101
|
Zou H, Zhao G, Dai H, Dong H, Luo W, Wang L, Lu Z, Luo Y, Zhang G, Duan L. Electronic Perturbation of Copper Single-Atom CO 2 Reduction Catalysts in a Molecular Way. Angew Chem Int Ed Engl 2023; 62:e202217220. [PMID: 36478508 DOI: 10.1002/anie.202217220] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022]
Abstract
Fine-tuning electronic structures of single-atom catalysts (SACs) plays a crucial role in harnessing their catalytic activities, yet challenges remain at a molecular scale in a controlled fashion. By tailoring the structure of graphdiyne (GDY) with electron-withdrawing/-donating groups, we show herein the electronic perturbation of Cu single-atom CO2 reduction catalysts in a molecular way. The elaborately introduced functional groups (-F, -H and -OMe) can regulate the valance state of Cuδ+ , which is found to be directly scaled with the selectivity of the electrochemical CO2 -to-CH4 conversion. An optimum CH4 Faradaic efficiency of 72.3 % was achieved over the Cu SAC on the F-substituted GDY. In situ spectroscopic studies and theoretical calculations revealed that the positive Cuδ+ centers adjusted by the electron-withdrawing group decrease the pKa of adsorbed H2 O, promoting the hydrogenation of intermediates toward the CH4 production. Our strategy paves the way for precise electronic perturbation of SACs toward efficient electrocatalysis.
Collapse
Affiliation(s)
- Haiyuan Zou
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Gang Zhao
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Hao Dai
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Hongliang Dong
- Center for High Pressure Science and Technology Advanced Research Pudong, Shanghai, 201203, China
| | - Wen Luo
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lei Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Zhouguang Lu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yi Luo
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Guozhen Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Lele Duan
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| |
Collapse
|
102
|
Zheng X, Gao X, Vilá RA, Jiang Y, Wang J, Xu R, Zhang R, Xiao X, Zhang P, Greenburg LC, Yang Y, Xin HL, Zheng X, Cui Y. Hydrogen-substituted graphdiyne-assisted ultrafast sparking synthesis of metastable nanomaterials. NATURE NANOTECHNOLOGY 2023; 18:153-159. [PMID: 36585516 DOI: 10.1038/s41565-022-01272-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 10/20/2022] [Indexed: 06/17/2023]
Abstract
Metastable nanomaterials, such as single-atom and high-entropy systems, with exciting physical and chemical properties are increasingly important for next-generation technologies. Here, we developed a hydrogen-substituted graphdiyne-assisted ultrafast sparking synthesis (GAUSS) platform for the preparation of metastable nanomaterials. The GAUSS platform can reach an ultra-high reaction temperature of 3,286 K within 8 ms, a rate exceeding 105 K s-1. Controlling the composition and chemistry of the hydrogen-substituted graphdiyne aerogel framework, the reaction temperature can be tuned from 1,640 K to 3,286 K. We demonstrate the versatility of the GAUSS platform with the successful synthesis of single atoms, high-entropy alloys and high-entropy oxides. Electrochemical measurements and density functional theory show that single atoms synthesized by GAUSS enhance the lithium-sulfur redox reaction kinetics in all-solid-state lithium-sulfur batteries. Our design of the GAUSS platform offers a powerful way to synthesize a variety of metastable nanomaterials.
Collapse
Affiliation(s)
- Xueli Zheng
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Xin Gao
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Rafael A Vilá
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Yue Jiang
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Jingyang Wang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Rong Xu
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Rui Zhang
- Department of Physics and Astronomy, University of California, Irvine, CA, USA
| | - Xin Xiao
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Pu Zhang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Louisa C Greenburg
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Yufei Yang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Huolin L Xin
- Department of Physics and Astronomy, University of California, Irvine, CA, USA
| | - Xiaolin Zheng
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Yi Cui
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
| |
Collapse
|
103
|
Fu X, Zhao X, Lu TB, Yuan M, Wang M. Graphdiyne-Based Single-Atom Catalysts with Different Coordination Environments. Angew Chem Int Ed Engl 2023; 62:e202219242. [PMID: 36723492 DOI: 10.1002/anie.202219242] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/02/2023]
Abstract
As a special carbon material, graphdiyne (GDY) features the superiorities of incomplete charge transfer effect on the atomic level, tunable electronic structure and anchoring metal atoms directly with organometallic coordination bonds M (metal)-C (alkynyl carbon in GDY), providing it an ideal platform to construct single-atom catalysts (ACs). The coordination environment of single atoms anchored on GDY plays a key role in their catalytic performance. The mini-review highlights state-of-the-art progress in the rational design of GDY-based ACs and their applications, and mainly reveals the relationship between the coordination engineering of the GDY-based ACs and corresponding catalytic performance. Finally, some prospects concerning the future development of GDY-based ACs in energy conversion are also discussed.
Collapse
Affiliation(s)
- Xinliang Fu
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, No. 94 Weijin Road, Nankai District, Tianjin, 300071, P. R. China
| | - Xin Zhao
- School of Materials Science and Engineering, Institute for New Energy Materials & Low Carbon Technologies, Tianjin University of Technology, No. 391 Bin Shui Xi Dao Road, Xiqing District, Tianjin, 300384, P. R. China
| | - Tong-Bu Lu
- School of Materials Science and Engineering, Institute for New Energy Materials & Low Carbon Technologies, Tianjin University of Technology, No. 391 Bin Shui Xi Dao Road, Xiqing District, Tianjin, 300384, P. R. China
| | - Mingjian Yuan
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, No. 94 Weijin Road, Nankai District, Tianjin, 300071, P. R. China
| | - Mei Wang
- School of Materials Science and Engineering, Institute for New Energy Materials & Low Carbon Technologies, Tianjin University of Technology, No. 391 Bin Shui Xi Dao Road, Xiqing District, Tianjin, 300384, P. R. China
| |
Collapse
|
104
|
Zhang D, Xue Y, Zheng X, Zhang C, Li Y. Multi-heterointerfaces for selective and efficient urea production. Natl Sci Rev 2023; 10:nwac209. [PMID: 36817842 PMCID: PMC9935990 DOI: 10.1093/nsr/nwac209] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/22/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
A major impediment to industrial urea synthesis is the lack of catalysts with high selectivity and activity, which inhibits the efficient industrial production of urea. Here, we report a new catalyst system suitable for the highly selective synthesis of industrial urea by in situ growth of graphdiyne on the surface of cobalt-nickel mixed oxides. Such a catalyst is a multi-heterojunction interfacial structure resulting in the obvious incomplete charge-transfer phenomenon between a graphdiyne and metal oxide interface and multiple intermolecular interactions. These intrinsic characteristics are the origin of the high performance of the catalyst. Studies on the mechanism reveal that the catalyst could effectively optimize the adsorption/desorption capacities of the intermediate and promote direct C-N coupling by significantly suppressing by-product reactions toward the formation of H2, CO, N2 and NH3. The catalyst can selectively synthesize urea directly from nitrite and carbon dioxide in water at room temperature and pressure, and exhibits a record-high Faradaic efficiency of 64.3%, nitrogen selectivity (Nurea-selectivity) of 86.0%, carbon selectivity (Curea-selectivity) of ∼100%, as well as urea yield rates of 913.2 μg h-1 mgcat -1 and remarkable long-term stability.
Collapse
Affiliation(s)
- Danyan Zhang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yurui Xue
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Xuchen Zheng
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Zhang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuliang Li
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
105
|
Yu J, Chen W, He F, Song W, Cao C. Electronic Oxide-Support Strong Interactions in the Graphdiyne-Supported Cuprous Oxide Nanocluster Catalyst. J Am Chem Soc 2023; 145:1803-1810. [PMID: 36638321 DOI: 10.1021/jacs.2c10976] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The interfacial interaction in supported catalysts is of great significance for heterogeneous catalysis because it can induce charge transfer, regulate electronic structure of active sites, influence reactant adsorption behavior, and eventually affect the catalytic performance. It has been theoretically and experimentally elucidated well in metal/oxide catalysts and oxide/metal inverse catalysts, but is rarely reported in carbon-supported catalysts due to the inertness of traditional carbon materials. Using an example of a graphdiyne-supported cuprous oxide nanocluster catalyst (Cu2O NCs/GDY), we herein demonstrate the strong electronic interaction between them and put forward a new type of electronic oxide-graphdiyne strong interaction, analogous to the concept of electronic oxide/metal strong interactions in oxide/metal inverse catalysts. Such electronic oxide-graphdiyne strong interaction can not only stabilize Cu2O NCs in a low-oxidation state without aggregation and oxidation under ambient conditions but also change their electronic structure, resulting in the optimized adsorption energy for reactants/intermediates and thus leading to improved catalytic activity in the Cu(I)-catalyzed azide-alkyne cycloaddition reaction. Our study will contribute to the comprehensive understanding of interfacial interactions in supported catalysts.
Collapse
Affiliation(s)
- Jia Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Weiming Chen
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Feng He
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Weiguo Song
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Changyan Cao
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
106
|
Li W, Xu C, Xiong T, Jiang Y, Ma W, Yu P, Mao L. Giant Water Uptake Enabled Ultrahigh Proton Conductivity of Graphdiyne Oxide. Angew Chem Int Ed Engl 2023; 62:e202216530. [PMID: 36458952 DOI: 10.1002/anie.202216530] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/04/2022]
Abstract
Proton conductors have attracted great attention in various fields, especially in energy production. Here, we find that graphdiyne oxide (GDYO), derived from graphdiyne (GDY), features the highest proton conductivity of 0.54 S cm-1 (100 % RH, 348 K) among the oxidized carbon allotropes reported so far. The sp- and sp2 -co-hybridized carbon skeleton of GDY enables GDYO with the giant water uptake, which is 2.4 times larger than that of graphene oxide (GO), resulting in ultrahigh proton conductivity by increasing the proton concentration and proton conduction pathways. This ultrahigh proton conductivity of GDYO is further proved in a methanol fuel cell by using GDYO membrane as proton exchange membrane. The GDYO membrane enables the cell with higher open circuit voltage, larger power density and lower methanol permeability, compared with commercial Nafion 117. Moreover, the GDYO membrane bears high ion exchange capacity, good acidic stability and low swelling ratio.
Collapse
Affiliation(s)
- Weiqi Li
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cong Xu
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tianyi Xiong
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanan Jiang
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Wenjie Ma
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, China
| | - Ping Yu
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, China.,College of Chemistry, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
107
|
Du J, Chen J, Zhang C, Jiang G. Screening out the Transition Metal Single Atom Supported on Onion-like Carbon (OLC) for the Hydrogen Evolution Reaction. Inorg Chem 2023; 62:1001-1006. [PMID: 36594454 DOI: 10.1021/acs.inorgchem.2c03922] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A recent experiment has confirmed that onion-like nanospheres of carbon (OLC) covered with single Pt atoms show comparable hydrogen evolution reaction (HER) catalytic activity to the commercial Pt/C. In this work, we have performed screening calculations on the single transition metal (TM) atom supported on OLC (a total of 26 candidates) using the density functional theory (DFT) to find excellent HER catalysts. Our calculated results indicate that the Nb1/CLO, Mo1/CLO, Ru1/CLO, Rh1/CLO, Pd1/CLO, and Ir1/OLC show high-efficient catalysts performance for the HER, as experimental Pt1/OLC does. We also try to seek an appropriate descriptor relevant to the Gibbs free energies, and the average local ionization energy (ALIE), which is first used to predict HER activity, shows a perfect linear correlation with Gibbs free energy. It is interesting to note that the ALIE descriptor is more successful than the commonly used d-band center.
Collapse
Affiliation(s)
- Jiguang Du
- College of Physics, Sichuan University, Chengdu610064, China
| | - Jun Chen
- Institute of Materials, China Academy of Engineering Physics, Mianyang621908, Sichuan, PR China
| | - Chuanyu Zhang
- College of Mathematics and Physics, Chengdu University of Technology, Chengdu610059, China
| | - Gang Jiang
- Insitute of Atomic and Molecular Physics, Sichuan University, Chengdu610065, China
| |
Collapse
|
108
|
Hou X, Ding J, Liu W, Zhang S, Luo J, Liu X. Asymmetric Coordination Environment Engineering of Atomic Catalysts for CO 2 Reduction. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13020309. [PMID: 36678060 PMCID: PMC9866045 DOI: 10.3390/nano13020309] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/02/2023] [Accepted: 01/09/2023] [Indexed: 05/14/2023]
Abstract
Single-atom catalysts (SACs) have emerged as well-known catalysts in renewable energy storage and conversion systems. Several supports have been developed for stabilizing single-atom catalytic sites, e.g., organic-, metal-, and carbonaceous matrices. Noticeably, the metal species and their local atomic coordination environments have a strong influence on the electrocatalytic capabilities of metal atom active centers. In particular, asymmetric atom electrocatalysts exhibit unique properties and an unexpected carbon dioxide reduction reaction (CO2RR) performance different from those of traditional metal-N4 sites. This review summarizes the recent development of asymmetric atom sites for the CO2RR with emphasis on the coordination structure regulation strategies and their effects on CO2RR performance. Ultimately, several scientific possibilities are proffered with the aim of further expanding and deepening the advancement of asymmetric atom electrocatalysts for the CO2RR.
Collapse
Affiliation(s)
- Xianghua Hou
- Center for Electron Microscopy and Tianjin Key Lab of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials, Tianjin University of Technology, Tianjin 300384, China
- MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, School of Resource, Environments and Materials, Nanning 530004, China
| | - Junyang Ding
- Center for Electron Microscopy and Tianjin Key Lab of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials, Tianjin University of Technology, Tianjin 300384, China
- Correspondence: (J.D.); (W.L.); (X.L.)
| | - Wenxian Liu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Correspondence: (J.D.); (W.L.); (X.L.)
| | - Shusheng Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Jun Luo
- Center for Electron Microscopy and Tianjin Key Lab of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials, Tianjin University of Technology, Tianjin 300384, China
| | - Xijun Liu
- MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, School of Resource, Environments and Materials, Nanning 530004, China
- Correspondence: (J.D.); (W.L.); (X.L.)
| |
Collapse
|
109
|
Sarma BB, Maurer F, Doronkin DE, Grunwaldt JD. Design of Single-Atom Catalysts and Tracking Their Fate Using Operando and Advanced X-ray Spectroscopic Tools. Chem Rev 2023; 123:379-444. [PMID: 36418229 PMCID: PMC9837826 DOI: 10.1021/acs.chemrev.2c00495] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Indexed: 11/25/2022]
Abstract
The potential of operando X-ray techniques for following the structure, fate, and active site of single-atom catalysts (SACs) is highlighted with emphasis on a synergetic approach of both topics. X-ray absorption spectroscopy (XAS) and related X-ray techniques have become fascinating tools to characterize solids and they can be applied to almost all the transition metals deriving information about the symmetry, oxidation state, local coordination, and many more structural and electronic properties. SACs, a newly coined concept, recently gained much attention in the field of heterogeneous catalysis. In this way, one can achieve a minimum use of the metal, theoretically highest efficiency, and the design of only one active site-so-called single site catalysts. While single sites are not easy to characterize especially under operating conditions, XAS as local probe together with complementary methods (infrared spectroscopy, electron microscopy) is ideal in this research area to prove the structure of these sites and the dynamic changes during reaction. In this review, starting from their fundamentals, various techniques related to conventional XAS and X-ray photon in/out techniques applied to single sites are discussed with detailed mechanistic and in situ/operando studies. We systematically summarize the design strategies of SACs and outline their exploration with XAS supported by density functional theory (DFT) calculations and recent machine learning tools.
Collapse
Affiliation(s)
- Bidyut Bikash Sarma
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstraße 20, 76131 Karlsruhe, Germany
- Institute
of Catalysis Research and Technology, Karlsruhe
Institute of Technology, Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen, 76344 Karlsruhe, Germany
| | - Florian Maurer
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstraße 20, 76131 Karlsruhe, Germany
| | - Dmitry E. Doronkin
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstraße 20, 76131 Karlsruhe, Germany
- Institute
of Catalysis Research and Technology, Karlsruhe
Institute of Technology, Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen, 76344 Karlsruhe, Germany
| | - Jan-Dierk Grunwaldt
- Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstraße 20, 76131 Karlsruhe, Germany
- Institute
of Catalysis Research and Technology, Karlsruhe
Institute of Technology, Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen, 76344 Karlsruhe, Germany
| |
Collapse
|
110
|
Jing W, Shen H, Qin R, Wu Q, Liu K, Zheng N. Surface and Interface Coordination Chemistry Learned from Model Heterogeneous Metal Nanocatalysts: From Atomically Dispersed Catalysts to Atomically Precise Clusters. Chem Rev 2022; 123:5948-6002. [PMID: 36574336 DOI: 10.1021/acs.chemrev.2c00569] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The surface and interface coordination structures of heterogeneous metal catalysts are crucial to their catalytic performance. However, the complicated surface and interface structures of heterogeneous catalysts make it challenging to identify the molecular-level structure of their active sites and thus precisely control their performance. To address this challenge, atomically dispersed metal catalysts (ADMCs) and ligand-protected atomically precise metal clusters (APMCs) have been emerging as two important classes of model heterogeneous catalysts in recent years, helping to build bridge between homogeneous and heterogeneous catalysis. This review illustrates how the surface and interface coordination chemistry of these two types of model catalysts determines the catalytic performance from multiple dimensions. The section of ADMCs starts with the local coordination structure of metal sites at the metal-support interface, and then focuses on the effects of coordinating atoms, including their basicity and hardness/softness. Studies are also summarized to discuss the cooperativity achieved by dual metal sites and remote effects. In the section of APMCs, the roles of surface ligands and supports in determining the catalytic activity, selectivity, and stability of APMCs are illustrated. Finally, some personal perspectives on the further development of surface coordination and interface chemistry for model heterogeneous metal catalysts are presented.
Collapse
Affiliation(s)
- Wentong Jing
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hui Shen
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ruixuan Qin
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qingyuan Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102, China
| | - Kunlong Liu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Nanfeng Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102, China
| |
Collapse
|
111
|
Huang Z, Chen G, Deng F, Li Y. Nanostructured Graphdiyne: Synthesis and Biomedical Applications. Int J Nanomedicine 2022; 17:6467-6490. [PMID: 36573204 PMCID: PMC9789722 DOI: 10.2147/ijn.s383707] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
Graphdiyne (GDY) is a 2D carbon allotrope that features a one-atom-thick network of sp- and sp2-hybridized carbon atoms with high degrees of π conjugation. Due to its distinct electronic, chemical, mechanical, and magnetic properties, GDY has attracted great attention and shown great potential in various fields, such as catalysis, energy storage, and the environment. Preparation of GDY with various nanostructures, including 0D quantum dots, 1D nanotubes/nanowires/nanoribbons, 2D nanosheets/nanowalls/ordered stripe arrays, and 3D nanospheres, greatly improves its function and has propelled its applications forward. High biocompatibility and stability make GDY a promising candidate for biomedical applications. This review introduces the latest developments in fabrication of GDY-based nanomaterials with various morphologies and summarizes their propective use in the biomedical domain, specifically focusing on their potential advantages and applications for biosensing, cancer diagnosis and therapy, radiation protection, and tissue engineering.
Collapse
Affiliation(s)
- Ziqing Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People's Republic of China
| | - Guanhui Chen
- Department of Stomatology, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, People’s Republic of China
| | - Feilong Deng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People's Republic of China
| | - Yiming Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People's Republic of China
| |
Collapse
|
112
|
Interface Engineering of SRu-mC3N4 Heterostructures for Enhanced Electrochemical Hydrazine Oxidation Reactions. Catalysts 2022. [DOI: 10.3390/catal12121560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Hydrazine oxidation in single-atom catalysts (SACs) could exploit the efficiency of metal atom utilization, which is a substitution for noble metal-based electrolysers that results in reduced overall cost. A well-established ruthenium single atom over mesoporous carbon nitride (SRu-mC3N4) catalyst is explored for the electro-oxidation of hydrazine as one of the model reactions for direct fuel cell reactions. The electrochemical activity observed with linear sweep voltammetry (LSV) confirmed that SRu-mC3N4 shows an ultra-low onset potential of 0.88 V vs. RHE, and with a current density of 10 mA/cm2 the observed potential was 1.19 V vs. RHE, compared with mesoporous carbon nitride (mC3N4) (1.77 V vs. RHE). Electrochemical impedance spectroscopy (EIS) and chronoamperometry (i-t) studies on SRu-mC3N4 show a smaller charge-transfer resistance (RCt) of 2950 Ω and long-term potential, as well as current stability of 50 h and 20 mA/cm2, respectively. Herein, an efficient and enhanced activity toward HzOR was demonstrated on SRu-mC3N4 from its synergistic platform over highly porous C3N4, possessing large and independent active sites, and improving the subsequent large-scale reaction.
Collapse
|
113
|
Feng S, Zhao C, Zhao T, Tian Y, Yan L. Efficient reduction of nitrobenzene to aniline by metal-free B-doped graphdiyne. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
114
|
Wang Z, Yang Z, Kadirova ZC, Guo M, Fang R, He J, Yan Y, Ran J. Photothermal functional material and structure for photothermal catalytic CO2 reduction: Recent advance, application and prospect. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
115
|
Song Z, Gu Y, Zhang N, Fan C, Wen H, Guo C. Surface- and interface-regulated graphdiyne-based composites and their applications in the detection of small biological signaling molecules. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
116
|
Liu H, Zou H, Wang M, Dong H, Wang D, Li F, Dai H, Song T, Wei S, Ji Y, Wang C, Duan L. Single-Site Heterogeneous Organometallic Ir Catalysts Embedded on Graphdiyne: Structural Manipulation Beyond the Carbon Support. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203442. [PMID: 36156407 DOI: 10.1002/smll.202203442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Accurate control over the coordination circumstances of single-atom catalysts (SACs) is decisive to their intrinsic activity. Here, two single-site heterogeneous organometallic catalysts (SHOCs), Cp*Ir-L/GDY (L = OH- and Cl- ; Cp* = pentamethylcyclopentadienyl), with the fine-tuned local coordination and electronic structure of Ir sites, are constructed by anchoring Cp*Ir complexes on graphdiyne (GDY) matrix via a one-pot procedure. The spectroscopic studies and theoretical calculations indicate that the Ir atoms in Cp*Ir-Cl/GDY and Cp*Ir-OH/GDY have a much higher oxidation state than Ir in the SAC Ir/GDY. As a proof-of-principle demonstration, the GDY-supported SHOCs are used for formic acid dehydrogenation, which display a fivefold enhancement of catalytic activity compared with SAC Ir/GDY. The kinetic isotope effect and in situ Fourier-transform infrared studies reveal that the rate-limiting step is the β-hydride elimination process, and Cp* on the Ir site accelerates the β-hydride elimination reaction. The GDY-supported SHOCs integrate the merits of both SACs and molecular catalysts, wherein the isolated Ir anchored on GDY echoes with SACs' behavior, and the Cp* ligand enables precise structural and electronic regulation like molecular catalysts. The scheme of SHOCs adds a degree of freedom in accurate regulation of the local structure, the electronic property, and therefore the catalytic performance of single-atom catalysts.
Collapse
Affiliation(s)
- Hong Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China
- Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Haiyuan Zou
- Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Mei Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Hongliang Dong
- Center for High-Pressure Science and Technology Advanced Research, Pudong, Shanghai, 201203, P. R. China
| | - Dan Wang
- Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Fan Li
- Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Hao Dai
- Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Tao Song
- Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Shuting Wei
- Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Yongfei Ji
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, Guangdong, 510006, P. R. China
| | - Chenguang Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510075, P. R. China
| | - Lele Duan
- Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| |
Collapse
|
117
|
Chen T, Zhou D, Hou S, Li Y, Liu Y, Zhang M, Zhang G, Xu H. Designing Hierarchically Porous Single Atoms of Fe-N 5 Catalytic Sites with High Oxidase-like Activity for Sensitive Detection of Organophosphorus Pesticides. Anal Chem 2022; 94:15270-15279. [DOI: 10.1021/acs.analchem.2c02540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tiantian Chen
- Key Laboratory of Insecticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan430079, China
| | - Dandan Zhou
- Key Laboratory of Insecticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan430079, China
| | - Shenghuai Hou
- Key Laboratory of Insecticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan430079, China
| | - Yan Li
- Key Laboratory of Insecticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan430079, China
| | - Ying Liu
- Key Laboratory of Insecticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan430079, China
| | - Manlin Zhang
- Key Laboratory of Insecticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan430079, China
| | - Ganbing Zhang
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan430062, China
| | - Hui Xu
- Key Laboratory of Insecticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan430079, China
| |
Collapse
|
118
|
Li J, Han X, Wang D, Zhu L, Ha‐Thi M, Pino T, Arbiol J, Wu L, Nawfal Ghazzal M. A Deprotection-free Method for High-yield Synthesis of Graphdiyne Powder with In Situ Formed CuO Nanoparticles. Angew Chem Int Ed Engl 2022; 61:e202210242. [PMID: 35985984 PMCID: PMC9825875 DOI: 10.1002/anie.202210242] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Indexed: 01/11/2023]
Abstract
With a direct band gap, superior charge carrier mobility, and uniformly distributed pores, graphdiyne (GDY) has stimulated tremendous interest from the scientific community. However, its broad application is greatly limited by the complicated multistep synthesis process including complex deprotection of hexakis-[(trimethylsilyl)ethynyl]benzene (HEB-TMS) and peeling of GDY from the substrates. Here, we describe a deprotection-free strategy to prepare GDY powder by directly using HEB-TMS as the monomer. When CuCl was used as the catalysts in DMF solvent, the yield of GDY powder reached ≈100 %. More interestingly, uniformly dispersed CuO nanoparticles with an average diameter of ≈2.9 nm were in situ formed on GDY after the reaction. The prepared CuO/GDY was demonstrated an excellent co-catalyst for photocatalytic hydrogen evolution, comparable to the state-of-art Pt co-catalyst. The deprotection-free approach will widen the use of GDY and facilitate its scaling up to industrial level.
Collapse
Affiliation(s)
- Jian Li
- Université Paris-SaclayUMR 8000 CNRSInstitut de Chimie Physique91405OrsayFrance
| | - Xu Han
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)CSIC and BISTCampus UABBellaterra08193 Barcelona, CataloniaSpain
| | - Dongmei Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nano safetyInstitute of High Energy PhysicsChinese Academy of SciencesBeijing100049China
| | - Lei Zhu
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and Chemistry & University of Chinese Academy of SciencesChinese Academy of SciencesBeijing100190P. R. China
| | - Minh‐Huong Ha‐Thi
- Université Paris-SaclayCNRSInstitut des Sciences Moléculaires d'Orsay91405OrsayFrance
| | - Thomas Pino
- Université Paris-SaclayCNRSInstitut des Sciences Moléculaires d'Orsay91405OrsayFrance
| | - Jordi Arbiol
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)CSIC and BISTCampus UABBellaterra08193 Barcelona, CataloniaSpain
- ICREAPg. Lluís Companys 2308010Barcelona, CataloniaSpain
| | - Li‐Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and Chemistry & University of Chinese Academy of SciencesChinese Academy of SciencesBeijing100190P. R. China
| | | |
Collapse
|
119
|
Cai T, Teng Z, Wen Y, Zhang H, Wang S, Fu X, Song L, Li M, Lv J, Zeng Q. Single-atom site catalysts for environmental remediation: Recent advances. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129772. [PMID: 35988491 DOI: 10.1016/j.jhazmat.2022.129772] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Single-atom site catalysts (SACs) can maximize the utilization of active metal species and provide an attractive way to regulate the activity and selectivity of catalytic reactions. The adjustable coordination configuration and atomic structure of SACs enable them to be an ideal candidate for revealing reaction mechanisms in various catalytic processes. The minimum use of metals and relatively tight anchoring of the metal atoms significantly reduce leaching and environmental risks. Additionally, the unique physicochemical properties of single atom sites endow SACs with superior activity in various catalytic processes for environmental remediation (ER). Generally, SACs are burgeoning and promising materials in the application of ER. However, a systematic and critical review on the mechanism and broad application of SACs-based ER is lacking. Herein, we review emerging studies applying SACs for different ERs, such as eliminating organic pollutants in water, removing volatile organic compounds, purifying automobile exhaust, and others (hydrodefluorination and disinfection). We have summarized the synthesis, characterization, reaction mechanism and structural-function relationship of SACs in ER. In addition, the perspectives and challenges of SACs for ER are also analyzed. We expect that this review can provide constructive inspiration for discoveries and applications of SACs in environmental catalysis in the future.
Collapse
Affiliation(s)
- Tao Cai
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Zhenzhen Teng
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yanjun Wen
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Huayang Zhang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Shaobin Wang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Xijun Fu
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Lu Song
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Mi Li
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Junwen Lv
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Qingyi Zeng
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
120
|
Wang Q, Liu K, Hu K, Cai C, Li H, Li H, Herran M, Lu YR, Chan TS, Ma C, Fu J, Zhang S, Liang Y, Cortés E, Liu M. Attenuating metal-substrate conjugation in atomically dispersed nickel catalysts for electroreduction of CO 2 to CO. Nat Commun 2022; 13:6082. [PMID: 36241631 PMCID: PMC9568552 DOI: 10.1038/s41467-022-33692-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 09/28/2022] [Indexed: 11/09/2022] Open
Abstract
Atomically dispersed transition metals on carbon-based aromatic substrates are an emerging class of electrocatalysts for the electroreduction of CO2. However, electron delocalization of the metal site with the carbon support via d-π conjugation strongly hinders CO2 activation at the active metal centers. Herein, we introduce a strategy to attenuate the d-π conjugation at single Ni atomic sites by functionalizing the support with cyano moieties. In situ attenuated total reflection infrared spectroscopy and theoretical calculations demonstrate that this strategy increases the electron density around the metal centers and facilitates CO2 activation. As a result, for the electroreduction of CO2 to CO in aqueous KHCO3 electrolyte, the cyano-modified catalyst exhibits a turnover frequency of ~22,000 per hour at -1.178 V versus the reversible hydrogen electrode (RHE) and maintains a Faradaic efficiency (FE) above 90% even with a CO2 concentration of only 30% in an H-type cell. In a flow cell under pure CO2 at -0.93 V versus RHE the cyano-modified catalyst enables a current density of -300 mA/cm2 with a FE above 90%.
Collapse
Affiliation(s)
- Qiyou Wang
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics and Electronics, Central South University, Changsha, 410083, China
| | - Kang Liu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics and Electronics, Central South University, Changsha, 410083, China
| | - Kangman Hu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics and Electronics, Central South University, Changsha, 410083, China
| | - Chao Cai
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics and Electronics, Central South University, Changsha, 410083, China
| | - Huangjingwei Li
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics and Electronics, Central South University, Changsha, 410083, China
| | - Hongmei Li
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics and Electronics, Central South University, Changsha, 410083, China
| | - Matias Herran
- Nanoinstitut München, Fakultät für Physik, Ludwig-Maximilians-Universität München, 80539, München, Germany
| | - Ying-Rui Lu
- National Synchrotron Radiation Research Center, 300, Hsinchu, Taiwan
| | - Ting-Shan Chan
- National Synchrotron Radiation Research Center, 300, Hsinchu, Taiwan
| | - Chao Ma
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| | - Junwei Fu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics and Electronics, Central South University, Changsha, 410083, China
| | - Shiguo Zhang
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| | - Ying Liang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Emiliano Cortés
- Nanoinstitut München, Fakultät für Physik, Ludwig-Maximilians-Universität München, 80539, München, Germany.
| | - Min Liu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics and Electronics, Central South University, Changsha, 410083, China.
| |
Collapse
|
121
|
Liu B, Zhan S, Du J, Yang X, Zhao Y, Li L, Wan J, Zhao ZJ, Gong J, Yang N, Yu R, Wang D. Revealing the Mechanism of sp-N Doping in Graphdiyne for Developing Site-Defined Metal-Free Catalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022:e2206450. [PMID: 36217835 DOI: 10.1002/adma.202206450] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Due to the limited reserves of metals, scientists are devoted to exploring high-performance metal-free catalysts based on carbon materials to solve environment-related issues. Doping would build up inhomogeneous charge distribution on surface, which is an efficient approach for boosting the catalytic performance. However, doping sites are difficult to control in traditional carbon materials, thus hindering their development. Taking the advantage of unique sp-C in graphdiyne (GDY), a new N doping configuration of sp-hybridized nitrogen (sp-N), bringing a Pt-comparable catalytic activity in oxygen reduction reaction is site-defined introduced. However, the reaction intermediate of this process is never captured, hindering the understanding of the mechanism and the precise synthesis of metal-free catalysts. After the four-year study, the fabrication of intermediate-like molecule is realized, and finally sp-N doped GDY via the pericyclic reaction is obtained. Compared with GDY doped with other N configurations, the designed sp-N GDY shows much higher catalytic activity in electroreduction of CO2 toward CH4 production, owing to the unique electronic structure introduced by sp-N, which is more favorable in stabilizing the intermediate. Thus, besides opening the black-box for the site-defined doping, this work reveals the relationship between doping configuration and products of CO2 reduction.
Collapse
Affiliation(s)
- Baokun Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Materials Science and Engineering, Henan Province Industrial Technology Research Institute of Resources and Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Shuhui Zhan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jiang Du
- School of Materials Science and Engineering, Henan Province Industrial Technology Research Institute of Resources and Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Xin Yang
- School of Materials Science and Engineering, Henan Province Industrial Technology Research Institute of Resources and Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yasong Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Lulu Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, P. R. China
| | - Jiawei Wan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhi-Jian Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, P. R. China
| | - Jinlong Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, P. R. China
| | - Nailiang Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ranbo Yu
- Department of Physical Chemistry School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, No. 30, Xueyuan Road, Haidian District, Beijing, 100083, P. R. China
| | - Dan Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
122
|
New high-entropy transition-metal sulfide nanoparticles for electrochemical oxygen evolution reaction. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
123
|
Fan T, Chen H, Ji Y. Graphdiyne supported single-atom cobalt catalyst for oxygen reduction reaction: The role of the co-adsorbates. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
124
|
Fu W, Wan J, Zhang H, Li J, Chen W, Li Y, Guo Z, Wang Y. Photoinduced loading of electron-rich Cu single atoms by moderate coordination for hydrogen evolution. Nat Commun 2022; 13:5496. [PMID: 36127356 PMCID: PMC9489781 DOI: 10.1038/s41467-022-33275-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 09/12/2022] [Indexed: 11/30/2022] Open
Abstract
Single-atom catalysts offer maximal atom utilization efficiencies and high-electronegativity heteroatoms play a crucial role in coordinating reactive single metal atoms to prevent agglomeration. However, these strong coordination bonds withdraw electron density for coordinated metal atoms and consequently affect their catalytic activity. Herein we reveal the high loading (11.3 wt%) and stabilization of moderately coordinated Cu-P3 structure on black phosphorus support by a photochemical strategy with auxiliary hydrogen. Single-atom Cu sites with an exceptional electron-rich feature show the \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\triangle {G}_{{{{{{\rm{H}}}}}}*}$$\end{document}△GH* close to zero to favor catalysis. Neighboring Cu atoms work in synergy to lower the energy of key water adsorption and dissociation intermediates. The reported catalyst shows a low overpotential of only 41 mV at 10 mA cm−2 and Tafel slope of 53.4 mV dec−1 for the alkaline hydrogen evolution reaction, surpassing both isolated Cu single atoms and Cu nanoclusters. The promising materials design strategy sheds light on the design and fabrication of high-loading single metal atoms and the role of neighboring single atoms for enhanced reaction kinetics. While atomically dispersed metals can maximize reaction catalytic sites, it is challenging to achieve high atomic densities without agglomeration. Here, authors prepared Cu single-atoms on black phosphorous using a photochemical strategy and auxiliary H2 as proton reduction electrocatalysts.
Collapse
Affiliation(s)
- Weiwei Fu
- The School of Chemistry and Chemical Engineering, State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City, 400044, PR China
| | - Jin Wan
- The School of Chemistry and Chemical Engineering, State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City, 400044, PR China
| | - Huijuan Zhang
- The School of Chemistry and Chemical Engineering, State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City, 400044, PR China
| | - Jian Li
- The school of Electrical Engineering, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City, 400044, China
| | - Weigen Chen
- The school of Electrical Engineering, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City, 400044, China
| | - Yuke Li
- Department of Chemistry, Centre for Scientific Modeling and Computation, Chinese University of Hong Kong, Shatin, 999077, Hong Kong
| | - Zaiping Guo
- School of Chemical Engineering and Advanced Materials, University of Adelaide, Adelaide, 5005, Australia
| | - Yu Wang
- The School of Chemistry and Chemical Engineering, State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City, 400044, PR China. .,The school of Electrical Engineering, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City, 400044, China.
| |
Collapse
|
125
|
Ma K, Wu J, Wang X, Sun Y, Xiong Z, Dai F, Bai H, Xie Y, Kang Z, Zhang Y. Periodically Interrupting Bonding Behavior to Reformat Delocalized Electronic States of Graphdiyne for Improved Electrocatalytic Hydrogen Evolution. Angew Chem Int Ed Engl 2022; 61:e202211094. [DOI: 10.1002/anie.202211094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Indexed: 12/01/2022]
Affiliation(s)
- Kaikai Ma
- Academy for Advanced Interdisciplinary Science and Technology Beijing Advanced Innovation Center for Materials Genome Engineering University of Science and Technology Beijing Beijing 100083 P. R. China
- Beijing Key Laboratory for Advanced Energy Materials and Technologies School of Materials Science and Engineering University of Science and Technology Beijing Beijing 100083 P. R. China
| | - Jing Wu
- Academy for Advanced Interdisciplinary Science and Technology Beijing Advanced Innovation Center for Materials Genome Engineering University of Science and Technology Beijing Beijing 100083 P. R. China
- Beijing Key Laboratory for Advanced Energy Materials and Technologies School of Materials Science and Engineering University of Science and Technology Beijing Beijing 100083 P. R. China
| | - Xin Wang
- Academy for Advanced Interdisciplinary Science and Technology Beijing Advanced Innovation Center for Materials Genome Engineering University of Science and Technology Beijing Beijing 100083 P. R. China
- Beijing Key Laboratory for Advanced Energy Materials and Technologies School of Materials Science and Engineering University of Science and Technology Beijing Beijing 100083 P. R. China
| | - Yu Sun
- Academy for Advanced Interdisciplinary Science and Technology Beijing Advanced Innovation Center for Materials Genome Engineering University of Science and Technology Beijing Beijing 100083 P. R. China
- Beijing Key Laboratory for Advanced Energy Materials and Technologies School of Materials Science and Engineering University of Science and Technology Beijing Beijing 100083 P. R. China
| | - Zhaozhao Xiong
- Academy for Advanced Interdisciplinary Science and Technology Beijing Advanced Innovation Center for Materials Genome Engineering University of Science and Technology Beijing Beijing 100083 P. R. China
- Beijing Key Laboratory for Advanced Energy Materials and Technologies School of Materials Science and Engineering University of Science and Technology Beijing Beijing 100083 P. R. China
| | - Fulong Dai
- Academy for Advanced Interdisciplinary Science and Technology Beijing Advanced Innovation Center for Materials Genome Engineering University of Science and Technology Beijing Beijing 100083 P. R. China
- Beijing Key Laboratory for Advanced Energy Materials and Technologies School of Materials Science and Engineering University of Science and Technology Beijing Beijing 100083 P. R. China
| | - Haokun Bai
- Academy for Advanced Interdisciplinary Science and Technology Beijing Advanced Innovation Center for Materials Genome Engineering University of Science and Technology Beijing Beijing 100083 P. R. China
- Beijing Key Laboratory for Advanced Energy Materials and Technologies School of Materials Science and Engineering University of Science and Technology Beijing Beijing 100083 P. R. China
| | - Yong Xie
- Academy for Advanced Interdisciplinary Science and Technology Beijing Advanced Innovation Center for Materials Genome Engineering University of Science and Technology Beijing Beijing 100083 P. R. China
- Beijing Key Laboratory for Advanced Energy Materials and Technologies School of Materials Science and Engineering University of Science and Technology Beijing Beijing 100083 P. R. China
| | - Zhuo Kang
- Academy for Advanced Interdisciplinary Science and Technology Beijing Advanced Innovation Center for Materials Genome Engineering University of Science and Technology Beijing Beijing 100083 P. R. China
- Beijing Key Laboratory for Advanced Energy Materials and Technologies School of Materials Science and Engineering University of Science and Technology Beijing Beijing 100083 P. R. China
| | - Yue Zhang
- Academy for Advanced Interdisciplinary Science and Technology Beijing Advanced Innovation Center for Materials Genome Engineering University of Science and Technology Beijing Beijing 100083 P. R. China
- Beijing Key Laboratory for Advanced Energy Materials and Technologies School of Materials Science and Engineering University of Science and Technology Beijing Beijing 100083 P. R. China
| |
Collapse
|
126
|
Su R, Zhang H, Chen F, Wang Z, Huang L. Applications of Single Atom Catalysts for Environmental Management. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11155. [PMID: 36141429 PMCID: PMC9517379 DOI: 10.3390/ijerph191811155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 05/07/2023]
Abstract
With the rapid development of industrialization, human beings have caused many negative effects on the environment that have endangered the survival and development of human beings, such as the greenhouse effect, water pollution, energy depletion, etc [...].
Collapse
Affiliation(s)
- Rongkui Su
- College of Environmental Science and Engineering, Central South University of Forestry & Technology, Changsha 410004, China
- Power China Zhongnan Engineering Corporation Limited, Changsha 410004, China
| | - Hongguo Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Feng Chen
- School of Environmental and Biological Engineering, Henan University of Engineering, Zhengzhou 451191, China
| | - Zhenxing Wang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People’s Republic of China, Guangzhou 510655, China
| | - Lei Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
127
|
Abstract
Overall seawater electrolysis is an important direction for the development of hydrogen energy conversion. The key issues include how to achieve high selectivity, activity, and stability in seawater electrolysis reactions. In this report, the heterostructures of graphdiyne-RhOx-graphdiyne (GDY/RhOx/GDY) were constructed by in situ-controlled growth of GDY on RhOx nanocrystals. A double layer interface of sp-hybridized carbon-oxide-Rhodium (sp-C∼O-Rh) was formed in this system. The microstructures at the interface are composed of active sites of sp-C∼O-Rh. The obvious electron-withdrawing surface enhances the catalytic activity with orders of magnitude, while the GDY outer of the metal oxides guarantees the stability. The electron-donating and withdrawing sp-C∼O-Rh structures enhance the catalytic activity, achieving high-performance overall seawater electrolysis with very small cell voltages of 1.42 and 1.52 V at large current densities of 10 and 500 mA cm-2 at room temperatures and ambient pressures, respectively. The compositional and structural superiority of the GDY-derived sp-C-metal-oxide active center offers great opportunities to engineer tunable redox properties and catalytic performance for seawater electrolysis and beyond. This is a typical successful example of the rational design of catalytic systems.
Collapse
|
128
|
Ai F, Wang J. Theoretical Evaluation of Electrochemical Nitrate Reduction Reaction on Graphdiyne-Supported Transition Metal Single-Atom Catalysts. ACS OMEGA 2022; 7:31309-31317. [PMID: 36092582 PMCID: PMC9453955 DOI: 10.1021/acsomega.2c03588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
The electrochemical reaction can be applied as a powerful method to eliminate the pollution of nitrate (NO3 -) and as a feasible synthesis to enable the conversion of nitrate into ammonia (NH3) at room temperature. Herein, density functional theory calculations are applied to comprehensively analyze the electrochemical nitrate reduction reaction (NO3RR) on graphdiyne-supported transition metal single-atom catalysts (TM@GDY SACs) for the first time. It can be found that the vanadium-anchored graphdiyne (V@GDY) displays the lowest limiting potential of -0.63 V versus a reversible hydrogen electrode among the investigated systems in this work. Notably, the competing hydrogen evolution reaction is relatively restrained due to the comparatively weak adsorption of the H proton on the TM@GDY SACs. Moreover, higher energy intake is needed to overcome the energy barrier during the formation of byproducts (NO2, NO, N2O, and N2) on V@GDY without applying extra electrode potential, showing the selectivity of NH3 in the NO3RR process. The ab initio molecular dynamics simulation denotes that the V@GDY possesses excellent structure stability at the temperature of 600 K without much distortion, compared with the initial shape, indicating the promise for synthesis. This study not only offers a feasible NO3RR electrocatalyst but also paves the way for the development of the NO3RR process.
Collapse
|
129
|
Rhodium nanocrystals on porous graphdiyne for electrocatalytic hydrogen evolution from saline water. Nat Commun 2022; 13:5227. [PMID: 36064713 PMCID: PMC9445080 DOI: 10.1038/s41467-022-32937-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/24/2022] [Indexed: 11/08/2022] Open
Abstract
The realization of the efficient hydrogen conversion with large current densities at low overpotentials represents the development trend of this field. Here we report the atomic active sites tailoring through a facile synthetic method to yield well-defined Rhodium nanocrystals in aqueous solution using formic acid as the reducing agent and graphdiyne as the stabilizing support. High-resolution high-angle annular dark-field scanning-transmission electron microscopy images show the high-density atomic steps on the faces of hexahedral Rh nanocrystals. Experimental results reveal the formation of stable sp-C~Rh bonds can stabilize Rh nanocrystals and further improve charge transfer ability in the system. Experimental and density functional theory calculation results solidly demonstrate the exposed high active stepped surfaces and various metal atomic sites affect the electronic structure of the catalyst to reduce the overpotential resulting in the large-current hydrogen production from saline water. This exciting result demonstrates unmatched electrocatalytic performance and highly stable saline water electrolysis.
Collapse
|
130
|
Narendra Kumar AV, Muthu Prabhu S, Shin WS, Yadav KK, Ahn Y, Abdellattif MH, Jeon BH. Prospects of non-noble metal single atoms embedded in two-dimensional (2D) carbon and non-carbon-based structures in electrocatalytic applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
131
|
Sakamoto R, Toyoda R, Jingyan G, Nishina Y, Kamiya K, Nishihara H, Ogoshi T. Coordination chemistry for innovative carbon-related materials. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
132
|
Ying Y, Fan K, Qiao J, Huang H. Rational Design of Atomic Site Catalysts for Electrocatalytic Nitrogen Reduction Reaction: One Step Closer to Optimum Activity and Selectivity. ELECTROCHEM ENERGY R 2022. [DOI: 10.1007/s41918-022-00164-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AbstractThe electrocatalytic nitrogen reduction reaction (NRR) has been one of the most intriguing catalytic reactions in recent years, providing an energy-saving and environmentally friendly alternative to the conventional Haber–Bosch process for ammonia production. However, the activity and selectivity issues originating from the activation barrier of the NRR intermediates and the competing hydrogen evolution reaction result in the unsatisfactory NH3 yield rate and Faradaic efficiency of current NRR catalysts. Atomic site catalysts (ASCs), an emerging group of heterogeneous catalysts with a high atomic utilization rate, selectivity, and stability, may provide a solution. This article undertakes an exploration and systematic review of a highly significant research area: the principles of designing ASCs for the NRR. Both the theoretical and experimental progress and state-of-the-art techniques in the rational design of ASCs for the NRR are summarized, and the topic is extended to double-atom catalysts and boron-based metal-free ASCs. This review provides guidelines for the rational design of ASCs for the optimum activity and selectivity for the electrocatalytic NRR.
Graphical Abstract
Rational design of atomic site catalysts (ASCs) for nitrogen reduction reaction (NRR) has both scientific and industrial significance. In this review, the recent experimental and theoretical breakthroughs in the design principles of transition metal ASCs for NRR are comprehensively discussed, and the topic is also extended to double-atom catalysts and boron-based metal-free ASCs.
Collapse
|
133
|
Ma K, Wu J, Wang X, Sun Y, Xiong Z, Dai F, Bai H, Xie Y, Kang Z, Zhang Y. Periodically Interrupting Bonding Behavior to Reformat Delocalized Electronic States of Graphdiyne for Improved Electrocatalytic Hydrogen Evolution. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202211094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kaikai Ma
- University of Science and Technology Beijing University of Science and Technology Beijing CHINA
| | - Jing Wu
- University of Science and Technology Beijing University of Science and Technology Beijing CHINA
| | - Xin Wang
- University of Science and Technology Beijing University of Science and Technology Beijing CHINA
| | - Yu Sun
- University of Science and Technology Beijing University of Science and Technology Beijing CHINA
| | - Zhaozhao Xiong
- University of Science and Technology Beijing University of Science and Technology Beijing CHINA
| | - Fulong Dai
- University of Science and Technology Beijing University of Science and Technology Beijing CHINA
| | - Haokun Bai
- University of Science and Technology Beijing University of Science and Technology Beijing CHINA
| | - Yong Xie
- University of Science and Technology Beijing University of Science and Technology Beijing CHINA
| | - Zhuo Kang
- University of Science and Technology Beijing University of Science and Technology Beijing CHINA
| | - Yue Zhang
- University of Science and Technology Beijing No. 30, Xueyuan Road, Haidian District Beijing CHINA
| |
Collapse
|
134
|
Yu J, Chen W, Li K, Zhang C, Li M, He F, Jiang L, Li Y, Song W, Cao C. Graphdiyne Nanospheres as a Wettability and Electron Modifier for Enhanced Hydrogenation Catalysis. Angew Chem Int Ed Engl 2022; 61:e202207255. [DOI: 10.1002/anie.202207255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Jia Yu
- Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences CAS Key Laboratory of Molecular Nanostructure and Nanotechnology Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Weiming Chen
- Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences CAS Key Laboratory of Molecular Nanostructure and Nanotechnology Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Kaixuan Li
- Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences CAS Key Laboratory of Green Printing Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Chunhui Zhang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Mingzhu Li
- Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences CAS Key Laboratory of Green Printing Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Feng He
- Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences CAS Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yuliang Li
- Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences CAS Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Weiguo Song
- Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences CAS Key Laboratory of Molecular Nanostructure and Nanotechnology Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Changyan Cao
- Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences CAS Key Laboratory of Molecular Nanostructure and Nanotechnology Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100190 P. R. China
| |
Collapse
|
135
|
Li J, Han X, Wang D, Zhu L, Ha-Thi MH, Pino T, Arbiol J, Wu LZ, Ghazzal MN. A Deprotection‐free Method for High‐yield Synthesis of Graphdiyne Powder with in‐situ Formed CuO Nanoparticles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jian Li
- Université Paris-Saclay UFR Sciences: Universite Paris-Saclay Faculte des Sciences d'Orsay Institut de Chimie Physique FRANCE
| | - Xu Han
- Institute of Nanoscience and Nanotechnology: Instituto de Nanociencia y Nanotecnologia Catalan Institute of Nanoscience and Nanotechnology FRANCE
| | - Dongmei Wang
- Chinese Academy of Sciences Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety Institute of High Energy Physics, Chinese Academy of Sciences CHINA
| | - Lei Zhu
- Technical Institute of Physics and Chemistry Chinese Academy of Sciences: Technical Institute of Physics and Chemistry key laboratory of photochemical conversion and optoelectronic materials CHINA
| | - Minh-Huong Ha-Thi
- Paris-Saclay University Faculty of Science Orsay: Universite Paris-Saclay Faculte des Sciences d'Orsay ISMO FRANCE
| | - Thomas Pino
- Paris-Saclay University Faculty of Science Orsay: Universite Paris-Saclay Faculte des Sciences d'Orsay ISMO FRANCE
| | - Jordi Arbiol
- Catalan Institute of Nanoscience and Nanotechnology: Institut Catala de Nanociencia i Nanotecnologia ICREA SPAIN
| | - Li-Zhu Wu
- Technical Institute of Physics and Chemistry CAS: Technical Institute of Physics and Chemistry Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, Chinese Academy of Sciences CHINA
| | - Mohamed Nawfal Ghazzal
- Université Paris-Saclay Faculté des Sciences d'Orsay: Universite Paris-Saclay Faculte des Sciences d'Orsay Institut de chimie physique UMR8000 - Université Paris-Saclay Bâtiment 349 - Campus d’Orsay15, avenue Jean Perrin 91405 Orsay FRANCE
| |
Collapse
|
136
|
Wang C, Li W, Kistanov AA, Singh H, Kayser Y, Cao W, Geng B. Structural engineering and electronic state tuning optimization of molybdenum-doped cobalt hydroxide nanosheet self-assembled hierarchical microtubules for efficient electrocatalytic oxygen evolution. J Colloid Interface Sci 2022; 628:398-406. [PMID: 35998464 DOI: 10.1016/j.jcis.2022.08.069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/26/2022]
Abstract
Cobalt-based hydroxide are ideal candidates for the oxygen evolution reaction. Herein, we use molybdenum oxide nanorods as sacrificial templates to construct a self-supporting molybdenum-doped cobalt hydroxide nanosheet hierarchical microtubule structure based on a structural engineering strategy to improve the active area of the catalyst. X-ray-based spectroscopic tests revealed that Mo (VI) with tetrahedral coordination intercalated into the interlayer of cobalt hydroxide, promoting interlayer separation. At the same time, Mo is connected with Co through oxygen bonds, which promotes the transfer of Co charges to Mo and reduces the electron cloud density of Co ions. In 1 M KOH, optimized molybdenum-doped cobalt hydroxide nanosheet microtubules only needs an overpotential of 288 mV to drive a current density of 10 mA cm-2, which is significantly better than that of pure Co(OH)2 nanosheets and RuO2. Structural engineering and electronic state regulation can effectively improve the oxygen evolution activity of cobalt-based hydroxide, which provides a design idea for the development of efficient oxygen evolution catalysts.
Collapse
Affiliation(s)
- Chao Wang
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, Anhui Normal University, Wuhu 241002, China
| | - Wen Li
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, Anhui Normal University, Wuhu 241002, China
| | - Andrey A Kistanov
- Nano and Molecular Systems Research Unit, University of Oulu, FIN-90014, Finland
| | - Harishchandra Singh
- Nano and Molecular Systems Research Unit, University of Oulu, FIN-90014, Finland
| | - Yves Kayser
- Physikalisch-Technische Bundesanstalt, X-ray Spectrometry Abbestr. 2-12, 10587 Berlin, Germany
| | - Wei Cao
- Nano and Molecular Systems Research Unit, University of Oulu, FIN-90014, Finland
| | - Baoyou Geng
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, Anhui Normal University, Wuhu 241002, China; Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230031, China.
| |
Collapse
|
137
|
Wei M, Cai A, He H, Wu S, Zhang G, Zhang F, Peng W, Fan X, Li Y. Atomically Dispersed Fe-N 5 Sites Anchored on 3D N-Doped Porous Carbon for Efficient Selective Oxidation of Aromatic Alkanes at Room Temperature. ACS APPLIED MATERIALS & INTERFACES 2022; 14:36007-36018. [PMID: 35895975 DOI: 10.1021/acsami.2c05343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
On account of the increasing demand for aromatic ketones and the challenging task of mass production in the chemical industry, efficient and sustainable catalysts are urgently needed to catalyze the conversion of aromatic alkyl compounds into high value-added products via the activation of C-H bonds. Herein, Fe single-site atoms anchored on a N-doped three-dimensional (3D) porous carbon nanostructure (Fe-MEG-800) synthesized through the self-assembly hydrothermal method are reported. Detailed characterization analyses, such as aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (AC-HAADF-STEM), are employed to prove the isolated single Fe atom dispersing on the carbon nanostructure, along with X-ray absorption spectroscopy (XAS) and Mössbauer spectroscopy analysis confirming the Fe-N5 coordination structure. Furthermore, the 3D cross-linked structure not only provides an abundant open-framework structure for the mass transfer during the reaction but also facilitates the exposure of more active sites and promotes the reaction procedure. The as-prepared catalyst possesses high catalytic activity toward the C-H bond at room temperature. In the model reaction of oxidizing ethylbenzene (EB) to high-value acetophenone (AcPO), the conversion and the selectivity of the reaction are both over 99%. In addition, the catalyst also presents favorable stability with retaining high performance even after eight cycles. The possible adsorption sites of the reactant and oxidant are explored through density functional theory (DFT) calculations. Based on the analysis of experimental and theoretical results, a possible mechanism for the oxidation of EB to AcPO involving •OH, O2•-, and 1O2 is also proposed.
Collapse
Affiliation(s)
- Mengying Wei
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - An Cai
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Hongwei He
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Shun Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Guoliang Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Fengbao Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Wenchao Peng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- Institute of Shaoxing, Tianjin University, Zhejiang 312300, China
| | - Xiaobin Fan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- Institute of Shaoxing, Tianjin University, Zhejiang 312300, China
| | - Yang Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- Institute of Shaoxing, Tianjin University, Zhejiang 312300, China
| |
Collapse
|
138
|
Xian J, Luo S, Xue J, Zhang L, Fu Z, Ouyang H. Synergetic Dual-Site Atomic Catalysts for Sensitive Chemiluminescent Immunochromatographic Test Strips. Anal Chem 2022; 94:11449-11456. [PMID: 35938606 DOI: 10.1021/acs.analchem.2c02914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In view of the outstanding catalytic efficiency, single-atom catalysts (SACs) have shown great promise for the construction of sensitive chemiluminescent (CL) platforms. However, the low loading amount of active sites dramatically obstructs the improved catalytic activity of these metal SACs. Benefiting from the exceedingly unique catalytic properties of the metal-metal bonds, atomic clusters may give rise to enhancing the catalytic properties of SACs based on the synergistic effects of dual atomic-scale sites. Inspired by this, atomic Co3N clusters-assisted Co SACs (Co3N@Co SACs) were synthesized through a facile doping method. Through X-ray absorption spectroscopy, the active metal sites in the synergetic dual-site atomic catalysts of Co3N@Co SACs were confirmed to be Co-O4 and Co3-N moieties. Co3N@Co SACs served as a superior co-reactant to remarkably enhance the luminol CL signal by 2155.0 times, which was prominently superior to the boosting effect of the pure Co SACs (98.4 times). The synergetic dual-site atomic catalysts contributed to accelerating the decomposition of H2O2 into singlet oxygen as well as superoxide radical anions to display superb catalytic performances. For a concept employment, Co3N@Co SACs were attempted to utilize as CL probes for establishing a sensitive immunochromatographic assay to quantitate pesticide residues, in which imidacloprid was adopted as the model analyte. The quantitative range of imidacloprid was 0.05-10 ng mL-1 with a detection limit of 1.7 pg mL-1 (3σ). Furthermore, the satisfactory recovery values in mock herbal medicine samples demonstrated the effectiveness of the proposed Co3N@Co SAC-based CL platform. In the proof-of-concept work, synergetic dual-site atomic catalysts show great perspectives on trace analysis and luminescent biosensing.
Collapse
Affiliation(s)
- Jiaxin Xian
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Shuai Luo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Jinxia Xue
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Lvxia Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zhifeng Fu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Hui Ouyang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
139
|
Bai Q, Luo H, Yi X, Shi S, Wang L, Liu M, Du F, Yang Z, Sui N. Nitrogen-Doped Graphdiyne Quantum-dots as an Optical-Electrochemical sensor for sensitive detection of dopamine. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
140
|
He S, Xia H, Chang F. Enzyme free electrochemical determination of bisphenol A using screen-printed electrode modified by graphdiyne and carbon nanotubes. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
141
|
Zheng W, Zhu R, Wu H, Ma T, Zhou H, Zhou M, He C, Liu X, Li S, Cheng C. Tailoring Bond Microenvironments and Reaction Pathways of Single‐Atom Catalysts for Efficient Water Electrolysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Weiqiong Zheng
- Sichuan University - Wangjiang Campus: Sichuan University College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering No.24 South Section 1, Yihuan Road 610065 Chengdu CHINA
| | - Ran Zhu
- Sichuan University - Wangjiang Campus: Sichuan University College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering No.24 South Section 1, Yihuan Road 610065 Chengdu CHINA
| | - Huijuan Wu
- Sichuan University - Wangjiang Campus: Sichuan University College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering No.24 South Section 1, Yihuan Road 610065 Chengdu CHINA
| | - Tian Ma
- Sichuan University West China Hospital Department of Ultrasound CHINA
| | - Hongju Zhou
- Sichuan University West China Hospital Department of Nephrology CHINA
| | - Mi Zhou
- Sichuan University - Wangjiang Campus: Sichuan University College of Biomass Science and Engineering CHINA
| | - Chao He
- Sichuan University - Wangjiang Campus: Sichuan University College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering No.24 South Section 1, Yihuan Road 610065 Chengdu CHINA
| | - Xikui Liu
- Sichuan University - Wangjiang Campus: Sichuan University College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering No.24 South Section 1, Yihuan Road 610065 Chengdu CHINA
| | - Shuang Li
- Sichuan University - Wangjiang Campus: Sichuan University College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering No.24 South Section 1, Yihuan Road 610065 Chengdu CHINA
| | - Chong Cheng
- Sichuan University Department of polymer science No. 24, Yihuan Road 610065 Chengdu CHINA
| |
Collapse
|
142
|
Zheng W, Zhu R, Wu H, Ma T, Zhou H, Zhou M, He C, Liu X, Li S, Cheng C. Tailoring Bond Microenvironments and Reaction Pathways of Single-Atom Catalysts for Efficient Water Electrolysis. Angew Chem Int Ed Engl 2022; 61:e202208667. [PMID: 35876718 DOI: 10.1002/anie.202208667] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Indexed: 02/05/2023]
Abstract
Single-Atom Sites (SASs) are commonly stabilized and influenced by neighboring atoms in the host; disclosing the structure-reactivity relationships of SASs in water electrolysis are the grand challenges originating from the enormous support materials with complex structures. Through a multidisciplinary view of the design principles, synthesis strategies, characterization techniques, and theoretical analysis of structure-performance correlations, this timely review is dedicated to summarizing the most recent progress in tailoring bond microenvironments on different supports and discussing the reaction pathways and performance advantages of different SAS structures for water electrolysis . The essences and mechanisms of how SAS structures influence their electrocatalysis and the critical needs for their future developments are discussed. Finally, the challenges and perspectives are also provided to stimulate their practically widespread utilization in water-splitting electrolyzers.
Collapse
Affiliation(s)
- Weiqiong Zheng
- Sichuan University - Wangjiang Campus: Sichuan University, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, No.24 South Section 1, Yihuan Road, 610065, Chengdu, CHINA
| | - Ran Zhu
- Sichuan University - Wangjiang Campus: Sichuan University, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, No.24 South Section 1, Yihuan Road, 610065, Chengdu, CHINA
| | - Huijuan Wu
- Sichuan University - Wangjiang Campus: Sichuan University, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, No.24 South Section 1, Yihuan Road, 610065, Chengdu, CHINA
| | - Tian Ma
- Sichuan University West China Hospital, Department of Ultrasound, CHINA
| | - Hongju Zhou
- Sichuan University West China Hospital, Department of Nephrology, CHINA
| | - Mi Zhou
- Sichuan University - Wangjiang Campus: Sichuan University, College of Biomass Science and Engineering, CHINA
| | - Chao He
- Sichuan University - Wangjiang Campus: Sichuan University, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, No.24 South Section 1, Yihuan Road, 610065, Chengdu, CHINA
| | - Xikui Liu
- Sichuan University - Wangjiang Campus: Sichuan University, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, No.24 South Section 1, Yihuan Road, 610065, Chengdu, CHINA
| | - Shuang Li
- Sichuan University - Wangjiang Campus: Sichuan University, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, No.24 South Section 1, Yihuan Road, 610065, Chengdu, CHINA
| | - Chong Cheng
- Sichuan University, Department of polymer science, No. 24, Yihuan Road, 610065, Chengdu, CHINA
| |
Collapse
|
143
|
Yang Y, Yang Z, Zhang C, Zhou J, Liu S, Cao Q. Single-Atom Catalysts Supported on the Graphene/Graphdiyne Heterostructure for Effective CO 2 Electroreduction. Inorg Chem 2022; 61:12012-12022. [PMID: 35862301 DOI: 10.1021/acs.inorgchem.2c02020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Electrochemical reduction of CO2 to high-energy chemicals is a promising strategy for achieving carbon-neutral energy circulation. However, designing high-performance electrocatalysts for the CO2 reduction reaction (CO2RR) remains a great challenge. In this work, by means of density functional theory calculations, we systematically investigate the transition metal (TM) anchored on the nitrogen-doped graphene/graphdiyne heterostructure (TM-N4@GRA/GDY) as a single-atom catalyst for CO2 electroreduction applications. The computational results show that Co-N4@GRA/GDY exhibits remarkable activity with a low limiting potential of -0.567 V for the reduction of CO2 to CH4. When the charged Co-N4@GRA/GDY system is immersed in a continuum solvent, the reaction barrier decreases to 0.366 eV, which is ascribed to stronger electron transfer between GDY and transition metal atoms in the GRA/GDY heterostructure. In addition, the GRA/GDY heterostructure system significantly weakens the linear scaling relationship between the adsorption free energy of key CO2 reduction intermediates, which leads to a catalytic activity that is higher than that of the single-GRA system and thus greatly accelerates the CO2RR. The electronic structure analysis reveals that the appropriate d-π interaction will affect the d orbital electron distribution, which is directly relevant to the selectivity and activity of catalysis. We hope these computational results not only provide a potential electrocatalyst candidate but also open up an avenue for improving the catalytic performance for efficient electrochemical CO2RR.
Collapse
Affiliation(s)
- Yun Yang
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, P. R. China
| | - Ziqian Yang
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, P. R. China
| | - Canyu Zhang
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, P. R. China
| | - Jiao Zhou
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, P. R. China
| | - Shixi Liu
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, P. R. China
| | - Qiue Cao
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, P. R. China
| |
Collapse
|
144
|
Graphdiyne Reinforced Multifunctional Cu/Ni Bimetallic Phosphides-Graphdiyne Hybrid nanostructure as High Performance Electrocatalyst for Water Splitting. J Colloid Interface Sci 2022; 628:508-518. [DOI: 10.1016/j.jcis.2022.07.150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/15/2022] [Accepted: 07/25/2022] [Indexed: 11/23/2022]
|
145
|
Yin Y, Shi L, Zhang S, Duan X, Zhang J, Sun H, Wang S. Two−dimensional nanomaterials confined single atoms: New opportunities for environmental remediation. NANO MATERIALS SCIENCE 2022. [DOI: 10.1016/j.nanoms.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
146
|
Hu X, Xiong L, Fang WH, Su NQ. Computational Insight into Metallated Graphynes as Single Atom Electrocatalysts for Nitrogen Fixation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27861-27872. [PMID: 35678821 DOI: 10.1021/acsami.2c05087] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The electrochemical nitrogen reduction reaction (NRR) is expected to achieve sustainable ammonia synthesis via direct nitrogen fixation; however, the high-quality catalysts that play a crucial role in the NRR are still lacking. The emerging transition metal-1,3,5-triethynylbenzene (TM-TEB) frameworks offer attractive possibilities in the electrochemical catalysis due to the featured atomic and electronic structures. This work presents a comprehensive first-principles study of the TM-TEB systems for TMs from the first three d-block series and systematically explores their potential applications as NRR electrocatalysts. By designing a hierarchical screening strategy, the TM-TEB systems are evaluated based on the NRR catalytic activity as well as the competition from the hydrogen evolution reaction. In addition, in order to have a deeper understanding of the catalytic activities of the TM-TEB systems, diverse possible NRR paths on the TM-TEB surfaces are completely analyzed as well. Our analysis reveals that the TM-TEB systems with TM = V, Mo, Tc, W, and Os are electrocatalysts with a high NRR catalytic activity, while among them, only Mo- and V-TEB show promising NRR selectively. This work demonstrates the great potential of the TM-TEB systems as electrocatalysts in the NRR process, which improves the understanding of the TM-TEB systems and can motivate further exploration of their application in catalysis.
Collapse
Affiliation(s)
- Xiuli Hu
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) and Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin 300071, China
| | - Lixin Xiong
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) and Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin 300071, China
| | - Wei-Hai Fang
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) and Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin 300071, China
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Neil Qiang Su
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) and Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin 300071, China
| |
Collapse
|
147
|
Abstract
In recent years, single-atom catalysts (SACs) with unique electronic structure and coordination environment have attracted much attention due to its maximum atomic efficiency in the catalysis fields. However, it is still a great challenge to rationally regulate the coordination environments of SACs and improve the loading of metal atoms for SACs during catalysis progress. Generally, carbon-based materials with excellent electrical conductivity and large specific surface area are widely used as catalyst supports to stabilize metal atoms. Meanwhile, carbon-based material-supported SACs have also been extensively studied and applied in various energy conversion reactions, such as hydrogen evolution reaction (HER), oxygen evolution reaction (OER), oxygen reduction reaction (ORR), carbon dioxide reduction reaction (CO2RR), and nitrogen reduction reaction (NRR). Herein, rational synthesis methods and advanced characterization techniques were introduced and summarized in this review. Then, the theoretical design strategies and construction methods for carbon-based material-supported SACs in electrocatalysis applications were fully discussed, which are of great significance for guiding the coordination regulation and improving the loading of SACs. In the end, the challenges and future perspectives of SACs were proposed, which could largely contribute to the development of single atom catalysts at the turning point.
Collapse
Affiliation(s)
- Huimin Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Wenhao Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Dong Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Daojian Cheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| |
Collapse
|
148
|
Yu J, Chen W, Li K, Zhang C, Li M, He F, Jiang L, Li Y, Song WG, Cao C. Graphdiyne Nanospheres as a Wettability and Electron Modifier for Enhanced Hydrogenation Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jia Yu
- Institute of Chemistry Chinese Academy of Sciences CAS Key Laboratory of Molecular Nanostructure and Nanotechnology CHINA
| | - Weiming Chen
- Institute of Chemistry Chinese Academy of Sciences CAS Key Laboratory of Molecular Nanostructure and Nanotechnology CHINA
| | - Kaixuan Li
- Institute of Chemistry Chinese Academy of Sciences CAS Key Laboratory of Green Printing CHINA
| | - Chunhui Zhang
- Technical Institute of Physics and Chemistry Chinese Academy of Sciences: Technical Institute of Physics and Chemistry CAS Key Laboratory of Bio-inspired Materials and Interfacial Science Technical CHINA
| | - Mingzhu Li
- Institute of Chemistry Chinese Academy of Sciences CAS Key Laboratory of Green Printing CHINA
| | - Feng He
- Institute of Chemistry Chinese Academy of Sciences CAS Key Laboratory of Organic Solids CHINA
| | - Lei Jiang
- Technical Institute of Physics and Chemistry Chinese Academy of Sciences: Technical Institute of Physics and Chemistry CAS Key Laboratory of Bio-inspired Materials and Interfacial Science Technical CHINA
| | - Yuliang Li
- Institute of Chemistry Chinese Academy of Sciences CAS Key Laboratory of Organic Solids CHINA
| | - Wei-Guo Song
- Chinese Academy of Sciences Institute of Chemistry Zhongguancun North First Street 2, 100190 Beijing CHINA
| | - Changyan Cao
- Institute of Chemistry Chinese Academy of Sciences CAS Key Laboratory of Molecular Nanostructure and Nanotechnology CHINA
| |
Collapse
|
149
|
Wang Y, Shi C, Sha J, Ma L, Liu E, Zhao N. Single-Atom Cobalt Supported on Nitrogen-Doped Three-Dimensional Carbon Facilitating Polysulfide Conversion in Lithium-Sulfur Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:25337-25347. [PMID: 35605282 DOI: 10.1021/acsami.2c02713] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Single-atom catalysts (SACs) have demonstrated catalytic efficacy toward lithium polysulfide conversion in Li-S batteries. However, achieving high-density M-Nx sites with rational design by a simple method is still challenging to date. Herein, an ultrathin porous 3D carbon-supported single-atom catalyst (SACo/NDC) is synthesized with a salt-template strategy via a facile freeze-drying and one-step pyrolysis procedure and serves well as a sulfur host. The well-defined 3D carbon structure can effectively alleviate volume stress and confine polysulfides inside. Moreover, the dispersed Co-Nx sites exhibit strong chemical adsorption function and valid catalytic efficiency to LiPSs redox conversion. As a result, the SACo/NDC cathodes display enhanced long-term cycling stability and better rate capability.
Collapse
Affiliation(s)
- Yichen Wang
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Chunsheng Shi
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Junwei Sha
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Liying Ma
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Enzuo Liu
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
- Collaborative Innovation Centre of Chemical Science and Engineering, Tianjin 300072, China
| | - Naiqin Zhao
- School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
- Collaborative Innovation Centre of Chemical Science and Engineering, Tianjin 300072, China
| |
Collapse
|
150
|
Shi G, Xie Y, Du L, Fu X, Chen X, Xie W, Lu T, Yuan M, Wang M. Constructing Cu−C Bonds in a Graphdiyne‐Regulated Cu Single‐Atom Electrocatalyst for CO
2
Reduction to CH
4. Angew Chem Int Ed Engl 2022; 61:e202203569. [DOI: 10.1002/anie.202203569] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Indexed: 01/16/2023]
Affiliation(s)
- Guodong Shi
- College of Science Henan University of Technology Zhengzhou 450001 China
| | - Yunlong Xie
- Institute of Advanced Materials Hubei Normal University Huangshi 435002 China
| | - Lili Du
- Key Laboratory of Advanced Energy Materials Chemistry Ministry of Education) Renewable Energy Conversion and Storage Center (RECAST) College of Chemistry Nankai University Tianjin 300071 China
| | - Xinliang Fu
- Key Laboratory of Advanced Energy Materials Chemistry Ministry of Education) Renewable Energy Conversion and Storage Center (RECAST) College of Chemistry Nankai University Tianjin 300071 China
| | - Xiaojie Chen
- Key Laboratory of Advanced Energy Materials Chemistry Ministry of Education) Renewable Energy Conversion and Storage Center (RECAST) College of Chemistry Nankai University Tianjin 300071 China
| | - Wangjing Xie
- Key Laboratory of Advanced Energy Materials Chemistry Ministry of Education) Renewable Energy Conversion and Storage Center (RECAST) College of Chemistry Nankai University Tianjin 300071 China
| | - Tong‐Bu Lu
- School of Materials Science and Engineering Institute for New Energy Materials & Low Carbon Technologies Tianjin University of Technology Tianjin 300384 China
| | - Mingjian Yuan
- Key Laboratory of Advanced Energy Materials Chemistry Ministry of Education) Renewable Energy Conversion and Storage Center (RECAST) College of Chemistry Nankai University Tianjin 300071 China
| | - Mei Wang
- School of Materials Science and Engineering Institute for New Energy Materials & Low Carbon Technologies Tianjin University of Technology Tianjin 300384 China
| |
Collapse
|