101
|
CCL20 mediates the anti-tumor effect of vitamin D3 in p38MAPK/NF-κB signaling in colitis-associated carcinogenesis. Eur J Cancer Prev 2020; 30:76-83. [PMID: 32195696 DOI: 10.1097/cej.0000000000000582] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Vitamin D3 is beneficial in ameliorating or preventing inflammation and carcinogenesis. CCL20 is a potential therapeutic target in carcinogenesis, which mediates the protective effect of vitamin D or vitamin D analogue in autoimmune and cancer diseases. Here we aim to evaluate whether vitamin D3 plays a protective role in colitis-associated colorectal cancer (CAC) by affecting CCL20 and the molecular mechanism. Administration of azoxymethane (AOM) followed with dextran sulfate sodium (DSS) was used to simulate CAC in mouse. After 5-day DSS treatment, vitamin D3 supplementation was for 9 weeks at 60 IU/g/w. We found that dietary vitamin D3 significantly reduced the tumor number and tumor burden in mouse. In-vivo and -vitro, vitamin D3 reduced the levels of CCL20, phospho-p38 MAPK (p-p38) and phospho-NF-κB p65 (p-p65), and the transcriptional activity of NF-κB. Further studies showed that CCL20 mediated the inhibition of vitamin D3 in p38MAPK-mediated NF-κB signaling in vitro. Taken together, vitamin D3 effectively suppressed colonic carcinogenesis in AOM-DSS mouse model. Downregulation of CCL20 may contribute to the preventive effect of vitamin D3 on NF-κB activity. It may merit further clinical investigation as a therapeutic agent against CAC in humans.
Collapse
|
102
|
Peng JQ, Han SM, Chen ZH, Yang J, Pei YQ, Bao C, Qiao L, Chen WQ, Liu B. Chaperone-mediated autophagy regulates apoptosis and the proliferation of colon carcinoma cells. Biochem Biophys Res Commun 2019; 522:348-354. [PMID: 31761324 DOI: 10.1016/j.bbrc.2019.11.081] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 11/13/2019] [Indexed: 02/01/2023]
Abstract
Chaperone-mediated autophagy (CMA) is one of the three types of autophagy. In recent years, CMA has been shown to be associated with the pathogenesis of several types of cancer. However, whether CMA is involved in the pathogenesis of colorectal cancer (CRC) remains unclear. In this study, we investigated CMA activity in tissue specimens from CRC patients and mouse models of colitis-associated CRC (induced by administration of AOM plus DSS). In addition, we down-regulated CMA in CT26 colon carcinoma cells stably transfected with a vector expressing a siRNA targeting LAMP-2A, the limiting component in the CMA pathway, to explore the role of CMA in these cells. Apoptosis was detected using TUNEL assay, and the apoptosis-related proteins were detected using western blotting. Cell proliferation was assessed using MTT assay, Ki-67 labelling and western blotting for PCNA. We found that LAMP-2A expression was significantly increased in CRC patients and mouse models and varied according to the stage of the disease. Inhibition of CMA in CT26 cells facilitated apoptosis, as evidenced by increased TUNEL immunolabeling, increased expression of Bax and Bnip3, and decreased expression of Bcl-2. Cell proliferation assays showed that inhibition of CMA impeded the proliferation of CT26 cells. These data support the hypothesis that CMA is up-regulated in CRC, and inhibition of CMA may be a new therapeutic strategy for CRC patients.
Collapse
Affiliation(s)
- Jie-Qiong Peng
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China; Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Shu-Mei Han
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Ze-Hao Chen
- Shandong First Medical University, Taian, Shandong, China
| | - Jing Yang
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yan-Qing Pei
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Cong Bao
- Department of Pathology, Pingyi County People's Hospital, Linyi, Shandong, 273300, China
| | - Lei Qiao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, 250012, Jinan, China
| | - Wen-Qiang Chen
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, 250012, Jinan, China.
| | - Bo Liu
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
103
|
Zhong X, Chen B, Liu M, Yang Z. The Role of Adaptor Protein CARD9 in Colitis-Associated Cancer. MOLECULAR THERAPY-ONCOLYTICS 2019; 15:1-6. [PMID: 31650020 PMCID: PMC6804436 DOI: 10.1016/j.omto.2019.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The adaptor protein CARD9 plays an important role in anti-fungal immunity responses, linking detection of fungi by surface receptors to activation of the transcription factor nuclear factor κB (NF-κB). Recent studies indicate that CARD9 also plays different but vital roles during the development of colitis-associated colorectal cancer (CAC). This review summarizes the current understanding of CARD9 functions in CAC, and we discuss its potentially carcinogenic mechanisms.
Collapse
Affiliation(s)
| | - Bin Chen
- Department of Surgery, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, China
| | - Min Liu
- Department of Surgery, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, China
| | - Zhiwen Yang
- Department of Pharmacy, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (Preparatory Stage), Shanghai 201600, China
| |
Collapse
|
104
|
Liu R, Nikolajczyk BS. Tissue Immune Cells Fuel Obesity-Associated Inflammation in Adipose Tissue and Beyond. Front Immunol 2019; 10:1587. [PMID: 31379820 PMCID: PMC6653202 DOI: 10.3389/fimmu.2019.01587] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/25/2019] [Indexed: 12/12/2022] Open
Abstract
Obesity-associated inflammation stems from a combination of cell-intrinsic changes of individual immune cell subsets and the dynamic crosstalk amongst a broad array of immune cells. Although much of the focus of immune cell contributions to metabolic disease has focused on adipose tissue-associated cells, these potent sources of inflammation inhabit other metabolic regulatory tissues, including liver and gut, and recirculate to promote systemic inflammation and thus obesity comorbidities. Tissue-associated immune cells, especially T cell subpopulations, have become a hotspot of inquiry based on their contributions to obesity, type 2 diabetes, non-alcoholic fatty liver diseases and certain types of cancers. The cell-cell interactions that take place under the stress of obesity are mediated by intracellular contact and cytokine production, and constitute a complicated network that drives the phenotypic alterations of immune cells and perpetuates a feed-forward loop of metabolic decline. Herein we discuss immune cell functions in various tissues and obesity-associated cancers from the viewpoint of inflammation. We also emphasize recent advances in the understanding of crosstalk amongst immune cell subsets under obese conditions, and suggest future directions for focused investigations with clinical relevance.
Collapse
Affiliation(s)
- Rui Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, United States
| | - Barbara S. Nikolajczyk
- Department of Pharmacology and Nutritional Sciences, Barnstable Brown Diabetes and Obesity Research Center, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
105
|
Sun Q, Liu X, Zhang Y, Song Y, Ma X, Shi Y, Li X. L. plantarum, L. fermentum, and B. breve Beads Modified the Intestinal Microbiota and Alleviated the Inflammatory Response in High-Fat Diet-Fed Mice. Probiotics Antimicrob Proteins 2019; 12:535-544. [PMID: 31267477 DOI: 10.1007/s12602-019-09564-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
This paper aims to study the effects of compound microbe-based beads on changes in the intestinal microbiota and alleviation of high-fat (HF) diet-induced inflammatory responses. Forty-eight mice were fed base chow or a high-fat diet for 4 weeks and then randomly separated into six groups: normal diet (group A), high-fat diet (group B), high-fat positive control (fed with high-fat chow plus Tetrahydrolipstatin, group C), high-fat chow plus B. breve beads (group D), high-fat chow plus L. plantarum-L. fermentum beads (group E), and high-fat chow plus L. plantarum-L. fermentum-B. breve beads (group F). The body weights were measured. The serum cytokine and lipid levels were determined by ELISA, and high-throughput sequence analysis of the fecal microbiota was conducted. Beads with cell encapsulation rates higher than 99% decreased the body weight from 50.97 ± 3.44 g in group B to 42.64 ± 2.63 g in group F at the end of the experiment (p = 0.00019). The total cholesterol content in group F was 80.14 ± 9.37 mmol/L, which was significantly lower than that in group A (96.13 ± 24.07 mmol/L) (p = 0.02765), group B (102.52 ± 12.20 mmol/L) (p = 0.00196), and group C (98.99 ± 11.32 mmol/L) (p = 0.00804). In addition, the serum IL-6 level showed no significant difference between group F and the base chow control group. The microbial cell-loaded bead intervention led to increased abundances of Bifidobacterium and Lactobacillus in mouse feces. Oral administration of three strain-based beads led to alleviation of inflammatory reactions in high-fat diet-fed mice.
Collapse
Affiliation(s)
- Qingshen Sun
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, 150500, China
- Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Xinyang Liu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, 150500, China
- Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Yanyan Zhang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, 150500, China
- Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Yong Song
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, 150500, China
- Key Laboratory of Molecular Biology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Xiuyan Ma
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, 150500, China
- Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Yue Shi
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, 150500, China
- Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Xiuliang Li
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, 150500, China.
- Key Laboratory of Molecular Biology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, 150080, China.
| |
Collapse
|
106
|
He J, Song Y, Li G, Xiao P, Liu Y, Xue Y, Cao Q, Tu X, Pan T, Jiang Z, Cao X, Lai L, Wang Q. Fbxw7 increases CCL2/7 in CX3CR1hi macrophages to promote intestinal inflammation. J Clin Invest 2019; 129:3877-3893. [PMID: 31246581 DOI: 10.1172/jci123374] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Resident and inflammatory mononuclear phagocytes (MPh) with functional plasticity in the intestine are critically involved in the pathology of Inflammatory Bowel Diseases (IBD), in which the mechanism remains incompletely understood. In the present study, we found that increased expression of E3 ligase FBXW7 in the inflamed intestine was significantly correlated to IBD severity in both human diseases and mice model. Myeloid-Fbxw7 deficiency protected mice from dextran sodium sulfate (DSS) and 2,6,4-trinitrobenzene sulfonic acid (TNBS) induced colitis. Fbxw7 deficiency resulted in decreased production of chemokines CCL2 and CCL7 by colonic CX3CR1hi resident macrophages and reduced accumulation of CX3CR1int pro-inflammatory MPh in colitis colon tissue. Mice received AAV-shFbxw7 administration showed significantly improved survival rate and alleviated colitis. Mechanisms screening demonstrated that FBXW7 suppresses H3K27me3 modification and promotes Ccl2 and Ccl7 expression via degradation of histone-lysine N-methyltransferase EZH2 in macrophages. Taken together, our results indicate that FBXW7 degrades EZH2 and increases Ccl2/Ccl7 in CX3CR1hi macrophages, which promotes the recruiting CX3CR1int pro-inflammatory MPh into local colon tissues with colitis. Targeting FBXW7 might represent a potential therapeutic approach for intestine inflammation intervention.
Collapse
Affiliation(s)
- Jia He
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yinjing Song
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Gaopeng Li
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | | | - Yang Liu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yue Xue
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qian Cao
- Department of Gastroenterology and
| | - Xintao Tu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ting Pan
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhinong Jiang
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xuetao Cao
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Lihua Lai
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qingqing Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
107
|
Ostermann AL, Wunderlich CM, Schneiders L, Vogt MC, Woeste MA, Belgardt BF, Niessen CM, Martiny B, Schauss AC, Frommolt P, Nikolaev A, Hövelmeyer N, Sears RC, Koch PJ, Günzel D, Brüning JC, Wunderlich FT. Intestinal insulin/IGF1 signalling through FoxO1 regulates epithelial integrity and susceptibility to colon cancer. Nat Metab 2019; 1:371-389. [PMID: 32694718 DOI: 10.1038/s42255-019-0037-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 01/24/2019] [Indexed: 12/30/2022]
Abstract
Obesity promotes the development of insulin resistance and increases the incidence of colitis-associated cancer (CAC), but whether a blunted insulin action specifically in intestinal epithelial cells (IECs) affects CAC is unknown. Here, we show that obesity impairs insulin sensitivity in IECs and that mice with IEC-specific inactivation of the insulin and IGF1 receptors exhibit enhanced CAC development as a consequence of impaired restoration of gut barrier function. Blunted insulin signalling retains the transcription factor FOXO1 in the nucleus to inhibit expression of Dsc3, thereby impairing desmosome formation and epithelial integrity. Both IEC-specific nuclear FoxO1ADA expression and IEC-specific Dsc3 inactivation recapitulate the impaired intestinal integrity and increased CAC burden. Spontaneous colonic tumour formation and compromised intestinal integrity are also observed upon IEC-specific coexpression of FoxO1ADA and a stable Myc variant, thus suggesting a molecular mechanism through which impaired insulin action and nuclear FOXO1 in IECs promotes CAC.
Collapse
Affiliation(s)
- A L Ostermann
- Max Planck Institute for Metabolism Research, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), Cologne, Germany
| | - C M Wunderlich
- Max Planck Institute for Metabolism Research, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - L Schneiders
- Max Planck Institute for Metabolism Research, Cologne, Germany
| | - M C Vogt
- Max Planck Institute for Metabolism Research, Cologne, Germany
| | - M A Woeste
- Max Planck Institute for Metabolism Research, Cologne, Germany
| | - B F Belgardt
- Max Planck Institute for Metabolism Research, Cologne, Germany
- German Diabetes Center (DDZ), Düsseldorf, Germany
| | - C M Niessen
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - B Martiny
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - A C Schauss
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - P Frommolt
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - A Nikolaev
- Institute for Molecular Medicine, University Hospital Mainz, Mainz, Germany
| | - N Hövelmeyer
- Institute for Molecular Medicine, University Hospital Mainz, Mainz, Germany
| | - R C Sears
- Department of Molecular and Medical Genetics, Oregon Health & Sciences University, Portland, OR, USA
| | - P J Koch
- Department of Dermatology, Charles C. Gates Regenerative Medicine and Stem Cell Biology Program, University of Colorado Denver, Aurora, CO, USA
| | - D Günzel
- Institute for Clinical Physiology, Charité, Berlin, Germany
| | - J C Brüning
- Max Planck Institute for Metabolism Research, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - F T Wunderlich
- Max Planck Institute for Metabolism Research, Cologne, Germany.
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany.
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), Cologne, Germany.
| |
Collapse
|
108
|
Ren W, Xia Y, Chen S, Wu G, Bazer FW, Zhou B, Tan B, Zhu G, Deng J, Yin Y. Glutamine Metabolism in Macrophages: A Novel Target for Obesity/Type 2 Diabetes. Adv Nutr 2019; 10:321-330. [PMID: 30753258 PMCID: PMC6416106 DOI: 10.1093/advances/nmy084] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/04/2018] [Accepted: 09/27/2018] [Indexed: 12/23/2022] Open
Abstract
Obesity is a nutritional disorder resulting from a chronic imbalance between energy intake and expenditure. This disease is characterized by inflammation in multiple cell types, including macrophages. M1 macrophage responses are correlated with the progression of obesity or diabetes; therefore, strategies that induce repolarization of macrophages from an M1 to an M2 phenotype may be promising for the prevention of obesity- or diabetes-associated pathology. Glutamine (the most abundant amino acid in the plasma of humans and many other mammals including rats) is effective in inducing polarization of M2 macrophages through the glutamine-UDP-N-acetylglucosamine pathway and α-ketoglutarate produced via glutaminolysis, whereas succinate synthesized via glutamine-dependent anerplerosis or the γ-aminobutyric acid shunt promotes polarization of M1 macrophages. Interestingly, patients with obesity or diabetes show altered glutamine metabolism, including decreases in glutamine and α-ketoglutarate concentrations in serum but increases in succinate concentrations. Thus, manipulation of macrophage polarization through glutamine metabolism may provide a potential target for prevention of obesity- or diabetes-associated pathology.
Collapse
Affiliation(s)
- Wenkai Ren
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
- Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yaoyao Xia
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Siyuan Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX
| | - Beiyan Zhou
- Department of Immunology, School of Medicine, University of Connecticut, Farmington, CT
| | - Bie Tan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Guoqiang Zhu
- Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jinping Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yulong Yin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
- Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Academics Working Station at The First Affiliated Hospital, Changsha Medical University, Changsha, China
| |
Collapse
|
109
|
Choi S, Snider AJ. Diet, lipids and colon cancer. CELLULAR NUTRIENT UTILIZATION AND CANCER 2019; 347:105-144. [DOI: 10.1016/bs.ircmb.2019.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
110
|
Zhang HL, Zhang AH, Miao JH, Sun H, Yan GL, Wu FF, Wang XJ. Targeting regulation of tryptophan metabolism for colorectal cancer therapy: a systematic review. RSC Adv 2019; 9:3072-3080. [PMID: 35518968 PMCID: PMC9060217 DOI: 10.1039/c8ra08520j] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/23/2018] [Indexed: 12/22/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most malignant cancers resulting from abnormal metabolism alterations. As one of the essential amino acids, tryptophan has a variety of physiological functions, closely related to regulation of immune system, central nervous system, gastrointestinal nervous system and intestinal microflora. Colorectal cancer, a type of high-grade malignancy disease, stems from a variety of factors and often accompanies inflammatory reactions, dysbacteriosis, and metabolic disorders. Colorectal cancer accompanies inflammation and imbalance of intestinal microbiota and affects tryptophan metabolism. It is known that metabolites, rate-limiting enzymes, and ARH in tryptophan metabolism are associated with the development of CRC. Specifically, IDO1 may be a potential therapeutic target in colorectal cancer treatment. Furthermore, the reduction of tryptophan amount is proportional to the poor quality of life for colorectal cancer patients. This paper aims to discuss the role of tryptophan metabolism in a normal organism and investigate the relationship between this amino acid and colorectal cancer. This study is expected to provide theoretical support for research related to targeted therapy for colorectal cancer. Furthermore, strategies that modify tryptophan metabolism, effectively inhibiting tumor progression, may be more effective for CRC treatment. Colorectal cancer (CRC) is one of the most malignant cancers resulting from abnormal metabolism alterations.![]()
Collapse
Affiliation(s)
- Hong-lian Zhang
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials
- Guangxi Botanical Garden of Medicinal Plant
- Nanning
- China
- Sino-America Chinmedomics Technology Collaboration Center
| | - Ai-hua Zhang
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
| | - Jian-hua Miao
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials
- Guangxi Botanical Garden of Medicinal Plant
- Nanning
- China
| | - Hui Sun
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
| | - Guang-li Yan
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Chinmedomics Research Center of State Administration of TCM
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
| | - Fang-fang Wu
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials
- Guangxi Botanical Garden of Medicinal Plant
- Nanning
- China
- Sino-America Chinmedomics Technology Collaboration Center
| | - Xi-jun Wang
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials
- Guangxi Botanical Garden of Medicinal Plant
- Nanning
- China
- Sino-America Chinmedomics Technology Collaboration Center
| |
Collapse
|
111
|
Obesity-Induced TNFα and IL-6 Signaling: The Missing Link between Obesity and Inflammation-Driven Liver and Colorectal Cancers. Cancers (Basel) 2018; 11:cancers11010024. [PMID: 30591653 PMCID: PMC6356226 DOI: 10.3390/cancers11010024] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 02/06/2023] Open
Abstract
Obesity promotes the development of numerous cancers, such as liver and colorectal cancers, which is at least partly due to obesity-induced, chronic, low-grade inflammation. In particular, the recruitment and activation of immune cell subsets in the white adipose tissue systemically increase proinflammatory cytokines, such as tumor necrosis factor α (TNFα) and interleukin-6 (IL-6). These proinflammatory cytokines not only impair insulin action in metabolic tissues, but also favor cancer development. Here, we review the current state of knowledge on how obesity affects inflammatory TNFα and IL-6 signaling in hepatocellular carcinoma and colorectal cancers.
Collapse
|
112
|
Abstract
CC chemokine receptor 6 (CCR6) and its specific partner CC chemokine ligand 20 (CCL20) are known to play a pivotal role in intestinal inflammation. CCR6-associated inflammatory bowel disease (IBD) is already at the forefront of experimental inflammatory disease models, being the subject of numerous analytical studies. IBD is associated with two sub phenotypes, Crohn’s disease (CD) and ulcerative colitis (UC). Both these disease entities produce potent immune dysregulation followed by intense tissue damage within the gut mucosal system, initiating symptoms that are severely debilitating. Multiple causative factors are said to be responsible for IBD, but direct immune dysfunction is kindled by overplay of innate and adaptive immune responses produced against the luminal contents through the weakened or leaky gut epithelial barrier. Once immune homeostasis is not achieved by endogenous protective mechanisms, the self-assertive adaptive immunity mobilizes its various T and B cell cohorts, initializing their immune mechanisms by deploying the immune cells towards the site of infection. CCR6 and its unique solitary ligand CCL20 are small protein molecules that are abundantly expressed by T and B lymphocytes and act as chemotactic immune-modulatory envoys that help in the deployment of the effector lymphocyte arm of the immune system and produce two directly opposing outcomes in IBD. This dichotomous immunity consists of either immune tolerance or inflammation which then develops into a chronic state, remaining unresponsive to inherent immunity or targeted clinical therapy. In this review, we have identified large numbers of experimental studies that have employed both mouse models and clinical subjects spanning a period of nearly two decades and we have clustered these into 13 different groups. This review will provide greater understanding of the CCR6–CCL20 axis in IBD and identify gaps in the literature that can be filled in the future.
Collapse
|