Louvain, Brussels, Belgium
| | - Nicolas Joudiou
- Nuclear and Electron Spin Technologies Platform (NEST), Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
| | - Xavier Caignet
- Institut Roi Albert II, Service d'Oncologie Médicale, Cliniques universitaires Saint-Luc and Institut de Recherche Expérimentale et Clinique, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
| | - Rose-Marie Goebbels
- Institut Roi Albert II, Service d'Oncologie Médicale, Cliniques universitaires Saint-Luc and Institut de Recherche Expérimentale et Clinique, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
| | - Cyril Corbet
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium
| | - Olivier Feron
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium
| | - Caroline Bouzin
- Imaging Platform 2IP, Institut de Recherche Expérimentale et Clinique, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
| | - Patrice D Cani
- Metabolism and Nutrition Group, Louvain Drug Research Institute, UCLouvain, WELBIO (WELBIO- Walloon Excellence in Life Sciences and BIOtechnology), Université Catholique de Louvain, Brussels, Belgium
| | - Jean-Pascal Machiels
- Institut Roi Albert II, Service d'Oncologie Médicale, Cliniques universitaires Saint-Luc and Institut de Recherche Expérimentale et Clinique, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
| | - Sandra Schmitz
- Institut Roi Albert II, Service d'Oncologie Médicale, Cliniques universitaires Saint-Luc and Institut de Recherche Expérimentale et Clinique, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
| | - Bénédicte F Jordan
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
115
|
Nelson GL, Ronayne CT, Solano LN, Jonnalagadda SK, Jonnalagadda S, Rumbley J, Holy J, Rose-Hellekant T, Drewes LR, Mereddy VR. Development of Novel Silyl Cyanocinnamic Acid Derivatives as Metabolic Plasticity Inhibitors for Cancer Treatment. Sci Rep 2019; 9:18266. [PMID: 31797891 PMCID: PMC6892925 DOI: 10.1038/s41598-019-54709-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/14/2019] [Indexed: 12/20/2022] Open
Abstract
Novel silyl cyanocinnamic acid derivatives have been synthesized and evaluated as potential anticancer agents. In vitro studies reveal that lead derivatives 2a and 2b have enhanced cancer cell proliferation inhibition properties when compared to the parent monocarboxylate transporter (MCT) inhibitor cyano-hydroxycinnamic acid (CHC). Further, candidate compounds exhibit several-fold more potent MCT1 inhibition properties as determined by lactate-uptake studies, and these studies are supported by MCT homology modeling and computational inhibitor-docking studies. In vitro effects on glycolysis and mitochondrial metabolism also illustrate that the lead derivatives 2a and 2b lead to significant effects on both metabolic pathways. In vivo systemic toxicity and efficacy studies in colorectal cancer cell WiDr tumor xenograft demonstrate that candidate compounds are well tolerated and exhibit good single agent anticancer efficacy properties.
Collapse
Affiliation(s)
- Grady L Nelson
- Integrated Biosciences Graduate Program, University of Minnesota, Duluth, MN, 55812, USA
| | - Conor T Ronayne
- Integrated Biosciences Graduate Program, University of Minnesota, Duluth, MN, 55812, USA
| | - Lucas N Solano
- Integrated Biosciences Graduate Program, University of Minnesota, Duluth, MN, 55812, USA
| | - Sravan K Jonnalagadda
- Integrated Biosciences Graduate Program, University of Minnesota, Duluth, MN, 55812, USA
| | - Shirisha Jonnalagadda
- Integrated Biosciences Graduate Program, University of Minnesota, Duluth, MN, 55812, USA
| | - Jon Rumbley
- Integrated Biosciences Graduate Program, University of Minnesota, Duluth, MN, 55812, USA.,Department of Pharmacy Practice & Pharmaceutical Sciences, University of Minnesota, Duluth, MN, 55812, USA
| | - Jon Holy
- Integrated Biosciences Graduate Program, University of Minnesota, Duluth, MN, 55812, USA.,Department of Biomedical Sciences, Medical School Duluth, University of Minnesota, Duluth, MN, 55812, USA
| | - Teresa Rose-Hellekant
- Integrated Biosciences Graduate Program, University of Minnesota, Duluth, MN, 55812, USA.,Department of Biomedical Sciences, Medical School Duluth, University of Minnesota, Duluth, MN, 55812, USA
| | - Lester R Drewes
- Integrated Biosciences Graduate Program, University of Minnesota, Duluth, MN, 55812, USA.,Department of Biomedical Sciences, Medical School Duluth, University of Minnesota, Duluth, MN, 55812, USA
| | - Venkatram R Mereddy
- Integrated Biosciences Graduate Program, University of Minnesota, Duluth, MN, 55812, USA. .,Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN, 55812, USA. .,Department of Pharmacy Practice & Pharmaceutical Sciences, University of Minnesota, Duluth, MN, 55812, USA.
| |
Collapse
|
116
|
Tang BL. Targeting the Mitochondrial Pyruvate Carrier for Neuroprotection. Brain Sci 2019; 9:238. [PMID: 31540439 PMCID: PMC6770198 DOI: 10.3390/brainsci9090238] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/15/2019] [Accepted: 09/16/2019] [Indexed: 01/02/2023] Open
Abstract
The mitochondrial pyruvate carriers mediate pyruvate import into the mitochondria, which is key to the sustenance of the tricarboxylic cycle and oxidative phosphorylation. However, inhibition of mitochondria pyruvate carrier-mediated pyruvate transport was recently shown to be beneficial in experimental models of neurotoxicity pertaining to the context of Parkinson's disease, and is also protective against excitotoxic neuronal death. These findings attested to the metabolic adaptability of neurons resulting from MPC inhibition, a phenomenon that has also been shown in other tissue types. In this short review, I discuss the mechanism and potential feasibility of mitochondrial pyruvate carrier inhibition as a neuroprotective strategy in neuronal injury and neurodegenerative diseases.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System, Singapore 117596, Singapore.
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 119077, Singapore.
| |
Collapse
|
117
|
Rabinovich S, Silberman A, Adler L, Agron S, Levin-Zaidman S, Bahat A, Porat Z, Ben-Zeev E, Geva I, Itkin M, Malitsky S, Buchaklian A, Helbling D, Dimmock D, Erez A. The mitochondrial carrier Citrin plays a role in regulating cellular energy during carcinogenesis. Oncogene 2019; 39:164-175. [PMID: 31462712 DOI: 10.1038/s41388-019-0976-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 05/16/2019] [Accepted: 05/21/2019] [Indexed: 11/09/2022]
Abstract
Citrin, encoded by SLC25A13 gene, is an inner mitochondrial transporter that is part of the malate-aspartate shuttle, which regulates the NAD+/NADH ratio between the cytosol and mitochondria. Citrullinemia type II (CTLN-II) is an inherited disorder caused by germline mutations in SLC25A13, manifesting clinically in growth failure that can be alleviated by dietary restriction of carbohydrates. The association of citrin with glycolysis and NAD+/NADH ratio led us to hypothesize that it may play a role in carcinogenesis. Indeed, we find that citrin is upregulated in multiple cancer types and is essential for supplementing NAD+ for glycolysis and NADH for oxidative phosphorylation. Consequently, citrin deficiency associates with autophagy, whereas its overexpression in cancer cells increases energy production and cancer invasion. Furthermore, based on the human deleterious mutations in citrin, we found a potential inhibitor of citrin that restricts cancerous phenotypes in cells. Collectively, our findings suggest that targeting citrin may be of benefit for cancer therapy.
Collapse
Affiliation(s)
- Shiran Rabinovich
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Alon Silberman
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Lital Adler
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Shani Agron
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Smadar Levin-Zaidman
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Amir Bahat
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Ziv Porat
- Department of Cell Sorting, Weizmann Institute of Science, Rehovot, Israel
| | - Efrat Ben-Zeev
- Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Inbal Geva
- Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Maxim Itkin
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Sergey Malitsky
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Adam Buchaklian
- Human and Molecular Genetic and Biochemistry Center, Medical College Wisconsin, Milwaukee, WI, USA
| | - Daniel Helbling
- Human and Molecular Genetic and Biochemistry Center, Medical College Wisconsin, Milwaukee, WI, USA
| | - David Dimmock
- Human and Molecular Genetic and Biochemistry Center, Medical College Wisconsin, Milwaukee, WI, USA.,Rady Children's Institute for Genomic Medicine, San Diego, CA, USA
| | - Ayelet Erez
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
118
|
Montal ED, Bhalla K, Dewi RE, Ruiz CF, Haley JA, Ropell AE, Gordon C, Haley JD, Girnun GD. Inhibition of phosphoenolpyruvate carboxykinase blocks lactate utilization and impairs tumor growth in colorectal cancer. Cancer Metab 2019; 7:8. [PMID: 31388420 PMCID: PMC6670241 DOI: 10.1186/s40170-019-0199-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/13/2019] [Indexed: 11/10/2022] Open
Abstract
Background Metabolic reprogramming is a key feature of malignant cells. While glucose is one of the primary substrates for malignant cells, cancer cells also display a remarkable metabolic flexibility. Depending on nutrient availability and requirements, cancer cells will utilize alternative fuel sources to maintain the TCA cycle for bioenergetic and biosynthetic requirements. Lactate was typically viewed as a passive byproduct of cancer cells. However, studies now show that lactate is an important substrate for the TCA cycle in breast, lung, and pancreatic cancer. Methods Metabolic analysis of colorectal cancer (CRC) cells was performed using a combination of bioenergetic analysis and 13C stable isotope tracing. Results We show here that CRC cells use lactate to fuel the TCA cycle and promote growth especially under nutrient-deprived conditions. This was mediated in part by maintaining cellular bioenergetics. Therefore targeting the ability of cancer cells to utilize lactate via the TCA cycle would have a significant therapeutic benefit. Phosphoenolpyruvate carboxykinase (PEPCK) is an important cataplerotic enzyme that promotes TCA cycle activity in CRC cells. Treatment of CRC cells with low micromolar doses of a PEPCK inhibitor (PEPCKi) developed for diabetes decreased cell proliferation and utilization of lactate by the TCA cycle in vitro and in vivo. Mechanistically, we observed that the PEPCKi increased nutrient stress as determined by decreased cellular bioenergetics including decreased respiration, ATP levels, and increased AMPK activation. 13C stable isotope tracing showed that the PEPCKi decreased the incorporation of lactate into the TCA cycle. Conclusions These studies highlight lactate as an important substrate for CRC and the use of PEPCKi as a therapeutic approach to target lactate utilization in CRC cells.
Collapse
Affiliation(s)
- Emily D Montal
- 1Department of Pharmacological Sciences, Stony Brook University, 100 Nicolls Rd, Stony Brook, NY 11794 USA.,2Department of Pathology, Stony Brook University School of Medicine, 100 Nicolls Rd, Stony Brook, NY 11794 USA
| | - Kavita Bhalla
- 3Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, 22 S Greene St, Baltimore, MD 21201 USA
| | - Ruby E Dewi
- 4Stanford University, 450 Serra Mall, Stanford, CA 94305 USA
| | - Christian F Ruiz
- 2Department of Pathology, Stony Brook University School of Medicine, 100 Nicolls Rd, Stony Brook, NY 11794 USA
| | - John A Haley
- 2Department of Pathology, Stony Brook University School of Medicine, 100 Nicolls Rd, Stony Brook, NY 11794 USA
| | - Ashley E Ropell
- 2Department of Pathology, Stony Brook University School of Medicine, 100 Nicolls Rd, Stony Brook, NY 11794 USA
| | - Chris Gordon
- 2Department of Pathology, Stony Brook University School of Medicine, 100 Nicolls Rd, Stony Brook, NY 11794 USA
| | - John D Haley
- 2Department of Pathology, Stony Brook University School of Medicine, 100 Nicolls Rd, Stony Brook, NY 11794 USA
| | - Geoffrey D Girnun
- 1Department of Pharmacological Sciences, Stony Brook University, 100 Nicolls Rd, Stony Brook, NY 11794 USA.,2Department of Pathology, Stony Brook University School of Medicine, 100 Nicolls Rd, Stony Brook, NY 11794 USA.,5Department of Pathology, Stony Brook University, 101 Nicolls Rd, BST Level 9, Room 191, Stony Brook, NY 11794 USA
| |
Collapse
|
119
|
Javaeed A, Ghauri SK. MCT4 has a potential to be used as a prognostic biomarker - a systematic review and meta-analysis. Oncol Rev 2019; 13:403. [PMID: 31410246 PMCID: PMC6661531 DOI: 10.4081/oncol.2019.403] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 06/27/2019] [Indexed: 12/12/2022] Open
Abstract
The role of several metabolic changes, such as hypoxia and acidosis, in the tumour environment has caught the attention of researchers in cancer progression and invasion. Lactate transport is one of the acidosis-enhancing processes that are mediated via monocarboxylate transporters (MCTs). We conducted a systematic review and meta-analysis to investigate the expression of two cancer-relevant MCTs (MCT1 and MCT4) and their potential prognostic significance in patients with metastasis of different types of cancer. Studies were included if they reported the number of metastatic tissue samples expressing either low or high levels of MCT1 and/or MCT4 or those revealing the hazard ratios (HRs) of the overall survival (OS) or disease-free survival (DFS) as prognostic indicators. During the period between 2010 and 2018, a total of 20 articles including 3831 patients (56.3% males) were identified. There was a significant association between MCT4 expression (high versus low) and lymph node metastasis [odds ratio (OR)=1.87, 95% confidence interval (CI)=1.10-3.17, P=0.02] and distant metastasis (OR=2.18, 95%CI=1.65-2.86, P<0.001) and the correlation remained significant for colorectal and hepatic cancer in subgroup analysis. For survival analysis, patients with shorter OS periods exhibited a higher MCT4 expression [hazard ratio (HR)=1.78, 95%CI=1.49-2.13, P<0.001], while DFS was shorter in patients with high MCT1 (HR=1.48, 95%CI=1.04-2.10, P=0.03) and MCT4 expression (HR=1.70, 95%CI=1.19-2.42, P=0.003) when compared to their counterparts with low expression levels. Future research studies should consider the pharmacologic inhibition of MCT4 to effectively inhibit cancer progression to metastasis.
Collapse
Affiliation(s)
| | - Sanniya Khan Ghauri
- Department of Emergency Medicine, Shifa International Hospital, Islamabad, Pakistan
| |
Collapse
|
120
|
Park S, Safi R, Liu X, Baldi R, Liu W, Liu J, Locasale JW, Chang CY, McDonnell DP. Inhibition of ERRα Prevents Mitochondrial Pyruvate Uptake Exposing NADPH-Generating Pathways as Targetable Vulnerabilities in Breast Cancer. Cell Rep 2019; 27:3587-3601.e4. [PMID: 31216477 PMCID: PMC6604861 DOI: 10.1016/j.celrep.2019.05.066] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 04/03/2019] [Accepted: 05/17/2019] [Indexed: 12/13/2022] Open
Abstract
Most cancer cells exhibit metabolic flexibility, enabling them to withstand fluctuations in intratumoral concentrations of glucose (and other nutrients) and changes in oxygen availability. While these adaptive responses make it difficult to achieve clinically useful anti-tumor responses when targeting a single metabolic pathway, they can also serve as targetable metabolic vulnerabilities that can be therapeutically exploited. Previously, we demonstrated that inhibition of estrogen-related receptor alpha (ERRα) significantly disrupts mitochondrial metabolism and that this results in substantial antitumor activity in animal models of breast cancer. Here we show that ERRα inhibition interferes with pyruvate entry into mitochondria by inhibiting the expression of mitochondrial pyruvate carrier 1 (MPC1). This results in a dramatic increase in the reliance of cells on glutamine oxidation and the pentose phosphate pathway to maintain nicotinamide adenine dinucleotide phosphate (NADPH) homeostasis. In this manner, ERRα inhibition increases the efficacy of glutaminase and glucose-6-phosphate dehydrogenase inhibitors, a finding that has clinical significance.
Collapse
Affiliation(s)
- Sunghee Park
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Rachid Safi
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Xiaojing Liu
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Robert Baldi
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Wen Liu
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Juan Liu
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jason W Locasale
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ching-Yi Chang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Donald P McDonnell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
121
|
Vander Linden C, Corbet C. Reconciling environment-mediated metabolic heterogeneity with the oncogene-driven cancer paradigm in precision oncology. Semin Cell Dev Biol 2019; 98:202-210. [PMID: 31103464 DOI: 10.1016/j.semcdb.2019.05.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/15/2019] [Accepted: 05/15/2019] [Indexed: 12/19/2022]
Abstract
Precision oncology is the practice of matching one therapy to one specific patient, based on particular genetic tumor alterations, in order to achieve the best clinical response. Despite an expanding arsenal of targeted therapies, many patients still have a poor outcome because tumor cells show a remarkable capacity to develop drug resistance, thereby leading to tumor relapse. Besides genotype-driven resistance mechanisms, tumor microenvironment (TME) peculiarities strongly contribute to generate an intratumoral phenotypic heterogeneity that affects disease progression and treatment outcome. In this Review, we describe how TME-mediated metabolic heterogeneities actively participate to therapeutic failure. We report how a lactate-based metabolic symbiosis acts as a mechanism of adaptive resistance to targeted therapies and we describe the role of mitochondrial metabolism, in particular oxidative phosphorylation (OXPHOS), to support the growth and survival of therapy-resistant tumor cells in a variety of cancers. Finally, we detail potential metabolism-interfering therapeutic strategies aiming to eradicate OXPHOS-dependent relapse-sustaining malignant cells and we discuss relevant (pre)clinical models that may help integrate TME-driven metabolic heterogeneity in precision oncology.
Collapse
Affiliation(s)
- Catherine Vander Linden
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, 57 Avenue Hippocrate, B1.57.04, B-1200 Brussels, Belgium
| | - Cyril Corbet
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, 57 Avenue Hippocrate, B1.57.04, B-1200 Brussels, Belgium.
| |
Collapse
|
122
|
Tavoulari S, Thangaratnarajah C, Mavridou V, Harbour ME, Martinou JC, Kunji ER. The yeast mitochondrial pyruvate carrier is a hetero-dimer in its functional state. EMBO J 2019; 38:e100785. [PMID: 30979775 PMCID: PMC6517818 DOI: 10.15252/embj.2018100785] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 03/13/2019] [Accepted: 03/20/2019] [Indexed: 02/02/2023] Open
Abstract
The mitochondrial pyruvate carrier (MPC) is critical for cellular homeostasis, as it is required in central metabolism for transporting pyruvate from the cytosol into the mitochondrial matrix. MPC has been implicated in many diseases and is being investigated as a drug target. A few years ago, small membrane proteins, called MPC1 and MPC2 in mammals and Mpc1, Mpc2 and Mpc3 in yeast, were proposed to form large protein complexes responsible for this function. However, the MPC complexes have never been isolated and their composition, oligomeric state and functional properties have not been defined. Here, we identify the functional unit of MPC from Saccharomyces cerevisiae In contrast to earlier hypotheses, we demonstrate that MPC is a hetero-dimer, not a multimeric complex. When not engaged in hetero-dimers, the yeast Mpc proteins can also form homo-dimers that are, however, inactive. We show that the earlier described substrate transport properties and inhibitor profiles are embodied by the hetero-dimer. This work provides a foundation for elucidating the structure of the functional complex and the mechanism of substrate transport and inhibition.
Collapse
Affiliation(s)
- Sotiria Tavoulari
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | | | - Vasiliki Mavridou
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Michael E Harbour
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | | | - Edmund Rs Kunji
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
123
|
Pennington Z, Goodwin ML, Westbroek EM, Cottrill E, Ahmed AK, Sciubba DM. Lactate and cancer: spinal metastases and potential therapeutic targets (part 2). ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:221. [PMID: 31297386 DOI: 10.21037/atm.2019.01.85] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Metastatic spine disease is a heterogeneous clinical condition commonly requiring surgical intervention. Despite this heterogeneity, all cases share the common theme of altered tumor metabolism, characterized by aerobic glycolysis and high lactate production. Here we review the existing literature on lactate metabolism as it pertains to tumor progression, metastasis, and the formation of painful bone lesions. We included articles from the English literature addressing the role of lactate metabolism in the following: (I) primary tumor aggressiveness, (II) local tissue invasion, (III) metastasis formation, and (IV) generation of oncologic pain. We also report current investigations into restoring normal lactate metabolism as a means of impeding tumor growth and the formation of bony metastases. Both in vivo and in vitro experiments suggest that high lactate levels may be necessary for tumor cell growth, as small molecules inhibitors of lactate dehydrogenase (LDH5/LDHA) decrease both the rate of tumor growth and formation of metastases. Additionally, in vitro evidence strongly implicates lactate in tumor cell migration by driving the amoeboid movements of these cells. Acidification of the local bony tissue by excess lactate production activates CGRP+ neurons in the bone marrow and periosteum to generate oncologic bone pain. High lactate may also increase expression of acid sensing receptors in these neurons to generate the neuropathic pain seen in some patients with metastatic disease. Lastly, investigation into lactate-directed therapeutics is still early in development. Initial preclinical trials looking at LDH5/LDHA inhibitors as well as inhibitors of lactate transporters (MCT1) have demonstrated promise, but clinical work has been restricted to a single phase I trial. Lactate appears to play a crucial role in the pathogenesis of metastatic spine disease. Efforts are ongoing to identify small molecules inhibitors of targets in the lactogenic pathway capable of preventing the formation of osseous metastatic disease.
Collapse
Affiliation(s)
- Zach Pennington
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Matthew L Goodwin
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Erick M Westbroek
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ethan Cottrill
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - A Karim Ahmed
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel M Sciubba
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
124
|
Targeting cancer metabolism through synthetic lethality-based combinatorial treatment strategies. Curr Opin Oncol 2019; 30:338-344. [PMID: 29994904 DOI: 10.1097/cco.0000000000000467] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW Targeting cancer metabolism for therapy has received much attention over the last decade with various small molecule inhibitors entering clinical trials. The present review highlights the latest strategies to target glucose and glutamine metabolism for cancer therapy with a particular emphasis on novel combinatorial treatment approaches. RECENT FINDINGS Inhibitors of glucose, lactate, and glutamine transport and the ensuing metabolism are in preclinical to clinical trial stages of investigation. Recent advances in our understanding of cell-intrinsic and cell-extrinsic factors that dictate dependence on these targets have informed the development of rational, synthetic lethality-based strategies to exploit these metabolic vulnerabilities. SUMMARY Cancer cells exhibit a number of metabolic alterations with functional consequences beyond that of sustaining cellular energetics and biosynthesis. Elucidating context-specific metabolic dependencies and their connections to oncogenic signaling and epigenetic programs in tumor cells represents a promising approach to identify new metabolic drug targets for cancer therapy.
Collapse
|
125
|
Garnier D, Renoult O, Alves-Guerra MC, Paris F, Pecqueur C. Glioblastoma Stem- Like Cells, Metabolic Strategy to Kill a Challenging Target. Front Oncol 2019; 9:118. [PMID: 30895167 PMCID: PMC6415584 DOI: 10.3389/fonc.2019.00118] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/11/2019] [Indexed: 01/25/2023] Open
Abstract
Over the years, substantial evidence has definitively confirmed the existence of cancer stem-like cells within tumors such as Glioblastoma (GBM). The importance of Glioblastoma stem-like cells (GSCs) in tumor progression and relapse clearly highlights that cancer eradication requires killing of GSCs that are intrinsically resistant to conventional therapies as well as eradication of the non-GSCs cells since GSCs emergence relies on a dynamic process. The past decade of research highlights that metabolism is a significant player in tumor progression and actually might orchestrate it. The growing interest in cancer metabolism reprogrammation can lead to innovative approaches exploiting metabolic vulnerabilities of cancer cells. These approaches are challenging since they require overcoming the compensatory and adaptive responses of GSCs. In this review, we will summarize the current knowledge on GSCs with a particular focus on their metabolic complexity. We will also discuss potential approaches targeting GSCs metabolism to potentially improve clinical care.
Collapse
Affiliation(s)
| | | | | | - François Paris
- CRCINA, INSERM CNRS, Université de Nantes, Nantes, France.,Institut de Cancérologie de l'Ouest - René Gauducheau, St Herblain, France
| | - Claire Pecqueur
- CRCINA, INSERM CNRS, Université de Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| |
Collapse
|
126
|
Scheid AD, Beadnell TC, Welch DR. The second genome: Effects of the mitochondrial genome on cancer progression. Adv Cancer Res 2019; 142:63-105. [PMID: 30885364 DOI: 10.1016/bs.acr.2019.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The role of genetics in cancer has been recognized for centuries, but most studies elucidating genetic contributions to cancer have understandably focused on the nuclear genome. Mitochondrial contributions to cancer pathogenesis have been documented for decades, but how mitochondrial DNA (mtDNA) influences cancer progression and metastasis remains poorly understood. This lack of understanding stems from difficulty isolating the nuclear and mitochondrial genomes as experimental variables, which is critical for investigating direct mtDNA contributions to disease given extensive crosstalk exists between both genomes. Several in vitro and in vivo models have isolated mtDNA as an independent variable from the nuclear genome. This review compares and contrasts different models, their advantages and disadvantages for studying mtDNA contributions to cancer, focusing on the mitochondrial-nuclear exchange (MNX) mouse model and findings regarding tumor progression, metastasis, and other complex cancer-related phenotypes.
Collapse
Affiliation(s)
- Adam D Scheid
- Department of Cancer Biology, The University of Kansas Medical Center, and The University of Kansas Cancer Center, Kansas City, KS, United States
| | - Thomas C Beadnell
- Department of Cancer Biology, The University of Kansas Medical Center, and The University of Kansas Cancer Center, Kansas City, KS, United States
| | - Danny R Welch
- Department of Cancer Biology, The University of Kansas Medical Center, and The University of Kansas Cancer Center, Kansas City, KS, United States.
| |
Collapse
|
127
|
Zou H, Chen Q, Zhang A, Wang S, Wu H, Yuan Y, Wang S, Yu J, Luo M, Wen X, Cui W, Fu W, Yu R, Chen L, Zhang M, Lan H, Zhang X, Xie Q, Jin G, Xu C. MPC1 deficiency accelerates lung adenocarcinoma progression through the STAT3 pathway. Cell Death Dis 2019; 10:148. [PMID: 30770798 PMCID: PMC6377639 DOI: 10.1038/s41419-019-1324-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 11/30/2018] [Accepted: 01/07/2019] [Indexed: 12/14/2022]
Abstract
Mitochondrial pyruvate carrier 1 (MPC1), a key factor that controls pyruvate transportation in the mitochondria, is known to be frequently dysregulated in tumor initiation and progression. However, the clinical relevance and potential molecular mechanisms of MPC1 in lung adenocarcinoma (LAC) progression remain to be illustrated. Herein, MPC1 was lowly expressed in LAC tissues and significantly associated with favorable survival of patients with LAC. Functionally, MPC1 markedly suppressed stemness, invasion, and migration in vitro and spreading growth of LAC cells in vivo. Further study revealed that MPC1 could interact with mitochondrial signal transducer and activator of transcription 3 (mito-STAT3), disrupting the distribution of STAT3 and reducing cytoplasmic signal transducer and activator of transcription 3 (cyto-STAT3) as well as its phosphorylation, while the activation of cyto-STAT3 by IL-6 reversed the attenuated malignant progression in MPC1-overexpression LAC cells. Collectively, we reveal that MPC1/STAT3 axis plays an important role in the progression of LAC, and our work may promote the development of new therapeutic strategies for LAC.
Collapse
Affiliation(s)
- Hongbo Zou
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China.,Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Department of Oncology, Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qian Chen
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Anmei Zhang
- Department of Oncology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Songtao Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China.,Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Department of Oncology, Chengdu Military General Hospital, Chengdu, China
| | - Hong Wu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China.,Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Ye Yuan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Shuang Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China.,Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jing Yu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China.,Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Mao Luo
- Department of Dermatology, Chongqing Yubei District People's Hospital, Chongqing, China
| | - Xianmei Wen
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Wei Cui
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Wenjuan Fu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Ruilian Yu
- Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Lin Chen
- Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Ming Zhang
- Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Haitao Lan
- Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xia Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Qichao Xie
- Department of Oncology, Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guoxiang Jin
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China.
| | - Chuan Xu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China. .,Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
128
|
Abstract
Cancer cells consume and utilize glucose at a higher rate than normal cells. However, some microenvironments limit the availability of nutrients and glucose. In 2018, researchers found that tumours depend on a variety of different nutrient sources, both locally and systemically, to overcome metabolic limitations and promote tumour progression and metastasis.
Collapse
Affiliation(s)
- Alexander R Terry
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Nissim Hay
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
- Research & Development Section, Jesse Brown VA Medical Center, Chicago, IL, USA.
| |
Collapse
|
129
|
Jiang E, Xu Z, Wang M, Yan T, Huang C, Zhou X, Liu Q, Wang L, Chen Y, Wang H, Liu K, Shao Z, Shang Z. Tumoral microvesicle-activated glycometabolic reprogramming in fibroblasts promotes the progression of oral squamous cell carcinoma. FASEB J 2019; 33:5690-5703. [PMID: 30698991 DOI: 10.1096/fj.201802226r] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Metabolic reprogramming is a hallmark of cancer. Stromal cells could function as providers of energy metabolites for tumor cells by undergoing the "reverse Warburg effect," but the mechanism has not been fully elucidated. The interaction between the tumoral microvesicles (TMVs) and stroma in the tumor microenvironment plays a critical role in facilitating cancer progression. In this study, we demonstrated a novel mechanism for the TMV-mediated glycometabolic reprogramming of stromal cells. After being incubated with TMVs, normal human gingival fibroblasts exhibited a phenotype switch to cancer-associated fibroblasts and underwent a degradation of caveolin 1 (CAV1) through the ERK1/2-activation pathway. CAV1 degradation further induced the metabolic switch to aerobic glycolysis in the fibroblasts. The microvesicle-activated fibroblasts absorbed more glucose and produced more lactate. The migration and invasion of oral squamous cell carcinoma (OSCC) were promoted after being cocultured with the activated fibroblasts. Fibroblast-cancer cell glycometabolic coupling ring mediated by monocarboxylate transporter (MCT) 4 and MCT1 was then proved in the tumor microenvironment. Results indicated a mechanism for tumor progression by the crosstalk between tumor cells and stromal cells through the reverse Warburg effect via TMVs, thereby identifying potential targets for OSCC prevention and treatment.-Jiang, E., Xu, Z., Wang, M., Yan, T., Huang, C., Zhou, X., Liu, Q., Wang, L., Chen, Y., Wang, H., Liu, K., Shao, Z., Shang, Z. Tumoral microvesicle-activated glycometabolic reprogramming in fibroblasts promotes the progression of oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Erhui Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Ministry of Education (KLOBME), Wuhan, China.,Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), Wuhan, China
| | - Zhi Xu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng Wang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, China
| | - Tinglin Yan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Ministry of Education (KLOBME), Wuhan, China.,Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), Wuhan, China
| | - Chunming Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Ministry of Education (KLOBME), Wuhan, China.,Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), Wuhan, China
| | - Xiaocheng Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Ministry of Education (KLOBME), Wuhan, China.,Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), Wuhan, China
| | - Qing Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Ministry of Education (KLOBME), Wuhan, China.,Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), Wuhan, China
| | - Lin Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Ministry of Education (KLOBME), Wuhan, China.,Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), Wuhan, China
| | - Yang Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Ministry of Education (KLOBME), Wuhan, China.,Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), Wuhan, China
| | - Hui Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Ministry of Education (KLOBME), Wuhan, China.,Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), Wuhan, China
| | - Ke Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Ministry of Education (KLOBME), Wuhan, China.,Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), Wuhan, China.,Department of Oral and Maxillofacial-Head and Neck Oncology, School of Stomatology-Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhe Shao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Ministry of Education (KLOBME), Wuhan, China.,Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), Wuhan, China.,Department of Oral and Maxillofacial-Head and Neck Oncology, School of Stomatology-Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhengjun Shang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Ministry of Education (KLOBME), Wuhan, China.,Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), Wuhan, China.,Department of Oral and Maxillofacial-Head and Neck Oncology, School of Stomatology-Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
130
|
Ganapathy-Kanniappan S. Molecular intricacies of aerobic glycolysis in cancer: current insights into the classic metabolic phenotype. Crit Rev Biochem Mol Biol 2019; 53:667-682. [PMID: 30668176 DOI: 10.1080/10409238.2018.1556578] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aerobic glycolysis is the process of oxidation of glucose into pyruvate followed by lactate production under normoxic condition. Distinctive from its anaerobic counterpart (i.e. glycolysis that occurs under hypoxia), aerobic glycolysis is frequently witnessed in cancers, popularly known as the "Warburg effect", and it is one of the earliest known evidences of metabolic alteration in neoplasms. Intracellularly, aerobic glycolysis circumvents mitochondrial oxidative phosphorylation (OxPhos), facilitating an increased rate of glucose hydrolysis. This in turn enables cancer cells to successfully compete with normal cells for glucose uptake in order to maintain uninterrupted growth. In addition, evading OxPhos mitigates excessive generation/accumulation of reactive oxygen species that otherwise may be deleterious to cells. Emerging data indicate that aerobic glycolysis in cancer also promotes glutaminolysis to satisfy the precursor requirements of certain biosynthetic processes (e.g. nucleic acids). Next, the metabolic intermediates of aerobic glycolysis also feed the pentose phosphate pathway (PPP) to facilitate macromolecular biosynthesis necessary for cancer cell growth and proliferation. Extracellularly, the extrusion of the end-product of aerobic glycolysis, i.e. lactate, alters the tumor microenvironment, and impacts cancer-associated cells. Collectively, accumulating data unequivocally demonstrate that aerobic glycolysis implicates myriad of molecular and functional processes to support cancer progression. This review, in the light of recent research, dissects the molecular intricacies of its regulation, and also deliberates the emerging paradigms to target aerobic glycolysis in cancer therapy.
Collapse
Affiliation(s)
- Shanmugasundaram Ganapathy-Kanniappan
- a The Division of Interventional Radiology, Russell H. Morgan Department of Radiology & Radiological Science , The Johns Hopkins University School of Medicine , Baltimore , MD , USA
| |
Collapse
|
131
|
Bader DA, Hartig SM, Putluri V, Foley C, Hamilton MP, Smith EA, Saha PK, Panigrahi A, Walker C, Zong L, Martini-Stoica H, Chen R, Rajapakshe K, Coarfa C, Sreekumar A, Mitsiades N, Bankson JA, Ittmann MM, O’Malley BW, Putluri N, McGuire SE. Mitochondrial pyruvate import is a metabolic vulnerability in androgen receptor-driven prostate cancer. Nat Metab 2019; 1:70-85. [PMID: 31198906 PMCID: PMC6563330 DOI: 10.1038/s42255-018-0002-y] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Specific metabolic underpinnings of androgen receptor (AR)-driven growth in prostate adenocarcinoma (PCa) are largely undefined, hindering the development of strategies to leverage the metabolic dependencies of this disease when hormonal manipulations fail. Here we show that the mitochondrial pyruvate carrier (MPC), a critical metabolic conduit linking cytosolic and mitochondrial metabolism, is transcriptionally regulated by AR. Experimental MPC inhibition restricts proliferation and metabolic outputs of the citric acid cycle (TCA) including lipogenesis and oxidative phosphorylation in AR-driven PCa models. Mechanistically, metabolic disruption resulting from MPC inhibition activates the eIF2α/ATF4 integrated stress response (ISR). ISR signaling prevents cell cycle progression while coordinating salvage efforts, chiefly enhanced glutamine assimilation into the TCA, to regain metabolic homeostasis. We confirm that MPC function is operant in PCa tumors in-vivo using isotopomeric metabolic flux analysis. In turn, we apply a clinically viable small molecule targeting the MPC, MSDC0160, to pre-clinical PCa models and find that MPC inhibition suppresses tumor growth in hormone-responsive and castrate-resistant conditions. Collectively, our findings characterize the MPC as a tractable therapeutic target in AR-driven prostate tumors.
Collapse
Affiliation(s)
- David A. Bader
- Department of Molecular and Cellular Biology, Baylor
College of Medicine, Houston, TX 77030, USA
- Correspondence should be addressed to S.E.M.
() or D.A.B.
()
| | - Sean M. Hartig
- Department of Molecular and Cellular Biology, Baylor
College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Section of Endocrinology, Diabetes,
and Metabolism, Baylor College of Medicine, Houston, TX 77030, USA
| | - Vasanta Putluri
- Department of Molecular and Cellular Biology, Baylor
College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine,
Houston, TX 77030, USA
| | - Christopher Foley
- Department of Molecular and Cellular Biology, Baylor
College of Medicine, Houston, TX 77030, USA
| | - Mark P. Hamilton
- Department of Molecular and Cellular Biology, Baylor
College of Medicine, Houston, TX 77030, USA
| | - Eric A. Smith
- Department of Molecular and Cellular Biology, Baylor
College of Medicine, Houston, TX 77030, USA
| | - Pradip K. Saha
- Department of Molecular and Cellular Biology, Baylor
College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Section of Endocrinology, Diabetes,
and Metabolism, Baylor College of Medicine, Houston, TX 77030, USA
| | - Anil Panigrahi
- Department of Molecular and Cellular Biology, Baylor
College of Medicine, Houston, TX 77030, USA
| | - Christopher Walker
- Department of Imaging Physics, Division of Diagnostic
Imaging, The University of Texas M.D. Anderson Cancer Center, Houston TX 77030,
USA
| | - Lin Zong
- Department of Molecular and Cellular Biology, Baylor
College of Medicine, Houston, TX 77030, USA
| | - Heidi Martini-Stoica
- Interdepartmental Program in Translational Biology and
Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College
of Medicine, Houston, TX 77030, USA
| | - Kimal Rajapakshe
- Department of Molecular and Cellular Biology, Baylor
College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine,
Houston, TX 77030, USA
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor
College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine,
Houston, TX 77030, USA
| | - Arun Sreekumar
- Department of Molecular and Cellular Biology, Baylor
College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine,
Houston, TX 77030, USA
| | - Nicholas Mitsiades
- Department of Molecular and Cellular Biology, Baylor
College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Section of Hematology &
Oncology, Baylor College of Medicine, Houston, TX 77030, USA
| | - James A. Bankson
- Department of Imaging Physics, Division of Diagnostic
Imaging, The University of Texas M.D. Anderson Cancer Center, Houston TX 77030,
USA
| | - Michael M. Ittmann
- Department of Molecular and Cellular Biology, Baylor
College of Medicine, Houston, TX 77030, USA
- Department of Pathology, Baylor College of Medicine,
Houston, TX 77030, USA
| | - Bert W. O’Malley
- Department of Molecular and Cellular Biology, Baylor
College of Medicine, Houston, TX 77030, USA
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor
College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine,
Houston, TX 77030, USA
| | - Sean E. McGuire
- Department of Molecular and Cellular Biology, Baylor
College of Medicine, Houston, TX 77030, USA
- Department of Radiation Oncology, Division of Radiation
Oncology, The University of Texas M.D. Anderson Cancer Center, Houston TX 77030,
USA
- Correspondence should be addressed to S.E.M.
() or D.A.B.
()
| |
Collapse
|
132
|
Ippolito L, Morandi A, Giannoni E, Chiarugi P. Lactate: A Metabolic Driver in the Tumour Landscape. Trends Biochem Sci 2018; 44:153-166. [PMID: 30473428 DOI: 10.1016/j.tibs.2018.10.011] [Citation(s) in RCA: 332] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/14/2018] [Accepted: 10/25/2018] [Indexed: 01/07/2023]
Abstract
The presence of lactate in human tumours has been long neglected, confined to the role of a waste product derived from glycolysis and as a biomarker of malignancy. More recently, lactate has been rediscovered as signalling molecule that plays important roles in the regulation of the metabolic pathways, the immune response, and cell-to-cell communication within the tumour microenvironment. This review examines recent discoveries about the functional role of lactate in shaping the behaviour and the phenotype of tumour and tumour-associated cells, and describes potential clinical approaches to target lactate transport and metabolism in tumours.
Collapse
Affiliation(s)
- Luigi Ippolito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Andrea Morandi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Elisa Giannoni
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Paola Chiarugi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy.
| |
Collapse
|
133
|
Doix B, Bastien E, Rambaud A, Pinto A, Louis C, Grégoire V, Riant O, Feron O. Preclinical Evaluation of White Led-Activated Non-porphyrinic Photosensitizer OR141 in 3D Tumor Spheroids and Mouse Skin Lesions. Front Oncol 2018; 8:393. [PMID: 30298119 PMCID: PMC6160539 DOI: 10.3389/fonc.2018.00393] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/31/2018] [Indexed: 01/10/2023] Open
Abstract
Photodynamic therapy (PDT) is used to treat malignancies and precancerous lesions. Near-infrared light delivered by lasers was thought for a while to be the most appropriate option to activate photosensitizers, mostly porphyrins, in the depth of the diseased tissues. More recently, however, several advantages including low cost and reduced adverse effects led to consider light emitting diodes (LED) and even daylight as an alternative to use PDT to treat accessible lesions. In this study we examined the capacity of OR141, a recently identified non-porphyrin photosensitizer (PS), to exert significant cytotoxic effects in various models of skin lesions and tumors upon white light activation. Using different cancer cell lines, we first identified LED lamp as a particularly suited source of light to maximize anti-proliferative effects of OR141. We then documented that OR141 diffusion and light penetration into tumor spheroids both reached thresholds compatible with the induction of cell death deep inside these 3D culture models. We further identified Arlasove as a clinically suitable solvent for OR141 that we documented by using Franz cells to support significant absorption of the PS through human skin. Finally, using topical but also systemic administration, we validated growth inhibitory effects of LED-activated OR141 in mouse skin tumor xenograft and precancerous lesions models. Altogether these results open clinical perspectives for the use of OR141 as an attractive PS to treat superficial skin malignant and non-malignant lesions using affordable LED lamp for photoactivation.
Collapse
Affiliation(s)
- Bastien Doix
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Estelle Bastien
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Alix Rambaud
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Adán Pinto
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Caroline Louis
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Vincent Grégoire
- Pole of Molecular Imaging, Radiotherapy and Oncology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Olivier Riant
- Institute of Condensed Matter and Nanosciences Molecules, Solids and Reactivity (IMCN/MOST), Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Olivier Feron
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
134
|
Lacroix R, Rozeman EA, Kreutz M, Renner K, Blank CU. Targeting tumor-associated acidity in cancer immunotherapy. Cancer Immunol Immunother 2018; 67:1331-1348. [PMID: 29974196 PMCID: PMC11028141 DOI: 10.1007/s00262-018-2195-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 06/29/2018] [Indexed: 12/21/2022]
Abstract
Checkpoint inhibitors, such as cytotoxic T-lymphocyte-associated protein-4 (CTLA-4) and programmed cell death-1 (PD-1) monoclonal antibodies have changed profoundly the treatment of melanoma, renal cell carcinoma, non-small cell lung cancer, Hodgkin lymphoma, and bladder cancer. Currently, they are tested in various tumor entities as monotherapy or in combination with chemotherapies or targeted therapies. However, only a subgroup of patients benefit from checkpoint blockade (combinations). This raises the question, which all mechanisms inhibit T cell function in the tumor environment, restricting the efficacy of these immunotherapeutic approaches. Serum activity of lactate dehydrogenase, likely reflecting the glycolytic activity of the tumor cells and thus acidity within the tumor microenvironment, turned out to be one of the strongest markers predicting response to checkpoint inhibition. In this review, we discuss the impact of tumor-associated acidity on the efficacy of T cell-mediated cancer immunotherapy and possible approaches to break this barrier.
Collapse
Affiliation(s)
- Ruben Lacroix
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | - Elisa A Rozeman
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marina Kreutz
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Kathrin Renner
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Christian U Blank
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands.
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
135
|
Ganapathy-Kanniappan S. Turning cancer's metabolic plasticity into fragility- an evolving paradigm. Cancer Biol Ther 2018; 19:763-765. [PMID: 29723104 DOI: 10.1080/15384047.2018.1471441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
In an elegant report, Corbet et al 1 recently demonstrated the much needed insight to exploit cancer's metabolic reprogramming for potential therapeutic intervention. In brief, the findings underscore the principle that abrogation of mitochondrial pyruvate metabolism upregulates glycolysis, and sensitizes cancer cells to radiation. Distinctive from the conventional approach of inhibition/ down-regulation of glycolysis, this emerging paradigm of forced-upregulation of glycolysis (i.e., a "hyperglycolytic" phenotype) concomitant with a reduced mitochondrial capacity turns the metabolic plasticity into vulnerability that may have implications in therapeutic targeting. Nevertheless, this commendable report 1 also provokes scientific curiosity and future directions of research on the opportunities and challenges of such forced upregulation of glycolysis in cancer.
Collapse
Affiliation(s)
- Shanmugasundaram Ganapathy-Kanniappan
- a The Division of Interventional Radiology, Russell H. Morgan Department of Radiology & Radiological Science , The Johns Hopkins University School of Medicine , Baltimore , MD , USA
| |
Collapse
|
136
|
Linden CV, Corbet C. Killing two birds with one stone: Blocking the mitochondrial pyruvate carrier to inhibit lactate uptake by cancer cells and radiosensitize tumors. Mol Cell Oncol 2018; 5:e1465016. [PMID: 30250917 PMCID: PMC6149896 DOI: 10.1080/23723556.2018.1465016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 06/08/2023]
Abstract
Lactate-based metabolic symbiosis between glycolytic and oxidative cancer cells is known to facilitate tumor growth. We have recently demonstrated that 7ACC2 blocks extracellular lactate uptake via the inhibition of mitochondrial pyruvate carrier. 7ACC2 also prevents compensatory glucose oxidation, induces tumor reoxygenation and potentiates radiotherapy, making it a promising anticancer drug.
Collapse
Affiliation(s)
- Catherine Vander Linden
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, 53 Avenue E. Mounier B1.53.09, B-1200 Brussels, Belgium
| | - Cyril Corbet
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, 53 Avenue E. Mounier B1.53.09, B-1200 Brussels, Belgium
| |
Collapse
|